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Abstract

Opioid use disorder (OUD) has emerged as a significant global public health issue, necessitating 
the discovery of new medications. In this study, we propose a deep generative model that 
combines a stochastic differential equation (SDE)-based diffusion model with a pretrained 
autoencoder. The molecular generator enables efficient generation of molecules that target 
multiple opioid receptors, including mu, kappa, and delta. Additionally, we assess the ADMET 
(absorption, distribution, metabolism, excretion, and toxicity) properties of the generated 
molecules to identify druglike compounds. We develop a molecular optimization approach to 
enhance the pharmacokinetic properties of some lead compounds. Advanced binding affinity 
predictors were built using molecular fingerprints, including autoencoder embeddings, transformer 
embeddings, and topological Laplacians. Our process yields druglike molecules that can be used 
in highly focused experimental studies to further evaluate their pharmacological effects. Our 
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machine learning platform serves as a valuable tool for designing effective molecules to address 
OUD.

Graphical Abstract

1. INTRODUCTION

Opioid use disorder (OUD) is a chronic and intricate condition characterized by the 
compulsive seeking and use of drugs despite the detrimental effects.1 It represents a 
significant public health concern, causing severe consequences for individuals, families, 
and communities. The opioid epidemic has become a pressing global health crisis, 
highlighting the urgent need for effective treatments for OUD. Safe and effective medication 
treatments can alleviate withdrawal symptoms, reduce cravings, and help individuals 
maintain abstinence from opioids.2

The main treatment methods for OUD typically involve a combination of medications 
and behavioral interventions,3 aiming to address the physical and psychological aspects of 
addiction, promote recovery, and prevent relapse. The U.S. Food and Drug Administration 
(FDA) has approved three medications, including methadone, buprenorphine, and naltrexone 
for the treatment of OUD.4 These medications exert their effects by binding to opioid 
receptors in the brain, namely, mu opioid receptor (MOR), kappa opioid receptor (KOR), 
and delta opioid receptor (DOR). Methadone is a long-acting opioid agonist that primarily 
acts on MORs. It helps alleviate withdrawal symptoms and cravings.5 Buprenorphine, 
on the other hand, acts as a partial opioid agonist primarily targeting MORs. It eases 
withdrawal symptoms and cravings while producing less euphoria and carrying a reduced 
risk of respiratory depression compared to methadone.6 Naltrexone, classified as an opioid 
antagonist, blocks the effects of opioids and reduces the rewarding effects. Its mechanism of 
action primarily involves MORs, but it also exhibits some affinity for KORs.7
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The pharmaceutical effects of medications for OUD treatment are associated with the 
functions of opioid receptors in the brain. MOR triggers euphoria and is essential for 
stimulating the reward system and goal-directed behaviors.8 In patients with opioid 
addiction, their goal-directed behaviors shift toward habitual behaviors, leading to 
compulsive drug use.9 KOR exhibits anti-reward effects and is capable of inducing 
dysphoria.10 Prolonged opioid exposure may lead to stress responses, but KOR blockade 
can help alleviate these responses, decrease drug cravings, and reduce depressive states. 
Additionally, DORs can lower anxiety levels and mitigate depressive symptoms.11

While current medications effectively address OUD, relapse and remission remain common 
due to neurobiological changes and opioid receptor tolerance resulting from repeated opioid 
abuse.4 Additionally, some patients may not tolerate or respond optimally to the standard 
medications used for OUD. Alternative medications provide additional options to customize 
treatment according to individual needs and preferences. The drug discovery process 
encompasses several stages, including target discovery, lead discovery, lead optimization, 
preclinical development, and three phases of clinical trials before a new drug can be brought 
to market.12 Traditional drug discovery is a time-consuming endeavor that can extend over 
many years, require significant financial investments amounting to billions of dollars, and 
entail a substantial failure rate.

Various methods and technologies have emerged to accelerate the drug discovery process. 
The number of potential druglike molecules is estimated to be between 1023 and 1060.13 

High-throughput screening (HTS) allows for the rapid screening of large compound libraries 
against specific biological targets or disease models, quickly identifying leads for further 
medicinal chemistry optimization.14 It allows for effective automated operation, but is 
associated with high costs of equipment and assay development. Virtual screening involves 
the use of computational methods to virtually screen large databases of compounds against 
specific target structures. It employs molecular docking, molecular dynamics simulations, 
and machine learning algorithms.15 These methods enable the prediction of compound–
target interactions, assessment of physicochemical and pharmacological properties, and 
identification of compounds with potential therapeutic effects.16

De novo drug design (molecular generation) explores the chemical space to generate novel 
molecules with desirable properties. The advancement of deep learning has opened up 
new opportunities for innovative drug design and discovery. In recent years, many deep 
learning-based algorithms have been developed for de novo drug design. These algorithms 
utilize the power of deep learning to generate novel molecular structures with desired 
properties. They are trained on large datasets of known molecules, allowing them to learn 
the intricate patterns and relationships between chemical structures and their corresponding 
activities.17 The machine learning algorithms used to construct these generative models 
can be categorized into four main types: recurrent neural network (RNN), encoder-decoder, 
reinforcement learning (RL), and generative adversarial network (GAN).18 For example, an 
RNN-based generative model has been proposed to generate novel molecules. By employing 
a fine-tuning strategy with small sets of molecules, the generated compounds can exhibit 
activity toward specific biological targets.19,20 Additionally, a variational autoencoder (VAE) 
has been utilized to encode molecules into a continuous latent space.17 This enables 
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operations such as generating new molecules or applying optimization strategies to design 
compounds with desired properties. Perturbations or interpolations can be performed 
on molecules’ latent space vectors, and gradient-based optimization can be applied to 
their continuous representations.17 Furthermore, a generative GAN combined with an 
autoencoder has been employed for de novo molecular design.21 This approach allows for 
the generation of random druglike compounds or compounds biased toward specific targets.

In recent years, diffusion models have gained popularity in various fields, including image 
synthesis, video generation, and molecule design, due to their ability to produce high-quality 
and realistic samples. There are a few main subtypes of diffusion models: latent space 
random noise (LSRN),20 denoising diffusion probabilistic models (DDPMs),22 score-based 
generative models (SGMs),23 and stochastic differential equations (SDEs).24 SDEs describe 
the evolution of a system over time, considering both deterministic and stochastic forces 
influenced by random noise.25 Generative diffusion models have been applied in the field of 
drug discovery. Random noise was introduced to latent space molecular vectors to generate 
novel druglike molecules.20 LSRN was compared with two other approaches, latent space 
controlled output and latent space optimized output for drug generation in a generative 
network complex (GNC).20 Another example is DiffLinker,26 which utilizes diffusion 
models for the design of molecular linkers. DiffSBDD27 is used in structure-based drug 
design to generate high-quality ligands for specific protein targets. Some recent works28 

have also employed diffusion models trained in the latent space of autoencoders.

In this study, we employ deep generative models to design and optimize molecules that have 
potential applications in the treatment of OUD. Specifically, we utilize diffusion method in 
the latent space of a pretrained autoencoder (AE) model to generate novel molecules. Our 
objective is to create molecules that exhibit similar structural and pharmacological properties 
to known opioids or alternative compounds with therapeutic potential. The development of 
medications for OUD relies on the binding effects of opioid receptors, particularly MOR, 
KOR, and DOR. To achieve the molecular design, we combine a stochastic differential 
equation (SDE)-based diffusion method with the latent space of the pretrained autoencoder 
model. This enables us to design molecules that are active on MOR, KOR, and DOR. 
In the diffusion modeling, we incorporate appropriate reference and seed compounds to 
steer the generation of target-biased molecules. Additionally, we employ accurate binding 
affinity (BA) predictors to identify potentially effective molecules that interact with these 
critical targets. Importantly, we consider the absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) properties in selecting druglike compounds for OUD treatment. By 
integrating ADMET criteria, we identify the generated compounds that posse desirable 
druglike properties. We conduct extensive experiments to efficiently generate druglike 
compounds. Furthermore, we employ a molecular optimization approach to discover 
additional drug candidates with nearly optimal properties. By employing different reference 
compounds and employing various molecular novelty thresholds, we successfully identify 
several druglike compounds that exhibit multitarget effectiveness on the critical opioid 
receptors. Our molecular generation platform serves as a valuable tool for advancing OUD 
treatment.
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2. EXPERIMENTS

2.1. Structure of Multitarget Stochastic Generative Network Complex (MTSGNC).

2.1.1. Sequence-to-Sequence Autoencoder.—An autoencoder is a type of artificial 
neural network in deep learning that learns to compress and then reconstruct input data, 
such as images or text. The encoder network maps the input data to latent space, while 
the decoder network maps the latent space back to the original data. The compressed 
representation, or latent space between the two networks can capture essential features of the 
input data. The commonly used network for encoder and decoder can be a gated recurrent 
unit (GRU) or a long short-term memory (LSTM) network.

In molecular science, autoencoder can be used for molecular representation learning, 
which involves encoding molecules into a lower-dimensional space while preserving 
their structural and functional properties. For instance, a sequence-to-sequence (seq2seq) 
autoencoder achieves this by translating one molecular string representation to another.29 

Simplified molecular-input line-entry system (SMILES) is one of the commonly used 
molecular representations. The dimension of the latent space is 512. The seq2seq AE was 
trained with a high reconstruction ratio between inputs and output SMILES, through which 
latent vectors carry faithful molecular information.30 Therefore, the latent space can be 
utilized to represent the chemical space and serve as a molecular fingerprint for machine 
learning modeling.

The autoencoder also has an application for generative modeling, where the decoder can be 
used to generate new data points by sampling from the latent space. The autoencoder (AE) 
structure is illustrated in Figure 1(top left). In the current study, we utilize the pretrained 
seq2seq autoencoder29 to design novel molecules for OUD treatment.

2.1.2. Data Preparation.—MOR, KOR, and DOR are three critical pharmaceutical 
targets for treating OUD. Additionally, hERG is a crucial target that needs to be 
avoided in drug discovery.31 We gathered inhibitor datasets for the four targets from the 
ChEMBL database. The data points include SMILES strings of molecular compounds and 
corresponding binding labels in the form of IC50 or Ki. Augmenting the IC50 with Ki

can be beneficial to large-scale analysis. As suggested by Kalliokoski,32 the IC50 label 
can be approximated to Ki value using the relation Ki = IC50/2 for data in broad datasets 

like ChEMBL database. These experimental labels can be converted to binding energy 
with the formula BA = 1.3633 × log10Ki kcal/mol .33 The protein-ligand binding affinity is 

reflected by the dissociation constant Kd = L P / LP , where L , P , and LP  are the 

molar concentration of ligand, protein, and protein-ligand complex, respectively. It is noted 
that Gibbs free energy (kcal/mol) can be derived by ΔG = RT lnKd, where R and T  are 

the gas constant and temperature, respectively. At room temperature T = 298.15 K, one has 

ΔG = − 1.3633pKd.33 Here, pKd is −log10Kd with Kd in the unit of mol. Ki is the inhibition 

constant. Following the way that PDBbind database mixes Kd and Ki in their refined 

datasets,34 we calculate the binding energy with the above BA calculation formula.33 For 
compounds with multiple BA values, we calculate their average as the final BA. The details 
about the four collected datasets can be found in the Supporting Information.
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The datasets are utilized in two main aspects. First, the molecular compounds, particularly 
those exhibiting potency on MOR, KOR, and DOR, are employed as references and seeds 
for generating new compounds. Second, the four datasets are utilized as training sets to 
construct machine learning models for predicting binding affinity.

2.1.3. Stochastic Molecular Generator.—Generative models serve as powerful tools 
for generating potential new drug molecules. In our previous work, we introduced the 
GNC for the generation of new druglike molecules in 2019.20,35 We considered three latent 
space perturbation models, including (1) a random noise diffusive model called <randomized 
output=, (2) a gradient descending model called <controlled output=, and (3) a multiobjective 
optimization model called <optimized output=. The first model perturbs the latent space 
molecular vectors with the Gaussian white noise and then, selects molecules that have 
improved properties in a manner similar to the Monte Carlo method. This model ensures the 
novelty of generated molecules but may not be effective in reaching the desirable druglike 
properties. The second model improves specific molecular properties of generated molecules 
by a force-driven term. However, the resulting new molecules may not retain other important 
properties and lack novelty. The third approach was designed to simultaneously optimize 
multiple molecular properties of generated molecules via a multi-objective loss function. 
However, the novelty of generated molecules may not be guaranteed. To improve the 
performance of our GNC model, we propose to combine our random noise diffusive model 
with our multiobjective optimization model. The resulting model can be regarded as a drift 
and diffusion model as described by the Langevin equation.

Langevin equation is a stochastic differential equation (SDE), which is used to describe the 
diffusion processes such as the random motion of the particles over time in the particle’s 
velocity space, taking into account both deterministic forces and random forces. It can be 
regarded as stochastic generalization of the Newton’s equation of motion. In this work, one 
of our goals is to employ Langevin equation to optimize the molecular generator in our 
previous GNC model.

We assume X is a latent space vector of a molecule with 512 dimensions, and Xk represents 

its kth latent space reference vector. Then, the Langevin equation of our drug generator 

system is:

dX

dt
= α

k
ak Xk − X + ξ t

(1)

where ak is a positive weighting parameter corresponding to Xk satisfying k ak = 1, ξ t  is a 

Gaussian white noise, and α is a hyperparameter. The first term in eq 1 is a force term that 

gives rise to a gradient descent toward targets Xk. Then, according to eq 5 in Section 2.3.2, 

the general solution of this system is given by:

X t = Ce−at +
0

t

e−α t − u α
k

akXk + ξ u du
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(2)

where the initial state X 0 = C. The latent vector C is for an initial seed molecule.

In our implementations, we employ the fourth-order Runge–Kutta method36 to numerically 
solve eq 1 and obtain the corresponding molecular representations in the latent space. 
The Runge–Kutta approximation is achieved using the function solve_ivp from the Python 
scipy.integrate library. At different time points t, X t  represents the latent vector of a 

novel molecule. We limit the time t to the range [0, 1000] and use an appropriate 

time step to generate different X t  vectors. The selection of reference molecules and 

weighting parameters Xk, αk  in eq 2 is crucial. The number of reference molecules and 

their corresponding weights can significantly influence the molecular novelty and properties 
inherited from the given reference compounds. Furthermore, the α value is associated with 

the impact of the initial seed molecule on the generated compounds. A smaller value allows 
for a more pronounced impact within a certain time frame. This approach enables us to 
model the diffusion-based generation of molecules using the Langevin eq 1.

It is worth noting that the Langevin equation provides a molecule-wise description of 
drift and diffusion processes. However, to obtain an understanding of how the overall 
distribution of molecules evolves over time, a statistical perspective is needed. Therefore, 
we also discuss the Fokker–Planck equation derived from the Langevin equation (the 
detailed derivation can be found in Section S7) in the Supporting Information, providing 
a connection between the dynamics of individual druglike molecules and the statistical 
behavior of the entire system.

2.1.4. Multitarget Stochastic Molecular Generation.—Figure 1 presents the 
compound generation process in our GNC. We aim at designing novel druglike compounds 
effective on MOR, KOR, and DOR, while having no hERG side effect.37 The molecular 
generation process comprises four key steps, which are further elaborated in the subsequent 
subsections.

1. Select three compounds that are potent on MOR, KOR, and DOR, respectively, 
as reference compounds from the collected datasets. Also pick a seed compound 
that is potent on multiple of the three receptors. Then, encode the SMILES 
strings of the references and seed compounds into latent vectors through the 
pretrained encoder.

2. Input the latent vectors of reference and seed compounds into the stochastic 
molecular generator, giving rise to a large number of new latent vectors. 
These new latent vectors, as the representations of potential molecules, are 
screened with a constraint of binding affinity ΔG < − 9.54 kcal/mol Ki = 1 nm  on 

MOR, KOR, and DOR, as well as ΔG > − 8.18 kcal/mol Ki = 10 nm  on hERG. 

Pretrained BA predictors are used in the BA constraint evaluation.

3. Latent vectors with desired BA properties are decoded into valid SMILES 
(interpretable by RDKit). These SMILES are subsequently fed back through 
the pretrained encoder and decoder again, as illustrated in Figure 1, to identify 

Feng et al. Page 7

J Med Chem. Author manuscript; available in PMC 2024 April 23.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



molecules that can be successfully reconstructed. Those reconstructed molecules 
are considered to be structurally stable and well interpreted by the autoencoder 
networks.

4. Those reconstructed molecules are reevaluated on their binding affinities and 
ADMET properties to identify druglike compounds. A molecular optimization 
process can be implemented to design more drug candidates with desired 
druggable profiles.

To generate novel molecules, different references and seed compounds, or weights for 
reference latent vectors can be used in Step 2. The hyperparameter α in eq 1 is set as 0.15 in 

this study. We set the value for α as a relatively small number.

As we consider three reference compounds corresponding to the three receptors, we apply 
three reference vectors in eq 1. Weight coefficients αk, k = 1, 2, and 3, are for MOR, 

KOR, and DOR reference compounds, respectively. Different weight values can be used to 
emphasize the importance of selected references. The parameter t in eq 2 can be various 

numbers to generate vectors for potential molecules.

2.2. Binding Affinity Predictors.

Within the generator of our GNC, we incorporate four BA predictors to assess the BA of 
the generated potential molecules on the four crucial targets. To construct these predictors, 
we utilize molecular fingerprints derived from the latent space of an autoencoder network. 
These fingerprints are referred to as AE-FP, and the resulting four BA predictors are denoted 
as AE-BPs. The AE-BPs were fulfilled by integrating the AE-FPs with a deep neural 
network (DNN) algorithm.

Consensus models are used to further evaluate the BAs of those molecules whose SMILES 
can be reconstructed, as shown in the right bottom of Figure 1. Two more molecular 
fingerprints, namely, transformer fingerprint (TF-FP) and topology Laplacian fingerprint 
(TL-FP) are used. They were designed with a pretrained transformer model38 and our 
recently proposed topology Laplacian theory.39 Brief descriptions of the two fingerprints are 
provided in the following subsections.

BA predictors were constructed by integrating the TF-FP with a deep neural network (DNN) 
algorithm, and fusing the TL-FP with a gradient boosting decision tree (GBDT) algorithm. 
We refer to these two models as TF-BP and TL-BP, respectively. The consensus model or 
prediction is obtained by averaging the predictions from AE-BP, TF-BP, and TL-BP. This 
strategy can enhance machine learning predictions37,40 and typically outperforms individual 
models. Such approaches were employed in our previous studies on OUD, which involved 
machine learning repurposing of DrugBank compounds for OUD treatment41 and machine 
learning analysis of the OUD interactome networks.42

Both DNN and GBDT algorithm are popular algorithms in building machine learning 
models. DNN has advantages of dealing large and complex datasets, constructing 
hierarchical features and modeling complex nonlinear relationships. GBDT as an ensemble 
algorithm has the merits of being less sensitive to hyperparameters, less prone to overfitting, 
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and easy to implement. In building our machine learning BA predictors, AE-FP and 
TF-FP showed better predictive performance when combined with DNN, while TL 
fingerprints have better predictive ability when integrated with GBDT. The details about 
the hyperparameter for AE-BPs, TF-BPs, and TL-BPs can be found in Table S2 in the 
Supporting Information.

The predictive performance of the consensus models was evaluated using 5-fold cross-
validation. The average Pearson correlation coefficients (R) obtained were 0.824, 0.840, 
0.845, and 0.756 for the MOR, KOR, DOR, and hERG datasets, respectively. Additionally, 
the average root-mean-square error (RMSE) values were 1.010, 1.027, 1.006, and 0.801 
kcal/mol for the same datasets.

2.2.1. Topological Laplacian (TLs) Molecular Fingerprint.—In this subsection, 
we give a brief explanation of topological Laplacians (TLs) based on the spectral 
graph theory proposed by Wang et al.39 Topology offers significant simplification of 
biomolecular data by dealing with the connectivity of different components in a space and 
characterizes independent entities, rings and higher-dimensional faces within the space.43,44 

It can be used for a high level of abstraction to three-dimensional (3D) biomolecular 
structures. Topological Laplacian can reveal both topological invariants and homotopic 
shape information through the harmonic and nonharmonic spectra of the Laplacian 
matrix.45–48 Intricate shape information can be obtained through evolving manifolds defined 
under filtration parameters. The topological space is based on geometric components of 
a dataset, including discrete vertices, edges, triangles, tetrahedrons in the context of 3D 
molecular structures. TL forms families of persistent q-combinatorial Laplacian operators, 
providing a powerful multiscale analysis tool. These operators are derived from persistent 
spectral graph theory, as illustrated below.

The persistent Laplacians are defined under a filtration of an oriented simplicial complex K. 

A sequence of the subcomplexes Kt t = 0

m  of K is constructed

o = K0 ⊆ K1 ⊆ K2 ⊆ ⋯ ⊆ Km = K

The notation t in this subsection denotes the filtration process, distinct from the time t

mentioned in the previous section. On each simplicial complex Kt, a chain complex is 

defined as Cq
t
: = Cq Kt  and there exists a q-boundary operator ∂q

t
:Cq Kt Cq − 1 Kt . For the 

general case with 0 < q ≤ dim Kt , the q-boundary operator is in the following form:

∂q
t

σq =
i

q

( − 1)
i
σq − 1

i , for σq ∈ Kt

where σq = v0, v1, ⋯, vq  is an oriented q-complex and σq − 1
i

= v0, ⋯, v i, ⋯, vq  is an oriented 

q − 1 -simplex by removing vertex vi. For the case of q < 0, the Cq Kt = o  and ∂q
t  is a zero 

map. The q-adjoint boundary operator is defined as the adjoint operator that corresponds to 

the q-boundary operator.
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∂q
*
:Cq − 1 Kt Cq Kt

We consider ℂq
t + p, a subset of Cq

t + p with its boundary in Cq − 1
t :

ℂq
t + p

: = σ ∈ Cq
t + p

∂q
t + p

σ ∈ Cq − 1
t

For this subset, the p-persistent q-boundary operator ∂q
t + p

:ℂq
t + p

Cq − 1
t  and the adjoint 

boundary operator ∂q
t + p *:Cq − 1

t
ℂq

t + p are well defined. The p-persistent q-combinatorial 

Laplacian operator is given as

Δq
t + p

= ∂q + 1
t + p

∂q + 1
t + p * + ∂q

t *∂q
t

together with its matrix representation as

ℒq
t + p

= ℬq + 1
t + p

ℬq + 1
t + p T

+ ℬq
t T

ℬq
t

Matrices ℬq + 1
t + p and ℬq

t  are the matrix representations for boundary operators ∂q + 1
t + p and ∂q

t, 

respectively. The row number of ℬq + 1
t + p is equal to the number of oriented q-simplices in Kt, 

and the column number equals that of oriented q + 1 -simplices in Kt + q ∩ ℂq + 1
t + p. In addition, 

the transposes of ℬq + 1
t + p and ℬq

t  are the matrix representation for ∂q + 1
t + p * and ∂q

t *. The 

topological and spectral information of Kt can be accessed from the Laplacian operator. We 

denote spectra of ℒq
t, p as a set

spectra ℒq
t + p

= λ1 q
t + p

, λ2 q
t + p

, ⋯, λN q
t + p

where N indicates the dimension of ℒq
t + p. The Betti numbers, the number of zero 

eigenvalues, of ℒq
t + p can reveal q-cycle information. For the p-persistent q-combinatorial 

Laplacian matrix ℒq
t + p, the Betti number is defined as

βq
t + p

= dim ℒq
t + p

− rank ℒq
t + p

= nullity ℒq
t + p

= number of zero eigenvalues of ℒq
t + p

The βq
t + p value indicates the number of q-cycles in simplices Kt that are still alive in 

simplices Kt + p. For the biomolecular data, the order of q ranges from 0 up to 2, as the 

data is in three-dimensional space. The values of βq
t + p measure the persistence of connected 

components, tunnels or circles, and cavities or voids. The harmonic persistent spectra track 
the topological changes while nonharmonic persistent spectra record the geometric changes.

Based on the aforementioned topological Laplacians, we form a set of molecular features 
by using the eigenvalue statistics of Laplacian matrix ℒ0

t + p. The features are compromised 

of β0

t + p and the sum, mean, median, maximum, minimum, standard deviation, variance, 

and sum of the square of the nonharmonic spectra. The representability of TL feature for 
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molecules depends on the selection of atoms with different combinations of elements, which 
in turn construct distinct oriented q-simplices in Kt. As a result, element-specific Laplacian 

matrices are defined under a set of filtration. To enhance the representability of TL features, 
it is necessary to analyze the given dataset on element types and atomic proportions. 
Additionally, this study utilizes a filtration radius with a lower bound of 1 angstrom and 
an upper bound of 10 angstroms. This range is chosen based on the observation that the 
majority of compounds in each dataset have a three-dimensional size of less than 20Å in 
each Cartesian direction. More details of element-specific topological Laplacians based on 
distribution analysis can be found in the Supporting Information.

2.2.2. Bidirectional Transformer Molecular Fingerprint.—In a recent work,38 a 
self-supervised learning (SSL) platform was developed to pretrain deep learning models on 
millions of unlabeled molecules. This platform generated latent space vectors for input 
SMILES.38 The pretraining of SSL was accomplished by employing the bidirectional 
encoder transformer (BET) model. Within the SSL pretraining platform, SMILES strings 
were encoded by constructing pairs of real SMILES and masked SMILES, with a certain 
percentage of symbols in the strings hidden. The model was then trained in a supervised 
manner using these data-mask pairs.38 The attention mechanism was utilized to capture the 
significance of each symbol in the SMILES strings. A set of molecular fingerprint can be 
obtained by averaging 256 embedding vectors associated with a given SMILES string. For 
the training of the SSL-based BET model, molecular SMILES from ChEMBL databases 
were employed, and the latent vector transformer fingerprints (TF-FP) generated by the 
pretrained model were used as molecular fingerprints in this study.

2.3. Langevin Equation.

2.3.1. Random Variables and Expected Value.—A random variable X is a variable 

whose possible values are outcomes of a random phenomenon. The random variable can 
be either discrete, taking on a countable number of values, or continuous, taking on any 
value within a certain range or set. For a discrete random variable, we can write P X = x

to denote the probability that X takes the value x. The expected value of random variable 

X is E X = i xiP X = xi . For a continuous random variable, we talk about probability 

density function (pdf) p x  such that for any interval a, b , P a ≤ X ≤ b = a

b
p x dx. Then, the 

expected value of random variable X is E X = −∞

+∞
xp x dx.

2.3.2. Langevin Equation.—The Langevin equation is a commonly used stochastic 
differential equation (SDE) in physics that aims to describe the behavior of a system as it 
evolves over time under the influence of deterministic drift and random (fluctuating) forces. 
The Langevin equation can describe the motion of a particle in a fluid,

m
dv

dt
= − λv + η t

(3)

where m is the mass of the particle, v is the velocity of the particle, λ is its corresponding 

damping coefficient, and η is the noise term which represents the effect of the collisions with 
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the molecules of the fluid. In many cases, the one-dimensional Langevin equation is written 
in a general form as:

dx

 dt
= − γx + ξ t

(4)

where ξ t  is a Gaussian white noise process with ξ t = 0 and ξ t ξ t′ = δ t − t′ . The 

general solution of the one-dimensional Langevin equation has the form:

x t = Ce−γt +
0

t

e−γ t − u ξ u du

(5)

where the initial state x 0 = C.

2.4. Generating Novel Multitarget Inhibitors for MOR, KOR, and DOR.

The FDA-approved medications for OUD treatment are highly effective on MOR, KOR, and 
DOR. We utilize our GNC to design more molecules that are simultaneously effective on the 
three receptors. Meanwhile, we avoid those inhibitors with potential hERG side effects.

Selecting appropriate reference and seed compounds is crucial in generating effective 
molecules. We prioritize compounds from the collected datasets that show effectiveness on 
the opioid receptors as our references. This is because the generated compounds, inheriting 
the pharmacophores of such references, are more likely to exhibit potency on the receptors. 
Figure 2a displays the binding affinity (BA) distributions of inhibitors in these datasets. It 
is evident that there is a significant number of effective molecules in the MOR, KOR, and 
DOR datasets, all having binding affinity values below −9.54 kcal/mol. This threshold is 
widely accepted for identifying active compounds. The three datasets collectively consist of 
2152 common compounds, from which we select our reference or seed compounds

We rely on machine learning models to predict the BA values of the generated compounds. 
The three datasets demonstrate broad BA distributions, ranging from −14 to −6 kcal/mol, 
which indicates the presence of highly diverse molecules. Moreover, the BA data exhibit 
balanced distributions in relation to the BA threshold of −9.54 kcal/mol. This balanced 
distribution of training data enables unbiased BA prediction.

Each dataset contains a moderate number of molecules with BAs ranging between −12 and 
−10 kcal/mol. We prioritize selecting compounds within this range as reference or seed 
compounds for two reasons. First, these compounds increase the likelihood of generating 
potent molecules. References showing high effectiveness on multiple targets are especially 
valuable for this purpose. Second, the ample data within this BA range aids in accurately 
identifying potent inhibitors through machine learning predictions.

Reference compounds are pivotal in drug design as they greatly impact the novelty of 
generated compounds. Two crucial factors influencing novelty are the number of reference 
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compounds and the coefficient weights assigned to their AE latent vectors. Novelty is 
measured by comparing the similarities between the generated compounds and the reference 
compounds, with lower similarity indicating higher novelty. In the upcoming experiments, 
we will demonstrate the mechanism of our molecular GNC and specifically investigate the 
impact of reference numbers on molecular novelty.

2.4.1. Generation Using Three Distinct Reference Molecules.—In our first 
experiment, we selected three compounds, namely, ChEMBL2048770, ChEMBL3349979, 
and ChEMBL494462, from the inhibitor datasets. Each of these compounds demonstrates 
effectiveness on MOR, KOR, and DOR, with corresponding BA values of −11.51, −11.58, 
and −11.92 kcal/mol, respectively. Therefore, we utilized them as reference compounds for 
each respective receptor. The seed compound exhibits BA values of −10.44, −10.5, and 
−8.96 kcal/mol on MOR, KOR, and DOR, respectively. It acts as a weak inhibitor of DOR. 
By using ChEMBL494462 as the reference compound for DOR, the generated compounds 
can incorporate certain moieties present in ChEMBL494462. Consequently, those generated 
molecules may exhibit effectiveness on DOR. When applying the three references in the 
molecular generator, the weight coefficients (α1, α2, α3) in eq 1 are set to (0.35, 0.35, 0.3).

Using the reference and seed compounds, our GNC generated over a million novel and 
valid molecules in just a few hours using supercomputers. Subsequently, these compounds 
were passed through the encoding-decoding network, and we retained those that could 
be successfully reconstructed for further BA reevaluation and ADMET analysis. The 
reconstruction rate of the generated compounds was 90.1%, yielding a vast library of novel 
molecules.

AE-BPs are initially used to evaluate the BAs of the generated compounds, identifying those 
multitarget active molecules. Figure 2b indicates the BA distributions of the reconstructed 
molecules by our AE-BPs, indicating a large number of active compounds for each of the 
three opioid receptors. In addition, only a very small portion of these molecules can cause 
hERG side effects. It is promising to find enough multitarget active compounds.

Investigating molecular similarity scores from various perspectives is crucial as they are 
associated with machine learning predictions. One important similarity score is between 
the reference compound and the respective source dataset. These reference compounds 
are selected from the MOR, KOR, and DOR inhibitor datasets, which were utilized as 
training data for developing BA predictors. The generated molecules exhibit similarities with 
the reference compounds. Figure 2c presents the similarity score distribution between the 
reference compounds and their source datasets. A small number of molecules within each 
training dataset exhibit high similarities with the corresponding reference compounds. The 
similarity scores are calculated using Tanimoto coefficients, comparing the AE latent vectors 
of the reference compounds with the molecules in each dataset. On average, the similarity 
scores between each reference compound and its corresponding dataset remain below 0.4. 
However, there are still more than ten molecules in each dataset that exhibit similarity scores 
over 0.85 for the selected reference compound.
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Figure 2d showcases the similarity score distribution between the generated molecules and 
the three inhibitor datasets. Each similarity score is determined by the highest Tanimoto 
coefficient calculated between the AE latent vectors of a generated molecule and all 
molecules in the respective dataset. The majority of similarity scores fall within the 
range of 0.4–0.6, indicating high levels of novelty among the generated molecules. This 
outcome aligns with expectations, as each new molecule incorporates molecular features 
from three distinct reference compounds, resulting in unique molecular structures. Notably, 
the distribution curves of the three datasets exhibit a consistent pattern.

Figure 2e presents the distribution of similarity scores between the generated molecules 
and the three reference compounds. The majority of similarity scores are below 0.5, further 
confirming the high novelties of the generated molecules. The similarity distributions of 
the molecules with MOR and KOR reference compounds demonstrate a consistent pattern, 
while the average similarity scores with the DOR reference compound are comparatively 
lower than those for MOR and KOR. This discrepancy is primarily attributed to the weights 
assigned to eq 1, specifically (0.35, 0.35, 0.3). A higher weight assigned to a reference 
compound leads to a greater similarity between the generated molecules and the designated 
reference compound.

The novelties of the generated molecules are observed in Figure 2d,e. High novelties come 
with the risk of inaccurate BA prediction, as a higher molecular similarity with the training 
data can have more reliable predictions. To address this issue, we can either use more 
accurate BA predictors or reduce the molecular novelty.

2.4.2. Generation Using Two Reference Molecules.—We conduct a test using 
two reference compounds to generate novel molecules, aiming to improve the molecular 
similarities to the training data and enhance the accuracy of BA predictions. The 
same two compounds, ChEMBL2048770 and ChEMBL494462, used in the previous 
experiment were utilized. ChEMBL2048770 exhibits high potency as an inhibitor for 
both MOR and KOR, with binding affinities of −11.51 and −11.78 kcal/mol, respectively. 
ChEMBL494462 specifically binds to DOR with a BA value of −11.92 kcal/mol. In this 
test, ChEMBL2048770 was selected as the reference compound for both MOR and KOR, 
while ChEMBL494462 served as the reference compound for DOR. We continued to use 
ChEMBL243195 as the seed compound. The weight coefficient (α1, α2, α3) is set to be 
(0.35, 0.35, 0.3) in eq 1. We utilized our GNC to generate millions of new valid molecules, 
and these new molecules have a reconstruction ratio of 86.31% through the autoencoder 
encoding-decoding network.

Figure 3 presents the results of our molecule generation in the second experiment. Similar 
to the previous experiment, our GNC successfully generated a significant number of active 
molecules for MOR, KOR, and DOR targets, while exhibiting weak hERG side effects, as 
depicted in Figure 3a. As anticipated, the generated molecules showed improved similarity 
scores with the training data, as observed in Figure 3c. The average similarity score of 
approximately 0.6 was higher than the score of around 0.45 obtained using three reference 
compounds in our previous experiment, as shown in Figure 2d. Furthermore, in Figure 3d, 
we can observe that the similarity scores for the MOR and KOR reference compounds are 
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higher than those for the DOR reference compound, which aligns with Figure 3b. It is 
important to note that the distribution curves of the MOR and KOR reference compounds 
overlap in Figure 3b,d, as ChEMBL2048770 was used as the reference compound for both 
MOR and KOR targets.

By comparing the two experiments, we can see that utilization of two reference compounds 
can be an effective approach to design novel molecules yet with high similarity scores to the 
training data. This, in turn, enables more accurate BA predictions.

2.4.3. Binding Affinity Reevaluation with Consensus Models.—We use AE-BPs 
for an initial screening of the generated molecules. By applying BA constraints, we generate 
a large pool of novel molecules that may function as effective multitarget inhibitors. 
To refine this pool, we employ our consensus models to reevaluate the BAs of the 
filtered generated molecules. The BA constraints are applied once again by the consensus 
reevaluations, resulting in a reduced number of compounds for ADMET analysis. Below, 
we continue to carry out further investigations on the above experiment using two reference 
compounds.

2.5. ADMET Analysis.

ADMET (absorption, distribution, metabolism, excretion, and toxicity) plays a critical 
role in drug discovery and development as it encompasses various attributes related to 
a compound’s pharmacokinetic studies. A promising drug candidate must demonstrate 
both efficacy on the therapeutic target and compliance with essential ADMET properties. 
Accurate ADMET predictions are vital in drug design as they enable the screening of new 
compounds’ properties and help mitigate the risk of late-stage attrition.

For systematic ADMET screening, we examined six indexes: FDAMDD, T1/2 

and F20%, Log P, Log S, and Caco-2. To assess these ADMET properties, we 
utilized the machine learning predictions provided by ADMETlab2.0 solvers (https://
admetmesh.scbdd.com/).49,50 The provided documentation offers optimal ranges for various 
ADMET properties. Furthermore, we evaluated the synthetic accessibility score (SAS) of 
the compounds, employing RDKit for the evaluation. Table 1 provides the optimal ranges 
for ADMET properties and SAS. By systematically evaluating the binding effects, ADMET 
properties, and SAS, we conducted a search for potential compound leads.

2.5.1. Potential Optimal Drug Candidates.—After performing consensus BA and 
SAS predictions, we proceeded to evaluate the ADMET properties of the identified 
multitarget active compounds in the second experiment. Among those, 2155 compounds 
satisfy the BA constraints and are in the SAS proper range. According to the ADMETlab2 
predictions, only a very limited number of compounds can satisfy the various properties. 
Figure 4a presents the ADMET screening results. The orange frames outline the proper 
domains for a pair of properties. The color points represent the predicted BA values of the 
generated compounds on MOR.

The first plot in Figure 4a shows the distributions of FDA maximum recommended daily 
dose (FDAMDDs), an index of potential for toxicity, and Caco-2, cell permeability of 
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compounds. The FDAMDD screening reveals that a very small fraction of our generated 
compounds can satisfy toxicity requirements, despite the fact that nearly half of them can 
pass the Caco-2 screening. This suggests the necessity of ADMET screening before a new 
compound is synthesized.

The second plot in Figure 4a displays the screening results based on two parameters: F20% 

(bioavailability of 20%) and T1/2 (half-life). The plot shows that a significant number of the 
compounds fall within the optimal domain for both indexes. Especially, almost all of these 
generated potent inhibitors can pass the T1/2 screening.

The third plot in Figure 4a illustrates the screening based on Log P and Log S, which are 
parameters that relate to the distribution of drugs in the human body. The outline optimal 
domain covers only a small portion of the plot. While nearly half of the compounds fall 
within the acceptable range of Log S, very few of these potent inhibitors are within the 
suggested range for Log P. This suggests that a significant amount of resources are being 
wasted in early studies.

The screenings for the compound on FDAMDD and Log P indexes impose strict filtering 
criteria for finding optimal compounds from the 2155 compounds, which limits the number 
of potential drug candidates. None of the 2155 potent compounds passed the ADMET 
screening. To increase the pool of possible drug candidates, we relaxed the Log P 
requirement by adjusting the proper range to 0–5 log mol/L, as Lipinski’s rule suggests Log 
P less than 5 Log mol/L for an orally active drug.51 Using this new range, we were able to 
identify three drug candidates, as shown in Figure 4b. The predicted binding affinity values 
for the four critical targets, as well as their similarity scores to two reference compounds, are 
provided.

The ADMETlab2 server was used to evaluate a range of other ADMET indexes for the three 
nearly optimal compounds. Figure 4c shows that the additional physicochemical properties 
of the two molecules were within the appropriate ranges, except for Log P and Log D. 
Here, Log D, which is associated with Log P, refers to the logarithmic value of Log P at 
physiological pH 7.4. Upon structural optimization of the three molecules, it is possible to 
achieve simultaneous optimization on both Log P and Log D.

2.6. Molecular Optimization.

As noted earlier, the FDAMDD and Log P profiles pose obstacles that prevent the generated 
molecules from becoming optimal drug candidates in the second experiment. To expand 
the pool of optimal drug candidates, we consider optimizing the generated compounds that 
exhibit desired BA values and nearly satisfactory ADMET properties. Log P index is the 
objective we strive to optimize. We could also carry out molecular optimization using other 
property indexes, but we limit our efforts on Log P in the current study.

2.6.1. Log P Optimization.—The polarity of a molecule can influence its Log P value. 
Highly polar molecules may have lower Log P values, as they are more soluble in the 
aqueous phase and less likely to partition into the lipid phase. The relationship between 
molecular polarization and Log P can be complex and depends on other factors such as 
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molecular size, shape, and functional groups. To induce more polarization, we propose 
replacing a hydrogen atom with a hydroxyl group. These modified molecules are then 
subjected to scrutiny for molecular validity through our encoding-decoding process. The 
reconstructed molecules are subsequently evaluated for their BAs and ADMET properties 
using our consensus BA predictors and ADMETlab2. This optimization process may yield 
compounds that are closer to being optimal in terms of desired BAs and ADMET profiles. 
We tested this strategy on the three aforementioned molecules, which were nearly optimal 
except for their Log P profiles.

Figure 5 displays the molecular optimization on its Log P profile for the first nearly optimal 
compound in Figure 4b. By replacing one hydrogen atom with a hydroxyl group on the 
molecule, we obtained 22 new valid molecules. Figure 5a shows the statistics of the 22 
new compounds on the magnitude of predicted BA values on MOR, KOR, DOR, and 
hERG, as well as their Log P values. The original compound with its BAs and Log P 
value is shown in Figure 5b. The average predicted BA values on MOR, KOR, DOR, and 
hERG are −10.15, −10.24, −9.49, and −7.65 kcal/mol. The original generated compound 
has predicted BA values of −10.43, −10.34, −9.62, and −8.0 kcal/mol, as well as Log P of 
4.28. These 22 derived compounds exhibited slightly reduced potency on the four critical 
targets but improved Log P profiles. The optimization process alleviated hERG side effect 
and reduced Log P values. Figure 5c–h displays the six derived molecules with the highest 
average BA potency on the MOR, KOR, and DOR. The red circles highlight the positions 
where a hydrogen atom is replaced. All of the six compounds showed improved Log P 
profiles. In addition, five of them were all predicted to be effective inhibitors on MOR, 
KOR, and DOR without hERG side effects. Among the 22 derived compounds, 9 were 
predicted to be effective on the three targets while their Log P values are less than 4.0. 
These results demonstrate the effectiveness of the optimization process in offering drug 
candidates with improved pharmacokinetic profiles. In addition to the potency and Log P, 
other pharmacokinetics properties are taken into account again to identify nearly optimal 
compounds. Unfortunately, none of the 22 compounds met the criteria for binding affinity 
and ADMET properties, thereby ruling out their candidacy as new drugs. This reflects the 
challenge in molecular optimization, where multiobjective optimization is characterized by 
the inherent trade-off between improving one property at the expense of another.

We applied the Log P optimization approach to the other two nearly optimal compounds 
shown in Figure 5b and screened them for potency and ADMET properties. Upon replacing 
a hydrogen atom with a hydroxyl group, we obtained 20 new valid molecules for the second 
compound and 21 new valid molecules for the third compound. Among these, 11 inhibitors 
effectively targeted multiple receptors (MOR, KOR, and DOR) for the second compound, 
while the third compound yielded 20 such inhibitors. The average predicted BA values for 
the 20 new compounds on MOR, KOR, DOR, and hERG were −9.98, −10.06, −9.62, and 
−7.52 kcal/mol, respectively. Similarly, for the 21 new compounds, the average predicted 
BA values were −10.68, −10.99, −9.92, and −7.38 kcal/mol, respectively. The average Log 
P values for the 20 compounds were 3.47, and for the 21 compounds, it was 3.85. Among 
the 20 compounds, 11 were effective on all three opioid receptors, and 18 had Log P 
values less than 4. Ten compounds exhibited desired BA and Log P values. Among the 
21 compounds, 20 were effective on all three opioid receptors, and 14 had Log P values 
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less than 4. Thirteen compounds showed desired BA and Log P values. Figure 6 illustrates 
some of our optimization results for the third compound in Figure 5b. The six best derived 
compounds, in terms of Log P value, are presented. It can be observed that modifications to 
various functional groups of the molecule contributed to a reduction in Log P values.

Through molecular optimization of the three nearly optimal compounds, we have obtained 
some new compounds. Among these compounds, a significant number exhibit desired 
BA and Log P values, thereby providing more promising candidates as nearly optimal 
compounds. By screening these compounds on their BAs and additional ADMET properties 
using our BA predictors and ADMETlab2, we have identified two compounds with 
improved Log P profiles that meet all BA and ADMET requirements. These two 
compounds, derived from applying Log P optimization to the third nearly optimal compound 
shown in Figure 4b, are presented in Figure 7. The positions where hydrogen atoms were 
replaced are highlighted in Figure 7a,b. The screening results for a series of physicochemical 
properties are depicted in Figure 7c,d. In comparison to the aforementioned three nearly 
optimal compounds, the two derived compounds exhibit improved Log P and Log D 
profiles.

The optimization process is beneficial to the generation of additional drug candidates in an 
efficient way. We screened millions of compounds before we could identify three nearly 
optimal compounds in Figure 4b. The Log P optimizations of the three compounds provide 
the two additional compounds with improved Log P profiles in a short time.

2.6.2. Molecular Interactions between Opioid Receptors and Effective 

Inhibitors.—It is crucial to understand the molecular mechanism of drug–target 
interactions in identifying desired drug candidates. To predict the docking poses of one drug 
candidate to opioid receptors, namely, MOR, KOR, and DOR, we utilized the molecular 
docking software AutoDock Vina.52 The three receptors are in the same protein family and 
share high structural similarities. Above we identified five nearly optimal drug candidates 
including two derived compounds. The compound in Figure 7a showed high potency profiles 
and improved ADMET properties. Its molecular docking poses on the receptors are depicted 
in Figure 8.

It is observed that hydrogen bonds play critical roles in molecular interactions. There are 
at least two hydrogen bonds in each drug–target interaction system, which contribute to the 
high potency of the molecules on the receptors. The molecule in Figure 7a was derived 
with the Log P optimization by replacing a hydrogen atom in the methyl group with a 
hydroxyl group. The hydroxyl group itself plays a critical role in molecular interactions with 
the three receptors by forming hydrogen bonds. In its interaction with MOR, a hydrogen 
bond is formed between one oxygen atom on residual Tyr148(A) of MOR and the oxygen 
in the hydroxyl group. The second hydrogen bond in this interaction occurs between one 
nitrogen atom of the molecule and an oxygen atom in residual Asp147(A) of MOR. When 
interacting with KOR, the oxygen atom in the hydroxyl group forms hydrogen bonds with 
a nitrogen atom and an oxygen atom on residual Cys210(A), respectively. In its interaction 
with DOR, two hydrogen bonds are formed between the hydroxyl group and two oxygen 
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atoms on residual Asp128(A) of DOR. Additionally, another hydrogen bond exists between 
a hydrogen atom on Asp128(A) and a nitrogen atom on the compound.

2.7. Additional Nearly Optimal Compounds.

Above, we have presented a comprehensive overview of the workflow within our complex 
generative network for the discovery of novel multitarget compounds. These compounds 
exhibit druglike potential based on machine learning predictions and hold promise for 
OUD treatment. Utilizing our GNC, we generated additional multitarget compounds using 
different reference and seed compounds. Through screening their BA values, SAS scores, 
and ADMET properties, we identified additional compounds with druglike potential for 
treating OUD. Further details on these compounds can be found in the CSV Supporting 
Information.

3. DISCUSSION

3.1. Designing Analogue Drugs of the Approved Medications.

Currently, the US FDA has approved three medications, namely, methadone, buprenorphine, 
and naltrexone, for the treatment of OUD. These medications exert their pharmacological 
effects by targeting MOR, KOR, and DOR. Additionally, naloxone is a crucial medication 
used for the treatment of opioid overdose. We are interested in generating potential 
analogues of these four medications. We utilize these medications as reference compounds. 
Our focus is on designing analogues that exhibit simultaneous activity on MOR, KOR, and 
DOR. To achieve this, we employ both molecular generation and optimization approaches.

3.1.1. Designing Buprenorphine Analogues.—Buprenorphine acts as a partial 
agonist for the MOR receptor and an antagonist for the KOR receptor. It can alleviate opioid 
withdrawal symptoms, reduce the effects of injected opioids, and provide protection against 
overdose.53 Buprenorphine has a ceiling effect on euphoria and carries a lower risk of 
respiratory depression compared to methadone.54 Compared to methadone, buprenorphine 
has lower retention rates. Higher doses of buprenorphine can increase retention and 
abstinence rates. Improved retention rates can be achieved with buprenorphine analogues, or 
alternatively, maintaining moderate retention rates through reduced doses.

Buprenorphine exhibits activity on MOR, KOR, and DOR with BA values of −12.55, 
−12.83, and −11.57 kcal/mol, respectively. To generate analogues of buprenorphine, we 
use it as the reference compound for both MOR and KOR. For DOR, we utilize 
ChEMBL494462 as the reference compound, which has a BA value of −11.92 kcal/mol. 
In applying the molecular generator, a weight coefficient of 0.8 is assigned to the latent 
vectors of buprenorphine, while the AE latent vector of ChEMBL494462 is given a 
weight coefficient of 0.2. This weighting scheme increases the likelihood of generating 
buprenorphine analogues, as the higher weight assigned to buprenorphine promotes a greater 
resemblance to this reference compound. Our GNC generated millions of novel molecules. 
From this vast pool, we identified five compounds that were nearly optimal, each possessing 
Log P values below 5. The synthetic accessibility score (SAS) less than 6 is the suggested 
proper range. A lower SAS indicates a higher level of ease in synthesizing the compound. 
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The five compounds have a SAS of less than 5.7, with two scores below 4. Therefore, these 
five compounds can be synthesized relatively easily. These highly potent compounds on all 
three receptors are depicted in Figure 9.

Buprenorphine, with BA values being close to −13 kcal/mol on the three receptors, resides 
at the outer bounds of the BA distributions in the training data. In Figure 9, the identified 
compounds exhibit predicted BAs around −11 kcal/mol for the receptors. Moreover, they 
exhibit low predicted hERG side effects and Log P values are below 5. Among the 
compounds, one has a Log P value below 3, two have Log P values between 3 and 4, 
and two have Log P values between 4 and 5. In comparison to buprenorphine whose Log P 
value is 5.56, the five identified compounds possess superior Log P profiles.

The five generated compounds exhibit similarities ranging from 0.57 to 0.74 with 
buprenorphine. Since novel molecules are generated with potent reference compounds, they 
can inherit certain moieties from them, which can facilitate effective binding to the three 
receptors. These new compounds are observed to preserve some functional groups. For 
instance, buprenorphine contains methyl groups, a benzene ring, trimethylene, and hydroxyl 
groups. Many of the generated compounds retain these groups, particularly those with 
higher similarity scores to buprenorphine. Among the five compounds, the one depicted in 
Figure 9b is the least similar to buprenorphine, with a similarity score of 0.57. However, it 
introduces two fluorine atoms as new elements while still preserving a benzene ring, several 
hydroxyl groups, and methyl groups. Notably, it possesses the best Log P profile among 
the five new compounds. The retention of these functional groups in the five molecules 
contributes to their binding potency on the receptors.

We apply our Log P optimization strategy to the three compounds depicted in Figure 9f–g, 
as their Log P values exceed 4. By replacing hydrogen atoms with hydroxyl groups on these 
three molecules, we generate 14 and 18 new molecules for each respective compound. This 
optimization approach proves valuable in generating additional nearly optimal compounds 
based on the molecules in Figure 9f,g. The derived nearly optimal compounds, exhibiting 
desired binding affinity and ADMET properties, are presented in Figures S2 and S3 in the 
Supporting Information.

The compound depicted in Figure 9e exhibits the highest similarity to buprenorphine, with a 
similarity score of 0.74. It demonstrates high potency on all three receptors while exhibiting 
a low hERG side effect. We also employed Autodock Vina software to predict the molecular 
interactions with the three receptors. As illustrated in Figure 10, the compound establishes 
multiple hydrogen bonds with the receptors. In its interaction with the MOR receptor, a 
hydrogen bond is formed between the oxygen atom on the benzene ring of the molecule 
and the nitrogen atom on the residue Trp318(A). Regarding its interaction with the KOR 
receptor, two hydrogen bonds are formed. One is established between an oxygen atom of 
the molecule and an oxygen atom on the residue Tyr312(A), while the other is formed 
between an oxygen atom of the molecule and a sulfur atom on the residue Cys210(A). 
Additionally, the molecule forms two hydrogen bonds with the DOR receptor. One bond 
is created between an oxygen atom on the molecule and an oxygen atom on the residue 
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Tyr129(A), while the other bond is formed between an oxygen atom on the molecule and a 
nitrogen atom on the residue Lys214(A).

3.1.2. Designing Naltrexone Analogues.—Naltrexone has BA values of −12.55, 
−12.11, and −10.48 kcal/mol on MOR, KOR, and DOR, respectively. It functions as an 
antagonist for both MOR and KOR. Its KOR antagonist properties have been linked to 
mood improvements in individuals with OUD.55 However, it faces challenges regarding 
low adherence among individuals addicted to opioids.7 In some studies, the effectiveness 
of naltrexone treatment was reported to be not encouraging such that there is not much 
difference between naltrexone and placebo on treatment retention or relapse rates.56 Despite 
this, naltrexone still shows benefit in OUD treatment with reduced heroin use and decreased 
criminal activity.56 Naltrexone analogues can potentially improve the treatment retention or 
relapse rates.

We employed our GNC to generate analogues of naltrexone. Naltrexone was used as the 
reference compound for MOR and KOR, while ChEMBL56585 served as the reference 
compound for DOR. ChEMBL56585 displayed BA values of −12.26, −13.64, and −12.35 
kcal/mol on MOR, KOR, and DOR, respectively. In applying the molecular generator, 
weight coefficients of 0.8 and 0.2 are assigned to the latent vectors of naltrexone and 
ChEMBL56585, respectively. From the millions of generated compounds, we identified four 
analogues that were nearly optimal, as depicted in Figure 11. The four compounds have 
SAS values close to 4 or 5. Therefore, they can be synthesized easily compared to the above 
buprenophine analogues.

The similarity of these compounds to naltrexone ranged from 0.61 to 0.76. The least similar 
compound exhibited molecular novelty while still possessing similar functional groups as 
naltrexone, such as a benzene ring, hydroxyl group, and other rings. Naltrexone displayed 
an optimal Log P profile with a value of 2.26, and the resulting five analogues inherited this 
favorable Log P profile. This emphasizes the importance of selecting reference compounds 
with desired physicochemical properties, eliminating the need for further optimization to 
improve the Log P profiles of the derived compounds. The naltrexone analogue shown 
in Figure 11c demonstrates promising binding effects, with a detailed illustration of its 
molecular interactions provided in Figure S4 in the Supporting Information.

3.1.3. Designing Methadone Analogues.—Methadone functions as a full agonist on 
the MOR receptor and can alleviate withdrawal and craving symptoms.5 Its extended half-
life and diminished druglike effects, such as euphoria, result in fewer withdrawal symptoms 
and reduced potential for reinforcing behavior compared to other opioids.57 However, 
methadone carries a risk of respiratory depression in cases of overdose. Methadone is the 
best option for retaining patients in treatment programs.4 Methadone analogues with less 
risk of respiratory depression can be possibly designed.

Methadone demonstrates BA values of −11.84, −8.99, and −8.54 kcal/mol on MOR, KOR, 
and DOR, respectively. Designing a multitarget methadone analogue presents a challenging 
task, given that methadone primarily exhibits potency on the MOR receptor. In our 
molecular generator, methadone serves as the reference compound for MOR and KOR, 
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while other potent compounds were used as the reference for DOR. To effectively generate 
analogues of methadone, assigning a high weight coefficient to methadone is necessary. 
However, this approach results in a limited number of compounds that effectively target all 
three receptors. Additionally, due to the strict ADMET requirements, none of our generated 
compounds can be considered nearly optimal.

3.1.4. Designing Naloxone Analogues.—Naloxone is an opioid antagonist used for 
reversing respiratory depression in cases of opioid overdose. It exhibits a high affinity 
that allows it to displace opioid drugs, thereby counteracting their respiratory depression 
effects. It does not stimulate the opioid receptors and therefore does not cause sedation, 
analgesia, respiratory depression, and euphoria.1 Naloxone specifically exhibits BA values 
of −11.47, −10.96, and −9.8 kcal/mol on the MOR, KOR, and DOR receptors, respectively. 
Naloxone can reverse opioid-induced respiratory depression in overdose. However, due to its 
very short half-life of about an hour,58 naloxone causes patients to revert to the overdosed 
state once its effects wear off, leading to the need for multiple administrations. Naloxone 
analogues could have a longer half-life, giving better reversing effect of respiratory 
depression.

We utilize naloxone as the reference compound for the MOR and KOR receptors, while 
ChEMBL494462 serves as the reference compound for DOR. Compound ChEMBL494462 
demonstrates BA values of −12.26, −13.64, and −12.35 kcal/mol on the MOR, KOR, and 
DOR receptors, respectively. In applying the molecular generator, weight coefficients of 0.8 
and 0.2 are assigned to the latent vectors of naloxone and ChEMBL494462, respectively. 
From millions of generated compounds, we identified five molecules that exhibit nearly 
optimal properties, as illustrated in Figure 12. The five compounds, except for compound e, 
have SAS values close to six. These SAS values indicate a relatively high level of difficulty 
in synthesizing these compounds.

The high weight of naloxone has a significant impact on the structures of its derivatives. 
As depicted in Figure 12, there is high degree of similarities between these compounds 
and naloxone. The smallest similarity value observed with naloxone was 0.72, indicating 
a strong resemblance in terms of molecular structures and functional groups. All five 
derivatives contain critical pharmacophores such as methyl groups, hydroxyl groups, 
benzene rings, and other related ring structures, similar to naloxone. Moreover, these 
analogues possess optimal Log P profiles, akin to the design of naltrexone analogues. This 
can be attributed to naloxone’s favorable physicochemical properties, which facilitate the 
derivatives’ adherence to ADMET requirements. The naloxone analogue presented in Figure 
12c demonstrates promising binding effects, with a detailed depiction of its molecular 
interactions provided in Figure S4 in the Supporting Information.

3.2. Key Factors in Designing Optimal Compounds.

We proposed a molecular generator based on stochastic differential equations in the latent 
space of autoencoder networks. Molecules are represented by the AE latent vectors. Multiple 
reference compounds are used to guide the design of novel molecules such that the 
generated compounds will inherit similar structures or function groups from the references. 
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As demonstrated in the above experiments, our stochastic molecular generator proves to 
be effective in achieving the goal. Specifically, we aim at designing molecules that are 
effective on several critical opioid receptors including MOR, KOR, and DOR. The generated 
compounds are found to share similarities with the selected reference compounds. To 
generate novel molecules with desired binding affinity and druglike properties, there are 
several concerns in utilizing our generator.

3.2.1. Binding Affinity Prediction Reliability Analysis.—We incorporated two 
layers of BA predictors into our approach. The first layer, AE-BP, is utilized for initial 
BA screening, while the second layer consists of a consensus BA predictor, which provides 
more accurate predictions. This two-layered approach helps us identify promising drug 
candidates.

However, considering the inherent nature of machine learning predictions, we anticipate 
that the generated potent compounds will exhibit certain similarities to the available the 
training data. We carefully select reference compounds from the training data with BA 
values ranging from −10 to −12 kcal/mol. Within the three inhibitor datasets we collected, 
a considerable number of compounds fall within this specific BA range. If the generated 
compounds share a certain degree of similarities with the training data, the machine learning 
models can effectively differentiate these potent compounds from the inactive ones.

3.2.2. Molecular Novelties.—The molecular novelties are assessed by measuring their 
similarity to selected reference compounds. The generator can effectively manage the level 
of novelty by adjusting the number of references or assigning weights to each reference 
compound. Higher molecular novelties indicate a broader coverage of the chemical space 
by the generated compounds, as they are different from the reference compounds or the 
available molecules in the training data. A wide range of chemical space, encompassing 
high-binding-affinity compounds, is advantageous for drug design. This enables a greater 
diversity in various druggable properties, such as Log P, Log S, Cano-2, and others. Having 
more drug candidates with different druggable properties provides a wider range of options 
for treating patients with varying health conditions. However, it is important to control the 
novelties of the generated compounds. Higher molecular novelties imply low similarities 
with the reference compounds or the machine learning training data. To ensure accurate 
binding affinity predictions, a certain degree of similarity with the available training data is 
still necessary.

3.2.3. Importance of Selecting Appropriate References.—When generating novel 
molecules, we appropriately choose reference compounds from the training data that 
exhibit the desired potency on specific receptors. Our experiments have demonstrated that 
appropriate references are beneficial in generating a greater number of candidates with 
desired BAs. However, it is essential for a promising drug candidate to also meet other 
crucial druglike properties, particularly the ADMET criteria.

By utilizing reference compounds that demonstrate satisfactory ADMET properties, our 
generator can generate a substantial pool of compounds that exhibit the desired ADMET 
characteristics. This is exemplified in the analogue generations for naltrexone and naloxone. 
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Conversely, when the reference compounds do not meet the essential ADMET criteria, even 
millions of compounds are generated, they can hardly pass the ADMET screening process. 
This observation is illustrated in the demonstration example depicted in Figure 4. In this 
particular example, the majority of the generated compounds do not successfully pass the 
FDAMDD screening due to the utilization of reference compounds with a low FDAMDD 
profile.

3.2.4. Agonist/Antagonist for Opioid Receptors.—Approved medications, as 
mentioned earlier, function as agonists or antagonists on the opioid receptors, playing 
crucial roles in the treatment of OUD. Methadone and buprenorphine serve as examples of 
agonist medications that target MOR. Methadone, a long-acting MOR agonist, effectively 
alleviates withdrawal symptoms and cravings.5 On the other hand, buprenorphine acts 
as a partial agonist of MOR, producing milder effects compared to full agonists.6 

Antagonist medications, in contrast, block opioid receptors, thereby preventing the binding 
of opioids and reducing their reinforcing effects. Buprenorphine, for instance, acts as a 
KOR antagonist, offering mood improvements for individuals with OUD.54 Naltrexone and 
naloxone are antagonists that target all three critical opioid receptors. In particular, naloxone 
exhibits the highest affinity for MOR and is used to counteract the respiratory and mental 
depression effects of opioid overdose.59

Recent advancements in deep generative research have introduced innovative approaches for 
the de novo design of improved opioid antagonists,60 as well as the design for selective 
KOR antagonists,61 recognizing the crucial role of antagonists in OUD treatment. Besides, 
machine learning models have been proposed to predict the agonist or antagonist activities 
of small molecules on MOR, KOR, and DOR.62,63 These models offer the potential to 
prioritize compounds from extensive libraries for subsequent experimental testing.

While it is essential to investigate the agonist/antagonist properties of our generated 
druglike compound for OUD treatment, including initial machine learning predictions or 
experimental validations, this study does not encompass that scope. However, we plan to 
conduct such investigations in the future, either through collaborations with experimentalists 
or by constructing reliable machine learning predictive models.

4. CONCLUSIONS

We have developed a highly effective deep generative model for generating novel molecules 
that can be effective on multiple targets, including MOR, KOR, and DOR. The molecular 
generator is designed by integrating a stochastic differential equation (SDE)-based diffusion 
approach into the latent space of a pretrained autoencoder model. Through careful selection 
of appropriate reference compounds and adherence to a series of novelty criteria, a 
substantial number of novel compounds with desirable binding affinities for MOR, KOR, 
and DOR, as well as other druglike properties, can be generated.

To predict the binding affinities, we employ advanced machine learning models that 
integrate autoencoder embeddings, transformer embeddings, and topological Laplacian 
fingerprints with machine learning algorithms. The incorporation of these diverse molecular 
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representations enhances the accuracy of the binding affinity predictions. The selection of 
reference compounds is crucial in two aspects. First, the number of reference compounds 
influences the novelty of the generated molecules. Second, the use of reference compounds 
with desired ADMET properties increases the likelihood of generating compounds that 
satisfy the necessary ADMET requirements.

Extensive experiments have demonstrated the effectiveness of our deep generative models 
in designing molecules that exhibit structural similarities to known opioid molecules 
or alternative compounds with therapeutic potential. We utilized our generative network 
complex to generate a diverse set of druglike molecules, but further experimental studies 
are needed to evaluate their pharmacological effectiveness for OUD treatment. Our machine 
learning platform represents a valuable tool in addressing the urgent need for medications in 
the treatment of OUD. Additionally, our platform has the potential to facilitate the design of 
molecules that require specific selectivity on multiple targets, making it a promising tool for 
medication development in various diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ADMET absorption, distribution, metabolism, excretion, and toxicity

AE autoencoder

AE-BP autoencoder binding affinity predictor

AE-FP autoencoder fingerprint

BA binding affinity

DDPMs denoising diffusion probabilistic models

DNN deep neural network

DOR delta opioid receptor

FDA U.S. Food and Drug Administration

FDAMDDs FDA maximum recommended daily dose
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GAN generative adversarial network

GBDT gradient boosting decision tree

GNC generative network complex

GRU gated recurrent unit

HTS high-throughput screening

KOR kappa opioid receptor

LSRN latent space random noise

LSTM long short-term memory

MOR mu opioid receptor

MTSGNC multitarget stochastic generative network complex

R Pearson correlation coefficients

RL reinforcement learning

RMSE root-mean-square error

RNN recurrent neural network

SAS synthetic accessibility score

SDE stochastic differential equation

SGMs score-based generative models

SMILES Simplified molecular-input line-entry system

TF-BP transformer binding-affinity predictor

TF-FP transformer fingerprint

TL-BP topology Laplacian binding-affinity predictor

TL-FP topology Laplacian fingerprint

VAE variational autoencoder

OUD opioid use disorder
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Figure 1. 

Schematic illustration of our multitarget stochastic generative network complex, used to 
design novel compounds for the treatment of OUD. Three different paths, i.e., model 
training, molecular generation, and lead optimization are colored in pink, green, and 
purple, respectively. The pink path represents the model training process of the pretrained 
autoencoder network. The blue path signifies the compound generation process: the 
SMILES string of a given compound undergoes encoding in the encoding network, and 
its latent space representation is then fed into the stochastic molecular generator. The 
generated compounds are subsequently processed through the decoding–encoding network. 
The resulting molecules that have stable SMILESs are evaluated for their binding affinity 
(BA) and ADMET properties. Molecules exhibiting desired BA and ADMET properties 
are regarded as nearly optimal leads. In cases where the properties are not satisfactory, 
molecular optimization (the purple path) is performed to generate more potential druglike 
compounds.
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Figure 2. 

Analysis of binding affinity (BA) distribution of the training data and the generated 
compounds, as well as the analysis of similarity score distributions. (a) BA distributions of 
the inhibitors in the four training datasets. The unit for BA is kcal/mol. (b) BA distributions 
of the generated molecules predicted by AE-BPs. (c) Distributions of similarity scores 
between reference compounds and corresponding source inhibitor dataset. (d) Distributions 
of similarity scores between generated compounds and inhibitor datasets for the three opioid 
receptors. (e) Distributions of similarity scores between generated compounds and three 
reference compounds.
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Figure 3. 

BA distribution of the generated compounds, as well as the similarity score distributions 
regarding two reference compounds, training data, and generated compounds. (a) BA 
distributions of the generated molecules predicted by AE-BPs. The unit for BA is kcal/
mol. (b) Distributions of similarity scores between reference compounds and corresponding 
source inhibitor dataset. (c) Distributions of similarity scores between generated compounds 
and three inhibitor datasets. (d) Distributions of similarity scores between generated 
compounds and three reference compounds.

Feng et al. Page 32

J Med Chem. Author manuscript; available in PMC 2024 April 23.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4. 

Identifying nearly optimal compounds. (a) ADMET screening of the multitarget molecules. 
(b) Three nearly optimal compounds that satisfy the BA constraint, Log P, SAS, and 
ADMET properties. Their BAs and similarity scores with the two references are presented. 
(c) Additional ADMET prediction from ADMETlab2. More abbreviations: MW (molecular 
weight), log P (log of octanol/water partition coefficient), log S (log of the aqueous 
solubility), log D (log P at physiological pH 7.4), nHA (number of hydrogen bond 
acceptors), nHD (number of hydrogen bond donors), TPSA (topological polar surface area), 
nRot (number of rotatable bonds), nRing (number of rings), MaxRing (number of atoms in 
the biggest ring), nHet (number of heteroatoms), fChar (formal charge), and nRig (number 
of rigid bonds). The optimal ranges of these indexes are shown in Table S4 in the Supporting 
Information.
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Figure 5. 

Results of Log P optimization for one nearly optimal compound. The y-axis indicates the 
magnitude of the BA and Log P value. The BA values are all negative and the Log P values 
are all positive. (a) Statistics of the predicted BA values on the four critical targets and the 
predicted log P values of the induced 22 compounds. (b) Original generated compound from 
our GNC that is considered to be a nearly optimal compound. (c–h) Six of the 22 derived 
compounds that have high BAs and improved Log P values.
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Figure 6. 

Results of Log P optimization for one nearly optimal compound. (a) Statistics of the 
predicted BA values on the four critical targets and the predicted log P values of the 
derived 22 compounds. The y-axis indicates the magnitude of the BA and Log P value. The 
BA values are all negative, and the Log P values are all positive. (b) Original generated 
compound from our GNC that is considered to be a nearly optimal compound. (c–h) Six of 
the 22 derived compounds that have high BAs and improved Log P values.
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Figure 7. 

Two nearly optimal compounds derived from the Log P optimization based on one nearly 
optimal compound. (a, b) Two-dimensional (2D) structures of the two nearly optimal 
compounds. The predicted BA values as well as their predicted Log P and SAS are shown. 
(c, d) ADMET predictions of the two compounds according to ADMETlab server.
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Figure 8. 

(a) 2D structure of the optimized compound with the predicted BA values on the four critical 
targets. (b–d) Compound’s docking poses and interactions with the three receptors: MOR 
(PDB ID: 5C1M), KOR (PDB ID: 6B73), and DOR (PDB ID: 6BT3).
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Figure 9. 

(a) 2D structure of buprenorphine with the predicted BA values on the four critical targets. 
(b) ADMET predictions of buprenorphine according to ADMETlab server. (c–g) Several 
nearly optimal buprenorphine analogues that could be effective on MOR, KOR, and DOR. 
The predicted BA values on the three receptors and hERG, the similarity scores to reference 
compounds, as well as their predicted Log P and SAS values, were provided.
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Figure 10. 

(a) 2D structure of one nearly optimal buprenorphine analogue in Figure 9e. (b–d) Molecular 
docking poses and interactions of the buprenorphine analogue with three opioid receptors: 
MOR (PDB ID: 5C1M), KOR (PDB ID: 6B73), and DOR (PDB ID: 6BT3).
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Figure 11. 

(a) 2D structure of naltrexone. (b) ADMET predictions of naltrexone according to 
ADMETlab server. (c–f) Several nearly optimal naltrexone analogues that could be effective 
on the multiple receptors. The predicted BA values on the critical targets, the similarity 
scores to reference compounds, as well as their predicted Log P and SAS values were 
provided.
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Figure 12. 

(a) 2D structure of naloxone. (b) ADMET predictions of naloxone according to ADMETlab 
server. (c–g) Several nearly optimal naloxone analogues that could be effective on multiple 
receptors. The predicted BA values on the critical targets, the similarity scores to reference 
compounds, as well as their predicted Log P and SAS values were provided.
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Table 1.

Optimal Ranges of Six Selected ADMET Properties and Synthesizability (SAS) Used to Screen Nearly 
Optimal Compounds

property optimal range

FDAMDD excellent: 0–0.3; medium: 0.3–0.7; poor: 0.7–1.0

F20% excellent: 0–0.3; medium: 0.3–0.7; poor: 0.7–1.0

Log P the proper range: 0–3 log mol/L

Log S the proper range: −4–0.5 log mol/L

T1/2 excellent: 0–0.3; medium: 0.3–0.7; poor: 0.7–1.0

Caco-2 the proper range: >−5.15

SAS the proper range: <6
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