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Machine learning study of the extended drug–target
interaction network informed by pain related
voltage-gated sodium channels
Long Chena, Jian Jianga,b, Bozheng Doua, Hongsong Fengb, Jie Liua, Yueying Zhua, Bengong Zhanga,
Tianshou Zhouc, Guo-Wei Weib,d,e,*

Abstract

Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of
effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of
new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal
excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to
treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein–protein interaction (PPI) networks
based on pain-related sodium channels and develop a corresponding drug–target interaction network to identify potential lead
compounds for painmanagement. To ensure reliablemachine learning predictions, we carefully select 111 inhibitor data sets from a
pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced
natural language processing (NLP)–based embeddings, specifically pretrained transformer and autoencoder representations.
Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug
candidates targeting Nav1.7 andNav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism,
excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an
innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced
side effects.

Keywords: Pain management, Voltage-gated sodium channels, Protein–protein interaction, Drug–target interaction, Machine
learning, Virtual drug screen, Repurposing, ADMET

1. Introduction

Pain is a complex phenomenonwith various categories, including
acute and chronic pain, nociceptive and neuropathic pain,
among others. It affects approximately 35%of the US population,
surpassing the morbidity rates of cancer and heart disease.49

There is an urgent demand for new pain medications.
Voltage-gated sodium channels (Nav channels or VGSCs) are

vital membrane proteins essential for generating and transmitting
action potentials in neurons and excitable cells. They facilitate the

rapid entry of sodium ions, leading to cell depolarization and the
initiation of action potentials. These channels regulate sodium ion
permeability and contribute to various intercellular functions
linked to diseases such as chronic pain and cardiac arrhythmia.
Notably, specific Nav channel subtypes (Nav1.3, Nav1.7, Nav1.8,
and Nav1.9) encoded by genes SCN3A, SCN9A, SCN10A, and
SCN11A, respectively, are highly expressed in the peripheral
nervous system, sympathetic ganglia, olfactory epithelium, and
dorsal root ganglion sensory neurons, making them promising
targets for pain therapeutics.13 Much attention has been paid to
Nav1.3,44,46 Nav1.7,4,12,18 Nav1.8,5,48 and Nav1.9,20,21,34,45 in
their connection to pain management.42 However, the specific
roles of these pain-related Nav channels in generating and
transmitting pain signals remain unclear.

Protein–protein interactions (PPIs) are crucial for various
biological processes, including DNA replication, signaling, and
metabolism. The String Database v11 (https://string-db.org/)
provides a comprehensive collection of protein–protein interac-
tions and can be used to construct PPI networks. By focusing on
major sodium channels involved in pain (Nav1.3, Nav1.7, Nav1.8,
and Nav1.9), medication treatments and side effects can be
analyzed. However, traditional testing methods are time con-
suming and resource intensive. To address this, artificial in-
telligence (AI), including machine learning (ML) techniques, can
be employed for large-scale predictions in this area.2

Recently, many advanced ML methods have been applied to
pain treatment and analysis.36,41,47,53 Currently, numerous in
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silico methods have been developed for virtual screening of
sodium channel inhibitors.1,2,6,17,22,29,30,35,57 From 2018, more
studies on VGSCs can be found in review articles.24,37,40,43

However, these studies lack consideration of drug–target in-
teraction networks, as well as comprehensive ADMET (absorp-
tion, distribution, metabolism, excretion, and toxicity) analysis.

Pain management is not limited to sodium channels and
related inhibitors. Opioids, also known as narcotics, have been
used for centuries in the treatment of pain. To deal with opioid use
disorder (OUD), advanced ML predictors were used to screen
and repurpose thousands of DrugBank compounds and evaluate
their ADMET properties.16 More sophisticated AI models were
also developed for drug addiction.58

In this study, we construct an extended drug–target interaction
(DTI) network induced by pain-related sodium channels, which
are analyzed by advanced ML models using natural language
processing (NLP) tools. We build PPI networks with more than
1000 targets using the String Database v11 and an associated
DTI network with 111 targets and more than 150,000 com-
pounds from the Chembl database (https://www.ebi.ac.uk/
chembl/). We employ transformer and autoencoder to develop
111 ML models for the screening and repurposing of these
compounds and FDA-approved drugs and existing medications.
Furthermore, we study ADMET and synthesizability to identify
lead compounds as shown in Figure 1. This investigation of the
extended DTI network offers an innovative approach to pain
therapeutic development.

2. Methods

2.1. Data sets

All inhibitor data sets were collected from the Chembl database
for all proteins in the present DTI network, which was informed by
4 investigated sodium channels or treatment targets (Nav1.3,
Nav1.7, Nav1.8, and Nav1.9, corresponding to encoded genes
SCN3A, SCN9A, SCN10A, and SCN11A, respectively). Because

the predictive results of machine learning–based models depend
on high quality and quantity of data, we set the minimal size of the
collected inhibitor data sets to be 250 samples and obtained a
total of 111 data sets, including SCN9A and SCN10A. The data
sets for SCN3A and SCN11Awere not included due to their small
data size. The labels for these data sets are binding affinities (BAs)
obtained using the following formulas: BA 5 1.3633 3 log10Ki

9

and Ki 5 IC50/2.
28 Ki refers to inhibition constant and also

represents the dissociation constant describing the binding
affinity between the inhibitor and the enzyme, whereas IC50

stands for inhibitory concentration 50%, that is, the concentration
of inhibitor required to reduce the biological activity of interest to
half of the uninhibited value. The drug–target binding affinity is
indicated by the dissociation constant Kd 5 [L][P]/[LP], where [L],
[P], and [LP] are the molar concentration of drug, target, and
drug–target complex, respectively. Particularly, the Gibbs free
energy (kcal/mol) can be derived by ∆G5 RTlnKd, where R and T

are the gas constant and temperature, respectively. ∆G 5

21.3633pKd can be obtained with room temperature T 5

298.15K.9 Here, pKd represents -log10Kd with Kd in the unit of
mol. Following the way that PDBbind databasemixes Kd and Ki in
their refined data sets,54 in present work, we calculate the binding
energy with the above BA calculation formula. In addition,
because hERG is a key target for side effects in virtual screening
of drug design, an inhibitor data set was also collected from the
Chembl database. All details of the data sets are provided in
Table S3 in the Supporting Information (available at http://links.
lww.com/PAIN/B940).

2.2. Molecular fingerprints

Molecular fingerprints represent the property profiles of a
molecule, typically in the form of vectors where each element
represents the presence, degree, or frequency of a specific
structural characteristic. These fingerprints can be used as
features in machine learning (ML) models. The original molecular

Figure 1. The flowchart of screening nearly optimal lead compounds for inhibiting pain-related voltage-gated sodium channels (VGSCs). (A) Protein–protein
interaction (PPI) networks of the 4 VGSCs involve more than 1000 proteins, including 4 treatment targets SCN3A, SCN9A, SCN10A, and SCN11A. Each of them
has a core and global PPI network. Further details of the PPI networks are provided in the Table S1 in the Supporting Information (available at: http://links.lww.com/
PAIN/B940). (B) The drug–target interaction (DTI) network involves 111 targets and 150,147 inhibitor compounds. Here, only 4 treatment targets (SCN3A, SCN9A,
SCN10A, and SCN11A) with several compounds are displayed for simplicity. The yellow dashed lines indicate the connections among 111 targets. (C) Predictive
models for side effect and repurposing evaluation, as well as ADMET screening. ADMET, absorption, distribution, metabolism, excretion, and toxicity.

Copyright © 2023 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.
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fingerprints for the inhibitors in the collected 111 data sets are 2D
simplified molecular-input line-entry system (SMILES) strings. In
this study, we used 2 types of latent-vector molecular fingerprints
in the ML models: bidirectional encoder transformer fingerprint
(BET-FP) and autoencoder fingerprint (AE-FP). These fingerprints
were generated from pretrained models based on natural
language processing (NLP) algorithms such as transformers
and sequence-to-sequence autoencoders.10,55 They are latent
embedding vectors with a length of 512, obtained by encoding
the 2D SMILES strings of the inhibitor compounds using the
pretrained models.

2.2.1. Sequence-to-sequence autoencoder fingerprint

Recently, Winter et al.55 proposed a data-driven unsupervised
learning model for extracting molecular information embedded in
the SMILES representation. Their approach involved using a
sequence-to-sequence autoencoder to translate one form of
molecular embedding to another by capturing the chemical
structure’s complete description in the latent space between the
encoder and decoder. This translation model was capable of
extracting physical and chemical information during the embed-
ding process, enabling the translation to a distinct molecular
representation with the same semantics but different syntax.
Notably, the translation model was trained on a large data set of
chemical structures and could be used to extract molecular
fingerprints for query compounds without the need for retraining
or labels.

Typically, the translation model consists of encoder and
decoder networks. The encoder network compresses the
essential information from the input SMILES, which is then fed
as input to the decoder network. Convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) were employed in
the decoder, with fully connected layers mapping the output of
the CNN or concatenated cell states of the RNN to intermediate
vector embeddings between the encoder and decoder networks.
Consequently, the decoder incorporates RNN networks with
latent vectors as input. To extract more physical and chemical
information from the latent vectors, the translation model was
extended based on a classification model that predicts molecular
properties using these vectors. The output of the RNN in the
decoder network represents the probability distributions of
various characters in the translated molecular embeddings.
During the training of the autoencoder model, the loss function
consists of the sum of cross-entropies between the predicted
probability distributions and the correct characters encoded in a
one-hot format, as well as the mean-squared errors of the
molecular property predictions made by the classification model.

In this study, the translation model was trained on approxi-
mately 72 million molecular compounds obtained from the ZINC
(https://zinc15.docking.org/) and PubChem databases (https://
pubchem.ncbi.nlm.nih.gov/). The compounds underwent pre-
processing, including filtering based on criteria such as molecular
weight, number of heavy atoms, partition coefficient, and more.
By training the translation model on this processed data set, the
resulting model generated embedding vectors that served as
molecular fingerprints.

2.2.2. Bidirectional transformer

Recently, Chen et al.10 developed a deep learning network that
was pretrained on millions of unlabeled molecules using a self-
supervised learning (SSL) platform to extract predictive molecular
fingerprints. The SSL approach employed the bidirectional

encoder transformer (BET) model, which relies on the attention
mechanism. Unlike constructing a complete encoder–decoder
framework, SSL used the decoder network solely for encoding
the molecular SMILES.

In the SSL pretraining platform, the input consisted of
molecular SMILES strings. Pairs of real SMILES and masked
SMILES were created by hiding a certain number of meaningful
symbols within the strings. The model was then trained using
these data-mask pairs in a supervised manner with the SSL
method. During the pretraining process, the masked symbols
were learned by studying the unprocessed symbols in the
SMILES, enhancing the understanding of the SMILES language.
Data masking was performed as a preprocessing step before
training the model with SSL. A total of 51 symbols were
considered as elements in the SMILES strings. The SMILES
were used as input to train the model, with a maximum length set
to 256. Two special symbols, “, s.” and “,/s .,” were added
to the beginning and end of the SMILES strings. If a string’s length
was less than 256, the “,pad.” symbol was used to complete
the SMILES string. For the data masking process, 15% of the
symbols in the SMILES were manipulated, with 80% being
masked, 10% remaining unchanged, and the remaining 10%
randomly changed.

The BET module plays a crucial role in achieving SSL from a
substantial number of SMILES strings. It uses the attention
mechanism in the transformer module to extract the impor-
tance of each symbol in the SMILES sequence. The BET
module consists of 8 bidirectional encoder layers, where each
layer includes a multihead self-attention layer and a sub-
sequent fully connected feed-forward neural network. Each
self-attention layer has 8 heads, and the embedding size of the
fully connected feed-forward layers is 1024. During training,
the Adam optimizer with a weight decay of 0.1 is employed,
and the loss function chosen is cross-entropy. The input
SMILES have a maximum length of 256, including the special
symbols added at the 2 ends, and each symbol is embedded in
a dimension of 512. Consequently, the resulting molecular
embedding matrix consists of 256 embedding vectors, each
with a dimension of 512.

The transformer module offers high parallelism capability and
training efficiency, allowing for the use of a large amount of
SMILES to train deep learning models. In this study, SMILES
strings from the Chembl, PubChem, and ZINC databases, either
individually or fused together, were used to train 3 separate
pretrained models. The resulting transformer-based molecular
embeddings generated from the pretrained models using the
Chembl database were used as molecular fingerprints.

2.3. Machine learning models

Three classic machine learning algorithms, namely, gradient
boosting decision tree (GBDT), support vector machine (SVM),
and random forest (RF), are employed to construct our ML
models. TheGBDT algorithm, an ensemble approach, possesses
several advantages such as resistance to overfitting, insensitivity
to hyperparameters, and ease of implementation. Consequently,
it is competitive when training with small data sets and can yield
better prediction performance compared with deep neural
networks (DNNs) and other common ML algorithms. However,
it is important to note that one of the challenges of GBDT is to
strike a balance between accuracy and efficiency for large data
sets. The algorithm assembles multiple weak learners (individual
trees) into an iterative prediction model. Although weak learners
may produce suboptimal predictions individually, the

Copyright © 2023 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.
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combination of all weak learners through the ensemble approach
helps reduce overall errors. The primary procedure of GBDT
involves learning decision trees, where most of the time is
consumed in finding the best split points. Gradient boosting
decision tree has already demonstrated good performance in
various quantitative structure–activity relationship (QSAR) pre-
diction tasks.25,26 In this study, the GBDT algorithm provided by
the Scikit-learn library (version 0.24.1) was used.

Support VectorMachine, introduced byCortes and Vapnik, is a
nonprobabilistic kernel-based supervised learning method that
maps input vectors into a high-dimensional feature space.11 The
core concept behind SVM is to identify the optimal decision
boundary that separates different classes in the feature space.
This decision boundary is defined by a hyperplane that maximizes
the margin between the support vectors and the data points
closest to the decision boundary. Support vector machine offers
advantages such as high efficiency in high-dimensional spaces,
robustness against overfitting, and versatility. However, SVM also
has some limitations, including computational complexity and
sensitivity to parameter tuning.

Random forest, developed by Breiman, is an ensemble of
decision trees where the predictions of individual trees are
averaged to obtain an ensemble performance.7 It employs a
bootstrap sampling technique, and each decision tree uses only a
subset of randomly chosen samples and features, starting with a
trunk that splits intomultiple branches before reaching the leaves.
The leaf nodes represent the final prediction, whereas all other
nodes are assigned with molecular features. Random forest is
widely used in solving QSAR prediction problems and often does
not require a complex feature selection procedure. Moreover, it is
robust to redundant features and exhibits insensitivity to
parameter variations.

We collected a total of 111 inhibitor data sets in our DTI
network. The 3 aforementionedML algorithms were used to build
ML models for these data sets. The details of the hyper-
parameters for these 3 ML algorithms are provided in Table S5
in the Supporting Information (available at http://links.lww.com/
PAIN/B940). In the ML models, we used 2 types of molecular
fingerprints, namely, BET and AE fingerprints, to embed the
inhibitor compounds. Our ML models were created by pairing
these molecular fingerprints with the GBDT, SVM, or RF
algorithm. Consequently, we built a total of 111 ML models,
each corresponding to one inhibitor data set.

For each data set, 6 individual models were constructed by
combining BET and AE fingerprints with the 3ML algorithms. The
average of the predictions from these 6 individual models was
considered as our final binding affinity prediction, which we refer
to as the consensus method for prediction. The consensus
results typically outperform those obtained from individual
models. We compared the prediction results using the 3 different
algorithms and found that the SVM algorithm with the consensus
method performed the best among the other algorithms using
individual fingerprints. This was validated using a set of provided
samples, as shown in Table S6 in the Supporting Information
(available at http://links.lww.com/PAIN/B940). Hence, the pre-
diction results in themain text are from the SVMalgorithmwith the
consensus method. To reduce the impact of randomness, each
individual ML model was trained 10 times using different random
seeds, and the average of the 10 predictions was considered as
the final result for each individual model. In addition, the Pearson
correlation coefficients (R) and root-mean-square deviation
(RMSD) of 10-fold cross-validations for the 111 data sets are
presented in Table S7 of the Supporting Information (available at
http://links.lww.com/PAIN/B940).

3. Results

3.1. Pain-related voltage-gated sodium channel informed
drug–target interaction networks

Voltage-gated sodium channels, which consist of a family of 9
distinct proteins or genes (Nav1.1-1.9), exhibit different pharma-
cological properties. Specifically, the proteins Nav1.3, Nav1.7,
Nav1.8, and Nav1.9 are involved in neuropathic pain and are
associated with both human Mendelian pain disorders and
common pain disorders such as small fiber neuropathy.3 These 4
VGSC proteins play a role in modulating different types of pain,
offering potential for the development of specific sodium channel
inhibiting agents for chronic pain treatment. Functionally, Nav1.7
is classified as tetrodotoxin sensitive (TTX-S), whereas Nav1.8
and Nav1.9 are considered tetrodotoxin resistant (TTX-R).
Anatomically, these proteins exhibit broad and distinct expres-
sion patterns across neuronal and smooth muscle cells
throughout the body, as well as in cells of the immune system
where they participate in migration and phagocytosis.14 Tradi-
tionally, Nav1.3 is primarily expressed in the brain and spinal cord,
whereas Nav1.7, Nav1.8, and Nav1.9 tend to be expressed in the
peripheral nervous system. Furthermore, these channels are
regulated by a variety of enzymes and structural proteins, such as
kinases, auxiliary b-subunits, and ubiquitin-protein ligases, which
collectively influence sodium channel biophysical properties and
expression.32,52

Pain-related VGSCs are widely distributed throughout the
body, and their interactions with various upstream and down-
stream proteins play a crucial role in specific biological functions.
To analyze these interactions, we constructed protein–protein
interaction (PPI) networks centered around each of the 4 pain-
related VGSCs or treatment targets, namely, SCN3A, SCN9A,
SCN10A, and SCN11A. These 4 targets were used as inputs to
the String database to extract the corresponding PPI networks.
The resulting networks, shown in Figure 1A, represent direct and
indirect interactions between proteins and each pain-related
VGSC. Each PPI network contains 401 proteins, focusing on
critical interactions rather than considering a larger number of
proteins. It is important to note that there is some overlap
between the networks, indicating interdependencies among the
VGSCs, and there are 1032 unduplicated proteins in 4 PPI
networks. In addition, blocking these proteins may result in other
severe off-target effects. Hence, these proteins could be critical
sources of side effects, and thus, 4 proteomic PPI networks
provide a pool of 4 potential treatment targets and critical side
effect targets. It is necessary to systematically explore potential
compounds that inhibit distinct pain targets and the putative side
effects from compounds blocking these targets.

Considering that compounds that act as agonists or antago-
nists on pain-related VGSCs can influence their pharmacological
behavior in pain treatment, we aimed to identify additional
compounds that bind to these VGSCs. To evaluate the binding
effects of inhibitors on VGSCs and other proteins in the PPI
networks, we searched and collected inhibitor compounds from
theChembl database for each protein. This process resulted in an
extended DTI network, encompassing 111 targets or related data
sets and a total of 150,147 inhibitor compounds, which is
illustrated in Figure 1B. The protein names of these 111 data sets
are listed in Table S2 in the Supporting Information, and additional
details about the collected data sets can be found in Table S3 in
the Supporting Information (available at http://links.lww.com/
PAIN/B940).

The framework of present work is illustrated in Figure 1.
Essentially, for 4 pain-related VGSCs, ie, 4 treatment targets,

Copyright © 2023 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.

4 L. Chen et al.·00 (2023) 1–14 PAIN®

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://jo

u
rn

a
ls

.lw
w

.c
o
m

/p
a
in

 b
y
 B

h
D

M
f5

e
P

H
K

a
v
1
z
E

o
u
m

1
tQ

fN
4
a
+

k
J
L
h
E

Z
g
b
s
IH

o
4
X

M
i0

h
C

y
w

C
X

1
A

W
n
Y

Q
p
/IlQ

rH
D

3
i3

D
0
O

d
R

y
i7

T
v
S

F
l4

C
f3

V
C

1
y
0
a
b
g
g
Q

Z
X

d
g
G

j2
M

w
lZ

L
e
I=

 o
n
 1

0
/1

8
/2

0
2
3



namely, SCN3A, SCN9A, SCN10A, and SCN11A, we take a
proteome-informed approach through protein–protein interac-
tion (PPI) networks to identify potential side effect targets. As
such, we foundmore than 1000 targets within the 4 PPI networks
centered around SCN3A, SCN9A, SCN10A, and SCN11A, as
shown in Figure 1A. We hope to set up machine learning (ML)
models for all these targets, in principle. In practice, when we
checked databases, we could only build 111 models because of
insufficient inhibitors in these DTI networks, as displayed in
Figure 1B. Among the 111 models, 2 models are designated for
the treatment targets SCN9A and SCN10A, and the remaining
109 models are allocated to side effect targets (one of the side
effect targets is hERG). We found a total of 150,147 inhibitors for
these 111 targets. As shown in Figure 1C, all inhibitors
associated with side effect targets are screened for their
repurposing potential using the ML models associated with the
treatment targets SCN9A and SCN10A. Moreover, all SCN9A
and SCN10A inhibitors, including the repurposed ones, are
screened for their potential side effects with respect to the 109
side effect ML models and ADMET models, leading to nearly
optimal leads for the treatment targets.

3.2. Binding affinity predictions for the extended drug–target
interaction network

Using autoencoder and transformer embeddings, we developed
111MLmodels for all 111 targets and 150,147 compounds in the
extended DTI network. The cross-target binding affinity (BA)
predictions were carried out using these 111 MLmodels, and the
results are presented in Figure 2. The diagonal elements of the
heatmap represent the Pearson correlation coefficient (R)
obtained from 10-fold cross-validation for each ML model. The
mean, maximum, and minimum values of R across the models
are 0.77, 0.93, and 0.25, respectively. Notably, 53 models
achieved R values greater than 0.8, indicating high predictive
performance.

Furthermore, the root-mean-square deviation (RMSD) values
of these models, as shown in Table S3 in the Supporting
Information (available at http://links.lww.com/PAIN/B940), range
from 0.43 to 1.15 kcal/mol. These values fall within a reasonable
range, suggesting that the MLmodels exhibit excellent prediction
accuracy and reliable performance for binding affinity predictions.

3.2.1. Cross-target binding affinity predictions for the
extended drug–target interaction network

In this section, we conduct an analysis of compound cross-target
interactions to estimate their side effects on other proteins in the
protein–protein interaction (PPI) network, providing a better
understanding of the extended DTI network. The off-diagonal
elements of the heatmap in Figure 2 represent the maximum
binding affinity (BA) values (ie, BAwith the largest absolute values)
of inhibitor compounds from one data set predicted by other ML
models. The labels on the left side of the heatmap correspond to
the 111 inhibitor data sets, whereas the labels on the top of the
heatmap correspond to all the 111 ML models. Each column in
the heatmap represents the predictions made by a specific
model.

For instance, the i-th element in the j-th column indicates the
prediction result of the i-th data set by the j-th model. These
cross-target prediction results serve as indicators of the potential
side effects of one inhibitor data set on other proteins. In our
analysis, we use an inhibition threshold value of 29.54 kcal/mol
(Ki 5 0.1 mM) for the BA values.19 If a compound has a BA value

below this threshold, it is considered active in terms of its
biological function. Otherwise, it is classified as an inactive
compound.

According to our analysis, of the 12,210 cross-predictions,
9262 were found to exhibit side effects based on this threshold
value because their predicted maximal BA values were below
29.54 kcal/mol. In addition, the remaining 2948 cross-prediction
results showed weak side effects because their maximal BA
values exceeded 29.54 kcal/mol. The color of the off-diagonal
elements in the heatmap indicates the strength of the side effects,
with closer proximity to green representing stronger side effects
and closer proximity to yellow indicating weaker side effects.

It is worth noting that in Figure 2, several yellow vertical lines
can be observed, suggesting very slight predicted side effects on
these proteins. This could be because the majority of collected
experimental BA labels being larger than 29.54 kcal/mol, which
limits the predictive power of the ML models in such cases.

The reasons for side effects caused by drug candidates
targeting a specific protein are often complex, and one possible
factor is the presence of similar binding sites on off-target
proteins. Proteins within the same family often share similar
structures or sequences, leading to the existence of comparable
binding sites. As a result, an inhibitor compound that is effective
against one protein may also bind to another protein within the
same family, giving rise to mutual side effects.

As observed in Figure 2, mutual side effects occur among the
3 targets CAMK2A, CAMK2B, andCAMK2D,which belong to the
calmodulin-dependent protein kinase II (CAMK2) family and share
similar 3D structural conformations or 2D sequences. This
observation is further supported by the alignments of their 3D
structures and 2D sequences, as shown in Fig. S1 of the
Supporting Information (available at http://links.lww.com/PAIN/
B940).

We can identify more examples of mutual side effects among
proteins within the same family. For instance, the fibroblast
growth factor target (FGFR) family, which includes FGFR1,
FGFR2, FGFR3, and FGFR4, as well as the mitogen-activated
protein kinase (MAPK) family, which comprises MAPK3, MAPK8,
MAPK9, and MAPK10, exhibit mutual side effects. These
examples illustrate the occurrence of mutual side effects among
proteins in the same family, emphasizing the importance of
considering family-wide effects in drug development and
analysis.

3.2.2. Predictions of side effects and repurposing potentials
for the extended drug–target interaction network

Side effects occur when a drug candidate exhibits strong binding
affinity to the intended target but inadvertently affects other
proteins as potential off-target inhibitors. These side effects can
be identified through cross-target predictions, as illustrated in
Figure 3A, for the extended DTI network. Each panel in the figure
represents a specific treatment target and 2 corresponding off-
target proteins or side effect targets, indicated by the panel title, x-
axis, and y-axis, respectively. The scattered points in the plot are
color coded based on the experimental binding affinities (BAs) of
the inhibitors for the treatment target. Red and green colors
represent high and low binding affinities, respectively. The x-axis
and y-axis values represent the predicted BAs obtained from 2
machine learning (ML) models constructed using inhibitor data
sets for the 2 off-target proteins or side effect targets.

The blue frames in the 9 panels of Figure 3A indicate regions
where no side effects are predicted on the 2 side effect targets.
The 3 rows of the figure represent different scenarios for inhibitors
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targeting a specific treatment target, showing the presence of
side effects on zero, one, or both of the given side effect targets.
For instance, in the first panel of the first row, all active inhibitors
for treatment target SCN10A are predicted to have weak
inhibitory effects, with binding affinity (BA) values greater than
29.54 kcal/mol, on the 2 side effect targets CAMK2A and
CACNA1C. In the first panel of the second row, a part of the active
inhibitors for treatment target SCN9A is predicted to exhibit
strong binding affinity to the hERG protein, whereas none of its
active inhibitors are predicted to bind to the side effect target
GAPDH. Furthermore, in the second panel of the third row, most
active inhibitors of SCN10A are predicted to efficiently bind to
both the FLT4 and FGFR1 proteins simultaneously.

The repurposing potential of inhibitors can also be determined
through cross-target predictions. Drug candidates that exhibit
weak binding affinity to their designated targets but exhibit potent
inhibition of other proteins are defined to possess repurposing
potential. Figure 3B displays 6 prediction cases of repurposing
identified on 2 treatment targets SCN9A and SCN10A by our
models. In the yellow frames, the inactive inhibitors for side effect
target exhibit strong binding to one treatment target (ie, predicted
BAs less than 29.54 kcal/mol) but weak binding to the other
treatment target (ie, predicted BAs greater than29.54 kcal/mol).
For example, in the first panel of the first row in Figure 3B, many
inactive inhibitors for side effect target P2RX3 are predicted to
have repurposing potential for either SCN9A or SCN10A but not

Figure 2. The heatmap of cross-target binding affinities (BAs) predictions for the extended DTI networked informed by 4 pain-related voltage-gated sodium
channels. The left labels of the heatmap represent all the inhibitor data sets and those above the heatmap mean the machine learning (ML) models. The diagonal
elements in the heatmap denote the Pearson correlation efficient (R) of 10-fold cross-validation for all the ML models. The off-diagonal elements in each row
indicate the highest BA values of inhibitors of one data sets predicted by 111MLmodels. This heatmap is used to reveal the inhibitor specificity of each data set on
other protein targets. DTI, drug–target interaction.
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for the other one. Because both SCN9A and SCN10A are
important treatment targets for drug design in pain treatment, it is
crucial to identify more drug candidates for these 2 proteins
through the virtual screening process. Carbamazepine, a voltage-
dependent Nav1.7 sodium channel (SCN9A) blocker, has
undergone a phase I clinical study in humans.39 Our models
can be employed to find more inhibitors that can bind to SCN9A,
similar to the mechanism of carbamazepine. The second and
third rows in Figure 3 depict additional cases where inactive
inhibitors for a given side effect target have repurposing potential
for 2 treatment targets.

3.2.3. Protein similarity inferred by cross-target correlations
in the drug–target interaction network

As side effects can arise when a drug candidate binds to
proteins with similar 3D structures or sequences, the predicted
BA values in cross-target BA prediction may exhibit correla-
tion. In other words, correlated predicted BA values can serve
as an indication of similar binding sites or 3D protein
structures. Figure 4A illustrates a linear correlation between
the predicted BAs of inhibitors for PTGS2 on CHRM1 and
CHRM2 proteins, with a Pearson correlation coefficient R of up
to 0.71. The high correlation is attributed to the high binding
site similarity between CHRM1 and CHRM2 proteins, as
validated by the alignments of 3D structures and 2D
sequences in Figure 4A. The 3D structures of the 2 proteins
were found to be quite similar, and the identity of the 2D
binding site sequence reached as high as 63%.

Two additional examples can be observed in Figures 4B and C,
demonstrating that the predicted BA correlation indicates similar 3D
protein structures. The Pearson correlation coefficients are 0.82 and
0.72 for the cases inFigure 4B, corresponding to the predicted BAs
for OPRM1 on CSNK2A2 and CSNK2A1, respectively. These
alignments of 3D structures and 2D sequences validate the
usefulness of cross-prediction in detecting protein similarity.

Furthermore, Figure 4C reveals a bilinear correlation relation-
ship, where the predicted BAs of MAPK10 inhibitors not only
linearly correlate with MAPK8 andMAPK9 proteins but also exhibit
a linear correlation with their experimental BA values, as indicated
by the color coding. This bilinear relationship is confirmed by the
alignment of 3D structures and 2D sequences of the 3 proteins.
This result suggests that a potent MAPK10 inhibitor is likely to be a
strong binder for both MAPK8 and MAPK9 proteins simulta-
neously. The high structural similarities result in a drug-mediated
trilinear target relationship. The observed bilinear or trilinear
relationship indicates the possibility of developing inhibitors that
can bind to multiple targets of major pain proteins simultaneously.

3.3. Druggable property screening

Evaluation of ADMET is of utmost importance in drug design and
discovery. Absorption, distribution, metabolism, excretion, and
toxicity encompasses several essential attributes that correlated
with the pharmacokinetic study of a compound. A promising drug
candidate should not only exhibit potency against the therapeutic
target but also should possess favorable ADMET properties.
Furthermore, hERG is a crucial potassium ion channel known for

Figure 3. Examples of predictions of side effects and repurposing potentials. (A) The first row, second row, and third row represent example inhibitor data sets of 2
treatment targets SCN9A and SCN10A that have side effects on none, 1, and 2 of the given 2 side effect targets, respectively. The blue frames indicate where there
are no side effects. (B) Displays example inhibitor data sets of side effect targets that are equipped with repurposing potentials on treatment targets SCN9A and
SCN10A. The yellow frames indicate that the inhibitors have repurposing potential for one treatment target but have no side effect on the other treatment target.
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its contribution to the electrical activity of the heart. When this
channel is blocked by a drug, it can lead to serious side effects on
the heart. Therefore, the evaluation of hERG risk is indispensable
in drug development and assessment.

In this section, we conducted the evaluation of ADMET using 6
indexes, namely, FDAMDD, T1/2, F20%, logP, logS, and Caco-2,
along with synthetic accessibility (SAS) and hERG risk assess-
ment. FDAMDD represents the FDA maximum recommended
daily dose, which aims to avoid toxicity in the human body. The
half-life (T1/2) refers to the time it takes for the concentration of a
drug in the body to decrease by half. A value of T1/2 less than 3
hours indicates a shorter half-life. F20% represents the probability
of an administered drug reaching systemic circulation with less
than 20% of the initial dose. This parameter is important for
assessing the effectiveness, bioavailability, therapeutic efficacy,
and potential side effects of a drug. LogP refers to the logarithm of
the partition coefficient of a compound between a nonpolar
solvent andwater, providing information about its hydrophobicity.
On the other hand, logS represents the logarithm of the aqueous
solubility of a compound, which indicates its ability to dissolve in
water. Caco-2 is a measure used to estimate the in vivo
permeability of oral drugs. It provides valuable information about
a drug candidate’s interaction with efflux transporters, metabo-
lism, and other factors that influence its absorption. Synthetic
accessibility is employed to assess the feasibility of synthesizing a
specific compound or molecule, taking into account its structural
complexity and the availability of synthetic routes.

During the above estimation in this work, ADMETlab 2.0
(https://admetmesh.scbdd.com/) solvers were used for ML
predictions and provided a set of optimal ranges for these
ADMET properties.56 The SAS assessment was implemented
usingRdkit packages.33 The optimal ranges of ADMETproperties
and SAS are listed in Table 1, in which a stricter threshold of 2
8.18 kcal/mol (Ki 5 1 mM) is applied to exempt hERG side
effects. Figure 5 illustrates the ADMET screening of 5 inhibitor
data sets, including 3 important VGSCs, SCN5A, SCN9A, and
SCN10A, as well as 2 important proteins CNR1 and steroid
receptor coactivator (SRC), that play essential roles in pain
treatment. Specifically, CNR1, a cannabinoid receptor, is in-
volved in pain modulation through its influence on neurotrans-
mitter release, anti-inflammatory effects, and potential effects on
neuropathic pain. SRC protein, on the other hand, indirectly

contributes to pain management by enhancing the transcription
of anti-inflammatory genes in response to steroid hormone
receptor activation. The first row of Figure 5 depicts the
distributions of FDAMDD and hERG side effects of inhibitors
from the 5 data sets. The blue frames represent the optimal
domains of the 2 properties mentioned above. The colors of the
points indicate the experimental BA values for targets. From this
screening, all 5 data sets have sufficient compounds with optimal
toxicity and hERG side effects. However, for the SCN10A data
set, there are only a few potent inhibitors in the optimal domains.
This suggests that ADMET properties and side effects should be
taken into account before synthesizing a new compound.

The second row of Figure 5 displays the screening results on
absorption properties: T1/2 (half-life) and F20% (bioavailability
20%). It is observed that for all 5 data sets, the optimal domain of
T1/2 and F20% occupies only a small fraction of chemical space.
This indicates a strict screening process, emphasizing the critical
roles of these 2 properties in physicochemical assessment.

The third row of Figure 5 illustrates the screening for logP and
logS, which are closely related to the distribution of chemicals in the
human body. In all 5 data sets, only a small portion of potent
inhibitors is found within the optimal domain, suggesting that a large
number of inhibitors are not well absorbed in the human body.

Figure 4. Three examples of correlated predicted BA values suggesting the structure and/or sequence similarities of proteins. In each panel, the x-axis and y-axis
represent the predicted BA values on 2 other proteins, and the scattered points with colors indicate the experimental labels of inhibitors of the target. The 3D
structure alignment is shown in the right of the panel, and the 2D sequence alignment is shown below. In the 3D structure alignment, PDB 6ZG4 and 3UON are
used for CHRM1 and CRMH2, PDB 6QY7 and 6QY9 for CSNK2A1 and CSNK2A2, PDB 3ELJ, 7N8T, and 3KVX for MAPK8, MAPK9, andMAPK10, respectively.
BA, binding affinities.

Table 1

The optimal ranges of selected absorption, distribution,

metabolism, excretion, and toxicity properties and synthetic

accessibility used for screening compounds in this work.

Property Optimal ranges

FDAMDD Excellent: 0-0.3; medium: 0.3-0.7; poor: 0.7-1.0

F20% Excellent: 0-0.3; medium: 0.3-0.7; poor: 0.7-1.0

Log P The proper range: 0-3 log mol/L

Log S The proper range: 24-0.5 log mol/L

T1/2 Excellent: 0-0.3; medium: 0.3-0.7; poor: 0.7-1.0

Caco-2 The proper range: . 25.15

SAS The proper range: ,6

SAS, synthetic accessibility.

FDAMDD represents the FDA maximum recommended daily dose. Caco-2 is a measure used to estimate the

in vivo permeability of oral drugs.
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The last row of Figure 5 presents the screening results for
Caco-2 and SAS. These 5 plots demonstrate that almost all
compounds from the 5 data sets are easy to synthesize, and
approximately half of the compounds exhibit good cell perme-
ability. Notably, a significant number of potent inhibitors fall within
the optimal domain.

3.4. Side effect evaluations of existing medications for
pain treatment

SCN3A, SCN9A, SCN10A, and SCN11A are genes that
encode sodium channels in the Nav channels family. These
channels play an important role in the generation and
propagation of action potentials in neurons, including those
involved in pain signaling. In addition, it has been found that
blocking these channels could reduce pain hypersensitivity.
There are several FDA-approved experimental medications
available for the treatment of pain, which can be roughly
classified into 4 classes: nonopioid analgesics, nonsteroidal
anti-inflammatory drugs (NSAIDs), opioid medications, and
others. In this study, we used our DTI-based ML models to
predict the side effects of these medications.

Acetaminophen, commonly known as Tylenol or paracetamol,
is a typical over-the-counter nonopioid analgesic used to
temporarily relieve mild to moderate pain, such as headaches,

muscular aches, backaches, toothaches, and premenstrual and
menstrual cramps. It is a weak inhibitor of both cyclooxygenase
(COX)-1 and COX-2 in vitro and eases pain by inhibiting the
production of prostaglandins, which are chemicals that contrib-
ute to pain in the human body.

Our BA predictions for acetaminophen on SCN9A and
SCN10A are 29.60 kcal/mol and 29.29 kcal/mol, respectively,
indicating that acetaminophen is a good binder on SCN9A.
Furthermore, the predicted BA value on hERG from our model is
27.39 kcal/mol, which is higher than the hERG side effect
threshold of 28.18 kcal/mol, validating the safety profile of
acetaminophen on hERG. This result agrees with the conclusion
of the study by Su et al.50

Our predictions suggest that acetaminophen exhibits the
highest inhibitory effect on the LATS2 protein, with a predicted
BA value of 211.2 kcal/mol. LATS2 is a protein kinase that
plays a significant role in cell growth regulation, apoptosis, and
tumor suppression. It is associated with various diseases,
including breast cancer, lung cancer, ovarian cancer, neuro-
fibromatosis type 2 (NF2), and cardiovascular diseases.
Inhibiting the LATS2 protein could lead to serious side effects,
which might explain the potential reasons for the high side
effects of acetaminophen, such as liver damage, allergic
reactions, skin reactions, gastrointestinal issues, blood disor-
ders, and kidney problems.

Figure 5. Druggable property screening based on ADMET properties, synthesizability, and hERG side effects on compounds from 5 protein data sets: SCN5A,
SCN9A, SCN10A, CNR1, and SRC. The colors of the points indicate the experimental BAs for these targets. The x- and y-axis represent various predicted ADMET
properties, synthesizability, or hERG side effects. Blue frames highlight the optimal ranges of these properties and side effects. ADMET, absorption, distribution,
metabolism, excretion, and toxicity.

Copyright © 2023 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.
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Nonsteroidal anti-inflammatory drugs (NSAIDs), such as
ibuprofen (Advil, Motrin), and naproxen (Aleve), are commonly
used for the treatment of mild to moderate pain accompanied by
swelling and inflammation. These medications can inhibit certain
enzymes in the human body that are released due to tissue
damage. Ibuprofen, a nonselective inhibitor of the enzyme COX,
plays a crucial role in the synthesis of prostaglandins through the
arachidonic acid pathway. Cyclooxygenase facilitates the con-
version of arachidonic acid to prostaglandin H2 (PGH2) in the
body, which is further transformed into other prostaglandins. By
inhibiting COX, ibuprofen reduces the production of prostaglan-
dins in the body, resulting in pain relief.

The predicted BA values of ibuprofen for SCN9A and SCN10A
are 29.11 and 29.72 kcal/mol, respectively, indicating strong
potency of ibuprofen on SCN10A. The predicted BA value for
hERG is 27.13 kcal/mol, suggesting a safe hERG-blockade
profile. In addition, ibuprofen is predicted to be a potent inhibitor
of LATS2, USP9X, and MTOR, which are the top 3 proteins with
the largest absolute predicted BA values (211.17, 210.68,
210.46 kcal/mol). Furthermore, the predicted BA value of
ibuprofen on TRPM8 is 210.04 kcal/mol, validating its strong
binding affinity to TRPM8, a thermosensitive ion channel
implicated in pain signaling, particularly in cold-induced pain or
cold allodynia.

Despite its effectiveness, ibuprofen can cause a number of side
effects, including nausea, constipation or diarrhea, and in-
digestion (dyspepsia).

Naproxen, like other NSAIDs such as ibuprofen, inhibits COX,
leading to analgesic and anti-inflammatory effects. It is also a
potent inhibitor of sodium channels, as validated by the predicted
BA values of29.02 and29.6 kcal/mol for SCN9A and SCN10A,
respectively. The predicted BA value of26.55 kcal/mol for hERG
confirms the safety profile of naproxen on hERG. Our predictions
indicate that naproxen may have side effects on other targets,
with the top 3 predicted BA values being 211.35, 211.32, and
211.13 kcal/mol for CSNK2A2, FGFR2, and LATS2, respec-
tively. This aligns with the known fact that naproxen can cause a
range of potential side effects, including dizziness, headache,
bruising, allergic reactions, and stomach pain.38 In addition,
naproxen demonstrates strong inhibition of TRPM8 with a
predicted BA value of 29.97 kcal/mol.

Opioids are powerful pain-relieving medications commonly
prescribed for moderate to severe pain. Examples of opioid
medications include oxycodone (OxyContin, Roxicodone),
hydrocodone (Vicodin, Hysingla ER), fentanyl (Actiq, Fentora),
and morphine (MS Contin), among others. They function by
binding to opioid receptors in the brain, spinal cord, and other
parts of the body, thereby reducing the perception of pain.
Because of their potential for misuse, addiction, and overdose,
these medications are subject to strict prescribing guidelines.

Oxycodone, a strong semisynthetic opioid, is usedmedically to
treat moderate to severe pain. Its mechanism of action involves
interacting with opioid receptors in the central nervous system.
The predicted BA values of oxycodone for SCN9A and SCN10A
are 29.75 and 210.62 kcal/mol, respectively. The predicted BA
value for hERG is remarkably low at 27.8 kcal/mol, indicating a
low potential for hERG side effects, which is consistent with the
result of the study by Fanoe et al.15 Oxycodone demonstrates
strong binding potency to the top 3 proteins: ROS1, CSNK2A2,
and OPRM1, with the largest predicted BA values being211.77,
211.47, and 211.45 kcal/mol, respectively. In addition, our
predictions suggest that oxycodone can inhibit the TRPA1
(transient receptor potential ankyrin 1) protein, with a predicted
BA value of210.09 kcal/mol. Transient receptor potential ankyrin

1 is a thermosensitive ion channel involved in the detection and
transmission of pain signals. It is known for its role in mediating
various types of pain, particularly in response to chemical irritants
and inflammatory stimuli.

Hydrocodone is indicated for the relief of acute pain,
sometimes in combination with acetaminophen or ibuprofen. It
is also used for the symptomatic treatment of the common cold
and allergic rhinitis, often in combination with decongestants,
antihistamines, and expectorants. Hydrocodone inhibits pain
signaling in both the spinal cord and brain. Its actions in the brain
can also lead to euphoria, respiratory depression, and sedation.51

In our predictions, hydrocodone demonstrates good binding
affinities for SCN9A and SCN10A, with BA values of 29.72 and
210.56 kcal/mol, respectively. The predicted BA value for hERG
is 28.16 kcal/mol, suggesting a low potential for side effects on
hERG. Hydrocodone has the potential to cause serious side
effects on the top 3 proteins: ROS1, CSNK2A2, and TACR1, with
predicted BA values of 211.98, 211.40, and 211.36 kcal/mol,
respectively. In addition, our findings indicate that hydrocodone is
a strong binder to the TRPA1 protein, with a predicted BA value of
29.94 kcal/mol.

Some medications prescribed to manage depression and
prevent epileptic seizures have been found to relieve chronic pain.
Tricyclic antidepressants used in the treatment of chronic pain
include amitriptyline and nortriptyline (Pamelor). Antiseizure
medications used for chronic nerve pain include gabapentin
(Gralise, Neurontin, Horizant) and pregabalin (Lyrica).

Amitriptyline, a tricyclic antidepressant, has been used for
decades to treat depression and has been investigated for its
analgesic properties in pain-related conditions.8 Our predicted
BA values for SCN9A and SCN10A are29.74 and210.04 kcal/
mol, respectively, validating the potency of amitriptyline in pain
treatment according to our predictions. The predicted BA value of
amitriptyline on hERG is 28.25 kcal/mol, indicating a potential
side effect on hERG, which conforms to that amitriptyline has
been known to induce QT prolongation and torsades de pointes,
which causes sudden death.27

The 3 strongest predicted BA values are for LATS2, HRH1, and
KCNA3 proteins, with values of 211.08, 211.01, and 210.61
kcal/mol, respectively. Gabapentin, a structural analogue of the
inhibitory neurotransmitter gamma-aminobutyric acid (GABA),
was originally developed as an antiepileptic medication. It is now
widely used to treat neuropathic pain.31 Our predictions suggest
that gabapentin has the potential to inhibit SCN9A and SCN10A,
with BA values of 29.0 and 29.35 kcal/mol, respectively.
Moreover, gabapentin is predicted to have no side effects on
hERG, with a BA value of 26.85 kcal/mol. In addition, our
predictions show that the 3 strongest predicted BA values are for
LATS2, KCNA3, and FGFR2, with values of210.94,210.61, and
210.6 kcal/mol, respectively.

3.5. Nearly optimal lead compounds from screening
and repurposing

Wededicate our efforts to findingmore potential inhibitors of the 2
pain treatment targets, SCN9A and SCN10A, through the
screening and repurposing processes in this section. In the
process of screening and repurposing, we used 110 ML models
to predict the cross-target binding affinity. In addition to
considering potency, we also ensured that the optimal ranges
for the ADMETproperties and SAS (as listed inTable 1), as well as
the hERG side effect, were all well satisfied. SCN9A and SCN10A
are not only major pain targets but also key pharmacological
targets in pain treatment. To identify more promising potent
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compounds for these 2 targets, we used the 110 inhibitor data
sets as a source of inhibitor compounds.

During the screening process, we selected potent inhibitor
compounds with experimental BA values below 29.54 kcal/mol
from the inhibitor data sets of the 2 pain treatment targets,
SCN9A and SCN10A. We then evaluated a series of other
properties. It is important to note that if a designated inhibitor of
one treatment target demonstrates high efficacy on the other
treatment target, it is not considered a side effect. This is because
it is common for an inhibitor to be potent on both major pain
treatment targets simultaneously. However, we still need to
evaluate the potential for side effects on the other 108 side effect
targets, as well as hERG. We require predicted BA values greater
than 29.54 kcal/mol to exclude side effects, except for hERG,
which has a stricter requirement of BA values greater than28.18
kcal/mol.

For repurposing, we assess the binding potency of all weak
inhibitors in the other 108 data sets of side effect targets on the 2
pain treatment targets, SCN9A and SCN10A. Therefore, we
select inactive inhibitors with experimental BA values greater than
29.54 kcal/mol and identify those with predicted BA values less
than 29.54 kcal/mol on the 2 pain treatment targets. In our
search for inhibitors with repurposing potential on the pain
targets, these inhibitors should have no side effects on the other
107 side effect targets, as well as hERG. Furthermore, we also
study the optimal range of ADMET properties and synthetic
accessibility.

It is not easy to find inhibitors that satisfy all the aforementioned
requirements. In the end, we identified 2 inhibitor compounds,
CHEMBL1767278 from the MAPK8 data set and
CHEMBL1453498 from the CASP3 data set, for repurposing.
We evaluated additional ADMET properties of these 2 molecular
compounds using the ADMETlab 2.0 prediction solver (https://
admetmesh.scbdd.com/). Figures 6A and B show that the 2
compounds fall within the optimal ranges of these ADMET
properties. For more details on the meaning and optimal ranges
of the 13 ADMET properties, please refer to Table S4 in the
Supporting Information (available at http://links.lww.com/PAIN/
B940). The compound CHEMBL1767278 is predicted to have
BA values of28.13 and29.68 kcal/mol on SCN9A andSCN10A,
respectively, whereas the compound CHEMBL1453498 is
predicted to have values of29.68 and28.04 kcal/mol, indicating
their potency on SCN10A and SCN9A, respectively. Their
predicted BA values on hERG are 27.13 and 27.92 kcal/mol,
respectively, suggesting favorable side effect profiles. The
representations of the 2 compounds and their side effect
predictions are provided in Figures 6C and D, respectively.
Furthermore, these 2 compounds are predicted to have no
binding or side effects on the remaining 96 and 99 proteins,
respectively.

Next, we investigated themolecular interactions between the 2
inhibitors and the 2 main pain treatment targets, SCN9A and
SCN10A, using the software AutoDock Vina.23Figures 7A andC

shows the 3D protein–ligand docking structures, and Figures 7B

and D shows the 2D interaction diagrams of the 2 compounds,
CHEMBL1767278 and CHEMBL1453498, respectively. Be-
cause of the structural complexity of SCN9A and SCN10A, we
focused on the docking between the inhibitors and the central
sites of the targets. AutoDock Vina generated 9 docking poses
with different docking scores calculated from its scoring function.
In our figures, we selected the pose with the highest affinity (kcal/
mol), where hydrogen bonds are formed between the inhibitors
and the 2 pain targets SCN9A and SCN10A. In the docking of
compound CHEMBL1767278 (Fig. 7B), one strong hydrogen

bond with Asn312 (2.85 Å) is formed, whereas in the docking of
compound CHEMBL1453498 (Fig. 7D), 3 hydrogen bonds with
Tyr1696 (2.98 Å, 2.92 Å) and Arg1599 (3.22 Å) are formed. The
predicted binding energies of these 2 compounds with SCN10A
and SCN9A are both 29.68 kcal/mol. In addition, we found that
neither of the 2 compounds formed a covalent bond with the side
chains of the targets during the docking process, suggesting that
hydrogen bonds play vital roles in the interaction between the
atoms.

4. Conclusion

Pain is a complex sensory and emotional experience that serves
as a protective mechanism in response to potential or actual
tissue damage. Sodium channels, particularly Nav1.3, Nav1.7,
Nav1.8, and Nav1.9, play a significant role in the generation and
transmission of pain signals in various pain conditions. However,
progress in drug design for pain treatment has been relatively
slow, and there is a need for more treatment options to be
investigated.

Sodium channels are attractive targets for the development
of pain medications. Pain affects complex molecular and
biological activities in the nervous system, involving significant
protein–protein interactions (PPI) in different brain regions. The
development of pain treatment medications must take into
account the influence of drugs on the PPI networks of pain
targets. In this study, we construct an extended DTI network
informed by 4 pain-related sodium channels. We develop a
machine learning framework to screen and propose additional
drug candidates for pain reduction. We use 2 molecular
fingerprints generated by advanced natural language process-
ing (NLP) models based on transformer and autoencoder
algorithms. These fingerprints are then used to build predictive
machine learning models employing 3 common machine
learning algorithms: SVM, GBDT, and RF. A consensus model
combining the predictions from these algorithms is used to
enhance the overall predictive performance. In addition, we
apply these machine learning models to reevaluate the side
effects of existing pain-relieving medications. Our ML models
are also employed to analyze the repurposing potential of
existing inhibitor compounds on major pain targets and screen
for possible side effects associated with these inhibitors.
Furthermore, we implement the assessment of ADMET
properties using machine learning predictions. Finally, we
identify a group of promising compounds for major pain
targets. Further testing through in vitro or animal experiments
is necessary to evaluate the toxicity and blood–brain barrier
permeability characteristics of these candidate compounds.

Our machine learning–based framework provides a novel
method for searching candidate compounds for pain relief and
can be generalized for other diseases with neurological
implications. Although the sodium channel genes studied in
this work are associated with pain perception and pain
disorders, it is important to note that pain is a complex and
multifactorial phenomenon involving numerous other factors
and pathways. Further research is needed to fully understand
the roles of these sodium channels in pain processing and to
explore their potential as therapeutic targets for pain manage-
ment. We could also use the present methodology to carry out a
detailed study of endorphin and enkephalin receptors in future
work, which plays a pivotal role in pain modulation. In addition,
future work will be dedicated to stringent experimental validation
and to providing robust evidence for the practical implications of
our findings.
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Figure 6. Assessment of 13 ADMET properties for those molecular compounds with repurposing potentials. (A and B) indicate the evaluations of ADMET
properties of 2 compounds CHEMBL1767278 and CHEMBL1453498, and C and D represent their chemical graphs and predictions of side effects, respectively.
The boundaries of yellow and red regimes in A and B show the upper and lower limits of the optimal ranges for 13 ADMET properties, respectively. The blue curves
suggest values of the specified 13 ADMET properties. The details of these property abbreviations are as following: MW, molecular weight; logP, log of octanol/
water partition coefficient; logS, log of the aqueous solubility; logD, logP at physiological pH 7.4; nHA, number of hydrogen bond acceptors; nHD, number of
hydrogen bond donors; TPSA, topological polar surface area; nRot, number of rotatable bonds; nRing, number of rings; MaxRing, number of atoms in the biggest
ring; nHet, number of heteroatoms; fChar, formal charge; nRig, number of rigid bonds; ADMET, absorption, distribution, metabolism, excretion, and toxicity.

Figure 7. The docking structure of our 2 optimal lead compounds bound to 2 pain targets SCN0A and SCN10A, and their 2D interaction diagrams. We use
AutoDock Vina to implement the protein–ligand docking and find the hydrogen bonds generated during the docking of 2 compounds.
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