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Abstract We utilize a previously constructed thermody-
namic 7-matrix approach to the quark-gluon plasma (QGP)
to derive constaints on its input by using results on Wilson
line correlators (WLCs) of a static quark-antiquark pair from
2 + l-flavor lattice-QCD (IQCD) computations with real-
istic pion mass. The self-consistent 7-matrix results, which
include previous constraints from the 1QCD equation of state
in the light-parton sector, can describe the IQCD data for
WLCs fairly well once refinements of its driving kernel are
applied. In particular, the input potential requires less screen-
ing than what has been inferred from previous T -matrix
analyses. Pertinent predictions for the spectral and transport
properties of the QGP are discussed, including the spatial
diffusion coefficient for heavy quarks; the latter turns out to
have a rather weak temperature dependence, in approximate
agreement with recent unquenched 1QCD results.

1 Introduction

The study of the quark-gluon plasma (QGP) provides unique
opportunities to understand how emergent many-body phe-
nomena arise from the fundamental interactions between the
partons in Quantum Chromodynamics (QCD). In particular,
heavy-flavor (HF) particles are widely regarded as excellent
probes of the transport and hadronization properties of the
QCD medium produced in ultrarelativistic heavy-ion colli-
sions (URHICs) [1-3], for several reasons. Heavy quarks and
antiquarks (Q and Q) are pairwise produced in initial hard
processes and approximately conserved throughout the evo-
lution of fireball. Their subsequent propagation through the
medium can be characterized by well-defined transport coef-
ficients, most notably the spatial diffusion coefficient. The
interactions between heavy quarks and the medium occur
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with small energy transfer and thus enable the use of poten-
tial approximations. The spectra of HF particles can preserve
a memory of their interaction history as their thermaliza-
tion time, which is parametrically enhanced by their mass-
over-temperature ratio, is comparable to or (for bottom) even
longer than the fireball lifetime.

Bound states of heavy quark and antiquark, i.e., quarko-
nia, provide further insights into the properties of the QGP
in URHICs [4-6], as their in-medium properties are closely
related to the in-medium QCD force. These properties fun-
damentally figure in the transport coefficients which govern
the abundance and transverse-momentum spectra of quarko-
nia [7]. For example, quarkonia kinetics critically depends
on their inelastic reaction rates, which, in turn, depend on
the in-medium binding energies and are closely related to
individual heavy-quark (HQ) interactions with the medium.
Lattice-QCD (1QCD) computations have provided ample
information on the in-medium properties of heavy quarkonia
through HQ free energies and Euclidean correlators [8-25]
which constrain the spectral functions that can be computed
in effective models and that subsequently serve as an input
to phenomenological applications [26-28].

In the present paper we focus on Wilson line correlators
(WLCs) of a static quark-antiquark pair at finite tempera-
ture. Pertinent 1QCD results have recently been obtained
using realistic 2+1-flavor 1QCD calculations [29]. When
compared to predictions from hard-thermal loop (HTL) per-
turbation theory, a marked disagreement was found. On the
other hand, when using schematic spectral functions based on
parametrizations with different ansitze, it was inferred that
the underlying potential exhibits a relatively weak screening,
even at rather large distances, while the widths of the spectral
peaks turned out to be substantial, albeit quantitatively with a
rather large spread. These results were refined and essentially
confirmed in a more recent analysis [30]. Clearly, these find-
ings call for microscopic analysis within a nonperturbative
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approach. Toward this end, we will employ quantum many-
body theory, i.e., a thermodynamic 7-matrix approach, that
has been previously constructed to describe the interactions
between partons in a strongly coupled QGP [31,32]. Utilizing
a Hamiltonian with a non-perturbative input potential [33],
the 1- and 2-body correlation functions are evaluated selfcon-
sistently [34-36]. In the vacuum, the kernel reduces to the
standard Cornell potential, while its finite-temperature cor-
rections have been constrained by 1QCD data for the HQ free
energy and equation of state (EoS). The WLCs from 1QCD
provide a novel opportunity to improve the constraints on
the in-medium potential, especially since their dependence
on euclidean time, 7, for different values of spatial separa-
tion, r, provides a much extended dynamical reach compared
to the HQ free energies which are evaluated at t = 1/7.

The remainder of this article is structured as follows. In
Sect. 2, we briefly recollect the key components of the ther-
modynamic 7 -matrix approach as needed in the present con-
text, in particular its driving kernel (potential) as the main
input quantity. In Sect. 3 we discuss how the pertinent static
quarkonium spectral function can be related to the WLCs
computed on the lattice. The new constraints imposed on the
in-medium corrections to the potential from selfconsistent
fits to the 1QCD data for EoS and the first moment of the
static WLCs are elaborated in Sect. 4. In Sect. 5 we com-
pute the transport coefficients of charm and static quarks
predicted by the newly inferred potential and compare the
diffusion coefficient to recent 1QCD results. Our summary
and conclusions are contained in Sect. 6.

2 T-matrix approach

The thermodynamic 7-matrix is a quantum many-body for-
malism to evaluate 1- and 2-body correlation functions self-
consistently by resumming an infinite series of selfenergy
and ladder diagrams; thus, it is suitable to study both bound
and scattering states for strongly interacting systems. Orig-
inally devised for the study of HF particles within the QGP
context [31,32,34], this approach was subsequently extended
to encompass the light-parton sector [37]. By reducing the 4-
dimensional (4D) Bethe-Salpeter equation into a more man-
ageable 3D Lippmann-Schwinger equation [38], followed by
a partial-wave expansion, one obtains a 1D scattering equa-
tion [36,37],

2 o
TG ) = VE o)+ = [ RavE b
b

—00

0 L,
xGji(z, T, (z, k, p)) ()
that features the intermediate 2-parton propagator,
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which is a convolution of two single-parton spectral func-
tions,

1
pi (w, k) = ——Im Gi(w + i€, k) 3)
i
given in terms of the (positive-energy projected) propagators,
Gi(w, k) = 1/[w — &i(k) — X (k)]. “

In Eq. (1), Vlf’l denotes the potential between particle i
and j in a color channel a with angular momentum L,
the n; are Bose (4) or Fermi (—) distribution functions,

& = Mi2 + k2 on-shell energies with particle mass M; =

—% / (’2121))3 Vl.‘lle (p) + Mlp, composed of a selfenergy part
from the color-singlet (a = 1) potential (“Fock term”) and a
bare mass, MIQ ,and p and p’ are the moduli of incoming and
outgoing momenta in the center-of-mass (CM) frame. The
in-medium 1-particle selfenergies, X; (k), in Eq. (4) are cal-
culated by closing the 7T'-matrix with an in-medium 1-parton
propagator [36,37].

The ansatz for the static in-medium potential in color-
singlet state is taken from Ref. [33], whose Fourier transform
yields a screened Cornell potential,

r i

V(r,T)= —%Ots |:e—'"d’ —I—md] -z [ef’”SHC”m”)Z — 1] .

(&)

In vacuum one recovers the standard form, V(r) = 4% 4
or,where the coupling constant oy = 0.27 (including an off-
shell running [32]) and string tension, o = 0.225 GeV?2, are
fitted to the vacuum free energy from 1QCD data [21,27,39-
42], assuming a string breaking distance of rgp = 1fm. For
the in-medium potential, m 4 and m; are the Debye screening
masses for color-Coulomb and confining interactions [37];
an additional parameter ¢, in the quadratic term of the expo-
nential of the confining term has been introduced to control
its saturation at large r, essentially mimicking in-medium
string breaking. The infinite-distance subtracted potential,
V(r,T) = V(r,t) — V(oco, T), is then Fourier transformed;
for the interactions between particles with finite masses, the
static potential in momentum space acquires relativistic cor-
rections induced by the underlying Lorentz structure [32],
resulting in

Vij (p’ p/) — R?szcvvec (p _ p/) 4 Rqua Vsca (p _ p/)
(6)

where VV¢¢ (V5¢4) denotes the static vector (scalar) potential.
One has
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The color-Coulomb potential is characterized by an entirely
Lorentz vector structure, while the confining potential is
commonly assumed to be scalar [43,44], in which case
Ve = Ve and V5 = Vg. However, in Refs. [45-49] it has
been suggested that the confining potential exhibits a com-
bination of vector and scalar Lorentz structures, expressed
as V¥ = Vo 4+ (1 — x)Vg and V¥4 = x Vg, rather than
being exclusively scalar. In this context, the key parameter is
the mixing coefficient, x, wherein x = 1 represents a purely
scalar confining potential, and values below one admix a vec-
tor component. In a previous study of 1/m g corrections (m g:
HQ mass) to the HQ interaction [36] we have found that a
mixing coefficient of x = 0.6 leads to a marked improve-
ment of the spin-orbit and spin-spin splittings in vacuum
charmonium and bottomonium spectroscopy [50] over the
x=1 case. In addition, the resulting charm-quark diffusion
coefficient showed better agreement with 2+1-flavor 1QCD
data [51]. Therefore, we also introduce the mixing effect in
this study. Finally, we note that the potential is extended to
different color channels, denoted by a in Eq. (1), using per-
tinent Casimir coefficients [36,37].

3 Static Wilson line correlators from the 7 -matrix

The static Wilson line correlator in Euclidean time, which is
amenable to 1QCD computations, is connected to the static
Q Q spectral function p, 5, through a Laplace transform,

o0
Wre )= [ dEeF ppg (T, ©)
o0

where r is the distance between Q and Q, and E their total
energy which is measured relative to the mass threshold of
the bare HQ mass, 2M0Q (numerically taken as 2 x 10*
GeV). The constituent static HQ mass is the sum of the
bare mass and the mass shift originating from the selfen-
ergy, i.e., Mg = M% + V(r — 00)/2 [37]. The inversion
of Eq. (9) is a challenging (if not ill-posed) problem, mak-
ing it difficult to reconstruct spectral functions from 1QCD
results for WLCs. On the other hand, if one can calculate
the WLCs with spectral functions obtained from an effective
model using Eq. (9), the comparison of the model-derived
WLCs with lattice data can test the model capabilities and
provide microscopic insights.

In the T-matrix formalism, the Q Q spectral function takes
the same form as given in Ref. [37],

pQQ (E3 r, T)

= _—llm |: ~ : :|
n E-V(rT)=®rT)Zy5(E,T)
(10)

where V(r, T) is the static in-medium potential introduced
in Sect. 2. The two-body selfenergy, X5, is related to the
two-body propagator by

—1 ~
[GOQQ(E)] — E—V(r - 00) - Tp5(E). (11)

The two-body selfenergy is reduced by interference effects
that depend on the relative distance between the quarks and
are sometimes referred to as the “imaginary part of poten-
tial” [52]. In the T-matrix formalism, these correspond to 3-
body diagrams, which are difficult to calculate explicitly [37].
However, one can approximately implement them through
an r-dependent suppression factor (or interference function),
¢ (r) [37], i.e., EQQ(E, r) = EQQ(E)¢(r). In perturbation
theory, ¢ (r) has been calculated, essentially corresponding
to an atanh-function (which vanishes for » — 0 in the color-
singlet channel and goes to 1 for r — 00) [52]. In a non-
perturbative setting, it has been supplemented with an extra
stretch-factor in the argument, which has been determined via
1QCD constraints from static free energies [37]. The inter-
ference effect is expected to be significant for deeply bound
heavy quarkonia and has been found to improve the descrip-
tion of Euclidean quarkonium correlator ratios within the
T -matrix approach [37].

To facilitate the understanding of the physical meaning
of the lattice results for the WLCs and to what extent these
can constrain the Q Q spectral function, n™-order cumulants
have been defined in Ref. [29] as

mi(r,t, T) = =0 InW(r,t,T) (12)
my, = demy_1(r,t, T),n > 1. (13)

The first cumulant, m |, essentially corresponds to an effec-
tive mass that is commonly used in lattice QCD. In general,
the WLC contains many statesat 7 = 0. Atlarge t (i.e., small
energies) it will be dominated by the ground state that defines
the potential at zero temperature. At higher energies, excited
states contributing to the WLC are related to hybrid poten-
tials (such as those between D-mesons) which will cause m
to have a rather complex behavior at small t. At non-zero
temperature, where only data at relatively small 7 are avail-
able, this fact renders the analysis quite involved. On the
other hand, the contribution of the high-energy part of the
spectral function is temperature independent to a fairly good
approximation [29]. This contribution can then be estimated
using T = 0 lattice results for WLCs and subtracted from the
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finite-temperature results. In practice one can calculate the
first cumulant of the subtracted WLC, mﬁ”b , which will be
sensitive to the dominant peak in the spectral function, i.e., to
the potential, for sufficiently small r. Therefore, we employ
the 1QCD results for m‘{”h, where the high-energy contribu-
tion to the WLC has been subtracted, following the proce-
dure outlined in Ref. [29], and focus on its small T behav-
ior. Using mi“b has also another advantage: typically lattice
results for correlators for small T suffer from discretization
effects, which cause distortions of the corresponding spec-
tral function at large energies, see, e.g., the discussion in
Ref. [53]. Since the high-energy part of the spectral function
is subtracted when evaluating m‘{”b , the small T behavior of
m‘i”b is free of lattice artifacts.

Returning to the 7T-matrix expression, Eq. (10), one can
show by expanding msl“b for T — 0 and considering the ana-
lytic properties of the two-body selfenergy, that m(r, v =
0, T) reduces to the potential \7(r, T), see Appendix A
for more details (this also holds in the perturbative HTL
approach). The second cumulant mi"b of the subtracted
WLC, or equivalently the slope of m‘i"b , is related to the
imaginary part (width) figuring in p, 5, characterizing the
interacting strength between Q Q and medium. Since we only
consider subtracted cumulants in this study, the superscript
sub will be omitted in what follows.

4 In-medium potentials constrained by 1QCD

In this section, we lay out the procedure of inferring the
modifications to the in-medium potential utilizing combined
fits of quarkonim spectral function to the WLCs and of the
light-parton properties to the QGP EoS in a selfconsistent
quantum many-body approach [36,37]. The procedure con-
sists of two selfconsistency loops, as follows. Initially, the
parameterization of the in-medium potential is refined using
the cumulants of static WLCs (m1) obtained from the 7 '-
matrix approach and fitting them to the IQCD data. The fit
parameters in this step are the screening masses, m, (color-
Coulomb) and m; (confining), as well as ¢, which controls
the “string breaking”. Subsequently, these refined in-medium
potentials are used to compute the EoS of QGP, and the main
parameters in this step include the in-medium light-quark and
gluon masses. Since the calculation of EoS requires the one-
body spectral functions and two-body scattering amplitudes
(which depend on each other through the parton selfenergies,
cf. Egs. (1)—(4)), one has to solve a selfconsistency problem
which is done by numerical iteration. The selfenergies of the
heavy quarks, calculated from heavy-light 7 -matrices closed
off with thermal parton spectral functions, are then reinserted
into the calculation of the WLCs via Eq. (9) using the in-
medium quarkonium spectral functions. A further refined in-
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medium two-body potential is created by refitting the screen-
ing masses to the IQCD WLC data, and this potential is then
processed to provide a new fit to the EoS, and the process is
iterated until convergence has been achieved.

In the remainder of this section, we discuss our numerical
fits of the EoS (following Ref. [37]) in Sect. 4.1 and the results
for the WLCs in Sect. 4.2.

4.1 Equation of state

The equation of state is encoded in the pressure, P(T, u), of
amany-body system as a function of temperature and chemi-
cal potential(s). In the present context, IQCD data for the EoS
are used to adjust the bare light-parton masses which are due
to effects that are not explicitly part of the many-body cal-
culations, e.g., due to quark or gluon condensates (similar to
what is done in quasiparticle models). In the grand canon-
ical ensemble the pressure is related to the grand potential
per unit volume via Q = —P. For an interacting system,
it can be calculated diagrammatically within the Luttinger-
Ward-Baym (LWB) formalism where all closed-loop “skele-
ton” diagrams are computed with fully dressed propagators
[54-56], also referred to as a 2-particle irreducible approach.
This constitutes a conserving (i.e., thermodynamically con-
sistent) approximation scheme, which is compatible with the
ladder resummation in the selfconsistent 7-matrix and self-
energies. Formulated as a Hamiltonian approach to the QCD,
this has been carried out in Refs. [37,57]. In particular, the
Luttinger-Ward functional, @, could be resummed utilizing
a matrix-logarithm resummation technique which accounts
for the possibility of dynamically formed bound states con-
tributing to the EoS. In compact form the result can be written
as

Q :Zq:djfdﬁ {m (—Gj(ﬁ)’l)
j

1
+ [Ej(ﬁ) - Elong(ﬁ)} Gj(ﬁ)},

(14)

using the notation [dp = —B~'Y", [d*p/(27)3 with p =
(iwp, p) and B = 1/T. The summation in Eq. (14) includes
all light-parton channels with the spin-color degeneracy d;,
and the = sign corresponds to bosons (upper) or fermions
(lower). The three terms in Eq. (14), In(—G~!), £G, and
log £ G, correspond to the contributions from quasiparticles,
selfenergies and the Luttinger-Ward functional (LWF) char-
acterizing two-body interactions, respectively.

We present the fits to the pressure as obtained from 1QCD
[42] together with LWF contributions, as well as the corre-
sponding light-parton masses in Fig. 1. In accordance with
the findings in Refs. [36,37], the two-body interactions play
an increasingly important role as temperature decreases,
becoming the leading contribution at 7 = 0.195 GeV, indi-
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Fig. 1 Left panel: the pressure scaled by 7% (blue line) compared to the pertinent 2+1-flavor IQCD data [42], as well as the LWF contribution
(dashed line). Right panel: the total in-medium masses (i.e., bare plus selfenergies) for light quarks (blue) and gluons (orange) as a function of
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Fig. 2 The first camulants of WLCs from the selfconsistent 7'-matrix results (lines) as a function of imaginary time at different temperatures and

distances in comparison with the corresponding 2+1-flavor IQCD data [30]

cating a transition in the degrees of freedom (from partons
to mesons and diquarks) in the system.

4.2 Static Wilson line correlators

Next we turn to the fits to the cumulants of the WLCs, which
are, in fact, part of the combined fit procedure as outlined at
the beginning of this section, cf. Fig. 2. We use the 1QCD
results on m from Ref. [30]; since only the first cumulant
was computed in that work we do not consider higher-order

cumulants here. We focus on the behavior of m at small
t for reasons explained in Sect. 3. As also pointed out there
lattice artifacts are not of concern even at small t because we
use subtracted cumulants. A fair overall agreement with the
1QCD results can be achieved for both the interceptat 7 — 0
and the slopes of m1, although the description somewhat
worsens at the highest temperature. We will return to possible
reasons for that below.

For the interference function, ®(r, 7)), we simply took
the results from previous work [37] (interpolated to the set
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Fig. 3 The interference function, ®(r), as a function of distance at
different temperatures as interpolated from Ref. [37]
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Fig. 4 The in-medium potential parameters as a function of tempera-
ture

of temperatures used here) which were based on fits to the
1QCD data for HQ free energies, see Fig. 3, but allowing
for £ 10% variations to illustrate underlying uncertainties.
The & functions show the qualitatively expected features
of amplifying the interference effects deeper into the bound
state as temperature increases.

The main difference relative to the previous 7 -matrix
results lies in the screening parameters of the potential as
a function of temperature, shown in Fig. 4. Most notably,
it turns out that the fits to the WLCs can be carried out
with a constant Debye mass for the string interaction, with
my = 0.2GeV being comparable to the low-7 values in pre-
vious work but not increasing with 7. Instead, we find that an
increase in the ¢, parameter is in order (which was assumed
to be constant at ¢, = 1.3—1.55 in the previous works), imply-
ing that the screening of the string interaction is relegated to
larger distances. On the other hand, the screening mass for
the color-Coulomb interaction did not change much in either
magnitude nor temperature dependence.
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Fig. 5 The in-medium potentials (driving kernels) obtained from the
T-matrix approach (lines) as a function of distance at different temper-
atures in comparison to the 2+1-flavor IQCD results (dots) for the first
cumulants of WLCs at t = 0.028 fm [29]

The pertinent in-medium potentials are displayed in Fig. 5.
Following the discussion of the screening parameters, the
main difference to previous 7-matrix extractions largely
based on HQ free energies lies at the higher temperatures
and larger distances where less screening is present based on
the WLCs fits. We also plot IQCD data points extracted from
the small-t limit of m. Although they are not necessarily
the same quantities (on the lattice one calculates the energy
of the static Q Q pair) and are based on different underlying
spectral functions, they essentially overlap with each other.
At the largest temperature, the potentials inferred from the 7'-
matrix deviate somewhat from the IQCD-based extractions
in the interplay of the medium- and large-distance points.
This is related to the discrepancy in the WLC fits in lower-
right panel in Fig. 2 and might also be in part due to the
fact that to observe string breaking on the lattice, it is not
sufficient to consider WLCs or Wilson loops alone, but also
include operators corresponding to static-light mesons in the
analysis [58] (recall our remark following Eq. (12)). On the
other hand, the T-matrix based potentials shown in Fig. 5
exhibit essentially no screening for r < 0.8 fm in agreement
with recent 1QCD findings on the energy of static Q Q pair
[29,30]. Previous 1QCD results with asqtad action and lim-
ited statistics resulted in an energy of a static Q Q pair that is
screened at shorter distances [59]. However, these results are
superseded by the ones from Refs. [29,30] using HISQ action
and much higher statistics. Using HTL perturbation theory-
inspired spectral representations of WLCs one also obtains a
screened Q Q energy. However, HTL-inspired spectral rep-
resentations have the screening of the potential built in from
the very beginning (and do not account for the string part of
the potential). On the other hand, as discussed in Ref. [29],
the spectral function in HTL perturbation theory does not
describe the lattice QCD results on m . Therefore, the use of
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a HTL-guided form of the spectral function in the analysis
of IQCD data is not well motivated.

We also note that our 7-matrix fits utilize a mixing coef-
ficient for the vector component of the confining potential of
x = 0.8, compared to 0.6 in Ref. [36] and 1 in Ref. [37].
While this choice still takes advantage of the improvement in
the hyperfine splittings in the vacuum spectroscopy, it miti-
gates somewhat the aforementioned problem in the potential
at the highest temperature which would be exacerbated for
x=0.6.

The bridge between the underlying potential and the
WLCs is provided by the static Q Q spectral functions which
are obtained from the selfconsistent solutions of the former,
subsequently injected into Eq. (9) and then used to compute
the pertinent moment; they are depicted in Fig. 6. The effec-
tive mass of the Q Q state, characterizing the pole position
of P90 at distance r, is largely determined by the poten-
tial, V (r) (and identical to the latter in the limit m; (t = 0)).
However, they are not exactly the same since the non-zero real
part of the QQ selfenergy, =5 in Eq. (10), slightly shifts
the pole position away from V(r). Nevertheless, m (t = 0)
remains an indicator of the Q Q effective mass, which turns
out to be rather temperature-independent as a consequence
of the approximately temperature-independent potentials at
small and intermediate distances (as shown in Fig. 5). The
increase of effective mass with increasing r results from the
smaller attraction (less binding) between Q and 0 at larger
r.

The width of the static spectral function reflects the
absorptive part of interaction between Q Q and the medium
partons and is quantified by the imaginary part of the Q Q
selfenergy, ®(r, T)ImEQQ(E, T), in Eq. (10); its depen-
dence on temperature and distance are consistent with the
slope of m in Fig. 2, exhibiting a strong broadening with
increasing temperature and distance. The dependence on
temperature is a consequence of several competing effects: a
larger QGP density and less interference tend to increase the
width, while a smaller interaction strength with increasing
temperatures decreases it. The 7-dependence has two basic
components, i.e., a long-range force enabling a parton to
interact with a larger number of thermal partons in the heat
bath, proportional to the volume of the spherical shell which
grows as r2 [60], and the ceasing of interference effects with
¢ (r) approaching 1, enabling both Q and Q to independently
interact with the QGP.

Finally, we display in Fig. 7 the spectral functions of light
quarks, gluons and charm quarks as following from the self-
consistent 7-matrix solution based on the WLC fit. Not sur-
prisingly, the most significant changes are at the two higher
temperatures (7 = 0.293, 352GeV) where the interaction
strength is larger than before [36]. In the light-parton sec-
tor this leads to broader “quasiparticle” peaks and generates

stronger collective modes on the low-energy shoulder of the
quasiparticle peaks at zero parton momentum; note that the
effective quark mass is around 0.5 GeV while the peaks of
the collective mode are located near w >~ 0.1 GeV. For the
zero-momentum gluon spectral functions at the two higher
temperatures, the collective modes emerge near w = 0.2 GeV,
which is not far from gluon condensation. It is this feature
that, especially at 7 = 0.352 GeV, prevents us from improv-
ing the fit of the WLC, as a stronger input potential at large
distances results in an unstable fitting procedure due to the
emergence of gluon condensation (signalled by a disappear-
ance of the low-energy peak and a real part of the propagator
flipping from negative to positive). Whether this “feature”
can be turned into a framework where the bare parton masses
are selfconsistently obtained from a condensed ground state
is beyond the scope of this work (it would also have to be
implemented at the lower temperatures). Even in the charm-
quark sector the low-momentum spectral functions at the
higher temperatures are significantly broader than before,
again accompanied with a collective low-energy peak which
implies notable deviations from a simple quasiparticle spec-
tral shape.

5 Charm-quark transport coefficients

We are now in position to compute the charm-quark trans-
port properties in the QGP with the refined potential. Two
main ingredients to the charm-quark transport coefficients
are parton spectral functions, discussed in the previous sec-
tion, and the heavy-light scattering amplitudes. The latter
are displayed in Fig. 8 for S-wave cq scattering in the color-
singlet channel (which provides the largest contribution, and
together with color-anti-triplet diquark amplitudes makes up
the dominant contribution to the transport coefficient). In
our recent work [36], we have found that the inclusion of
a vector component in the string force (with mixing coeffi-
cient x =0.6) leads to significantly harder momentum depen-
dence of the scattering amplitudes than the previous results
for x = 1 [37]. This trend persists here, although a little
less pronounced due to the choice of x = 0.8, leading to
slightly reduced amplitudes for 7 = 0.195GeV (compared
to x =0.6) while they are quite comparable for T =0.251 GeV
at finite momentum. For the two higher temperatures, the
effect of the stronger potential becomes important again.
As the resonance peaks in the heavy-light amplitudes are
largely below the “nominal” 2-parton threshold (e.g., E¢p
=~ 2GeV for the S-wave “D-meson” resonances in Fig. 8
vS. Emy = mg + me = 23GeV at T = 0.195GeV), it is
mandatory to account for the nontrivial spectral functions in
the evaluation of the HQ transport coefficient. Following the
previous study [60] in this context, the off-shell effects in
calculating the HQ friction coefficient (relaxation rate) can
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Fig. 7 Single-parton spectral functions for light quarks (first row), gluons (second row) and charm quarks (third row) as a function of energy for
various 3-momenta in each panel. From left to right, the four columns correspond to temperatures of 7 = 0.195, 0.251, 0.293 and 0.352GeV,
respectively

be implemented by utilizing Kadanoff-Baym equations to
yield

light and strange quarks are assumed to be the same). Only the
incoming charm quark is taken to be of definite momentum

1 do'd?p' dvdiq

dl),dsq,
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Here 5@ is a short-hand notation for the energy-momentum
conserving §-function in the 2— 2 scattering process, d. = 6
the spin-color degeneracy of charm quarks, and the summa-

(15)

and corresponding on-shell energy, while the off-shell effects
are implemented by energy convolutions over the spectral
functions of the light parton and the outgoing charm quark.
The heavy-light scattering matrix elements, | M|? in Eq. (15),
are directly related to the 7-matrix in the CM frame and
incorporate the summation over all possible two-body color
and partial-wave channels [60].

In Fig. 9 we plot our results for the charm-quark fric-
tion coefficient, A(p; T'). At the lower two temperatures the
WLC-based resultis alittle lower than the one from Ref. [36],
mostly due to the smaller value of x (0.8 vs. 0.6), but at tem-
peratures 7 2 0.3 GeV, it becomes larger at low momentum
(due to the stronger potential) and comparable at momenta

tion, ) _,, is over all light-flavor quarks and gluons making up
the thermal medium, i = u,u,d, d, s, s, g (the masses for

@ Springer
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Fig. 9 The charm-quark friction coefficient as a function of charm-
quark 3-momentum at different temperatures. The solid lines are the
current results based on the constraints from the WLCs, while the dashed
lines are largely based on constraints from in-medium HQ free energies
[36]

p Z 8 GeV (where the color-Coulomb interaction starts to
dominate). Based on this comparison to our previous results
(which included constraints from the HQ free energy), our
conservative estimate of the systematic uncertainty of the
T-matrix results for the charm-quark transport coefficient
amounts to 20-30%.

The spatial diffusion coefficient, Dy = T /(M. A(p = 0)),
which is proportional to the relaxation time, 7. = 1/A(p =
0), is commonly scaled by the inverse thermal wavelength,
27T, to render a dimensionless quantity. We display the
scaled diffusion coefficient in Fig. 10 as a function of tem-
perature. In the static limit our result is in fair agreement with
recent IQCD data [51,61], and about a factor of 2-3 larger
than the result from the AdS/CFT correspondence which is
believed to provide a quantum lower bound for this quantity
[62]. The temperature dependence is a bit weaker than our
previous results, again a consequence of the stronger poten-
tial at the higher temperatures.

The phenomenological consequences of our updated
transport coefficients for HF observables in URHICs, which
will also require the inclusion of radiative contributions [63],
remain to be worked out.

6 Conclusions

We have applied the thermodynamic 7 -matrix approach to
calculate static Wilson line correlators and utlilized them
to analyze pertinent lattice data. By varying the screening
properties of the input potential and carrying out selfconsis-
tent calculations of the 1- and 2-body correlation functions
that encompass a description of 1QCD results for the QGP
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Fig. 10 Our result for the spatial diffusion coefficient for static (blue
solid line), bottom (blue dashed line) and charm (blue dotted line) quarks
as a function of temperature (scaled by 7.=0.155 GeV) compared to the
2+1-flavor IQCD data [51,61] (yellow dots and green crosses with error
bars for charm and static quarks, respectively) and the AdS/CFT esti-
mate [62] (black line). The bare quark masses for charm and bottom are
1.359 and 4.681 GeV, respectively, and we use 10 GeV to approximate
the static limit

equation of state, solutions were found that result in a fair
agreement with the 1QCD data for the first cumulants as a
function of euclidean time. While the input potential at low
temperatures is quite similar to previous solutions that were
based on fits to heavy-quark free energies, more significant
adjustments were required at temperatures above ~ 300 MeV,
amounting to a significantly less screened (i.e., stronger)
potential. This reinforces earlier findings that remnants of
the confining force play a critical role in the properties of the
strongly coupled QGP (well) above the critical temperature,
with parton collision widths in excess of 0.5 GeV.

An immediate consequence of the stronger potential is an
enhancement of low-energy collective modes in the light-
quark and gluon spectral functions that develop well below
the nominal values of their masses, implying strong devia-
tions from the quasiparticle picture. Even for charm-quark
spectral functions this distortion is still significant. We have
also computed the pertinent HQ transport coefficients. Their
temperature dependence turns out to be more gradual than
before, and the predicted spatial diffusion coefficient in the
static limit is still in approximate agreement with recent2 +1 -
flavor 1QCD results. It will be interesting to see how these
calculations fare when implemented into phenomenological
applications to HF data in heavy-ion collisions. Work in this
direction is in progress.
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A Relation between first cumulant of WLC and
potential

In this Appendix we prove the identity that the first cumulant
of the WLCs in the limit of vanishing euclidean time recovers
the static potential, m(r, 7 = 0) = \7(r) (for simplicity we
suppress the temperature dependence), as mentioned at the
end of Sect. 3. Expanding W (r, 7) in the vicinity of 7 = 0,
one obtains

o
W, 1) = / dEe " p,5 (E. 1)

—00

o0 o0
w/ dEpQQ(E,r)—rf dEEpQQ(E,r)
o oo

=1-tV(@). (16)

The lastidentity in Eq. (16) has been proved in Ref. [37] using
a contour integral and the fact that the two-body selfenergy,
) 00> in the spectral function, P00 of Eq. (10), is analytic.
In addition, the identity ffooo d E,oQQ(E ,r) = 1 is nothing
but the normalization condition of spectral function. The first
cumulant of the WLC, m(r, T), then becomes

mi(r,7) = —9; M W(r, ) = V(r), (17)

and all the higher-order terms of t vanish at t = 0.
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