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Abstract

Opioid use disorder (OUD) has emerged as a significant global public health issue, necessitating
the discovery of new medications. In this study, we propose a deep generative model that
combines a stochastic differential equation (SDE)-based diffusion model with a pretrained
autoencoder. The molecular generator enables efficient generation of molecules that target
multiple opioid receptors, including mu, kappa, and delta. Additionally, we assess the ADMET
(absorption, distribution, metabolism, excretion, and toxicity) properties of the generated
molecules to identify druglike compounds. We develop a molecular optimization approach to
enhance the pharmacokinetic properties of some lead compounds. Advanced binding affinity
predictors were built using molecular fingerprints, including autoencoder embeddings, transformer
embeddings, and topological Laplacians. Our process yields druglike molecules that can be used
in highly focused experimental studies to further evaluate their pharmacological effects. Our
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machine learning platform serves as a valuable tool for designing effective molecules to address
OuUD.
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1. INTRODUCTION

Opioid use disorder (OUD) is a chronic and intricate condition characterized by the
compulsive seeking and use of drugs despite the detrimental effects.! It represents a
significant public health concern, causing severe consequences for individuals, families,

and communities. The opioid epidemic has become a pressing global health crisis,
highlighting the urgent need for effective treatments for OUD. Safe and effective medication
treatments can alleviate withdrawal symptoms, reduce cravings, and help individuals
maintain abstinence from opioids.2

The main treatment methods for OUD typically involve a combination of medications

3 aiming to address the physical and psychological aspects of

and behavioral interventions,
addiction, promote recovery, and prevent relapse. The U.S. Food and Drug Administration
(FDA) has approved three medications, including methadone, buprenorphine, and naltrexone
for the treatment of OUD.* These medications exert their effects by binding to opioid
receptors in the brain, namely, mu opioid receptor (MOR), kappa opioid receptor (KOR),
and delta opioid receptor (DOR). Methadone is a long-acting opioid agonist that primarily
acts on MORs. It helps alleviate withdrawal symptoms and cravings.? Buprenorphine,

on the other hand, acts as a partial opioid agonist primarily targeting MORs. It eases
withdrawal symptoms and cravings while producing less euphoria and carrying a reduced
risk of respiratory depression compared to methadone.® Naltrexone, classified as an opioid
antagonist, blocks the effects of opioids and reduces the rewarding effects. Its mechanism of
action primarily involves MORs, but it also exhibits some affinity for KORs.”
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The pharmaceutical effects of medications for OUD treatment are associated with the
functions of opioid receptors in the brain. MOR triggers euphoria and is essential for
stimulating the reward system and goal-directed behaviors.® In patients with opioid
addiction, their goal-directed behaviors shift toward habitual behaviors, leading to
compulsive drug use.® KOR exhibits anti-reward effects and is capable of inducing
dysphoria.!? Prolonged opioid exposure may lead to stress responses, but KOR blockade
can help alleviate these responses, decrease drug cravings, and reduce depressive states.
Additionally, DORs can lower anxiety levels and mitigate depressive symptoms.!!

While current medications effectively address OUD, relapse and remission remain common
due to neurobiological changes and opioid receptor tolerance resulting from repeated opioid
abuse.* Additionally, some patients may not tolerate or respond optimally to the standard
medications used for OUD. Alternative medications provide additional options to customize
treatment according to individual needs and preferences. The drug discovery process
encompasses several stages, including target discovery, lead discovery, lead optimization,
preclinical development, and three phases of clinical trials before a new drug can be brought
to market.!2 Traditional drug discovery is a time-consuming endeavor that can extend over
many years, require significant financial investments amounting to billions of dollars, and
entail a substantial failure rate.

Various methods and technologies have emerged to accelerate the drug discovery process.
The number of potential druglike molecules is estimated to be between 1023 and 109013
High-throughput screening (HTS) allows for the rapid screening of large compound libraries
against specific biological targets or disease models, quickly identifying leads for further
medicinal chemistry optimization.!# It allows for effective automated operation, but is
associated with high costs of equipment and assay development. Virtual screening involves
the use of computational methods to virtually screen large databases of compounds against
specific target structures. It employs molecular docking, molecular dynamics simulations,
and machine learning algorithms.!> These methods enable the prediction of compound—
target interactions, assessment of physicochemical and pharmacological properties, and
identification of compounds with potential therapeutic effects.!6

De novo drug design (molecular generation) explores the chemical space to generate novel
molecules with desirable properties. The advancement of deep learning has opened up

new opportunities for innovative drug design and discovery. In recent years, many deep
learning-based algorithms have been developed for de novo drug design. These algorithms
utilize the power of deep learning to generate novel molecular structures with desired
properties. They are trained on large datasets of known molecules, allowing them to learn
the intricate patterns and relationships between chemical structures and their corresponding
activities.!” The machine learning algorithms used to construct these generative models

can be categorized into four main types: recurrent neural network (RNN), encoder-decoder,
reinforcement learning (RL), and generative adversarial network (GAN).!8 For example, an
RNN-based generative model has been proposed to generate novel molecules. By employing
a fine-tuning strategy with small sets of molecules, the generated compounds can exhibit
activity toward specific biological targets.!?20 Additionally, a variational autoencoder (VAE)
has been utilized to encode molecules into a continuous latent space.!” This enables
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operations such as generating new molecules or applying optimization strategies to design
compounds with desired properties. Perturbations or interpolations can be performed

on molecules’ latent space vectors, and gradient-based optimization can be applied to

their continuous representations.!” Furthermore, a generative GAN combined with an
autoencoder has been employed for de novo molecular design.2! This approach allows for
the generation of random druglike compounds or compounds biased toward specific targets.

In recent years, diffusion models have gained popularity in various fields, including image
synthesis, video generation, and molecule design, due to their ability to produce high-quality
and realistic samples. There are a few main subtypes of diffusion models: latent space
random noise (LSRN),20 denoising diffusion probabilistic models (DDPMs),22 score-based
generative models (SGMs),23 and stochastic differential equations (SDEs).2* SDEs describe
the evolution of a system over time, considering both deterministic and stochastic forces
influenced by random noise.2> Generative diffusion models have been applied in the field of
drug discovery. Random noise was introduced to latent space molecular vectors to generate
novel druglike molecules.20 LSRN was compared with two other approaches, latent space
controlled output and latent space optimized output for drug generation in a generative
network complex (GNC).20 Another example is DiffLinker,2° which utilizes diffusion
models for the design of molecular linkers. DiffSBDD?7 is used in structure-based drug
design to generate high-quality ligands for specific protein targets. Some recent works?8
have also employed diffusion models trained in the latent space of autoencoders.

In this study, we employ deep generative models to design and optimize molecules that have
potential applications in the treatment of OUD. Specifically, we utilize diffusion method in
the latent space of a pretrained autoencoder (AE) model to generate novel molecules. Our
objective is to create molecules that exhibit similar structural and pharmacological properties
to known opioids or alternative compounds with therapeutic potential. The development of
medications for OUD relies on the binding effects of opioid receptors, particularly MOR,
KOR, and DOR. To achieve the molecular design, we combine a stochastic differential
equation (SDE)-based diffusion method with the latent space of the pretrained autoencoder
model. This enables us to design molecules that are active on MOR, KOR, and DOR.

In the diffusion modeling, we incorporate appropriate reference and seed compounds to
steer the generation of target-biased molecules. Additionally, we employ accurate binding
affinity (BA) predictors to identify potentially effective molecules that interact with these
critical targets. Importantly, we consider the absorption, distribution, metabolism, excretion,
and toxicity (ADMET) properties in selecting druglike compounds for OUD treatment. By
integrating ADMET criteria, we identify the generated compounds that posse desirable
druglike properties. We conduct extensive experiments to efficiently generate druglike
compounds. Furthermore, we employ a molecular optimization approach to discover
additional drug candidates with nearly optimal properties. By employing different reference
compounds and employing various molecular novelty thresholds, we successfully identify
several druglike compounds that exhibit multitarget effectiveness on the critical opioid
receptors. Our molecular generation platform serves as a valuable tool for advancing OUD

treatment.
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2. EXPERIMENTS

21.

Structure of Multitarget Stochastic Generative Network Complex (MTSGNC).

2.1.1. Sequence-to-Sequence Autoencoder.—An autoencoder is a type of artificial
neural network in deep learning that learns to compress and then reconstruct input data,

such as images or text. The encoder network maps the input data to latent space, while

the decoder network maps the latent space back to the original data. The compressed
representation, or latent space between the two networks can capture essential features of the
input data. The commonly used network for encoder and decoder can be a gated recurrent
unit (GRU) or a long short-term memory (LSTM) network.

In molecular science, autoencoder can be used for molecular representation learning,
which involves encoding molecules into a lower-dimensional space while preserving

their structural and functional properties. For instance, a sequence-to-sequence (seq2seq)
autoencoder achieves this by translating one molecular string representation to another.2?
Simplified molecular-input line-entry system (SMILES) is one of the commonly used
molecular representations. The dimension of the latent space is 512. The seq2seq AE was
trained with a high reconstruction ratio between inputs and output SMILES, through which
latent vectors carry faithful molecular information.3? Therefore, the latent space can be
utilized to represent the chemical space and serve as a molecular fingerprint for machine
learning modeling.

The autoencoder also has an application for generative modeling, where the decoder can be
used to generate new data points by sampling from the latent space. The autoencoder (AE)
structure is illustrated in Figure 1(top left). In the current study, we utilize the pretrained
seq2seq autoencoder?” to design novel molecules for OUD treatment.

2.1.2. Data Preparation.—MOR, KOR, and DOR are three critical pharmaceutical
targets for treating OUD. Additionally, hERG is a crucial target that needs to be

avoided in drug discovery.3! We gathered inhibitor datasets for the four targets from the
ChEMBL database. The data points include SMILES strings of molecular compounds and
corresponding binding labels in the form of ICsg or K,. Augmenting the IC5q with K,

can be beneficial to large-scale analysis. As suggested by Kalliokoski,3? the ICs label

can be approximated to K; value using the relation K, = ICs,/2 for data in broad datasets
like ChEMBL database. These experimental labels can be converted to binding energy
with the formula BA = 1.3633 X log,,K,(kcal/mol).33 The protein-ligand binding affinity is
reflected by the dissociation constant K, = [L][P]/[LP], where [L], [P], and [LP] are the
molar concentration of ligand, protein, and protein-ligand complex, respectively. It is noted
that Gibbs free energy (kcal/mol) can be derived by AG = RTInK,, where R and T are

the gas constant and temperature, respectively. At room temperature T' = 298.15 K, one has
AG = — 1.3633pK,.33 Here, pK, is —log,,K, with K, in the unit of mol. K, is the inhibition
constant. Following the way that PDBbind database mixes K, and K; in their refined
datasets,3* we calculate the binding energy with the above BA calculation formula.33 For
compounds with multiple BA values, we calculate their average as the final BA. The details
about the four collected datasets can be found in the Supporting Information.
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The datasets are utilized in two main aspects. First, the molecular compounds, particularly
those exhibiting potency on MOR, KOR, and DOR, are employed as references and seeds
for generating new compounds. Second, the four datasets are utilized as training sets to
construct machine learning models for predicting binding affinity.

2.1.3. Stochastic Molecular Generator.—Generative models serve as powerful tools
for generating potential new drug molecules. In our previous work, we introduced the

GNC for the generation of new druglike molecules in 2019.20-3> We considered three latent
space perturbation models, including (1) a random noise diffusive model called “randomized
output”, (2) a gradient descending model called “controlled output”, and (3) a multiobjective
optimization model called “optimized output”. The first model perturbs the latent space
molecular vectors with the Gaussian white noise and then, selects molecules that have
improved properties in a manner similar to the Monte Carlo method. This model ensures the
novelty of generated molecules but may not be effective in reaching the desirable druglike
properties. The second model improves specific molecular properties of generated molecules
by a force-driven term. However, the resulting new molecules may not retain other important
properties and lack novelty. The third approach was designed to simultaneously optimize
multiple molecular properties of generated molecules via a multi-objective loss function.
However, the novelty of generated molecules may not be guaranteed. To improve the
performance of our GNC model, we propose to combine our random noise diffusive model
with our multiobjective optimization model. The resulting model can be regarded as a drift
and diffusion model as described by the Langevin equation.

Langevin equation is a stochastic differential equation (SDE), which is used to describe the
diffusion processes such as the random motion of the particles over time in the particle’s
velocity space, taking into account both deterministic forces and random forces. It can be
regarded as stochastic generalization of the Newton’s equation of motion. In this work, one
of our goals is to employ Langevin equation to optimize the molecular generator in our
previous GNC model.

We assume X is a latent space vector of a molecule with 512 dimensions, and X, represents
its kth latent space reference vector. Then, the Langevin equation of our drug generator

system is:
dX
G = a2 alXe = X) + &)
k
M
where g, is a positive weighting parameter corresponding to X, satisfying ¥, a, = 1, &(r) is a
Gaussian white noise, and « is a hyperparameter. The first term in eq 1 is a force term that

gives rise to a gradient descent toward targets X,. Then, according to eq 5 in Section 2.3.2,

the general solution of this system is given by:

X(f) = Ce™® 4+ / emalr = “)(aZaka + &(u) |du
0 k
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where the initial state X(0) = C. The latent vector C is for an initial seed molecule.

In our implementations, we employ the fourth-order Runge—Kutta method3® to numerically
solve eq 1 and obtain the corresponding molecular representations in the latent space.

The Runge—Kutta approximation is achieved using the function solve_ivp from the Python
scipy.integrate library. At different time points ¢, X(¢) represents the latent vector of a

novel molecule. We limit the time ¢ to the range [0, 1000] and use an appropriate

time step to generate different X(¢) vectors. The selection of reference molecules and
weighting parameters (X;, ;) in eq 2 is crucial. The number of reference molecules and
their corresponding weights can significantly influence the molecular novelty and properties
inherited from the given reference compounds. Furthermore, the « value is associated with
the impact of the initial seed molecule on the generated compounds. A smaller value allows
for a more pronounced impact within a certain time frame. This approach enables us to
model the diffusion-based generation of molecules using the Langevin eq 1.

It is worth noting that the Langevin equation provides a molecule-wise description of
drift and diffusion processes. However, to obtain an understanding of how the overall
distribution of molecules evolves over time, a statistical perspective is needed. Therefore,
we also discuss the Fokker—Planck equation derived from the Langevin equation (the
detailed derivation can be found in Section S7) in the Supporting Information, providing
a connection between the dynamics of individual druglike molecules and the statistical
behavior of the entire system.

2.1.4. Multitarget Stochastic Molecular Generation.—Figure 1 presents the
compound generation process in our GNC. We aim at designing novel druglike compounds
effective on MOR, KOR, and DOR, while having no hERG side effect.3” The molecular
generation process comprises four key steps, which are further elaborated in the subsequent

subsections.

1. Select three compounds that are potent on MOR, KOR, and DOR, respectively,
as reference compounds from the collected datasets. Also pick a seed compound
that is potent on multiple of the three receptors. Then, encode the SMILES
strings of the references and seed compounds into latent vectors through the

pretrained encoder.

2. Input the latent vectors of reference and seed compounds into the stochastic
molecular generator, giving rise to a large number of new latent vectors.
These new latent vectors, as the representations of potential molecules, are
screened with a constraint of binding affinity AG < — 9.54 kcal/mol(K; = 1 nm) on
MOR, KOR, and DOR, as well as AG > — 8.18 kcal/mol(K; = 10 nm) on hERG.
Pretrained BA predictors are used in the BA constraint evaluation.

3. Latent vectors with desired BA properties are decoded into valid SMILES
(interpretable by RDKit). These SMILES are subsequently fed back through
the pretrained encoder and decoder again, as illustrated in Figure 1, to identify

J Med Chem. Author manuscript; available in PMC 2024 April 23.
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molecules that can be successfully reconstructed. Those reconstructed molecules
are considered to be structurally stable and well interpreted by the autoencoder
networks.

4. Those reconstructed molecules are reevaluated on their binding affinities and
ADMET properties to identify druglike compounds. A molecular optimization
process can be implemented to design more drug candidates with desired
druggable profiles.

To generate novel molecules, different references and seed compounds, or weights for
reference latent vectors can be used in Step 2. The hyperparameter « in eq 1 is set as 0.15 in

this study. We set the value for « as a relatively small number.

As we consider three reference compounds corresponding to the three receptors, we apply
three reference vectors in eq 1. Weight coefficients «, k=1, 2, and 3, are for MOR,

KOR, and DOR reference compounds, respectively. Different weight values can be used to
emphasize the importance of selected references. The parameter 7 in eq 2 can be various

numbers to generate vectors for potential molecules.

2.2. Binding Affinity Predictors.

Within the generator of our GNC, we incorporate four BA predictors to assess the BA of

the generated potential molecules on the four crucial targets. To construct these predictors,
we utilize molecular fingerprints derived from the latent space of an autoencoder network.
These fingerprints are referred to as AE-FP, and the resulting four BA predictors are denoted
as AE-BPs. The AE-BPs were fulfilled by integrating the AE-FPs with a deep neural
network (DNN) algorithm.

Consensus models are used to further evaluate the BAs of those molecules whose SMILES
can be reconstructed, as shown in the right bottom of Figure 1. Two more molecular
fingerprints, namely, transformer fingerprint (TF-FP) and topology Laplacian fingerprint
(TL-FP) are used. They were designed with a pretrained transformer model®® and our
recently proposed topology Laplacian theory.?® Brief descriptions of the two fingerprints are
provided in the following subsections.

BA predictors were constructed by integrating the TF-FP with a deep neural network (DNN)
algorithm, and fusing the TL-FP with a gradient boosting decision tree (GBDT) algorithm.
We refer to these two models as TF-BP and TL-BP, respectively. The consensus model or
prediction is obtained by averaging the predictions from AE-BP, TF-BP, and TL-BP. This
strategy can enhance machine learning predictions3”? and typically outperforms individual
models. Such approaches were employed in our previous studies on OUD, which involved
{41

machine learning repurposing of DrugBank compounds for OUD treatment™ and machine

learning analysis of the OUD interactome networks.*2

Both DNN and GBDT algorithm are popular algorithms in building machine learning
models. DNN has advantages of dealing large and complex datasets, constructing
hierarchical features and modeling complex nonlinear relationships. GBDT as an ensemble
algorithm has the merits of being less sensitive to hyperparameters, less prone to overfitting,

J Med Chem. Author manuscript; available in PMC 2024 April 23.
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and easy to implement. In building our machine learning BA predictors, AE-FP and
TF-FP showed better predictive performance when combined with DNN, while TL
fingerprints have better predictive ability when integrated with GBDT. The details about
the hyperparameter for AE-BPs, TF-BPs, and TL-BPs can be found in Table S2 in the
Supporting Information.

The predictive performance of the consensus models was evaluated using 5-fold cross-
validation. The average Pearson correlation coefficients (R) obtained were 0.824, 0.840,
0.845, and 0.756 for the MOR, KOR, DOR, and hERG datasets, respectively. Additionally,
the average root-mean-square error (RMSE) values were 1.010, 1.027, 1.006, and 0.801
kcal/mol for the same datasets.

2.2.1. Topological Laplacian (TLs) Molecular Fingerprint.—In this subsection,
we give a brief explanation of topological Laplacians (TLs) based on the spectral

graph theory proposed by Wang et al.3? Topology offers significant simplification of
biomolecular data by dealing with the connectivity of different components in a space and
characterizes independent entities, rings and higher-dimensional faces within the space.*344
It can be used for a high level of abstraction to three-dimensional (3D) biomolecular
structures. Topological Laplacian can reveal both topological invariants and homotopic
shape information through the harmonic and nonharmonic spectra of the Laplacian
matrix.*>~*8 Intricate shape information can be obtained through evolving manifolds defined
under filtration parameters. The topological space is based on geometric components of

a dataset, including discrete vertices, edges, triangles, tetrahedrons in the context of 3D
molecular structures. TL forms families of persistent g-combinatorial Laplacian operators,
providing a powerful multiscale analysis tool. These operators are derived from persistent
spectral graph theory, as illustrated below.

The persistent Laplacians are defined under a filtration of an oriented simplicial complex K.

A sequence of the subcomplexes {K,}/"_, of K is constructed

¢=K0§K1§K2Q"'gKm=K

The notation ¢ in this subsection denotes the filtration process, distinct from the time ¢
mentioned in the previous section. On each simplicial complex K,, a chain complex is
defined as C,: = C,(K,) and there exists a g-boundary operator d,: C,(K,) — C,_,(K,). For the
general case with 0 < ¢ < dim(K), the g-boundary operator is in the following form:

q .
o) = Z( -D'ei_,, forc,eK,
i

where o, = [0, vy, -+, ,] is an oriented g-complex and o,_, = [vy, -+, U,, =+, ,] is an oriented
(g — 1)-simplex by removing vertex v,. For the case of g < 0, the C,(K,) = {¢} and d, is a zero
map. The g-adjoint boundary operator is defined as the adjoint operator that corresponds to

the g-boundary operator.
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9,:C,_(K) = C(K,)

We consider C;*’, a subset of C,*” with its boundary in C,_,:

€= foeC) 9 (o) € €y

For this subset, the p-persistent g-boundary operator d,"”:C,"” — C,_, and the adjoint
boundary operator (d,"”)*:C,_, — C."” are well defined. The p-persistent g-combinatorial

Laplacian operator is given as

AP = (0 + (374,

together with its matrix representation as

L= BB + ()] B

Matrices %% and &, are the matrix representations for boundary operators d;%/ and d,,
respectively. The row number of %% is equal to the number of oriented g-simplices in K,,
and the column number equals that of oriented (g + 1)-simplices in K,,,n C;%%. In addition,
the transposes of %1% and %, are the matrix representation for (d;%1)* and (d;)*. The
topological and spectral information of K, can be accessed from the Laplacian operator. We

denote spectra of #,” as a set

spectra(Z" ") = {(Ar),"", ()" s+, (An)y "'}

where N indicates the dimension of &,"”. The Betti numbers, the number of zero
eigenvalues, of #,"" can reveal ¢-cycle information. For the p-persistent g-combinatorial

Laplacian matrix &,"’, the Betti number is defined as

B" = dim(Z,*") — rank(Z,*") = nullity(Z£;*7)
= number of zero eigenvalues of Z;*”

The g,"” value indicates the number of g-cycles in simplices K, that are still alive in
simplices K, , ,. For the biomolecular data, the order of g ranges from 0 up to 2, as the

data is in three-dimensional space. The values of §,*” measure the persistence of connected
components, tunnels or circles, and cavities or voids. The harmonic persistent spectra track

the topological changes while nonharmonic persistent spectra record the geometric changes.

Based on the aforementioned topological Laplacians, we form a set of molecular features
by using the eigenvalue statistics of Laplacian matrix Z;*’. The features are compromised
of f,*” and the sum, mean, median, maximum, minimum, standard deviation, variance,

and sum of the square of the nonharmonic spectra. The representability of TL feature for
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molecules depends on the selection of atoms with different combinations of elements, which
in turn construct distinct oriented g-simplices in K,. As a result, element-specific Laplacian
matrices are defined under a set of filtration. To enhance the representability of TL features,
it is necessary to analyze the given dataset on element types and atomic proportions.
Additionally, this study utilizes a filtration radius with a lower bound of 1 angstrom and

an upper bound of 10 angstroms. This range is chosen based on the observation that the
majority of compounds in each dataset have a three-dimensional size of less than 20A in
each Cartesian direction. More details of element-specific topological Laplacians based on
distribution analysis can be found in the Supporting Information.

2.2.2. Bidirectional Transformer Molecular Fingerprint.—In a recent work,3% a
self-supervised learning (SSL) platform was developed to pretrain deep learning models on
millions of unlabeled molecules. This platform generated latent space vectors for input
SMILES.3® The pretraining of SSL was accomplished by employing the bidirectional
encoder transformer (BET) model. Within the SSL pretraining platform, SMILES strings
were encoded by constructing pairs of real SMILES and masked SMILES, with a certain
percentage of symbols in the strings hidden. The model was then trained in a supervised
manner using these data-mask pairs.38 The attention mechanism was utilized to capture the
significance of each symbol in the SMILES strings. A set of molecular fingerprint can be
obtained by averaging 256 embedding vectors associated with a given SMILES string. For
the training of the SSL-based BET model, molecular SMILES from ChEMBL databases
were employed, and the latent vector transformer fingerprints (TF-FP) generated by the
pretrained model were used as molecular fingerprints in this study.

2.3. Langevin Equation.

2.3.1. Random Variables and Expected Value.—A random variable X is a variable
whose possible values are outcomes of a random phenomenon. The random variable can

be either discrete, taking on a countable number of values, or continuous, taking on any
value within a certain range or set. For a discrete random variable, we can write P(X = x)

to denote the probability that X takes the value x. The expected value of random variable

X is E(X) = ¥, x,P(X = x,). For a continuous random variable, we talk about probability
density function (pdf) p(x) such that for any interval [a, b], P(a < X < b) = [’ p(x)dx. Then, the

expected value of random variable X is E(X) = /" xp(x)dx.

2.3.2. Langevin Equation.—The Langevin equation is a commonly used stochastic
differential equation (SDE) in physics that aims to describe the behavior of a system as it
evolves over time under the influence of deterministic drift and random (fluctuating) forces.
The Langevin equation can describe the motion of a particle in a fluid,

dv
ma =" Av +1(t)

3

where m is the mass of the particle, v is the velocity of the particle, 4 is its corresponding

damping coefficient, and 7 is the noise term which represents the effect of the collisions with
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the molecules of the fluid. In many cases, the one-dimensional Langevin equation is written
in a general form as:

%= —yx + &)

“)

where &(7) is a Gaussian white noise process with (&(r)) = 0 and (&(1)&(')) = 8(t —t'). The
general solution of the one-dimensional Langevin equation has the form:

x(t) = Ce™ V" + [re_Y(I - ”)f(u)du

(&)

where the initial state x(0) = C.

2.4. Generating Novel Multitarget Inhibitors for MOR, KOR, and DOR.

The FDA-approved medications for OUD treatment are highly effective on MOR, KOR, and
DOR. We utilize our GNC to design more molecules that are simultaneously effective on the
three receptors. Meanwhile, we avoid those inhibitors with potential hERG side effects.

Selecting appropriate reference and seed compounds is crucial in generating effective
molecules. We prioritize compounds from the collected datasets that show effectiveness on
the opioid receptors as our references. This is because the generated compounds, inheriting
the pharmacophores of such references, are more likely to exhibit potency on the receptors.
Figure 2a displays the binding affinity (BA) distributions of inhibitors in these datasets. It

is evident that there is a significant number of effective molecules in the MOR, KOR, and
DOR datasets, all having binding affinity values below —9.54 kcal/mol. This threshold is
widely accepted for identifying active compounds. The three datasets collectively consist of
2152 common compounds, from which we select our reference or seed compounds

We rely on machine learning models to predict the BA values of the generated compounds.
The three datasets demonstrate broad BA distributions, ranging from —14 to —6 kcal/mol,
which indicates the presence of highly diverse molecules. Moreover, the BA data exhibit
balanced distributions in relation to the BA threshold of —9.54 kcal/mol. This balanced
distribution of training data enables unbiased BA prediction.

Each dataset contains a moderate number of molecules with BAs ranging between —12 and
—10 kcal/mol. We prioritize selecting compounds within this range as reference or seed
compounds for two reasons. First, these compounds increase the likelihood of generating
potent molecules. References showing high effectiveness on multiple targets are especially
valuable for this purpose. Second, the ample data within this BA range aids in accurately
identifying potent inhibitors through machine learning predictions.

Reference compounds are pivotal in drug design as they greatly impact the novelty of
generated compounds. Two crucial factors influencing novelty are the number of reference
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compounds and the coefficient weights assigned to their AE latent vectors. Novelty is
measured by comparing the similarities between the generated compounds and the reference
compounds, with lower similarity indicating higher novelty. In the upcoming experiments,
we will demonstrate the mechanism of our molecular GNC and specifically investigate the
impact of reference numbers on molecular novelty.

2.4.1. Generation Using Three Distinct Reference Molecules.—In our first
experiment, we selected three compounds, namely, ChEMBL2048770, ChEMBL3349979,
and ChEMBL494462, from the inhibitor datasets. Each of these compounds demonstrates
effectiveness on MOR, KOR, and DOR, with corresponding BA values of —11.51, —11.58,
and —11.92 kcal/mol, respectively. Therefore, we utilized them as reference compounds for
each respective receptor. The seed compound exhibits BA values of —10.44, —10.5, and
—8.96 kcal/mol on MOR, KOR, and DOR, respectively. It acts as a weak inhibitor of DOR.
By using ChEMBL494462 as the reference compound for DOR, the generated compounds
can incorporate certain moieties present in ChEMBL494462. Consequently, those generated
molecules may exhibit effectiveness on DOR. When applying the three references in the
molecular generator, the weight coefficients (a;, aj, az) in eq 1 are set to (0.35, 0.35, 0.3).

Using the reference and seed compounds, our GNC generated over a million novel and
valid molecules in just a few hours using supercomputers. Subsequently, these compounds
were passed through the encoding-decoding network, and we retained those that could

be successfully reconstructed for further BA reevaluation and ADMET analysis. The
reconstruction rate of the generated compounds was 90.1%, yielding a vast library of novel

molecules.

AE-BPs are initially used to evaluate the BAs of the generated compounds, identifying those
multitarget active molecules. Figure 2b indicates the BA distributions of the reconstructed
molecules by our AE-BPs, indicating a large number of active compounds for each of the
three opioid receptors. In addition, only a very small portion of these molecules can cause
hERG side effects. It is promising to find enough multitarget active compounds.

Investigating molecular similarity scores from various perspectives is crucial as they are
associated with machine learning predictions. One important similarity score is between

the reference compound and the respective source dataset. These reference compounds

are selected from the MOR, KOR, and DOR inhibitor datasets, which were utilized as
training data for developing BA predictors. The generated molecules exhibit similarities with
the reference compounds. Figure 2¢ presents the similarity score distribution between the
reference compounds and their source datasets. A small number of molecules within each
training dataset exhibit high similarities with the corresponding reference compounds. The
similarity scores are calculated using Tanimoto coefficients, comparing the AE latent vectors
of the reference compounds with the molecules in each dataset. On average, the similarity
scores between each reference compound and its corresponding dataset remain below 0.4.
However, there are still more than ten molecules in each dataset that exhibit similarity scores
over 0.85 for the selected reference compound.
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Figure 2d showcases the similarity score distribution between the generated molecules and
the three inhibitor datasets. Each similarity score is determined by the highest Tanimoto
coefficient calculated between the AE latent vectors of a generated molecule and all
molecules in the respective dataset. The majority of similarity scores fall within the

range of 0.4-0.6, indicating high levels of novelty among the generated molecules. This
outcome aligns with expectations, as each new molecule incorporates molecular features
from three distinct reference compounds, resulting in unique molecular structures. Notably,
the distribution curves of the three datasets exhibit a consistent pattern.

Figure 2e presents the distribution of similarity scores between the generated molecules
and the three reference compounds. The majority of similarity scores are below 0.5, further
confirming the high novelties of the generated molecules. The similarity distributions of
the molecules with MOR and KOR reference compounds demonstrate a consistent pattern,
while the average similarity scores with the DOR reference compound are comparatively
lower than those for MOR and KOR. This discrepancy is primarily attributed to the weights
assigned to eq 1, specifically (0.35, 0.35, 0.3). A higher weight assigned to a reference
compound leads to a greater similarity between the generated molecules and the designated

reference compound.

The novelties of the generated molecules are observed in Figure 2d,e. High novelties come
with the risk of inaccurate BA prediction, as a higher molecular similarity with the training
data can have more reliable predictions. To address this issue, we can either use more
accurate BA predictors or reduce the molecular novelty.

2.4.2. Generation Using Two Reference Molecules.—We conduct a test using
two reference compounds to generate novel molecules, aiming to improve the molecular
similarities to the training data and enhance the accuracy of BA predictions. The

same two compounds, ChEMBL2048770 and ChEMBL494462, used in the previous
experiment were utilized. ChEMBL2048770 exhibits high potency as an inhibitor for
both MOR and KOR, with binding affinities of —11.51 and —11.78 kcal/mol, respectively.
ChEMBL494462 specifically binds to DOR with a BA value of —11.92 kcal/mol. In this
test, ChEMBL2048770 was selected as the reference compound for both MOR and KOR,
while ChEMBL494462 served as the reference compound for DOR. We continued to use
ChEMBL243195 as the seed compound. The weight coefficient (ay, ap, a3) is set to be
(0.35,0.35,0.3) in eq 1. We utilized our GNC to generate millions of new valid molecules,
and these new molecules have a reconstruction ratio of 86.31% through the autoencoder
encoding-decoding network.

Figure 3 presents the results of our molecule generation in the second experiment. Similar
to the previous experiment, our GNC successfully generated a significant number of active
molecules for MOR, KOR, and DOR targets, while exhibiting weak hERG side effects, as
depicted in Figure 3a. As anticipated, the generated molecules showed improved similarity
scores with the training data, as observed in Figure 3c. The average similarity score of

approximately 0.6 was higher than the score of around 0.45 obtained using three reference
compounds in our previous experiment, as shown in Figure 2d. Furthermore, in Figure 3d,
we can observe that the similarity scores for the MOR and KOR reference compounds are
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higher than those for the DOR reference compound, which aligns with Figure 3b. It is
important to note that the distribution curves of the MOR and KOR reference compounds
overlap in Figure 3b,d, as ChEMBL2048770 was used as the reference compound for both
MOR and KOR targets.

By comparing the two experiments, we can see that utilization of two reference compounds
can be an effective approach to design novel molecules yet with high similarity scores to the
training data. This, in turn, enables more accurate BA predictions.

2.4.3. Binding Affinity Reevaluation with Consensus Models.—We use AE-BPs
for an initial screening of the generated molecules. By applying BA constraints, we generate
a large pool of novel molecules that may function as effective multitarget inhibitors.

To refine this pool, we employ our consensus models to reevaluate the BAs of the

filtered generated molecules. The BA constraints are applied once again by the consensus
reevaluations, resulting in a reduced number of compounds for ADMET analysis. Below,
we continue to carry out further investigations on the above experiment using two reference
compounds.

2.5. ADMET Analysis.

ADMET (absorption, distribution, metabolism, excretion, and toxicity) plays a critical
role in drug discovery and development as it encompasses various attributes related to

a compound’s pharmacokinetic studies. A promising drug candidate must demonstrate
both efficacy on the therapeutic target and compliance with essential ADMET properties.
Accurate ADMET predictions are vital in drug design as they enable the screening of new
compounds’ properties and help mitigate the risk of late-stage attrition.

For systematic ADMET screening, we examined six indexes: FDAMDD, 77,

and g, Log P, Log S, and Caco-2. To assess these ADMET properties, we

utilized the machine learning predictions provided by ADMETIlab2.0 solvers (https://
admetmesh.scbdd.com/). 4939 The provided documentation offers optimal ranges for various
ADMET properties. Furthermore, we evaluated the synthetic accessibility score (SAS) of
the compounds, employing RDKit for the evaluation. Table 1 provides the optimal ranges
for ADMET properties and SAS. By systematically evaluating the binding effects, ADMET
properties, and SAS, we conducted a search for potential compound leads.

2.5.1. Potential Optimal Drug Candidates.—After performing consensus BA and
SAS predictions, we proceeded to evaluate the ADMET properties of the identified
multitarget active compounds in the second experiment. Among those, 2155 compounds
satisfy the BA constraints and are in the SAS proper range. According to the ADMETIab2
predictions, only a very limited number of compounds can satisfy the various properties.
Figure 4a presents the ADMET screening results. The orange frames outline the proper
domains for a pair of properties. The color points represent the predicted BA values of the
generated compounds on MOR.

The first plot in Figure 4a shows the distributions of FDA maximum recommended daily
dose (FDAMDDs), an index of potential for toxicity, and Caco-2, cell permeability of
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compounds. The FDAMDD screening reveals that a very small fraction of our generated
compounds can satisfy toxicity requirements, despite the fact that nearly half of them can
pass the Caco-2 screening. This suggests the necessity of ADMET screening before a new

compound is synthesized.

The second plot in Figure 4a displays the screening results based on two parameters: Fgq,
(bioavailability of 20%) and 7j,, (half-life). The plot shows that a significant number of the
compounds fall within the optimal domain for both indexes. Especially, almost all of these
generated potent inhibitors can pass the 77/, screening.

The third plot in Figure 4a illustrates the screening based on Log P and Log S, which are
parameters that relate to the distribution of drugs in the human body. The outline optimal
domain covers only a small portion of the plot. While nearly half of the compounds fall
within the acceptable range of Log S, very few of these potent inhibitors are within the
suggested range for Log P. This suggests that a significant amount of resources are being
wasted in early studies.

The screenings for the compound on FDAMDD and Log P indexes impose strict filtering
criteria for finding optimal compounds from the 2155 compounds, which limits the number
of potential drug candidates. None of the 2155 potent compounds passed the ADMET
screening. To increase the pool of possible drug candidates, we relaxed the Log P
requirement by adjusting the proper range to 0-5 log mol/L, as Lipinski’s rule suggests Log
P less than 5 Log mol/L for an orally active drug.! Using this new range, we were able to
identify three drug candidates, as shown in Figure 4b. The predicted binding affinity values
for the four critical targets, as well as their similarity scores to two reference compounds, are
provided.

The ADMETIab2 server was used to evaluate a range of other ADMET indexes for the three
nearly optimal compounds. Figure 4c shows that the additional physicochemical properties
of the two molecules were within the appropriate ranges, except for Log P and Log D.

Here, Log D, which is associated with Log P, refers to the logarithmic value of Log P at
physiological pH 7.4. Upon structural optimization of the three molecules, it is possible to
achieve simultaneous optimization on both Log P and Log D.

2.6. Molecular Optimization.

As noted earlier, the FDAMDD and Log P profiles pose obstacles that prevent the generated
molecules from becoming optimal drug candidates in the second experiment. To expand

the pool of optimal drug candidates, we consider optimizing the generated compounds that
exhibit desired BA values and nearly satisfactory ADMET properties. Log P index is the
objective we strive to optimize. We could also carry out molecular optimization using other
property indexes, but we limit our efforts on Log P in the current study.

2.6.1. Log P Optimization.—The polarity of a molecule can influence its Log P value.
Highly polar molecules may have lower Log P values, as they are more soluble in the
aqueous phase and less likely to partition into the lipid phase. The relationship between
molecular polarization and Log P can be complex and depends on other factors such as
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molecular size, shape, and functional groups. To induce more polarization, we propose
replacing a hydrogen atom with a hydroxyl group. These modified molecules are then
subjected to scrutiny for molecular validity through our encoding-decoding process. The
reconstructed molecules are subsequently evaluated for their BAs and ADMET properties
using our consensus BA predictors and ADMETIlab2. This optimization process may yield
compounds that are closer to being optimal in terms of desired BAs and ADMET profiles.
We tested this strategy on the three aforementioned molecules, which were nearly optimal
except for their Log P profiles.

Figure 5 displays the molecular optimization on its Log P profile for the first nearly optimal
compound in Figure 4b. By replacing one hydrogen atom with a hydroxyl group on the
molecule, we obtained 22 new valid molecules. Figure 5a shows the statistics of the 22
new compounds on the magnitude of predicted BA values on MOR, KOR, DOR, and
hERG, as well as their Log P values. The original compound with its BAs and Log P
value is shown in Figure 5b. The average predicted BA values on MOR, KOR, DOR, and
hERG are —10.15, —10.24, —-9.49, and —7.65 kcal/mol. The original generated compound
has predicted BA values of —10.43, —10.34, -9.62, and —8.0 kcal/mol, as well as Log P of
4.28. These 22 derived compounds exhibited slightly reduced potency on the four critical
targets but improved Log P profiles. The optimization process alleviated hERG side effect
and reduced Log P values. Figure 5c-h displays the six derived molecules with the highest
average BA potency on the MOR, KOR, and DOR. The red circles highlight the positions
where a hydrogen atom is replaced. All of the six compounds showed improved Log P
profiles. In addition, five of them were all predicted to be effective inhibitors on MOR,
KOR, and DOR without hERG side effects. Among the 22 derived compounds, 9 were
predicted to be effective on the three targets while their Log P values are less than 4.0.
These results demonstrate the effectiveness of the optimization process in offering drug
candidates with improved pharmacokinetic profiles. In addition to the potency and Log P,
other pharmacokinetics properties are taken into account again to identify nearly optimal
compounds. Unfortunately, none of the 22 compounds met the criteria for binding affinity
and ADMET properties, thereby ruling out their candidacy as new drugs. This reflects the
challenge in molecular optimization, where multiobjective optimization is characterized by
the inherent trade-off between improving one property at the expense of another.

We applied the Log P optimization approach to the other two nearly optimal compounds
shown in Figure 5b and screened them for potency and ADMET properties. Upon replacing
a hydrogen atom with a hydroxyl group, we obtained 20 new valid molecules for the second
compound and 21 new valid molecules for the third compound. Among these, 11 inhibitors
effectively targeted multiple receptors (MOR, KOR, and DOR) for the second compound,
while the third compound yielded 20 such inhibitors. The average predicted BA values for
the 20 new compounds on MOR, KOR, DOR, and hERG were —9.98, —10.06, —9.62, and
—7.52 kcal/mol, respectively. Similarly, for the 21 new compounds, the average predicted
BA values were —10.68, —10.99, —9.92, and —7.38 kcal/mol, respectively. The average Log
P values for the 20 compounds were 3.47, and for the 21 compounds, it was 3.85. Among
the 20 compounds, 11 were effective on all three opioid receptors, and 18 had Log P

values less than 4. Ten compounds exhibited desired BA and Log P values. Among the

21 compounds, 20 were effective on all three opioid receptors, and 14 had Log P values
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less than 4. Thirteen compounds showed desired BA and Log P values. Figure 6 illustrates
some of our optimization results for the third compound in Figure 5b. The six best derived
compounds, in terms of Log P value, are presented. It can be observed that modifications to
various functional groups of the molecule contributed to a reduction in Log P values.

Through molecular optimization of the three nearly optimal compounds, we have obtained
some new compounds. Among these compounds, a significant number exhibit desired

BA and Log P values, thereby providing more promising candidates as nearly optimal
compounds. By screening these compounds on their BAs and additional ADMET properties
using our BA predictors and ADMETIab2, we have identified two compounds with
improved Log P profiles that meet all BA and ADMET requirements. These two
compounds, derived from applying Log P optimization to the third nearly optimal compound
shown in Figure 4b, are presented in Figure 7. The positions where hydrogen atoms were
replaced are highlighted in Figure 7a,b. The screening results for a series of physicochemical
properties are depicted in Figure 7¢,d. In comparison to the aforementioned three nearly
optimal compounds, the two derived compounds exhibit improved Log P and Log D

profiles.

The optimization process is beneficial to the generation of additional drug candidates in an
efficient way. We screened millions of compounds before we could identify three nearly
optimal compounds in Figure 4b. The Log P optimizations of the three compounds provide
the two additional compounds with improved Log P profiles in a short time.

2.6.2. Molecular Interactions between Opioid Receptors and Effective
Inhibitors.—It is crucial to understand the molecular mechanism of drug—target
interactions in identifying desired drug candidates. To predict the docking poses of one drug
candidate to opioid receptors, namely, MOR, KOR, and DOR, we utilized the molecular
docking software AutoDock Vina.>2 The three receptors are in the same protein family and
share high structural similarities. Above we identified five nearly optimal drug candidates
including two derived compounds. The compound in Figure 7a showed high potency profiles
and improved ADMET properties. Its molecular docking poses on the receptors are depicted

in Figure 8.

It is observed that hydrogen bonds play critical roles in molecular interactions. There are
at least two hydrogen bonds in each drug—target interaction system, which contribute to the
high potency of the molecules on the receptors. The molecule in Figure 7a was derived
with the Log P optimization by replacing a hydrogen atom in the methyl group with a
hydroxyl group. The hydroxyl group itself plays a critical role in molecular interactions with
the three receptors by forming hydrogen bonds. In its interaction with MOR, a hydrogen
bond is formed between one oxygen atom on residual Tyr148(A) of MOR and the oxygen
in the hydroxyl group. The second hydrogen bond in this interaction occurs between one
nitrogen atom of the molecule and an oxygen atom in residual Asp147(A) of MOR. When
interacting with KOR, the oxygen atom in the hydroxyl group forms hydrogen bonds with
a nitrogen atom and an oxygen atom on residual Cys210(A), respectively. In its interaction
with DOR, two hydrogen bonds are formed between the hydroxyl group and two oxygen
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atoms on residual Asp128(A) of DOR. Additionally, another hydrogen bond exists between
a hydrogen atom on Asp128(A) and a nitrogen atom on the compound.

2.7. Additional Nearly Optimal Compounds.

Above, we have presented a comprehensive overview of the workflow within our complex
generative network for the discovery of novel multitarget compounds. These compounds
exhibit druglike potential based on machine learning predictions and hold promise for
OUD treatment. Utilizing our GNC, we generated additional multitarget compounds using
different reference and seed compounds. Through screening their BA values, SAS scores,
and ADMET properties, we identified additional compounds with druglike potential for
treating OUD. Further details on these compounds can be found in the CSV Supporting

Information.

3. DISCUSSION

3.1.

Designing Analogue Drugs of the Approved Medications.

Currently, the US FDA has approved three medications, namely, methadone, buprenorphine,
and naltrexone, for the treatment of OUD. These medications exert their pharmacological
effects by targeting MOR, KOR, and DOR. Additionally, naloxone is a crucial medication
used for the treatment of opioid overdose. We are interested in generating potential
analogues of these four medications. We utilize these medications as reference compounds.
Our focus is on designing analogues that exhibit simultaneous activity on MOR, KOR, and
DOR. To achieve this, we employ both molecular generation and optimization approaches.

3.1.1. Designing Buprenorphine Analogues.—Buprenorphine acts as a partial
agonist for the MOR receptor and an antagonist for the KOR receptor. It can alleviate opioid
withdrawal symptoms, reduce the effects of injected opioids, and provide protection against
overdose.>? Buprenorphine has a ceiling effect on euphoria and carries a lower risk of
respiratory depression compared to methadone.>* Compared to methadone, buprenorphine
has lower retention rates. Higher doses of buprenorphine can increase retention and
abstinence rates. Improved retention rates can be achieved with buprenorphine analogues, or
alternatively, maintaining moderate retention rates through reduced doses.

Buprenorphine exhibits activity on MOR, KOR, and DOR with BA values of —12.55,
—12.83, and —11.57 kcal/mol, respectively. To generate analogues of buprenorphine, we

use it as the reference compound for both MOR and KOR. For DOR, we utilize
ChEMBL494462 as the reference compound, which has a BA value of —11.92 kcal/mol.

In applying the molecular generator, a weight coefficient of 0.8 is assigned to the latent
vectors of buprenorphine, while the AE latent vector of ChEMBL494462 is given a

weight coefficient of 0.2. This weighting scheme increases the likelihood of generating
buprenorphine analogues, as the higher weight assigned to buprenorphine promotes a greater
resemblance to this reference compound. Our GNC generated millions of novel molecules.
From this vast pool, we identified five compounds that were nearly optimal, each possessing
Log P values below 5. The synthetic accessibility score (SAS) less than 6 is the suggested
proper range. A lower SAS indicates a higher level of ease in synthesizing the compound.
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The five compounds have a SAS of less than 5.7, with two scores below 4. Therefore, these
five compounds can be synthesized relatively easily. These highly potent compounds on all
three receptors are depicted in Figure 9.

Buprenorphine, with BA values being close to —13 kcal/mol on the three receptors, resides
at the outer bounds of the BA distributions in the training data. In Figure 9, the identified
compounds exhibit predicted BAs around —11 kcal/mol for the receptors. Moreover, they
exhibit low predicted hERG side effects and Log P values are below 5. Among the
compounds, one has a Log P value below 3, two have Log P values between 3 and 4,

and two have Log P values between 4 and 5. In comparison to buprenorphine whose Log P
value is 5.56, the five identified compounds possess superior Log P profiles.

The five generated compounds exhibit similarities ranging from 0.57 to 0.74 with
buprenorphine. Since novel molecules are generated with potent reference compounds, they
can inherit certain moieties from them, which can facilitate effective binding to the three
receptors. These new compounds are observed to preserve some functional groups. For
instance, buprenorphine contains methyl groups, a benzene ring, trimethylene, and hydroxyl
groups. Many of the generated compounds retain these groups, particularly those with
higher similarity scores to buprenorphine. Among the five compounds, the one depicted in
Figure 9b is the least similar to buprenorphine, with a similarity score of 0.57. However, it
introduces two fluorine atoms as new elements while still preserving a benzene ring, several
hydroxyl groups, and methyl groups. Notably, it possesses the best Log P profile among

the five new compounds. The retention of these functional groups in the five molecules
contributes to their binding potency on the receptors.

We apply our Log P optimization strategy to the three compounds depicted in Figure 9f-g,
as their Log P values exceed 4. By replacing hydrogen atoms with hydroxyl groups on these
three molecules, we generate 14 and 18 new molecules for each respective compound. This
optimization approach proves valuable in generating additional nearly optimal compounds
based on the molecules in Figure 9f,g. The derived nearly optimal compounds, exhibiting
desired binding affinity and ADMET properties, are presented in Figures S2 and S3 in the
Supporting Information.

The compound depicted in Figure 9e exhibits the highest similarity to buprenorphine, with a
similarity score of 0.74. It demonstrates high potency on all three receptors while exhibiting
a low hERG side effect. We also employed Autodock Vina software to predict the molecular
interactions with the three receptors. As illustrated in Figure 10, the compound establishes
multiple hydrogen bonds with the receptors. In its interaction with the MOR receptor, a
hydrogen bond is formed between the oxygen atom on the benzene ring of the molecule

and the nitrogen atom on the residue Trp318(A). Regarding its interaction with the KOR
receptor, two hydrogen bonds are formed. One is established between an oxygen atom of
the molecule and an oxygen atom on the residue Tyr312(A), while the other is formed
between an oxygen atom of the molecule and a sulfur atom on the residue Cys210(A).
Additionally, the molecule forms two hydrogen bonds with the DOR receptor. One bond

is created between an oxygen atom on the molecule and an oxygen atom on the residue
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Tyr129(A), while the other bond is formed between an oxygen atom on the molecule and a
nitrogen atom on the residue Lys214(A).

3.1.2. Designing Naltrexone Analogues.—Naltrexone has BA values of —12.55,
—12.11, and —10.48 kcal/mol on MOR, KOR, and DOR, respectively. It functions as an
antagonist for both MOR and KOR. Its KOR antagonist properties have been linked to
mood improvements in individuals with OUD.>> However, it faces challenges regarding

low adherence among individuals addicted to opioids.” In some studies, the effectiveness

of naltrexone treatment was reported to be not encouraging such that there is not much
difference between naltrexone and placebo on treatment retention or relapse rates.>¢ Despite
this, naltrexone still shows benefit in OUD treatment with reduced heroin use and decreased
criminal activity.® Naltrexone analogues can potentially improve the treatment retention or
relapse rates.

We employed our GNC to generate analogues of naltrexone. Naltrexone was used as the
reference compound for MOR and KOR, while ChREMBLS56585 served as the reference
compound for DOR. ChEMBL56585 displayed BA values of —12.26, —13.64, and —12.35
kcal/mol on MOR, KOR, and DOR, respectively. In applying the molecular generator,
weight coefficients of 0.8 and 0.2 are assigned to the latent vectors of naltrexone and
ChEMBL56585, respectively. From the millions of generated compounds, we identified four
analogues that were nearly optimal, as depicted in Figure 11. The four compounds have
SAS values close to 4 or 5. Therefore, they can be synthesized easily compared to the above
buprenophine analogues.

The similarity of these compounds to naltrexone ranged from 0.61 to 0.76. The least similar
compound exhibited molecular novelty while still possessing similar functional groups as
naltrexone, such as a benzene ring, hydroxyl group, and other rings. Naltrexone displayed
an optimal Log P profile with a value of 2.26, and the resulting five analogues inherited this
favorable Log P profile. This emphasizes the importance of selecting reference compounds
with desired physicochemical properties, eliminating the need for further optimization to
improve the Log P profiles of the derived compounds. The naltrexone analogue shown

in Figure 11c demonstrates promising binding effects, with a detailed illustration of its
molecular interactions provided in Figure S4 in the Supporting Information.

3.1.3. Designhing Methadone Analogues.—Methadone functions as a full agonist on
the MOR receptor and can alleviate withdrawal and craving symptoms.> Its extended half-
life and diminished druglike effects, such as euphoria, result in fewer withdrawal symptoms
and reduced potential for reinforcing behavior compared to other opioids.’” However,
methadone carries a risk of respiratory depression in cases of overdose. Methadone is the
best option for retaining patients in treatment programs.* Methadone analogues with less
risk of respiratory depression can be possibly designed.

Methadone demonstrates BA values of —11.84, —8.99, and —8.54 kcal/mol on MOR, KOR,
and DOR, respectively. Designing a multitarget methadone analogue presents a challenging
task, given that methadone primarily exhibits potency on the MOR receptor. In our
molecular generator, methadone serves as the reference compound for MOR and KOR,
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while other potent compounds were used as the reference for DOR. To effectively generate
analogues of methadone, assigning a high weight coefficient to methadone is necessary.
However, this approach results in a limited number of compounds that effectively target all
three receptors. Additionally, due to the strict ADMET requirements, none of our generated
compounds can be considered nearly optimal.

3.1.4. Designing Naloxone Analogues.—Naloxone is an opioid antagonist used for
reversing respiratory depression in cases of opioid overdose. It exhibits a high affinity

that allows it to displace opioid drugs, thereby counteracting their respiratory depression
effects. It does not stimulate the opioid receptors and therefore does not cause sedation,
analgesia, respiratory depression, and euphoria.! Naloxone specifically exhibits BA values
of —11.47, -10.96, and -9.8 kcal/mol on the MOR, KOR, and DOR receptors, respectively.
Naloxone can reverse opioid-induced respiratory depression in overdose. However, due to its
very short half-life of about an hour,’® naloxone causes patients to revert to the overdosed
state once its effects wear off, leading to the need for multiple administrations. Naloxone
analogues could have a longer half-life, giving better reversing effect of respiratory
depression.

We utilize naloxone as the reference compound for the MOR and KOR receptors, while
ChEMBLA494462 serves as the reference compound for DOR. Compound ChEMBL494462
demonstrates BA values of —12.26, —13.64, and —12.35 kcal/mol on the MOR, KOR, and
DOR receptors, respectively. In applying the molecular generator, weight coefficients of 0.8
and 0.2 are assigned to the latent vectors of naloxone and ChHEMBL494462, respectively.
From millions of generated compounds, we identified five molecules that exhibit nearly
optimal properties, as illustrated in Figure 12. The five compounds, except for compound e,
have SAS values close to six. These SAS values indicate a relatively high level of difficulty
in synthesizing these compounds.

The high weight of naloxone has a significant impact on the structures of its derivatives.
As depicted in Figure 12, there is high degree of similarities between these compounds
and naloxone. The smallest similarity value observed with naloxone was 0.72, indicating
a strong resemblance in terms of molecular structures and functional groups. All five
derivatives contain critical pharmacophores such as methyl groups, hydroxyl groups,
benzene rings, and other related ring structures, similar to naloxone. Moreover, these
analogues possess optimal Log P profiles, akin to the design of naltrexone analogues. This
can be attributed to naloxone’s favorable physicochemical properties, which facilitate the
derivatives’ adherence to ADMET requirements. The naloxone analogue presented in Figure
12¢ demonstrates promising binding effects, with a detailed depiction of its molecular
interactions provided in Figure S4 in the Supporting Information.

3.2. Key Factors in Desighing Optimal Compounds.

We proposed a molecular generator based on stochastic differential equations in the latent
space of autoencoder networks. Molecules are represented by the AE latent vectors. Multiple
reference compounds are used to guide the design of novel molecules such that the
generated compounds will inherit similar structures or function groups from the references.
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As demonstrated in the above experiments, our stochastic molecular generator proves to

be effective in achieving the goal. Specifically, we aim at designing molecules that are
effective on several critical opioid receptors including MOR, KOR, and DOR. The generated
compounds are found to share similarities with the selected reference compounds. To
generate novel molecules with desired binding affinity and druglike properties, there are
several concerns in utilizing our generator.

3.2.1. Binding Affinity Prediction Reliability Analysis.—We incorporated two
layers of BA predictors into our approach. The first layer, AE-BP, is utilized for initial

BA screening, while the second layer consists of a consensus BA predictor, which provides
more accurate predictions. This two-layered approach helps us identify promising drug
candidates.

However, considering the inherent nature of machine learning predictions, we anticipate
that the generated potent compounds will exhibit certain similarities to the available the
training data. We carefully select reference compounds from the training data with BA
values ranging from —10 to —12 kcal/mol. Within the three inhibitor datasets we collected,

a considerable number of compounds fall within this specific BA range. If the generated
compounds share a certain degree of similarities with the training data, the machine learning
models can effectively differentiate these potent compounds from the inactive ones.

3.2.2. Molecular Novelties.—The molecular novelties are assessed by measuring their
similarity to selected reference compounds. The generator can effectively manage the level
of novelty by adjusting the number of references or assigning weights to each reference
compound. Higher molecular novelties indicate a broader coverage of the chemical space
by the generated compounds, as they are different from the reference compounds or the
available molecules in the training data. A wide range of chemical space, encompassing
high-binding-affinity compounds, is advantageous for drug design. This enables a greater
diversity in various druggable properties, such as Log P, Log S, Cano-2, and others. Having
more drug candidates with different druggable properties provides a wider range of options
for treating patients with varying health conditions. However, it is important to control the
novelties of the generated compounds. Higher molecular novelties imply low similarities
with the reference compounds or the machine learning training data. To ensure accurate
binding affinity predictions, a certain degree of similarity with the available training data is
still necessary.

3.2.3. Importance of Selecting Appropriate References.—When generating novel
molecules, we appropriately choose reference compounds from the training data that

exhibit the desired potency on specific receptors. Our experiments have demonstrated that
appropriate references are beneficial in generating a greater number of candidates with
desired BAs. However, it is essential for a promising drug candidate to also meet other
crucial druglike properties, particularly the ADMET criteria.

By utilizing reference compounds that demonstrate satisfactory ADMET properties, our
generator can generate a substantial pool of compounds that exhibit the desired ADMET
characteristics. This is exemplified in the analogue generations for naltrexone and naloxone.
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Conversely, when the reference compounds do not meet the essential ADMET criteria, even
millions of compounds are generated, they can hardly pass the ADMET screening process.
This observation is illustrated in the demonstration example depicted in Figure 4. In this
particular example, the majority of the generated compounds do not successfully pass the
FDAMDD screening due to the utilization of reference compounds with a low FDAMDD
profile.

3.2.4. Agonist/Antagonist for Opioid Receptors.—Approved medications, as
mentioned earlier, function as agonists or antagonists on the opioid receptors, playing
crucial roles in the treatment of OUD. Methadone and buprenorphine serve as examples of
agonist medications that target MOR. Methadone, a long-acting MOR agonist, effectively
alleviates withdrawal symptoms and cravings.? On the other hand, buprenorphine acts

as a partial agonist of MOR, producing milder effects compared to full agonists.®
Antagonist medications, in contrast, block opioid receptors, thereby preventing the binding
of opioids and reducing their reinforcing effects. Buprenorphine, for instance, acts as a
KOR antagonist, offering mood improvements for individuals with OUD.>* Naltrexone and
naloxone are antagonists that target all three critical opioid receptors. In particular, naloxone
exhibits the highest affinity for MOR and is used to counteract the respiratory and mental
depression effects of opioid overdose.””

Recent advancements in deep generative research have introduced innovative approaches for
the de novo design of improved opioid antagonists,®? as well as the design for selective
KOR antagonists,%! recognizing the crucial role of antagonists in OUD treatment. Besides,
machine learning models have been proposed to predict the agonist or antagonist activities
of small molecules on MOR, KOR, and DOR.92:63 These models offer the potential to
prioritize compounds from extensive libraries for subsequent experimental testing.

While it is essential to investigate the agonist/antagonist properties of our generated
druglike compound for OUD treatment, including initial machine learning predictions or
experimental validations, this study does not encompass that scope. However, we plan to
conduct such investigations in the future, either through collaborations with experimentalists
or by constructing reliable machine learning predictive models.

4. CONCLUSIONS

We have developed a highly effective deep generative model for generating novel molecules
that can be effective on multiple targets, including MOR, KOR, and DOR. The molecular
generator is designed by integrating a stochastic differential equation (SDE)-based diffusion
approach into the latent space of a pretrained autoencoder model. Through careful selection
of appropriate reference compounds and adherence to a series of novelty criteria, a
substantial number of novel compounds with desirable binding affinities for MOR, KOR,
and DOR, as well as other druglike properties, can be generated.

To predict the binding affinities, we employ advanced machine learning models that
integrate autoencoder embeddings, transformer embeddings, and topological Laplacian
fingerprints with machine learning algorithms. The incorporation of these diverse molecular
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representations enhances the accuracy of the binding affinity predictions. The selection of
reference compounds is crucial in two aspects. First, the number of reference compounds
influences the novelty of the generated molecules. Second, the use of reference compounds
with desired ADMET properties increases the likelihood of generating compounds that
satisfy the necessary ADMET requirements.

Extensive experiments have demonstrated the effectiveness of our deep generative models
in designing molecules that exhibit structural similarities to known opioid molecules

or alternative compounds with therapeutic potential. We utilized our generative network
complex to generate a diverse set of druglike molecules, but further experimental studies

are needed to evaluate their pharmacological effectiveness for OUD treatment. Our machine
learning platform represents a valuable tool in addressing the urgent need for medications in
the treatment of OUD. Additionally, our platform has the potential to facilitate the design of
molecules that require specific selectivity on multiple targets, making it a promising tool for

medication development in various diseases.
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Figure 1.
Schematic illustration of our multitarget stochastic generative network complex, used to

design novel compounds for the treatment of OUD. Three different paths, i.e., model
training, molecular generation, and lead optimization are colored in pink, green, and
purple, respectively. The pink path represents the model training process of the pretrained
autoencoder network. The blue path signifies the compound generation process: the
SMILES string of a given compound undergoes encoding in the encoding network, and
its latent space representation is then fed into the stochastic molecular generator. The
generated compounds are subsequently processed through the decoding—encoding network.
The resulting molecules that have stable SMILESs are evaluated for their binding affinity
(BA) and ADMET properties. Molecules exhibiting desired BA and ADMET properties
are regarded as nearly optimal leads. In cases where the properties are not satisfactory,
molecular optimization (the purple path) is performed to generate more potential druglike
compounds.
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Figure 2.

Similarity Score

Similarity Score

Analysis of binding affinity (BA) distribution of the training data and the generated

compounds, as well as the analysis of similarity score distributions. (a) BA distributions of
the inhibitors in the four training datasets. The unit for BA is kcal/mol. (b) BA distributions
of the generated molecules predicted by AE-BPs. (¢) Distributions of similarity scores

between reference compounds and corresponding source inhibitor dataset. (d) Distributions

of similarity scores between generated compounds and inhibitor datasets for the three opioid

receptors. (e) Distributions of similarity scores between generated compounds and three

reference compounds.
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Similarity Score

BA distribution of the generated compounds, as well as the similarity score distributions
regarding two reference compounds, training data, and generated compounds. (a) BA
distributions of the generated molecules predicted by AE-BPs. The unit for BA is kcal/

mol. (b) Distributions of similarity scores between reference compounds and corresponding
source inhibitor dataset. (c) Distributions of similarity scores between generated compounds
and three inhibitor datasets. (d) Distributions of similarity scores between generated

compounds and three reference compounds.
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Figure 4.

Identifying nearly optimal compounds. (a) ADMET screening of the multitarget molecules.
(b) Three nearly optimal compounds that satisfy the BA constraint, Log P, SAS, and
ADMET properties. Their BAs and similarity scores with the two references are presented.
(c) Additional ADMET prediction from ADMETIab2. More abbreviations: MW (molecular
weight), log P (log of octanol/water partition coefficient), log S (log of the aqueous
solubility), log D (log P at physiological pH 7.4), nHA (number of hydrogen bond
acceptors), nHD (number of hydrogen bond donors), TPSA (topological polar surface area),
nRot (number of rotatable bonds), nRing (number of rings), MaxRing (number of atoms in
the biggest ring), nHet (number of heteroatoms), fChar (formal charge), and nRig (number
of rigid bonds). The optimal ranges of these indexes are shown in Table S4 in the Supporting
Information.
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Figure 5.
Results of Log P optimization for one nearly optimal compound. The y-axis indicates the

magnitude of the BA and Log P value. The BA values are all negative and the Log P values
are all positive. (a) Statistics of the predicted BA values on the four critical targets and the
predicted log P values of the induced 22 compounds. (b) Original generated compound from
our GNC that is considered to be a nearly optimal compound. (c—h) Six of the 22 derived
compounds that have high BAs and improved Log P values.
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Figure 6.
Results of Log P optimization for one nearly optimal compound. (a) Statistics of the

predicted BA values on the four critical targets and the predicted log P values of the
derived 22 compounds. The y-axis indicates the magnitude of the BA and Log P value. The
BA values are all negative, and the Log P values are all positive. (b) Original generated
compound from our GNC that is considered to be a nearly optimal compound. (c-h) Six of
the 22 derived compounds that have high BAs and improved Log P values.
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Two nearly optimal compounds derived from the Log P optimization based on one nearly

optimal compound. (a, b) Two-dimensional (2D) structures of the two nearly optimal

compounds. The predicted BA values as well as their predicted Log P and SAS are shown.
(c, d) ADMET predictions of the two compounds according to ADMET]Iab server.

J Med Chem. Author manuscript; available in PMC 2024 April 23.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Feng et al.

(a) Optimized compound 1

]

Gy )

BA-MOR: -10.55 kcal/mol

BA-KOR: -11.92 kcal/mol
N BA-DOR: -9.66 kcal/mol

BA-hERG: -7.11 kcal/mol

HO

(c) Docking on KOR (6B73) f))';”““g

al230(A)

Aw\ll:(i% ﬁ:% §JUJ/
o

t142(A)
N2

Trp287(A)

Figure 8.
(a) 2D structure of the optimized compound with the predicted BA values on the four critical

targets. (b—d) Compound’s docking poses and interactions with the three receptors: MOR
(PDB ID: 5C1M), KOR (PDB ID: 6B73), and DOR (PDB ID: 6BT3).
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Figure 9.
(a) 2D structure of buprenorphine with the predicted BA values on the four critical targets.

(b) ADMET predictions of buprenorphine according to ADMETlIab server. (c—g) Several
nearly optimal buprenorphine analogues that could be effective on MOR, KOR, and DOR.
The predicted BA values on the three receptors and hERG, the similarity scores to reference
compounds, as well as their predicted Log P and SAS values, were provided.
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Figure 10.
(a) 2D structure of one nearly optimal buprenorphine analogue in Figure 9e. (b—d) Molecular

docking poses and interactions of the buprenorphine analogue with three opioid receptors:
MOR (PDB ID: 5C1M), KOR (PDB ID: 6B73), and DOR (PDB ID: 6BT3).

J Med Chem. Author manuscript; available in PMC 2024 April 23.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Feng et al.

Page 40

Upper Limit ~ Lower Limit €& Compound Properties

@ 0 (b) .
LogP nRig
e
O Naltrexone : LogS fChar
BA-MOR: -12.55
0 BA-KOR: -12.11
BA-DOR: -10.48
e LogP=226 LogD nHet
nHA MaxRing
(C) HO '
BA-MOR: -11.25 aHD nRing
BA-KOR: -11.07 TPSA nRot
HC BA-DOR: -10.92 ”
on BA-hERG: -7.31 (e) O BA-MOR: -10.86
OH N Sim-MOR-ref: 0.61 o BA-KOR:-10.24
Sim-DOR-ref: 0.48 %, BA-DOR: -10.53
LogP=29 BA-hERG: -7.51
SAS =495 Sim-MOR-ref: 0.69
Sim-DOR-ref: 0.38
O O LogP=24
SAS =4.04
(d) OH
BA-MOR: -11.38 (f) & )
BA-KOR: -10.51 BA-MOR: -10.48
BA-DOR: -10.02 oM BA-KOR: -10.71
o BA-hERG: -7.55 %\ BA-DOR: -10.52
Sim-MOR-ref: 0.76 : BA-hERG: -7.5
o Sim-DOR-ref: 0.41 s P Sim-MOR-ref: 0.76
Log P=2.56 vo Sim-DOR-ref: 0.42
A SAS=5.18 Log P =2.98
SAS=534

Figure 11.
(a) 2D structure of naltrexone. (b) ADMET predictions of naltrexone according to

ADMET]lab server. (c—f) Several nearly optimal naltrexone analogues that could be effective
on the multiple receptors. The predicted BA values on the critical targets, the similarity
scores to reference compounds, as well as their predicted Log P and SAS values were
provided.
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(a) 2D structure of naloxone. (b) ADMET predictions of naloxone according to ADMETIab
server. (c—g) Several nearly optimal naloxone analogues that could be effective on multiple

receptors. The predicted BA values on the critical targets, the similarity scores to reference

compounds, as well as their predicted Log P and SAS values were provided.
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Table 1.

Optimal Ranges of Six Selected ADMET Properties and Synthesizability (SAS) Used to Screen Nearly
Optimal Compounds

property optimal range

FDAMDD  excellent: 0-0.3; medium: 0.3-0.7; poor: 0.7-1.0

Fq, excellent: 0-0.3; medium: 0.3-0.7; poor: 0.7-1.0

LogP the proper range: 0-3 log mol/L

Log S the proper range: —4—0.5 log mol/L.

Tin excellent: 0-0.3; medium: 0.3-0.7; poor: 0.7-1.0

Caco-2 the proper range: >-5.15

SAS the proper range: <6
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