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ABSTRACT: Single-cell RNA sequencing (scRNA-seq) is widely used to reveal
heterogeneity in cells, which has given us insights into cell−cell communication, cell
di�erentiation, and di�erential gene expression. However, analyzing scRNA-seq data
is a challenge due to sparsity and the large number of genes involved. Therefore,
dimensionality reduction and feature selection are important for removing spurious
signals and enhancing the downstream analysis. We present Correlated Clustering
and Projection (CCP), a new data-domain dimensionality reduction method, for the
first time. CCP projects each cluster of similar genes into a supergene defined as the
accumulated pairwise nonlinear gene−gene correlations among all cells. Using 14
benchmark data sets, we demonstrate that CCP has significant advantages over
classical principal component analysis (PCA) for clustering and/or classification
problems with intrinsically high dimensionality. In addition, we introduce the
Residue-Similarity index (RSI) as a novel metric for clustering and classification and the R-S plot as a new visualization tool. We
show that the RSI correlates with accuracy without requiring the knowledge of the true labels. The R-S plot provides a unique
alternative to the uniform manifold approximation and projection (UMAP) and t-distributed stochastic neighbor embedding (t-
SNE) for data with a large number of cell types.

1. INTRODUCTION

Single cell RNA sequencing (scRNA-seq) reveals hetero-
geneity within cell types, leading to an understanding of cell−
cell communication, cell di�erentiation, and di�erential gene
expression. With current technology and protocols, more than
20,000 genes can be identified. Numerous data analysis
pipelines have been developed to help analyze such complex
data.1−6 Despite improvements in technology that allow for a
more accurate reading of genes, the analysis of gene readings
remains challenging. Causes of this challenge include dropout
event-induced zero expression counts, low sequencing depth
leading to low reading counts, general noise, and the high
dimensionality of the original data.7 As a result, dimensionality
reduction and feature selection are important for downstream
analysis such as removing spurious signals.
Numerous dimensionality reduction and feature selection

methods have been proposed for the scRNA-seq data. One
such method is ScRNA by non-negative and low-rank
representation (SinLRR), which assumes that scRNA-seq has
an inherently low rank and attempts to find the smallest rank
matrix that captures the original data.8 Numerous non-negative
matrix factorization (NMF) methods with di�erent constraints
have also been developed, where the low-dimensional
representation of scRNA-seq is a linear combination of the
original data and acts as meta-genes.9−14 Single-cell inter-
pretation via multikernel learning (SIMLR) utilizes multiple
kernels to learn a cell−cell similarity metric that generalizes to
di�erent biological experiments and experimental proce-

dures.15 In addition, more traditional approaches, such as
principal component analysis (PCA)16 and its derivatives,17,18

and visualization techniques, such as uniform manifold
approximation and projection (UMAP)19 and t-distributed
stochastic neighbor embedding (t-SNE),20 have been heavily
utilized for scRNA-seq data. Furthermore, deep learning has
also been used for dimensionality reduction.21−26

Although numerous techniques have been developed, PCA
is the most commonly used method for downstream analysis of
scRNA-seq data.27 PCA is a linear dimensionality reduction
method, where its goal is to compute the principal components
as new features that maximize the variance. The first principal
component is a feature that maximizes the variance of the
projected data, and each ith principal component is orthogonal
to the i − 1 principal component that maximizes the variance
of the projected data.28 Single-cell consensus clustering
(SC3)29 utilizes PCA and the eigenvectors of the graph
Laplacian induced by Euclidean, Pearson, and Spearman
distances and performs a consensus on k-means results
obtained from di�erent dimensions using the CSPA algorithm
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to obtain the final cell clustering result. CellChat30 utilizes the
low-dimensional representation of scRNA-seq alongside
known interactions between ligands, receptors, and cofactors
to predict cell−cell communication, and a user can perform
dimensionality reduction prior to utilizing CellChat. DEEPsc31

is a deep learning method that predicts the probability of a cell
belonging to a reference atlas by projecting scRNA-seq to the
PCA space of the reference atlas, which can then be used to
predict cell types. The popular package Seurat32 utilizes
supervised PCA (SPCA) which finds the projection that
captures the weighted nearest neighbor graph of the reference
data set for its downstream analysis. In addition to cell
clustering, semisupervised and supervised learning methods
have been used to classify cell types according to their
reference cells by projecting unknown cells to the PCA space
of the reference cells.33,34

PCA has many advantages, such as computational e@ciency
and ease in projecting new data into the principal components.
However, PCA lacks concrete interpretability and loses the
non-negativity of the read-count data. In contrast, the
components of NMF are all positive and can be considered
metagenes, where metagenes are linear combinations of the
original genes. Nonlinear dimensionality reduction methods,
such as UMAP, t-SNE, and Isomap, have great performance for
low dimensionality that can capture the local structure of the
data, but they also lack interpretability due to matrix
diagonalization. Moreover, both PCA and traditional nonlinear
reduction methods are unstable when the data are reduced to
higher dimensions, which is unfavorable for machine learning
and deep learning tasks that typically require a large number of
features.
We propose a computationally e@cient and interpretable

dimensionality reduction algorithm for scRNA-seq data called
correlated clustering and projection (CCP).35 CCP begins by
clustering genes based on their similarity and then uses the
flexibility rigidity index (FRI)36 to nonlinearly project each
gene cluster into a supergene, which is a measure of
accumulated gene−gene correlations among cells. Unlike
traditional nonlinear reduction methods, CCP bypasses matrix
diagonalization, allowing users to select the number of
supergenes, which is beneficial for machine learning and
deep learning tasks. Furthermore, similar to NMF’s meta-
genes, supergenes are all nonnegative and highly interpretable.
We validated CCP’s performance on 14 scRNA-seq data sets
by varying the number of supergenes and conducting support
vector machine classification and k-means clustering.
Additionally, we have validated the performance of a novel

evaluation metric for dimensionality reduction, called the
Residue-Similarity index (RSI).35 The RSI evaluates the
intracluster similarity of cell types or clusters and compares
it to their intercluster residual score. As the RSI only requires
one set of labels, which can be computed from k-means, it can
measure the performance of dimensionality reduction for both
clustering and classification tasks, without requiring knowledge
of the true labels. Furthermore, by analysis of the relationship
between samples, the RSI allows for a deeper understanding of
the quality of the dimensionality reduction algorithm. We have
verified the e�ectiveness of the RSI alongside CCP on both
clustering and classification tasks and introduced the R-S plot
as a novel visualization technique for data containing multiple
cell types.

2. METHOD

2.1. Correlated Clustering and Projection (CCP). The
CCP procedure consists of two steps: gene partitioning and

gene projection. Let M I× be the log-transformed
scRNA-seq data, where M is the number of samples (cells),
and I is the number of genes.

2.1.1. Feature Partitioning. The original CCP method used
a modified k-medoids algorithm for gene clustering; however,
we replaced it with a modified k-means algorithm for a more
stable clustering result. The details of the modified k-means
clustering method can be found in Section S1.1 of the
Supporting materials.

Let z z z, ..., , ...,
i I1

= { } be the rows of or the gene

vector, and z
i M . CCP implements k-means clustering

described in S1.1, but the clustering is done on the genes.
Hence, we get clusters Z1, ..., ZN, , N ≪ I.
Let S = {1, ..., I} be the enumeration of the original genes.

Then, we can partition S = {S1, ..., SN}, using the k-means
clustering results, by setting Sn = {i|zi ∈ Zn}, i.e., Sn is the
number of genes in the nth cluster.

2.1.2. Feature Projection. With the gene partitioning, we

define z
m

S S
n n

as the Sn genes in the mth cell. These genes
are projected into a supergene xm

n using the flexibility rigidity

index (FRI). Denote z zi
S

j
S

n n

as some metric between cell i

and cell j for the cluster of Sn genes, and the gene−gene
correlation between the two cells are defined by

C z z( ; , , )ij
S

i
S

j
S S

n n n n

= , where Φ is the correlation

kernel, and ,

S
n

and κ > 0 are parameters. Commonly used
metrics include the Euclidean, Manhattan, and Wasserstein
distances. In addition, the correlation kernels satisfy the
following conditions
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Commonly used kernel functions are the radial basis functions.
In particular, we use the generalized exponential function
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where r
c

S
n

is the cuto� distance, and S
n

is the scale, which are
defined by the data. κ is the power, and τ is a scale parameter.

Pairwise gene−gene correlation matrix C CS
ij
Sn n

= { } reveals

cell−cell interactions and can also be viewed mathematically as

the weight of the edges in a weighted graph, given the cuto� r
c

S
n

. The cuto� r
c

S
n

is taken as the 2-standard deviations of the

pairwise distances. S
n

can then be viewed as the algebraic
connectivity, which is defined as the average minimal distance
between the cluster of genes
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Using the correlation function, we can project Sn genes into a
supergene using the FRI for the ith sample
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i

n

m

M

i

S
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n n n

=

=
(5)

By performing the projection of all gene clusters, we get the
lower dimensional supergene representation for the ith sample

(cell) x xx ( , ..., )
i i i

N T1
= .

2.2. Evaluation Metric. In this section, we introduce the
Residue Similarity Index (RSI) and its scores. Details on the
Adjusted Rand Index (ARI), Normalized Mutual Information
(NMI), Balanced Accuracy (BA), and Silhouette score can be
found in Section S1.2 of the Supporting materials.
2.2.1. Residue-Similarity Index and Scores. We present the

residue score (R score), similarity score (S score), and R-S
index (RSI).35 Let the data be represented as

y y m Mx x( , ) , , 1m m m
N

m L{ | }, where xm is the

mth gene vector, ym is the label or the cluster assignment, and L
is the number of classes or clusters. Assume that there is a
partition of data according to the labels or cluster
assignments. That is,C y lxl m m

= { | = } and .

The R score is defined as the interclass sum of distance. For
a given data with assignment ym = l, the R-score is defined as

R R
R

x x x( )
1

m m m j

x
max

j l

= =

(6)

where R Rmax
m

x x

max
,

m m

= . The similarity (S) score is defined

as the intraclass average of distance, defined as
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where d x xmax i j
x x

max
,i j

= , and
l

| | is the number of data in

class l. Both Rm and Sm are bounded by 0 and 1, and the larger

the better for a given data set.
The class residue index (CRI) and the class similarity index

(CSI) can then be defined as the average of the R-score and S-

score of each of the classes. That is RCRI
l m m

1

l

=
| |

, and

SCSI
l m m

1

l

=
| |

. Then, the residue index (RI) and the

similarity index (SI) can be defined as RI CRI
L l

1
= and

SI CSI
L l

1
= , respectively.

Using the RI and SI, the residue similarity disparity can be

computed by taking RSD = RI − SI, and the residue-similarity

index (RSI) can be computed as RSI = 1 − |RI − SI|.

Table 1. Accession ID, Source Organism, and the Counts for Samples, Genes, Cell Types, and Normalization for 14 Data Sets

Accession ID Reference Organism Samples Genes Cell types Normalization

GSE45719 Deng40 Mouse 300 22431 8 RPKM

GSE59114 Kowalczyk41 Mouse 1428 8422 6 TPM

GSE67835 Darmanis42 Human 420 22084 8 CPM

GSE75748 cell Chu43 Human 1018 19097 7 TPM

GSE75748 time Chu43 Human 758 19189 6 TPM

GSE82187 Gokce44 Mouse 705 18840 10 TPM

GSE84133 h1 Baron45 Human 1937 20125 14 TPM

GSE84133 h2 Baron45 Human 1724 20125 14 TPM

GSE84133 h3 Baron45 Human 3605 20125 14 TPM

GSE84133 h4 Baron45 Human 1308 20125 14 TPM

GSE84133 m1 Baron45 Mouse 822 14878 13 TPM

GSE84133 m2 Baron45 Mouse 1064 14878 13 TPM

GSE89232 Breton46 Human 957 20689 4 TPM

GSE94820 Villani47 Human 1140 26593 5 TPM

Figure 1. ARI and NMI of the clustering results of CCP and PCA on GSE67835 and GSE75748 time and GSE59114 data. The red and blue lines
correspond to CCP and PCA, respectively. A total of 20 random initializations were used to test the reduction, and for each reduction, a total of 30
random initializations were used to obtain the clustering results from k-means clustering. The averages of the ARI and NMI were obtained. For
CCP, all the tests utilize τ = 6 and κ = 2 for the exponential kernel.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00674
J. Chem. Inf. Model. 2024, 64, 2829−2838

2831

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00674/suppl_file/ci3c00674_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3. RESULTS

CCP was benchmarked against PCA on 14 data sets, and the
data set details can be found in Table 1. The data was
normalized using either reads per kilobase of transcript per
million (RPKM), transcript per million (TPM), or counts per
million (CPM). For each data set, CCP was used to obtain the
number of supergenes as N = 50, 100, 150, 200, 250, and 300.
The parameters κ and τ of the exponential kernel were
searched over κ = 1, 2 and τ = 1, 2, ..., 6 and set to τ = 6 and κ

= 2 for the exponential kernel. To test the reduction, 20
random seeds were used for CCP and PCA, and for each
reduction, 30 random initializations of k-means were used to
obtain cluster labels. After the cluster labels were obtained, the
ARI and NMI were computed by comparing the results to the
labeled cell types, and the averages were visualized. For each
figure, the red and blue lines represent CCP and PCA,
respectively, and the star and dotted markers indicate the ARI
and NMI, respectively.

3.1. CCP Benchmark. Figure 1 shows the performance of
CCP and PCA on three data sets, GSE67835, GSE75748 time,
and GSE59114 data. For GSE67835, CCP outperforms PCA
in all of the dimensions we have tested. For GSE75748 time,
CCP outperforms PCA for 50 supergenes and above.
GSE75748 time shows an increase in performance as the
number of gene dimensions increased. PCA exhibits instability
as N increases, which is noticeable from their decrease in
performance from N = 50 to 150 for both data sets. CCP does
not perform well on GSE59114 because both ARI and NMI
are less than 0.3 for all the dimensions we have tested. CCP’s
performance may be poor due to the low intrinsic
dimensionality of GSE59114. In other words, the number of
gene clusters is inherently small, leading to redundant clusters.
GSE59114, in particular, only has 8,422 genes, whereas other
data have over 15,000 genes.
In order to verify CCP’s performance, the residue similarity

index (RSI) was calculated for the k-means clustering result of
the gene partitioning in CCP. Figure 2 shows the RSI of the k-
means clustering on the genes at various numbers of cell
clusters (k). The top row shows the clustering result for
GSE59114, which had poor CCP performance, and the bottom
row shows the clustering result for GSE67825, which had good
CCP performance. For each number of clusters, 10 random
initializations were used for the k-means clustering, and the
averages of the RI, SI, and RSI were obtained. The red, blue,
and green lines correspond to the RI, SI, and RSI, respectively.
The RSI can be used to check the quality of the clustering,
where the peak in the RSI suggests the optimal number of
clusters and, in the case of CCP, the intrinsic dimensionality of
the data. The right column shows the 2D visualization of the
genes using t-SNE. The samples were colored according to
their cluster labels. The t-SNE visualization of GSE59114
shows the k-means clustering result when k = 8 was selected.
The t-SNE visualization of GSE67835 shows the k-means
clustering result when k = 64 was selected. Seven of the 64
clusters were colored, and the points colored in green are the
rest of the genes.
Notice that in GSE59114, there is a noticeable peak in the

RSI score at k = 8 clusters, whereas in GSE67835, the peak is
flat and occurs at about k = 32−64 clusters. This suggests that
the intrinsic dimensionality is about 8 for GSE59114, which is
unfavorable for CCP. On the other hand, the intrinsic
dimension of GSE67835 is much higher, which is more

suitable for CCP. Notice that the clusters have distinct
boundaries, supporting the relatively low dimensionality of the
data. On the other hand, the GSE67835 data are not well-
clustered even at k = 64. Notice that the orange and blue genes
have some outliers, and the purple genes are not well-clustered.
This suggests that the number of optimal gene clusters is
larger, which suggests high gene dimensionality and favors
CCP.

3.2. Residue-Similarity Index Comparison. The resi-
due-similarity index (RSI) has been shown to correlate with
classification accuracy in ref 35. In this section, we use the RSI
for classification and clustering on the 14 data sets from Table
1. We use CCP to process each data set with the same
parameters as the previous section with 20 random
initializations. For classification, we use 5-fold cross-validation
with 10 random seeds and the support vector machine to
predict cell types. We used balanced accuracy (BA) to measure
the performance of the classification. Then, using the same 5-
fold cross-validation, we calculate the RSI, where we obtain the
RI, SI, and RSI from the test set, similar to ref 35. For
clustering, we compute the RSI for PCA and CCP using the k-
means clustering labels and the true labels. Additionally, using
the k-means clustering labels, we compute the Silhouette score
to compare the results with the RSI. Full details of the
benchmark procedure can be found in S2.1 of the Supporting
Materials.
In general, we have found no correlation between the

Silhouette scores and RSI for clustering results. Additionally,
we have found that BA and the RSI correlate in classification
results.
We found that the RSI correlates with the classification

accuracy in many of our tests. Figure 3 shows the RSI for

Figure 2. RI, SI, and RSI of the gene clustering of GSE59114 and
GSE67835. k-means clustering was performed with k = 2, 4, 8, 16, 32,
64, and 128 gene clusters. For each number of clusters, 10 random
initializations were utilized, and the averages of the RI, SI, and RSI
were obtained. The red, blue, and green lines correspond to the RI, SI,
and RSI, respectively. We use t-SNE to visualize the genes in 2D. For
GSE59114, k = 8 clusters were obtained, and the genes were colored
according to their cluster assignment. For GSE67835, k = 64 cell types
were obtained. Seven random gene clusters were colored, and the rest
of the clusters were colored in green.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00674
J. Chem. Inf. Model. 2024, 64, 2829−2838

2832

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00674/suppl_file/ci3c00674_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00674/suppl_file/ci3c00674_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


classification and clustering problems for GSE67835,
GSE75748 time, and GSE82187 data. CCP was used to
reduce the original data using τ = 6 and κ = 2 for the
exponential kernel. The top row corresponds to classification
results, and the bottom row corresponds to clustering results.
Notice that for classification results, all three data sets show a
correlation between BA and the RSI. The RSI on classification
results for GSE67835 shows a plateau at about 150 supergenes,
which corresponds to the plateau of the BA. This suggests that
the optimal dimension is about 150. The RSI on classification
results for GSE75748 shows a plateau at about 200 supergenes,
even though BA plateaus at about 150 supergenes. Even
though the accuracy plateaued earlier, this suggests that the
optimal dimension is 200 gene clusters. In addition, since
GSE75748 time observes cell di�erentiation at di�erent times,
it is possible that some cells are at di�erent stages in their cell
cycles, as suggested in the literature.43 This suggests that there
are many intermediate stages in the cell di�erentiation. The
RSI on classification results on GSE82187 shows a small
decrease as the number of supergenes increases. This suggests
that the optimal dimension is smaller than those of the
GSE67835 and GSE75748 time. Lastly, the RSI decreases for
all three data sets when PCA is utilized, which corresponds to
the decrease in BA.
For the clustering results, the RSI using the k-means labels

and the true cell types are similar. Even though the ARI and
NMI of PCA decrease as the number of gene clusters increases,
the RSI remains consistent. This suggests that PCA cannot
di�erentiate clusters at higher dimensions. CCP, on the other
hand, shows a correlation with both of the RSI scores.
Additional examples of utilizing the RSI on classification and

clustering problems can be found in Section S2.2 of the
Supporting materials.
Figure 4 shows the overall clustering performance of CCP

and PCA. The bars show the mean ARI and NMI values across
the di�erent numbers of components. Notice that for both ARI
and NMI, CCP significantly outperforms PCA.

Figure 5 shows the overall classification performance of CCP
and PCA. The bars show the mean BAs across di�erent
numbers of dimensions. Notice that for the mean BA, CCP
significantly outperforms PCA.

4. DISCUSSION

4.1. CCP. Like other dimensionality reduction algorithms,
CCP has its advantages and disadvantages. CCP nonlinearly
projects each cluster of similar genes into a supergene.
Supergenes are highly interpretable: each supergene represents
a measure of a cluster of genes’ accumulated pairwise nonlinear
correlations with the same cluster of genes in all other cells for
a given cell. Similar to NMF, supergenes are non-negative,

Figure 3. Comparison of the RSI in classification and clustering problems for GSE67835, GSE75748 time, and GSE82187 data at reduced
dimensions N = 50, 100, 150, 200, 250, and 300. CCP was used to reduce the original data dimension using τ = 6 and κ = 2 for the exponential
kernel. The top and bottom rows correspond to the classification and clustering results, respectively. For classification, a support vector machine
was used. True labels were used to compute the RSI for the 5-fold cross-validation. For clustering, the RSI were computed using the cluster labels
from k-means clustering and the true labels.

Figure 4. Comparison of CCP and PCA clustering on GSE67835,
GSE75748 time, and GSE82187 data. CCP was used to reduce the
original data dimension using τ = 6 and κ = 2 for the exponential
kernel. The blue, orange, green, and red bars correspond to mean
CCP ARI, mean PCA ARI, mean CCP NMI, and mean PCA NMI,
respectively. Here, the average was taken over di�erent dimensions.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00674
J. Chem. Inf. Model. 2024, 64, 2829−2838

2833

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00674/suppl_file/ci3c00674_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00674?fig=fig4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


which is important for downstream analysis such as di�erential
gene expression analysis.
Since CCP is a data-domain method, it bypasses matrix

diagonalization. One limitation of many dimensionality
reduction algorithms is their dependence on matrix diagonal-
ization. In scRNA-seq data, the number of genes is typically
larger than 5,000, which gives rise to the “curse of
dimensionality”. When the number of features is large, every
sample may appear to be equidistant from one another, which
makes many machine learning algorithms unable to find
meaningful clusters in the data. CCP, on the other hand,
partitions the genes into clusters and computes the pairwise
gene−gene correlations across all cells, which avoids the curse
of dimensionality.
Even though CCP has shown success in many scRNA-seq

data sets, it does have limitations. CCP does not perform well
for data sets with a low intrinsic dimension. As shown in Figure
2, GSE59114 and GSE94228 have a low intrinsic dimension,
and as a result, their clustering results also su�ered.
In addition, many scRNA-seq data sets are sparse due to low

signal-to-noise ratio and dropout events. Therefore, CCP will
most likely benefit from data imputation.

4.2. RSI. The RSI is a useful tool for assessing the
performance of dimensionality reduction for both clustering
and classification problems. In the following section, we
compare the RSI to the traditional clustering metrics, ARI and
NMI, and also to the Silhouette score. Then, we discuss the
RSI and its connection with classification accuracy.

4.2.1. RSI for Clustering. Compared with the ARI and NMI,
which measure the similarity between two sets of labels, the
RSI evaluates the performance using only one set of labels. In
this study, the ARI and NMI were used to compare the true
labels with the clustering labels. However, in practice, such true
labels are not available. The RSI, on the other hand, can
evaluate the e�ectiveness of clustering without the need for
original labels. This is similar to the Silhouette score, which
measures the separations between clusters. However, when
there are multiple clusters, the Silhouette score becomes
di@cult to interpret because it measures whether a sample
belongs to its current cluster assignment or to the nearest
neighboring cluster. Therefore, it is often used to evaluate the

optimal number of clusters rather than evaluating di�erent
parameters while fixing the number of clusters. The RSI can
evaluate the e�ectiveness of di�erent parameters while fixing
the number of clusters.

4.2.2. RSI for Classification. Using the RSI for cell types, we
have shown that the RSI correlates with classification accuracy.
Additionally, the RI and SI indicate how well the clusters
separate from each other. The Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) is a metric
commonly used to evaluate classification e�ectiveness.
However, the AUC-ROC is a better metric for binary
classification problems, and its interpretation is more
challenging for multiclass problems. The RSI, on the other
hand, can handle problems with more than two cell types.
Lastly, the RSI uses the features and labels to compute the
scores; therefore, it can also demonstrate the e�ectiveness of
dimensionality reduction algorithms in conjunction with
classification problems.
The RSI can also be utilized for visualizing each class or

cluster, which we have called a residue-similarity (R-S) plot. In
order to showcase the R-S plot, we compare it with traditional
visualization techniques used in scRNA-seq data, namely, t-
SNE and UMAP. CCP was used to reduce the dimensionality.
The 5-fold cross-validation was used to divide the data into 5
parts, where 4 parts were used to train the support vector
machine classifier and 1 part was used to test the classifier.
Then, residue and similarity scores were computed for each
sample and plotted according to their true cell type. Samples
were then colored according to their predicted labels from the
support vector machine classifier. The x-axis and y-axis
correspond to residue and similarity scores, respectively.
Both residue and similarity scores range from 0 to 1, where
1 is the most optimal, and the top-right corner indicates well-
separated and clustered reduction. However, it is important to
note that having a balance of both scores is important, as
shown in Hozumi et al. (2022).35 For t-SNE and UMAP, the
original data were log-transformed, and genes with variance
less than 10−6 were removed prior to the reduction. Samples
were then plotted and colored according to their cell types.
Figure 6 shows a comparison between the R-S and 2D plots

of UMAP and t-SNE for the GSE75748 time data. CCP was
used to generate 200 supergenes with τ = 6 and κ = 2. For the
UMAP and t-SNE plots, the reduction was directly applied to
the log-transformed original data. In ref 43, Chu obtained
snapshots at di�erent times of embryonic stem (ES)
di�erentiation from pluripotency to definitive endoderm
(ED) over 4 days at 0, 12, 24, 36, 72, and 96 h. Noticeably,
cells recorded at 72 and 96 h are mixed in UMAP and t-SNE
plots and misclassified in the R-S plot. This finding is
consistent with ref 43, where cells from 72 and 96 h were
relatively homogeneous. In a biological sense, this may indicate
that cell di�erentiation had mostly completed by 72 h, such
that not much of the further process of cell di�erentiation was
observed at 96 h. In the t-SNE and UMAP plots, we can see a
pattern similar to that of the R-S plot. There are 2 subclusters
of the 12 h samples. Additionally, the 72 and 96 h samples
form one large cluster, which is consistent with the R-S plot’s
findings. Most notably, there is a large di�erence between the
ES cell at 0 h and ES cells at di�erent times in all visualizations,
and there is no misclassification of the 0 h state with cells from
72 and 96 h states, indicating that the cells have indeed
di�erentiated from the original pluripotent state.

Figure 5. Comparison of CCP and PCA classification on GSE67835,
GSE75748 time, and GSE82187 data. CCP was used to reduce the
original data dimension using τ = 6 and κ = 2 for the exponential
kernel. The blue and orange bars correspond to the mean BAs of CCP
and PCA, respectively. Here, the average was taken over di�erent
dimensions.
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Figure 7 shows a comparison between the R-S plot and 2D
plots of UMAP and t-SNE of the GSE75748 cell data. CCP
was used to reduce the dimension to 100 supergenes with τ = 6
and κ = 2. In ref 43, Chu obtained snapshots of lineage-specific
progenitor cells that di�erentiated from H1 human embryonic
stem (ES) cells. These di�erentiated cells include neuronal
progenitor cells (NPCs), endoderm derivative cells (DECs),
endothelial cells (ECs), trophoblast-like cells (TB), human
foreskin fibroblasts (HFFs), and undi�erentiated H1 and H9
human ES cells. Not surprisingly, all 3 visualizations show that
undi�erentiated ES cells H1 and H9 are clustered together,
indicating that these two ES cells are relatively homogeneous,
which agrees with Chu’s findings. In the R-S plot, we see that
all but 1 DEC sample are classified incorrectly, whereas in
UMAP and t-SNE plots, DEC samples do not form a distinct
cluster and have a super cluster forming with the H1, H9, and
DEC cluster. In addition, all 3 visualizations show 2 clusters of
NPC samples, but CCP is able to classify NPC samples
correctly. Notice that in the R-S plot there are a few
misclassifications of ECs and DECs, and in UMAP, these
two clusters are adjacent to one another. This is consistent

with a small number of misclassified EC and DEC groups
shown in the RS plot. Since ECs are derivatives of mesoderm,
it has been suggested by refs 37−39 that mesoderm and DECs
may have developed and di�erentiated from a common
progenitor pool.

5. CONCLUSION

CCP is a novel dimensionality reduction method that projects
each cluster of similar genes into a supergene defined as
accumulated pairwise nonlinear gene−gene correlations among
cells. We have shown that CCP is able to di�erentiate cell
types and also preserve the similarity along the trajectory of
cellular di�erentiation. In addition, since CCP works
exclusively in the data-domain, it does not rely on matrix
diagonalization, and its results are easily interpretable. It
significantly outperforms PCA for problems with intrinsically
high dimensionality.
We also show that the RSI is a novel metric for evaluating

the e�ectiveness of dimensionality reduction algorithms. Since
it correlates with accuracy but does not rely on knowing the
true labels of the data, it can be applied to improve both

Figure 6. R-S plot, CCP assisted t-SNE plot, and standard t-SNE plots of GSE75748 time data. CCP was used to reduce the scRNA-seq data to 200
supergenes using τ = 6 and κ = 2. The 5-fold cross-validation was used to split the data into 5 parts, where 4 parts were used for training and 1 part
was used for testing the support vector machine classifier. RS scores were computed for the testing set, and all 5 folds were visualized. Each section
corresponds to one of the 6 true cell types, and the sample’s color and marker correspond to the predicted label from the support vector machine
classifier. For t-SNE and UMAP, the data was log-transformed, and any genes with less than 10−6 variance were removed before applying the
reduction. Samples were colored according to their cell types.
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clustering and classification. In addition, the RSI can be used to
vary the number of clusters and obtain insight into the optimal
number of cell types. This information can be used to filter out
data where CCP may not perform well, because CCP works
best when the intrinsic dimensionality of the data, i.e., the
number of gene features, is relatively high. Lastly, the R-S plot
is introduced as a new visualization tool that works well for
problems with a large number of cell types.
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