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ABSTRACT: Over the years, Principal Component Analysis
(PCA) has served as the baseline approach for dimensionality IIJTSIIIXHX —UQ" |51 +a[Y - AQ”||% + 8]Qll2.1 +7Tx(Q"LQ), st. Q"Q =1
reduction in gene expression data analysis. Its primary objective is —

to identify a subset of disease-causing genes from a vast pool of = 3 ‘ ‘

thousands of genes. However, PCA possesses inherent limitations | i i I I I =~ VY
that hinder its interpretability, introduce class ambiguity, and fail to . ! 1| = . 143
capture complex geometric structures in the data. Although these = /' X ™ «‘ U[ | 1Q-» o
limitations have been partially addressed in the literature by Vi e L h I = A
incorporating various regularizers, such as graph Laplacian !\ | ] [ = LR

regularization, existing PCA based methods still face challenges

related to multiscale analysis and capturing higher-order

interactions in the data. To address these challenges, we propose a novel approach called Persistent Laplacian-enhanced Principal
Component Analysis (PLPCA). PLPCA amalgamates the advantages of earlier regularized PCA methods with persistent spectral
graph theory, specifically persistent Laplacians derived from algebraic topology. In contrast to graph Laplacians, persistent Laplacians
enable multiscale analysis through filtration and can incorporate higher-order simplicial complexes to capture higher-order
interactions in the data. We evaluate and validate the performance of PLPCA using ten benchmark microarray data sets that exhibit a
wide range of dimensions and data imbalance ratios. Our extensive studies over these data sets demonstrate that PLPCA provides up
to 12% improvement to the current state-of-the-art PCA models on five evaluation metrics for classification tasks after
dimensionality reduction.

1. INTRODUCTION considering all genes in a tumor classification analysis could
introduce noise and notably augment computational complex-
ity. Therefore, it is common practice to perform gene filtering
or dimensionality reduction prior to applying classification

Biological processes heavily depend on the different
expression levels of genes over time. Thus, it is no surprise
that analyzing gene expression data holds an important place

in the field of biological and medical research, particularly in methods in order to extract meaningful insights with reduced
tasks such as identifying characteristic genes strongly noise.” Specifically, by reducing the dimensionality in a way
correlated with various cancer types, as well as classifying which emphasizes the most significant features, or genes, for
tissue samples into cancerous and normal categories.” overall variance in the data, one can identify these genes as
In microarray analysis, mRNA molecules are collected from important contributors to various biological processes, disease
a tissue sample and converted into complementary DNA mechanisms, and potential therapeutic targets, and interpret
(cDNA). These cDNA molecules are subsequently labeled their roles via downstream analysis.
with a fluorescent dye and hybridized onto a microarray. The There are several methods available in the literature for
microarray is then scanned to measure the expression level of achieving effective dimensionality reduction, categorizable as
each gene. This process generates gene expression data, which either linear or nonlinear based on the chosen distance metric.

represents the intensity of each gene in a sample, typically at Notably, Principal Component Analysis (PCA) and Linear

th'e RNA production level. The continuous adve_lncements in Discriminant Analysis (LDA) are examples of linear methods.*
microarray technology have led to the generation of large-

- 3
scale gene expression data sets.
Gene expression data is commonly represented in matrix

Special Issue: Machine Learning in Bio-cheminfor-

form, where rows correspond to genes and columns denote matics
tissue samples. Each matrix element indicates the expression Received: July 6, 2023
level of a specific gene in a particular sample. Given the high Published: September 22, 2023

dimensionality of gene expression data, often encompassing
over 10,000 genes but merely a few hundred samples,
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PCA remains widely employed, which considers the global
Euclidean structure of the original data. On the other hand,
LDA aims to find a linear combination of features that
maximizes class separability and minimizes interclass variance,
particularly for multiclass classification problems.” Nonlinear
methods divide into two subgroups: those preserving global
pairwise distances and those maintaining local distances.
Kernel PCA falls into the former category, while Laplacian
Eigenmaps serve as an example of the latter (Laplacian
Eigenmaps will be extensively discussed later).®” As the name
suggests, Kernel PCA builds upon traditional PCA. While
PCA may not perform well on data sets with complex
algebraic/manifold structures that cannot be adequately
represented in a linear space, Kernel PCA addresses this
limitation by employing kernel functions in a reproducing
kernel Hilbert space, thereby accommodating nonlinearity.

Furthermore, there exist several Machine Learning (ML)
based dimensionality reduction methods that are popular for
high dimensional biomedical data.® Filter methods are used to
determine the significance of different features in the data and
can classify as either univariate or multivariate categories. The
univariate filter method first employs a specific criterion to
pinpoint the most significant feature rankings, after which
each attribute is evaluated and given a distinct rating. The
multivariate filter, meanwhile, considers the relationships
between various qualities rather than one specific criterion.
Wrapper methods rely on classifiers. They operate by
choosing a subset of characteristics from a given learning
model that yield the best outcomes for ML-based
classification. However, dimensionality reduction via PCA
better controls overfitting problems that are common with
these procedures, and can represent the genes in a more
informative space by combining them into Eigen-Genes.®
There are also a variety of nature inspired algorithms for
dimensionality reduction, such as the genetic algorithm, which
seeks to mimic natural selection, or the Bat Algorithm, which
was inspired by echolocation behavior of microbats.”'® We
note, however, that generally these nature inspired algorithms
require a complete mathematical framework for understanding
their robustness, and generally there are issues with
repeatability.”

While these procedures have found broad applications in
the mathematical and statistical sciences, they all possess
inherent limitations. In our specific context of gene expression
data analysis, we aim to build upon recent advancements in
PCA to mitigate various limitations intrinsic to advanced PCA
techniques. By leveraging these improvements, we strive to
enhance the analysis and interpretation of gene expression
data. Although PCA is a widely used procedure for
dimensionality reduction, it has several associated weaknesses.
These include a lack of interpretability of the principal
components due to the dense loadings and issues with class
ambiguities. Various methods have been proposed to address
these issues. Most notably, Feng et al. proposed Supervised
Discriminative Sparse PCA (SDSPCA) to include class
information and sparse constraints by introducing a class
label matrix and optimizing the L, norm."!

As we mentioned earlier, an additional desirable aspect of
dimensionality reduction is the capability to identify low-
dimensional structures that are embedded within higher-
dimensional spaces. Graph theory has offered solutions to this
issue. In particular, Jiang et al. (2013) incorporated a graph
Laplacian term into PCA (gLPCA),"” while Zhang et al.
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(2022) combined this approach with SDSPCA to integrate
structural information, interpretability, and class informa-
tion."” Additionally, they developed a robust variant by
employing the L, norm instead of the Frobenius norm in the
loss function, and they proposed an iterative optimization
algorithm.'>"* However, it is important to note that the graph
Laplacian utilized in this method is only defined at a single
scale and lacks topological considerations.

Eckmann introduced topological graphs using simplicial
complexes, leading to the development of topological
Laplacians on graphs."* Topological Laplacians generalize
the traditional pairwise graph relations into many-body
relations, and their kernel dimensions are identical to those
of corresponding homological groups.'” This can be regarded
as a discrete generalization of the Hodge Laplacian on
manifolds. Recently, we have introduced persistent Hodge
Laplacians on manifolds'® and persistent combinatorial
Laplacians on graphs.'” The latter is also known as persistent
spectral graphs or persistent Laplacians (PLs)."" PLs can be
viewed as a generalization of persistent homology.”” > The
fundamental idea of persistent homology is to represent data
as a topological space, such as a simplicial complex. We can
then use tools from algebraic topology to reveal the
topological features of our data, such as holes and voids.
Additionally, persistent homology employs filtration to
perform a multiscale analysis of the data and thus creates a
family of topological invariants to characterize data in a
unique manner. Nevertheless, persistent homology cannot
capture the homotopic shape evolution of data. PLs were
designed to address this limitation.'” PLs have both harmonic
spectra and nonharmonic spectra. The harmonic spectra
recover all the topological invariants from persistent
homology, whereas the nonharmonic spectra reveal the
homotopic shape evolution. PLs have been employed to
facilitate machine learning-assisted protein engineering pre-
dictions,” accurately forecast future dominant SARS-CoV-2
variants BA.4/BA.5,** and predict protein—ligand binding
affinity.*’

Our objective is to introduce PL-enhanced PCA theory
(PLPCA). PLPCA can better capture multiscale geometrical
structure information than standard graph regularization does.
Specifically, PLs enhance our ability to recognize the stability
of topological features in our data at multiple scales. This is
achieved via filtration, which induces a sequence of simplicial
complexes. We can study the spectra of each corresponding
Laplacian matrix for each complex in the sequence to extract
this topological and geometric information.”” We will then
validate our novel method and demonstrate its performance
by microarray data classification after dimensionality reduc-
tion.

Our work proceeds as follows: first, we delve into the
mathematics behind PCA and its previous relevant improve-
ments, such as sparseness, label information, and graph
regularization. Next, we will discuss the tools from PL theory,
which we believe may improve the effectiveness of
dimensionality reduction. Then, we incorporate these tools
to formulate two new PCA methods. The first one, denoted as
pLPCA, is a simple persistent Laplacian-enabled PCA model.
The persistent Laplacians introduce multiscale nonlinear
geometric information to the gLPCA method. The second
method, denoted PLPCA, is persistent Laplacian-enhanced
robust supervised discriminative sparse PCA, combining
sparseness, label information, and robustness with our PL-
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enhancement for capturing topological information. Lastly, we
validate the proposed methods by a comparison of their
results with those in the literature for ten tumor/cancer
classifications after dimensionality reduction. Extensive results
indicate that the proposed methods are the-state-of-art models
for dimensionality reduction. Specifically, we demonstrate
that, on average, our procedure outperforms the next best
PCA enhancement by 8.01% in accuracy, 7.49% in recall,
8.15% in precision, 11.89% in F1, and 5.14% in AUC. We also
note that an improvement in performance was found to be
had on all 10 of our tested data sets, which differed widely in
their dimensionality, underscoring the comprehensiveness of
our method.

2. METHODS

2.1. Principal Component Analysis. Recognizing the
importance of dimensionality reduction for tumor classifica-
tion given gene sequencing data, we formally introduce the
notion of PCA. The purpose of PCA is to map M-dimensional

data (with N samples), X € RN into a m-dimensional
space such that m < M. This is accomplished via computing
the principal components, which can be used to perform a
change of basis into a lower dimensional space. The principal
components are obtained via an eigendecomposition of the
data covariance matrix, for which the principal components
are eigenvectors. Equivalently, principal components are
expressed as linear combinations of the original variables
which explain the most variance. The goal is then to describe
the maximal amount of variation from the original data using a
subset of our principal components.*’

When we normalize the values in our dataset, the optimal
m-dimensional space can also be obtained by solving:

min [|X - U'QJ%, stUU=I,
u,Q (1)

where U = {4, .., 4,}, UE [RmXM, represents the principal

directions in order of explained variation and
2

= Z:; 12;11 |xij|2 is the Frobenius norm of X. In
F

classical PCA, we take U to be orthogonal, though we can also
apply the orthogonality constraint to Q= {le, y qN},

X

Q € RY*", which represents the projected data points in
our new space.

2.2. Sparseness and Discriminative Information.
Traditional PCA requires that the principal components be
obtained via a linear combination of all features with nonzero
weightings (called loadings.) In the context of gene selection,
each feature would then represent a specific gene.”’ There is
then an unnecessarily added layer of complexity by enforcing
that the loadings be nonzero, as most of the genes would be
irrelevant to our analysis and we may wish to focus on only a
select few. Thus, the interpretation of our principal
components would be aided by the allowance of zero weights
via the introduction of sparse PCA. The mathematical
formulation of sparse PCA can take several forms, and the
inclusion of an L,; norm penalty term on the projected data
matrix is the method chosen for solving SDSPCA."" The L,
norm is defined as ||Q |l ; = X2 1 |Iqill,. First, we calculate
the L, norm of each gene, and then compute the L; norm of
gene-based L, norms. Or rather, we sum over each of the
tissue samples. In minimizing this term, we are encouraging
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cells belonging to the same cluster to share a similar
representation in the reduced space. Thus, genes which
correlate little with the presence of cancer are pushed toward
zero, inducing sparseness in our principal components.

One can further build upon this by also introducing
discriminative information to reduce class ambiguity.
Supervised discriminative sparse PCA (SDSPCA) obtains
principal components by introducing supervised label
information as well as a sparse constraint."' This is realized

via the following optimization formula:
2
Al
F
st.Q'Q =1 (2)

Here, o and f are scale weights balancing the class label and
sparse constraint terms. We arbitrarily initialize matrix

A € R™ to obtain a solution. Matrix Y € R™V represents
the one-hot coding class indicator matrix, and ¢ then
represents the number of classes in the data. The class
indicator matrix consists of Os and 1’s, with the position of
element 1 in each column representing the class label. The
matrix can be defined as follows, with s;; representing class
labels

min [|X — UQ'||% + a|lY — AQ"
U,QA

)
2,1

if s;

1, 1= Lhj=1.,ni=1,.,c

i)j

0, otherwise

)
SDSPCA incorporates both label information and sparsity into
PCA, with the second and third terms guaranteeing
discriminative ability and interpretability, respectively.

2.3. Intrinsic Geometrical Structure. While SDSPCA
improves performance relative to traditional PCA, one still
wishes to capture and preserve the geometric structure of our
gene sequence data during dimensionality reduction, motivat-
ing the introduction of graph regularization."?

Graph Laplacian-based embedding preserves local geo-
metric relationships while maximizing the smoothness with
respect to the intrinsic manifold of the data set in the low
embedding space. Equivalently, one wishes to construct a
representation for the data sampled from a low-dimensional
manifold embedded in the original higher dimensional space.
It has been shown that this can be accomplished with graphs
with pairwise edges, specifically the Laplacian operator.”

The core algorithm proceeds as follows. First, for N points

Xy, o Xy € RM we construct a weighted graph W with the set
of nodes for each point, and the set of edges connecting
neighboring points to one another. We put an edge between
points if they are adjacent, which we can choose to determine
according to K-nearest-neighbors (KNNs) or some distance
threshold.”> While less geometrically intuitive, the KNN
framework tends to be simpler.”> We then weigh the edges via
the Gaussian kernel and can obtain the following matrix:

—lxxIP /0
e Y ifx. € Ni(x,)
w} _ j K\

0, otherwise

(4)

The matrix defined above, which we associate with our graph,
is the adjacency matrix, and it encodes our connectivity
information. Also note the introduction of a scale parameter
n € R, which defines the geodesic distance, or the width of
the Gaussian kernel. Alternatively, we can weight each edge

https://doi.org/10.1021/acs.jcim.3c01023
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W, = 1 if points i and j are connected, but the choice of
Gaussian Kernel weighting can be justified.”” Our goal can
now be viewed as mapping the weighted connected graph to a
line in a way such that connected, or similar, points remain
close together after the embedding. This means choosing

q, € R to minimize:

2
D llg, = alPw,
j
i)j (5)
It can be shown that this problem reduces to computing
eigenvalues and eigenvectors for the generalized eigenvector

problem:

Lg = ADq (6)

where D is a diagonal weight matrix with entries equaling the
row sums of the adjacency matrix, or the degree of each
vertex.”” L = D — W is the weighted Laplacian matrix. Let g,,
-y Gy be the solutions of the eigenvector problem ordered
according to their eigenvalues. The image of X; under the
embedding into the lower dimensional space R” is then given
by Q = (4,(i), -qi(i)) . Thus, we need to minimize:

)
ij (7)

Thus, given our data matrix X and weighted graph W, we seek
a low dimensional representation that is regularized by the
data manifold encoded in W. Because Q in PCA and
Laplacian embedding serve the same purpose, we set them
equal and combine eqs 1 and 7, giving rise to graph Laplacian
PCA (gLPCA), which is implemented according to the
following optimization formula:'”

min [|IX UQ'|; +rTr(QLQ), stQQ=TI

2o T T _
W; = tr(QLQ), Q=1

‘Q,-— Q

(8)

where the y parameter scales the geometrical structure
capture. Next, Zhang et al. combined this methodology with
SDSPCA to incorporate sparseness, structural information,
and discriminative information into one procedure. This new
method, called Laplacian Supervised Discriminative Sparse
PCA is solved for by combining Equations 7 and 2:"

. T2 T2
min || X - UQ ||z + a|]Y — AQ ||z
U,QA

+IQl,, +7Tr(QLQ), st QQ=I ©)

However, Zhang et al. also noted that the Frobenius norm
regularization in LSDSPCA is sensitive to outliers. For
robustness, one can replace the Frobenius norm regularization
with L,;-norm regularization, which results in Robust
Laplacian Su3pervised Discriminative Sparse PCA
(RLSDSPCA):'

. T T2
min [|X - UQ |, + allY — AQ I}
UQA

+1Ql,,; +7Tr(QLQ), stQQ=I (10)

Having integrated robustness, interpretability, class informa-
tion, and geometric structural information, we now turn to
replacin_;g the graph regularization with persistent spectral
graphs'” to introduce multiscale analysis.

2.4. Persistent Laplacians. Motivated by the success of
persistent homology and multiscale graphs in analyzing
biomolecular data, we turn to persistent spectral graph theory
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to enhance our ability to capture the multiscale geometric
structure.”* Like persistent homology, persistent spectral graph
theory tracks the birth and death of topological features of a
dataset as they change over scales.'”'® We carry out this
analysis by using the filtration procedure on our data set to
construct a family of geometric configurations, or simplicial
complexes.'” We then can study the topological properties of
each configuration by its corresponding Laplacian matrix. The
topological persistence can be studied through multiple
successive configurations.

We first must introduce the notion of a simplex. A 0-
simplex is a node, a 1-simplex is an edge, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so on. Generally, we
consider g-simplices which we label o,. A simplicial complex is
a way of approximating a topological space by gluing together
lower-dimensional simplices in a specific way. More formally,
a simplicial complex K is a collection of simplices such that

1. If o, €K and o, is a face of o, then o, €K

2. The nonempty intersection of any two simplices is a
face of both simplices.

A g-chain is then a formal sum of g-simplices in a simplicial
complex K with coefficients in Z,. The set of all g-chains has
a basis of the set of g-simplicies in K. This set forms a finitely
generated free Abelian group C,(K). We then define the
boundary operator to be a group homomorphism that relates
the chain groups, d,: C,(K) — C,_;(K)."”

We denote the g-simplex by its vertices v;:

0 = [V(), Vi ey
v,]. The boundary operator is then defined as

q

= X (-1

i=0

(11)
where 6’;1_1 = [vo,n-,T/,-,-",vq] is the (g — 1) simplex with v,
removed. The sequence of chain groups connected by

boundary operators is then called a chain complex:

aq+1
—>

aq+2

o,
= Gy y(K) C,(K) = ..

The chain complex associated with a simplicial complex
defines the ¢ homology group H, = ker d,/Im 9, The
dimension of H, is then the g™ Betti number B, which
captures the number of g-dimensional holes in the simplicial
complex. We can also define a dual chain complex through the
adjoint operator of 9, defined on the dual spaces C!(K)
ECq*(K) . The coboundary operator d,*: CI™(K) —» CYK)
is defined as

d*wq_l(cq) = wq_l(dcq) (12)
where @i € CT'(K) is a (@ — 1) cochain, or a
homomorphism mapping a chain to the coeflicient group,
and ¢, € Cq(K) is a g-chain. The homology of the dual chain
complex is referred to as the cohomology. Now we can define
the g-combinatorial Laplacian operator, A;: C(K) — C%(K)
as

A, = 0,,,0,,, + 0,0,

(13)

Now, denote the matrix representation of the g-boundary
operator with respect to the standard basis for C,(K) and
Cq_l(K) as Bq and the matrix representation of the g-

q::

coboundary operator as B;. We then can define the matrix

https://doi.org/10.1021/acs.jcim.3c01023
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representation of the gth-order combinatorial Laplacian
operator as L
T T
Ly =518+ 8,5 (14)
It is well-known that f3, is also the multiplicity of zero in the
spectrum of the Laplacian matrix which corresponds to that
simplicial complex (the harmonic spectrum). Specifically:

B, = Number of connected components in K
B, = Number of holes in K
B, = Number of two-dimensional voids in K

and so on. The nonharmonic spectrum also contains other
topological and shape information.

However, a single simplicial complex offers very limited
information to our understanding of the structure of our data.
We then could consider the creation of a sequence of
simplicial complexes which we induce by a filtration
parameter: {0} = K, C K; C - CK, = K. The filtration is
illustrated in Figure 1.

Figure 1. Illustration of the filtration of a point cloud by varying a
distance threshold. The Vietoris-Rips complex is used.

For each subcomplex K; we can denote its chain group to
be C,(K,), and the _q-boundary operator d: C,(K,) —
Cy-1(K;) . By convention, we define C,(K,) = {0} for g < 0
and the g-boundary operator to then be the zero map. We
then have

q
d;o;l = z (—1)‘5(;_1, Vo €K,
i (18)
Which is essentially the same construction as before. Likewise,
the adjoint operator of d,’ is the coboundary operator dj¥:
CI7'(K,) = CI(K,), which we regard as a map from C,_,(K))
— C,(K,) through the isomorphism between cochain and
chain groups. We can then define a sequence of chain
complexes.
Next, we introduce persistence to the Laplacian spectra.
Define the subset of C;*” whose boundary is in C;_l as C;’p ,

assuming the natural inclusion map from C;_l - C;flp .

Ci = { € C0H(B) € C._,} (16)

On this subset, one may define the p-persistent g-boundary
Ct

AbPp t,p .
operator denoted by d,: C;¥ — C,_;, and corresponding
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at,
adjoint operator (aq”)*; Cé
p-persistent Laplacian operator is then Af: C; — C:

L~ C;’P , as before. The g-order

Atp  ALp NN
Atq’p = q+1(aq+l)* + (aq)*aq

(17)
And the matrix representation in simplicial basis is again:
Ly . @b t,p \T I\T gt
L= 81810 +(8) B, (18)
We may again recognize the multiplicity of zero in the

spectrum of L;’p as the gth order p-persistent Betti number

B which counts the number of (independent) g-dimensional
holes in K, that still exists in K,,,. We can then see how the
gth-order Laplacian is actually just a special case of the gth-

order O-persistent Laplacian at a simplicial complex K, In
other words, the spectrum of L;’O is simply associated with a

snapshot of the filtration at some step t."

We can capture a more thorough view of the spatial features
of our data by focusing on the O-persistent Laplacian.
Specifically, by inducing a family of subgraphs through the
varying of a distance threshold €, as seen in Figure 1. This is
known as the Vietoris Rips Complex. The edges of the
complex connect pairs of vertices that are within our distance
threshold €, which we vary to construct our sequence of
complexes. Alternatively, we connect vertices according to K-
nearest-neighbors and then weight the edges according to
some notion of distance, such as the Gaussian Kernel.*> We
then filter out edges by increasing our € value. In the next
section we will see a convenient method for computation, and
also a description of the PLPCA procedure.

2.5. PLPCA. Now, the generation of the Vietoris Rips
Complex can be achieved through implementing a filtration
procedure on our weighted Laplacian matrix based on an
increasing threshold. Observe:

Ly i#j iy j=1,.n

L=(l. , l. = i
(1/) ij lii — _Z ll]
j=1

(19)
For i #j, let L., = max(ly), Ly, = min(ly), d = Ly — Ly Set
the £ persistent Laplacian L, t = 1,--p:
£ (1= 0, ifly < (t/p)d+ Ly,
—1, otherwise (20)
t t
li= _z lij
j=1 (21)

This procedure results in the generation of a family of
persistent Laplacians derived from our weighted graph
Laplacian. However, due to the Gaussian Kernel weighting
of the edges, it is more appropriate to filter values above the
threshold rather than below. This is because more negative
values indicate connections between data points that are
closer together, or more similar, which are the features we
want to emphasize. To consolidate this family of graphs into a
single term, we assign weights to each of them and then sum
them together to construct an accumulated spectral graph, PL.

p
PL:= ) (L
t=1 (22)

https://doi.org/10.1021/acs.jcim.3c01023
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Incorporating this new term into the gLPCA algorithm in
place of the graph Laplacian should better retain geometrical
structure information by emphasizing features that are
persistent at multiple scales and providing a more thorough
spatial view. The optimal space is now obtained via

min |[X — UQ"|% + yTr(Q'(PL)Q), stQ'Q=1
UVQ

(23)
We call this method pLPCA. We can then combine this
procedure with RLSDSPCA to formulate the most optimal
procedure, which, for convenience, we refer to simply as
PLPCA, and which we solve for via

min |[X — UQ'|l,, + allY - AQ'|z + AllQ
U,QA

I, +7Tr(Q(PL)Q), stQ Q=1

We should however recognize the issues with PLPCA
regarding the inclusion of a class indicator matrix, most
notably in the context of K-Means clustering via PCA.> In
this case, the label information would presumably not be
known beforehand and therefore pLPCA would be the
preferable method, although slightly less robust.

Figure 2 provides an overview of the PLPCA framework for
both tumor classification and characteristic gene selection.'®

(24)

in [X = UQ 2. +al Y ~ AQ" | + BQl1 +9THQLQ), st Q"Q = .

f ‘I ‘ @ 0
:lfll\ﬁ]fi‘.ﬂ:‘ﬂﬁ ( Sy %50
e 1 e *260
| ”%‘f:‘ € o ERE ISkt
et il = AA‘A A%e

Figure 2. Outline of the PLPCA procedure for dimensionality
reduction, feature selection, and classification.

The process begins with the input gene expression matrix X,
and dimensionality reduction is performed using eq 24. The
resulting outputs are the projected data matrix Q and the
principal directions matrix U. The projected data matrix can
then be utilized for tumor classification. Previous studies have
also utilized the projected data matrix for feature selection, as
it contains valuable information about each gene’s contribu-
tion to the overall variance of the data."

Obtaining a closed form solution for PLPCA is difficult, but
we can iteratively optimize the model. The optimization of
PLPCA can be performed using the alternating direction
method of multipliers (ADMM) algorithm. ADMM is a
variant of the augmented Lagrangian method, which is
employed to solve constrained optimization problems.'” The
augmented Lagrangian method transforms constrained opti-
mization problems into a series of unconstrained problems by
introducing a penalty term to the cost function. It also
incorporates an additional term resembling a Lagrangian
multiplier.*® The penalty function approach solves this
problem iteratively by updating each parameter at each step.’’

ADMM, meanwhile, is a method which uses partial updates
for dual variables.”® Consider the generic problem:

min f(Q) + ¢(0) 05

which is equivalent to
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min f(Q) + g(U), st QQ =1
QU (26)
The ADMM technique allows us to approximately solve this
problem by first solving for Q with U fixed via the augmented
Lagrangian method, and then vice versa. Specific to our
problem, this approach can be taken for approximately solving
for the optimal Q, U, A, E, G, and C matrices in our
algorithm. This is the method chosen for optimizing
RLSDSPCA, and we implemented it as well for PLPCA."”

The optimization procedure for RLSDSPCA is described in
detail in the paper by Zhang et al."* Their study demonstrated
that the RLSDSPCA objective function exhibits a monotoni-
cally decreasing trend with each iteration. The same proof
applies to PLPCA as well, with the substitution of the
persistent Laplacian for the Laplacian term. In Algorithm 1,
we present a summary of the updated optimization algorithm
for PLPCA.
Algorithm 1 PLPCA procedure

Tnput:

Data matrix X € RM*Y; OHE Label Matrix Y € R**Y;

Weight Parameters: a, 3, v; Number of Subspace Dimensions: k;

Convergence Parameter: ©, Number of Iterations: MaxIter;
Weight Parameters ¢; (i = 1, ..., p); Number of Subgraphs: p

Output:
Principal Directions Matrix U and Projected Data Matrix Q

Initialize:

Initialize Matrices G, E, C to identity matrix;

Randomly intialize matrices A, Q, (An auxillary matrix to check convergence);
Construct Weighted Adjacency Matrix W according to K-Nearest-Neighbors;
Compute Weighted Laplacian L;

Compute family of subgraphs L';

Construct Persistent Laplacian PL;

Initialize ;o = 1

NEPrPRPE

ADMM
8: for i=1 to MaxIter do
9: Compute Q
Compute U
11: Compute A
Compute E
Compute G
Compute C
Compute p
Check the Convergence Condition:
ifi > 1and [|Q — Qi[l2.1 < © then
Break
end if
: end for
i LetQ, =Q

After obtaining the optimal dimensionality reduction, the
classification of cancerous tumors begins by normalizing the
gene expression data and randomly splitting it into training
and testing sets. The testing set accounts for 20% of the data,
while the training set constitutes the remaining 80%. To
mitigate the impact of data distribution, we employed a 5-fold
cross-validation approach. The classification accuracy was
calculated as the average performance over five repetitions.
For classification purposes, we utilized the K-nearest-
neighbors algorithm.” The mean accuracy of the classification
was recorded for subspace dimensions in the range {100, 95,
wr S, 1}

3. RESULTS AND DISCUSSION

3.1. Data Summary. Previous studies have utilized
benchmark data sets obtained from The Cancer Genome
Atlas, which is a project aimed at cataloging genetic mutations
that contribute to cancer through genome sequencing.*®™>’
The Cancer Genome Atlas specifically focuses on 33 cancer
types that fulfill the following criteria: poor prognosis,
significant public health impact, and availability of samples.

In our study, we expand upon this by focusing on the two
standard data sets tested in the literature: the MultiSource
data set and the COAD data set,”* > as well as eight

https://doi.org/10.1021/acs.jcim.3c01023
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Table 1. Datasets Summary

data set category no. of samples no. of features cancer description
MultiSource CHOL 36 20502 cholangiocarcinoma
HNCC 398 20502 head and neck squamous cell carcinoma
PAAD 176 20502 pancreatic adenocarcinoma
normal 33 20502 normal tissue
COAD COAD 262 20502 colon adenocarcinoma
normal 19 20502 normal tissue
GSE44076 normal 98 49385 normal tissue
cancer 98 49385 colon adenocarcinoma
GSE14020 lung 4 54675 lung metastasizes from breast cancer
bone 10 54675 bone metastasizes from breast cancer
brain 15 54675 brain metastasizes from breast cancer
GSE39582 normal 19 54675 normal tissue
cancer 566 54675 colorectal adenocarcinoma
GSE18842 normal 45 54675 normal tissue
cancer 46 54675 lung cancer
GSE35988 normal 28 92529 normal tissue
cancer 94 92529 prostate cancer
GSE29272 normal 134 22283 normal tissue
cancer 134 22283 gastric cancers
GSE21034 normal 29 43418 normal tissue
cancer 150 43418 prostate cancer
GSE28735 normal 45 28868 normal tissue
cancer 45 28868 pancreatic cancer
() Macro ACC (b) ACC additional datasets obtained from the Gene Expression
0.930 B Omnibus. The Gene Expression Omnibus is a public
0.925 \ 2 3 ' repository that archives high-throughput functional genomics
\ /\\ 1 ’; 0.8 data submitted by members of the research community.
0920 e 0 .$~ The MultiSource data set comprises normal tissue samples
0.915 -1 ®e s 12 it and three different cancer types along with their correspond-
__22 .:.:é o M os ing gene expression data. The included cancer types are
G20 123456789 10 T 1 %e -] cholangiocarcinoma (CHOL), head and neck squamous cell
Number of Filtrations B e o carcinoma (HNSCC), and pancreatic adenocarcinoma
(PAAD). Specifically, the CHOL data set consists of 4S
ACC .
samples (9 normal tissue samples and 36 cancer samples), the
0936 HNSCC data set contains 418 samples (20 normal and 398
0934 cancer samples), and the PAAD data set consists of 180
0932 samples (4 normal and 176 cancer samples). Each data set
- encompasses 20,502 genes. Meanwhile, the COAD data set
consists of 281 samples (19 normal samples and 262 colon
0.928

Figure 3. (a) Effect of different numbers of filtrations on
classification accuracy. The x-axis represents the number of filtrations
and the y-axis represents the classification accuracy. (b) Effect of
different close, middle, and long-range connectivity weights on mean
macro-ACC. (c) Effect of different regularization scale weights on
classification accuracy. The three coordinates represent each scale
weight; color represents accuracy for each parameter combination.
Axis ticks denote powers of 10.

adenocarcinoma samples) and also spans 20,502 genes.

A description of each data set obtained from the Gene
Expression Omnibus, including the number of features,
samples, accession numbers, and cancer types, can be found
in Table 1 along with a description of the COAD and
MultiSource datasets.

To further validate the proposed methods, we consider
eight cancer data sets besides the two standard TCGA
datasets utilized in previous works. The dimensions of these
datasets reaches as high as 92,529 genes, which is especially
challenging to manage, showcasing the robustness of our

Table 2. Comparison of pLPCA and gLPCA Performance on the COAD Dataset

method mean ACC mean macro-REC
gLPCA'>" 0.9777 0.9463
gLPCA“"? 0.9756 0.9429
pLPCA 0.9788 0.9450

“Reproduced in the present work.
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mean macro-PRE mean macro-F1 macro-AUC
0.9138 0.9249 0.9470
0.8841 0.9002 0.9429
0.8996 09115 0.9450
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Table 3. Comparison of pLPCA and gLPCA Performance on the MultiSource Dataset

method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
gLPCA'™" 0.9139 0.8147 0.8768 0.8316 0.8909
pLPCA 0.9267 0.8318 0.8857 0.8471 0.8991
1.00 Macro ACC 1.00 Macro F1
—— pLPCA —— pLPCA
<t — =
0.95 e gLPCA 0.95 gLPCA
2
|
0.90 " 1 0.901
|
0.85 0.85
0.80 0.80+
0.75 v y y v — 0,754 " y y v T
0 20 40 60 80 100 0 20 40 60 80 100
Dimensions Dimensions
Figure 4. Macro-ACC and -F1 score on the MultiSource data set across different reduced dimensions (gLPCA vs pLPCA).
Table 4. Comparison of PLPCA and RLSDSPCA Performance on the COAD Dataset
method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
RLSDSPCA"? 0.9875 0.9614 0.9504 0.9530 0.9614
PLPCA 0.9886 0.9680 0.9517 0.9578 0.9680
Table 5. Comparison of PLPCA and RLSDSPCA Performance on the MultiSource Dataset
method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
RLSDSPCA"? 0.9273 0.8343 0.8972 0.8527 0.9024
PLPCA 0.9371 0.8393 0.9089 0.8619 0.9065
1.00 Macro ACC 1.00 Macro F1
A, —— PLPCA
2 N ‘:§:KL o ——
0.95 o @Vﬁ#i\*‘\*i_*‘ 0.95 RLSDSPCA
A
\\
0.90 [ L S 0.90
0.85 ; 0.85
J —+— RLSDSPCA
0.75 0.75
0 20 40 60 80 100 0 20 40 60 80 100
Dimensions Dimensions

Figure S. Macro ACC and F1 score on the MultiSource data set across different reduced dimensions (RLSDSPCA vs PLPCA).

proposed procedure. Gene expression matrices and class labels
were obtained from GEO’s Series Matrix Files. Duplicate
genes were dropped from the analysis, and values were log
transformed. Then normalization was carried out to have zero
mean and a standard deviation of one.

Once again, we emphasize the significant imbalance
between the number of samples and the number of features,
as well as the number of samples among different classes in
our gene expression data, which underscores the performance
of our dimensionality reduction.

3.2. Parameter Analysis. Note with this method the
introduction of several new hyper-parameters which we must
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optimize. Namely, each of the weights {, as well as the
number of subgraphs must be chosen. We imposed the
constraint Y, ? | {, = 1 and performed grid search to
understand whether we should favor long-range, middle-range,
or close-range connectivity. Ultimately, we achieved the best
results with six filtrations, or a six-scale scheme (p = 6). Figure
3a shows the variations in mean macro-ACC as we vary the
number of filtrations. For p < 6, there is not enough additional
information incorporated to substantially improve perform-
ance, while for p > 6, too great a number of hyper-parameters
to choose could have somewhat hurt performance. It is also
possible that the additional filtrations hurt the performance

https://doi.org/10.1021/acs.jcim.3c01023
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Figure 6. Comparison of each of the evaluation metrics (MultiSource
data set): (a) between RLSDSPCA and PLPCA; (b) between
pLPCA and gLPCA.

when mapping into lower subspace dimensions, thereby
hurting the performance on average.

For the MultiSource data set, optimal results were achieved
by emphasizing the long-range connections, while for the
COAD data set, the connectivities were all roughly equally
weighted, with the close range and long-range connectivity
being slightly favored. Figure 3b displays the optimization
results for different combinations of weights in {(,} . Higher
values of {; correspond to placing greater emphasis on the
connectivity at that scale. For the other data sets obtained
from GEO, optimal parameter values can be found in the
PLPCA GitHub.

We tested (; values ranging from 0 to 10, and then scaled
them to satisfy the constraint ).7_ {, = 1. The difference was
then factorized into the y parameter, which we test with each
different combination of £, For PLPCA on the COAD data
set, {{,} = {0.5, 3, 1, 2, 2, 1}. For pLPCA on the COAD data
set, {{,} = {2, 3,0, 0, 2, 1}. For PLPCA on the MultiSource
data set, {¢,} = {0.5, 0, 0, 3, 0, 6}. For pLPCA on the
MultiSource data set, {{,} = {0.5, 0, 0, 3, 2, 6}. After
optimizing {{,} and y, we perform a grid search again to revise
our choices of a and f§ as shown in Figure 3c.

We revised our choice of parameters to a = 104 B = 0.5,
and y = 10" for the MultiSource data set and a = 10°, § = 0.5,
and y = 1000 for the COAD data set and pLPCA. For

in both cases. We can now examine the efficacy of our model
by testing on several benchmark data sets.

3.3. Evaluation Metrics. Our study demonstrates that the
incorporation of persistent graph regularization enhances
classification performance after dimensionality reduction,
surpassing the achievements of other state-of-the-art methods
such as RLSDSPCA. We summarize the outcomes of our
analysis conducted on the COAD and MultiSource data sets,
sourced from the Cancer Genome Atlas, multiple additional
data sets obtained from the Gene Expression Omnibus, as well
as several simulated outlier data sets obtained from the
RLSDSPCA GitHub repository."

First, we discuss the evaluation metrics used to measure
performance. While accuracy is a commonly employed metric,
in the context of cancer diagnosis, additional emphasis is often
placed on the Fl-score. The Fl-score represents the harmonic
mean of precision and recall, providing a balanced assessment
of a classifier’s performance.

Recall = True Positive/(True Positive + False Negative) (27)
Precision = True Positive/(True Positive + False Positive)

(28)
F1-Score = 2 X (Precision X Recall)/(Precision + Recall)

(29)

By considering the cost of false negatives in our
classification task, we acknowledge the significance of
accurately identifying cases of a potentially life-threatening
disease. The Fl-score is particularly relevant in this context as
it takes into account both precision and recall, making it more
robust to class imbalances within the data. In our case, there
are noticeable imbalances, particularly in the MultiSource data
set.

Given that our data consist of multiple categories, the
evaluation criterion we employ is the mean of each category
indicator. This evaluation approach is commonly known as a
macrometric, where performance measures are calculated for
each category individually and then averaged to obtain an
overall score.

Macro-Recall = 1/¢ X Z Recall;

PLPCA, however, better results were obtained using y = 10* i=1 (30)
Table 6. Comparison of PLPCA and RLSDSPCA on Datasets Obtained from Gene Expression Omnibus
data set method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
GSE44076 PLPCA 0.8507 0.8555 0.8762 0.8459 0.8210
RLSDSPCA'? 0.6121 0.6236 0.5712 0.5198 0.5383
GSE14020 PLPCA 0.8228 0.7240 0.6679 0.6709 0.6811
RLSDSPCA" 0.8152 0.7219 0.6692 0.6681 0.6790
GSE39582 PLPCA 0.9960 0.9749 0.9520 0.9603 0.9700
RLSDSPCA" 0.9959 0.9748 0.9473 0.9573 0.9650
GSE18842 PLPCA 0.8688 0.8648 0.8864 0.8559 0.8500
RLSDSPCA" 0.8166 0.8041 0.8542 0.7837 0.8401
GSE35988 PLPCA 0.7159 0.7640 0.7229 0.6710 0.7111
RLSDSPCA'"? 0.7054 0.7589 0.7108 0.6616 0.7105
GSE29272 PLPCA 0.7925 0.7901 0.8289 0.7814 0.7923
RLSDSPCA'? 0.6738 0.6676 0.7445 0.6038 0.7601
GSE21034 PLPCA 0.8214 0.7356 0.7044 0.6989 0.7283
RLSDSPCA'? 0.8190 0.7335 0.7026 0.6968 0.7236
GSE28735 PLPCA 0.6476 0.6558 0.6599 0.6416 0.6449
RLSDSPCA'® 0.5990 0.6105 0.6169 0.5871 0.6328
2413 https://doi.org/10.1021/acs.jcim.3¢01023
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Table 7. Comparison of PLPCA and Other Notable Methods Performances on the MultiSource Data

method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
PLPCA 0.9371 0.8393 0.9089 0.8619 0.9065
pLPCA 0.9267 0.8318 0.8857 0.8471 0.8991
RLSDSPCA" 0.9273 0.8343 0.8972 0.8527 0.9024
SDSPCA'""? 0.9124 0.8144 0.8917 0.8333 0.8891
RgLPCA'>" 0.9197 0.8210 0.8748 0.8353 0.8945
gLSPCA™! 0.9195 0.8148 0.8769 0.8318 0.8910
gLPCA'>" 0.9193 0.8147 0.8768 0.8316 0.8909
PCA'>* 0.9108 0.7957 0.8389 0.8025 0.8726
Table 8. Comparison of PLPCA and Other Notable Methods Performances on the COAD Data
method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
PLPCA 0.9886 0.9680 0.9517 0.9578 0.9680
pLPCA 0.9788 0.9450 0.8996 09115 0.9450
RLSDSPCA“"? 0.9797 0.9443 0.9081 0.9149 0.9444
SDSPCA“!! 0.9643 0.9533 0.8740 0.8918 0.9533
RgLPCA“"” 0.9734 0.9015 0.8990 0.8750 0.8990
gLSPCA™"! 0.9761 0.9250 0.8969 0.8958 0.9250
gLPCA“"? 0.9756 0.9429 0.8841 0.9002 0.9429
PCA“* 0.9593 0.8988 0.8599 0.8799 0.8980
“Reproduced in the present work.
Table 9. Comparison of PLPCA and Other Methods on Datasets Obtained from Gene Expression Omnibus
data set method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
GSE44076 PLPCA 0.8507 0.8555 0.8762 0.8459 0.8210
pLPCA 0.6223 0.6340 0.5940 0.5312 0.6072
RLSDSPCA" 0.6121 0.6236 0.5712 0.5198 0.5883
SDSPCA'""? 0.6161 0.6273 0.5767 0.5225 0.5989
RgLPCA'"? 0.6150 0.6263 0.5867 0.5231 0.5834
gLSPCA™ 0.6216 0.6332 0.5936 0.5299 0.5977
gLPCA" 0.6219 0.6334 0.5938 0.5301 0.6026
PCA™ 0.6209 0.6324 0.5887 0.5286 0.5910
GSE21034 PLPCA 0.8214 0.7356 0.7044 0.6989 0.7283
pLPCA 0.8185 0.7333 0.7022 0.6963 0.7230
RLSDSPCA'"? 0.8190 0.7335 0.7026 0.6968 0.7236
SDSPCA'""? 0.8185 0.7333 0.7022 0.6963 0.7230
RgLPCA'" 0.8190 0.7335 0.7026 0.6968 0.7236
gLspCA™ 0.5999 0.4577 0.4571 0.4367 0.4499
gLPCA" 0.8185 0.7333 0.7022 0.6963 0.7230
PCAY 0.8185 0.7333 0.7022 0.6963 0.7230
GSE28735 PLPCA 0.6476 0.6558 0.6599 0.6416 0.6449
pLPCA 0.5809 0.5905 0.5990 0.5669 0.6211
RLSDSPCA'"? 0.5990 0.6105 0.6169 0.5871 0.6328
SDSPCA'""? 0.5914 0.6026 0.6111 0.5787 0.6309
RgLPCA'"? 0.5866 0.5971 0.6035 0.5738 0.6287
gLSPCA™ 0.5666 0.5699 0.5736 0.5566 0.5777
gLPCA" 0.5806 0.5907 0.5966 0.5684 0.6205
PCA™ 0.5803 0.5905 0.5959 0.5678 0.6200
o < B data. R-S plots were introduced as a method to visualize
Macro-Precision = 1/¢ X Z Precision, 1) results while better preserving the underlying structure of the
=1 data.
Macro-F1 = 2 X (Macro-Precision X Macro-Recall) An R-S plot .c0141sis.ts of two main cc.)mponents:. the residue
score and the similarity score. The residue score is calculated
/(Macro-Precision + Macro-Recall) (32) as the sum of distances between classes, capturing the

To enhance visualization, residue similarity (R-S) scores can
be computed.*” Traditional visualization techniques often
involve reducing the data to two or three dimensions, which
may result in the loss of structure and integrity in multiclass
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dissimilarity between them. On the other hand, the similarity
score represents the average similarity within each class,
indicating the degree of similarity between instances belonging
to the same class. By considering both scores, R-S plots

https://doi.org/10.1021/acs.jcim.3c01023
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Table 10. Comparison of PLPCA and Other Methods on Datasets Obtained from Gene Expression Omnibus

data set method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
GSE14020 PLPCA 0.8228 0.7240 0.6679 0.6709 0.6811
pLPCA 0.8038 0.7102 0.6564 0.6546 0.6698
RLSDSPCA" 0.8152 0.7219 0.6692 0.6681 0.6790
SDSPCA'""? 0.7876 0.6964 0.6375 0.6354 0.6500
RgLPCA'"? 0.8123 0.7145 0.6619 0.6612 0.6733
gLSPCA™! 0.5399 0.3788 0.4000 0.3415 0.5237
gLPCA" 0.8133 0.7177 0.6649 0.6633 0.6745
PCA¥ 0.7800 0.6930 0.6346 0.6306 0.6466
GSE39582 PLPCA 0.9960 0.9749 0.9520 0.9603 0.9700
pLPCA 0.9927 0.9732 0.9182 0.9385 0.9609
RLSDSPCA'? 0.9959 0.9748 0.9473 0.9573 0.9650
SDSPCA'""? 0.9947 0.9742 0.9742 0.9570 0.9623
RgLPCA'"® 0.9932 0.9734 0.9182 0.9387 0.9611
gLSPCA™ 0.9400 0.5824 0.5614 0.5701 0.6123
gLPCA" 0.9926 0.9731 0.9173 0.9380 0.9608
PCAY 0.9923 0.9730 0.9118 0.9342 0.9600
GSE18842 PLPCA 0.8688 0.8648 0.8864 0.8559 0.8500
pLPCA 0.8171 0.8047 0.8505 0.7831 0.8438
RLSDSPCA"® 0.8166 0.8041 0.8542 0.7837 0.8401
SDSPCA'""? 0.8176 0.8052 0.8552 0.7845 0.8449
RgLPCA" 0.8166 0.8043 0.8542 0.7837 0.8452
gLSPCA™ 0.6300 0.6188 0.6357 0.6078 0.6210
gLPCA" 0.8183 0.8060 0.8554 0.7856 0.8470
PCA™ 0.8185 0.8062 0.8556 0.7859 0.8474
GSE35988 PLPCA 0.7159 0.7640 0.7229 0.6710 0.7111
pLPCA 0.6697 0.7307 0.6824 0.6267 0.6995
RLSDSPCA'® 0.7054 0.7589 0.7108 0.6616 0.7105
SDSPCA'""? 0.7009 0.7520 0.7102 0.6550 0.7098
RgLPCA'"? 0.6864 0.7426 0.6953 0.6434 0.7051
gLSPCA™Y 0.7050 0.6450 0.6103 0.6136 0.6800
gLPCA" 0.6735 0.7334 0.6888 0.6306 0.7002
PCA¥ 0.6764 0.7353 0.6900 0.6336 0.7002
GSE29272 PLPCA 0.7925 0.7901 0.8289 0.7814 0.7923
pLPCA 0.6729 0.6672 0.7279 0.6057 0.7591
RLSDSPCA"? 0.6738 0.6676 0.7445 0.6038 0.7601
SDSPCA'""? 0.6747 0.6686 0.7412 0.6040 0.7614
RgLPCA'"® 0.6700 0.6644 0.7277 0.6023 0.7552
gLspCA™ 0.5120 0.5021 0.5555 0.3492 0.5156
gLPCA" 0.6710 0.6653 0.7280 0.6028 0.7587
PCA™ 0.6707 0.6649 0.7290 0.6025 0.7585

provide a comprehensive representation of the data’s structure
in a visualization.

Given data of the form {(%,, y )I%, € RY, ), €24, M, we
have y,, representing the class label of our mth data point x,, €
X. Say that our data have N samples, M features, and L classes.
We can then partition our data set X into subsets containing
each of the classes by taking C, = {%,, € Xly = I}. For each

class | we then define the residue score as follows:

o 1 . o

R, = R(E,) = —— D IIE, — &
max 5, (33)
where ||-|| denotes the Euclidean distance between vectors

and R, is the maximal residue score for that subset. The
similarity score, meanwhile, is given as

1
S =8(%)=—
" %) IC|

ieq max (34)
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where d,,, is the maximal pairwise distance of the data set.
For constructing R-S plots, we then take R(X) to be the x-axis
and S (X) to be the y-axis.

3.4. Comparison of pLPCA and gLPCA. The classi-
fication of benchmark tumor datasets provides an opportunity
to evaluate the performance of our method in comparison to
other state-of-the-art approaches. First, we validate our claim
that persistent Laplacian-based regularization surpasses graph
Laplacian regularization by comparing pLPCA and gLPCA.
Following this validation, we proceed to compare our PLPCA
with RLSDSPCA, which has demonstrated the best perform-
ance in the existing literature."’

To summarize the comparison between pLPCA and gLPCA
on the COAD dataset, please refer to Table 2. Note that the
gLPCA results reported in the early work'® do not appear to
be reasonable because they are higher than those of the
improved model gLSPCA, which should not happen
according to Feng et al.*' Therefore, we have reproduced
these results for gLPCA using the parameters specified by
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Figure 7. Comparison across five performance metrics, on average, for PCA-based methods across all 10 data sets.

Two Outliers

20 20

15 15

10 -3 10
PR i
s ¥
B o

{5} /{ 5
0 10 0

Four Outliers

Eight Outliers

10 0

Figure 8. PCA plot of simulated data sets with two, four, and eight outliers for robustness testing. Each data set has been mapped to m = 2

dimensions for visualization.

Zhang et al."’ Our results are listed in Table 5 for a
comparison.

This table clearly demonstrates that pLPCA outperforms
gLPCA in all performance metrics, highlighting the superior
ability of persistent spectral graphs to retain topological and
geometrical information during dimensionality reduction.
Specifically, we observe an improvement in mean accuracy
from 0.9756 to 0.9788. Similarly, the macro-F1 score
improved from 0.9002 to 0.9115. These results indicate that
pLPCA not only achieves higher overall classification accuracy
but also reduces the number of false negatives.

To further validate the performance of pLPCA, we
conducted tests on the MultiSource dataset, and the results
are presented in Table 3.

Once again, it is important to highlight the significant
improvement in performance across all five evaluation metrics
achieved by incorporating persistent Laplacian-based regula-
rization instead of graph Laplacian. The mean accuracy has
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shown a substantial improvement of 1.28%, while the macro-
F1 score has improved by an even greater 1.55%.

To provide a visual representation of this performance
enhancement, Figure 4 illustrates the improvement in mean
accuracy across each of the tested subspace dimensions
ranging from 1 to 100. This visualization clearly demonstrates
the superior accuracy achieved by pLPCA compared to
gLPCA across almost every reduced dimension. This
reinforces the intuitiveness of pLPCA in achieving better
accuracy across a wide range of dimensional reductions.

In a similar manner, Figure 4 presents a graphical analysis of
the macro-F1 score. It is evident that, similar to the accuracy
results, the macro-F1 score demonstrates improvement across
almost all tested subspace dimensions. This emphasizes the
positive impact of incorporating persistent spectral graphs to
augment performance.

Moving forward, let us explore how the integration of
discriminative information and sparseness can further enhance
performance.

https://doi.org/10.1021/acs.jcim.3c01023
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Table 11. Verifying Robustness on Simulated Outlier Datasets

data set method mean ACC mean macro-REC mean macro-PRE mean macro-F1 macro-AUC
two outliers PLPCA 1.0 1.0 1.0 1.0 1.0
RLSDSPCA'"? 1.0 1.0 1.0 1.0 1.0
SDSPCA'""? 0.9939 0.9923 0.9952 0.9935 0.9923
RgLPCA'>" 0.9939 0.9923 0.9952 0.9935 0.9923
gLSPCA"*! 0.9939 0.9923 0.9952 0.9935 0.9923
gLPCA'>" 0.9939 0.9923 0.9952 0.9935 0.9923
PCA">* 0.9939 0.9923 0.9952 0.9935 0.9923
four outliers PLPCA 0.9939 0.9952 0.9923 0.9936 0.9952
RLSDSPCA"? 0.9939 0.9952 0.9923 0.9936 0.9952
SDSPCA'""? 0.9878 0.9889 0.9867 0.9874 0.9889
RgLPCA'>" 0.9818 0.9813 0.9806 0.9808 0.9813
gLSPCA"*! 0.9878 0.9869 0.9869 0.9869 0.9869
gLPCA'>" 0.9818 0.9813 0.9806 0.9808 0.9813
PCA'>* 0.9818 0.9813 0.9806 0.9808 0.9813
eight outliers PLPCA 0.9939 0.9947 0.9933 0.9938 0.9947
RLSDSPCA'"? 0.9939 0.9947 0.9933 0.9938 0.9947
SDSPCA'""? 0.9818 0.9823 0.9811 0.9815 0.9823
RgLPCA'>" 0.9757 0.9756 0.9758 0.9754 0.9756
gLSPCA'! 0.9818 0.9823 0.9811 0.9815 0.9823
gLPCA'>" 0.9757 0.9756 0.9758 0.9754 0.9756
PCA'>* 0.9757 0.9756 0.9758 0.9754 0.9756
L1 L% L2 U (2 s, L1 ?I;; L2 o b
B v ¥ ¥ L2
L2 13
L3 L4 L3 L4 L
" ;
gLPCA ¥y %y s
L1 3% L2
- glLPCA pLPCA
Figure 10. R-S plots of clusters generated from gLPCA and pLPCA-
based dimensionality reduction. The x-axis is the residual score, and
the y-axis is the similarity score. Each section corresponds to one
pLPCA cluster and the data were colored according to the predicted labels

Figure 9. R-S plots of clusters generated from gLPCA and pLPCA-
based dimensionality reduction. The x-axis is the residual score, and
the y-axis is the similarity score. Each section corresponds to one
cluster, and the data were colored according to the predicted labels
from KNN on the COAD data set at k = 100.

3.5. Comparison of PLPCA and RLSDSPCA. After
observing the superior performance of pLPCA compared to
gLPCA, we conducted a similar study to compare PLPCA and
RLSDSPCA, which has been identified as the top-performing
method among all PCA-related approaches in the literature.'”
Table 4 provides a summary of our results on the COAD data
set for both RLSDSPCA and PLPCA.

The results clearly demonstrate that PLPCA outperforms
RLSDSPCA in every major category. Specifically, the mean
accuracy across all subspaces was 0.9875 for RLSDSPCA and
0.9886 for PLPCA. Additionally, the macro-F1-score, which
highlights the impact of false negatives, improved from 0.9530
to 0.9578, representing a 0.48% improvement.

2417

from KNN on the MultiSource data set at k = 65.

The performance improvement is even more significant
when considering the results of the MultiSource data set, as
presented in Table 5.

PLPCA exhibits an improvement in mean accuracy on this
benchmark data set, increasing from 0.9273 to 0.9371, which
corresponds to a 0.98% improvement. Similarly, the F1 score
shows an improvement from 0.8527 to 0.8619. To visually
demonstrate the comparison between the two methods,
Figure S again presents the distribution of performance on
the MultiSource data set across different reduced dimensions
for both procedures. This intuitive visualization provides a
clear illustration of how the two methods compare in terms of
performance.

From the depicted figure, we can observe that while the
performance of RLSDSPCA tends to significantly decline as
the subspace dimension (m value) increases, this decline is
considerably mitigated in the new procedure (PLPCA). As a
result, PLPCA exhibits better overall performance. Particularly
noteworthy is the even greater improvement in the F1 score,
as illustrated in Figure S. This demonstrates the ability of

https://doi.org/10.1021/acs.jcim.3c01023
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PLPCA to consistently outperform the next best method
across almost all tested subspace dimensions. This is especially
encouraging considering the F1 score’s crucial role in tumor
classification.

To facilitate a more straightforward comparison of the two
procedures, we provide a barplot in Figure 6(a). This barplot
allows for a comprehensive evaluation of the relative
performances of both procedures across all five evaluation
metrics for the MultiSource data set: accuracy, recall,
precision, AUC, and F1. We include a similar plot comparing
the performances of gLPCA and pLPCA as well in Figure
6(b).

The figure clearly illustrates the superiority of PLPCA over
RLSDSPCA in all the tested metrics, surpassing the previously
identified next best method. Notably, the most substantial
improvement is observed in the F1 and recall scores, which
are considered particularly important. These findings provide
strong evidence of the effectiveness of PLPCA.

Now, to further supplement and confirm these results, in
Table 6 we compare the performances of PLPCA and
RLSDSPCA on each of the data sets obtained from the Gene
Expression Omnibus.

Next, we strengthen our findings by examining and
comparing our procedure with some other PCA methods
from the literature.

3.6. Comparisons with Other Methods. Zhang et al
demonstrated that RLSDSPCA achieves superior results
compared to other PCA-based approaches. However, after
observing how PLPCA enhances classification performance in
comparison to RLSDSPCA, it is necessary to further evaluate
the performance of our method against other existing
approaches.

To validate the performance of PLPCA, we can refer to
Table 7 for the MultiSource data set, where a comprehensive
comparison of different methods is presented.

This table provides a comprehensive overview of the
performance differences between our procedure and other
PCA enhancements, including pLPCA. The results clearly
demonstrate the significant impact of PLPCA’s ability to
capture geometrical structure information through persistent
spectral graphs, while also incorporating label information and
sparseness.

Notably, there is a considerable improvement in mean
accuracy when transitioning from PCA to PLPCA, with the
metric increasing from 0.9108 to 0.9371, representing a 2.63%
improvement. Similarly, the F1 score shows an even greater
improvement, increasing from 0.8025 to 0.8619, which
corresponds to a remarkable improvement of 5.94%. These
findings underscore the importance of not only capturing
geometrical information but also addressing class ambiguities
and enforcing sparseness.

Additionally, we can compare the performance of PLPCA
with other notable PCA enhancements on the COAD data
set, as depicted in Table 8.

Once again, it is important to highlight the consistently
superior performance across all five evaluation metrics, with
particular emphasis on the macro- F1 score. The results
clearly demonstrate that the PLPCA procedure outperforms
other PCA methods by a significant margin.

To further underscore this point, let us compare our
method to traditional PCA. The comparison reveals note-
worthy improvements in mean accuracy, increasing from
0.9593 to 0.9886, and mean F1 score, improving from 0.8799
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to 0.9578. It is crucial to acknowledge though that PLPCA
also exhibits superior performance across all major evaluation
metrics, not just accuracy and F1 score.

Now, we can compare the performance of PLPCA against
the other methods on the data sets obtained from the Gene
Expression Omnibus in Tables 9 and 10.

To visually represent the superior performance of our
method, we provide a barplot in Figure 7, comparing the
performance metrics of the mentioned procedures averaged
over each of the 10 tested data sets.

From the depicted image, it is clearly evident that PLPCA
surpasses other PCA enhancements, including RLSDSPCA, in
all aspects, particularly in terms of F1 and recall.

After confirming the efficacy of our procedure on real gene
expression data, we can proceed to evaluate our method on
various simulated outlier datasets sourced from the
RLSDSPCA GitHub repository. The objective is to assess
whether the enhanced robustness of RLSDSPCA is compro-
mised by the inclusion of persistent spectral graphs.

3.7. Robustness to Outliers. Earlier studies show that
inclusion of L,; norm regularization for the error function
induces robustness to outliers."* Here, we verify the continued
effectiveness of this method on the PLPCA procedure by
testing several simulated outlier data sets. The data sets have
two, four, and eight outliers, respectively. In each case, there
are two classes. We include the PCA plots of each simulated
data set in Figure 8.

We now summarize the classification results of each
algorithm on each data set in Table 11.

The inclusion of persistent spectral graph regularization in
RLSDSPCA does not significantly affect its robustness,
indicating that our new method remains robust to outliers
to a certain extent. However, it is important to note that an
increased number of outliers can still have a negative impact
on performance, although this is less problematic for both
PLPCA and RLSDSPCA.

3.8. Residue-Similarity Analysis. To more effectively
visualize our gene expression data after dimensionality
reduction, we can generate residue-similarity plots for each
of the tested data sets.”” We can then compare the results for
the gLPCA and pLPCA models.

Figures 9 and 10 compare the classification accuracy on the
COAD and MultiSource data sets between dimensionality
reductions using gLPCA and pLPCA. The chosen subspace
dimensions for visualization were m = 100 and m = 65,
respectively. These results, along with Figure 4, showcase the
ability of persistent Laplacian-regularized PCA to outperform
graph Laplcian-based PCA. In particular, we note the poor
performance of gLPCA-based dimensionality reduction for
classifying Labels 1 and 3 in the MultiSource data set, and the
improvement seen when using pLPCA instead.

4. CONCLUDING REMARKS

As DNA sequencing technologies have advanced in timeliness
and cost, they have greatly expanded our understanding of the
pathogenic genes responsible for the development and
progression of different cancers. These insights have led to
the identification of diagnostic biomarkers and therapeutic
targets. Given the need for dimensionality reduction to
effectively analyze this data, it is crucial to maximize its
accurate representation. In this regard, we propose a novel
method called persistent Laplacian-enhanced PCA (PLPCA).
This method incorporates robustness, label information, and
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sparsity, while also improving the capture of geometrical
structure information using techniques derived from persistent
topological Laplacian theory."”

While in this study we have examined the benefits of
dimensionality reduction for microarray data classification
using our topological technique, we should mention other
important possible applications of our method. Most obvious
is that dimensionality reduction can reveal underlying clusters
in the data, making it a necessary prior step to any clustering
analysis for cancerous tumor identification. Furthermore, our
method may improve current feature selection techniques,
where one wishes to identify genes which contribute the most
to overall variance in the data, or correlate strongly with
different tissue types. Lastly, our method could be used in
conjunction with different visualization techniques as a data
preprocessing step. For example, using tSNE or UMAP for
Eigen-Gene visualization requires an aggressive reduction to
only m = 2 dimensions, distorting the integrity of the data. If
we first prepossess our data by reducing to, say, m = S0
dimensions prior to visualization with tSNE or UMAP, we
may improve the quality of the visualization.

Our extensive computational results over ten diverse data
sets demonstrate that by incorporating persistent topological
regularization in the RLSDSPCA procedure, we achieve the
highest level of classification performance after dimensionality
reduction compared to previous methods. While the inclusion
of a graph Laplacian contributes to capturing geometrical
structure information, the current analysis is limited to a
single-scale Laplacian. To overcome this limitation, one may
generate a sequence of topological Laplacians through
filtration, providing a more comprehensive multiscale
perspective of the data and enabling one to emphasize
features at different important scales. We have incorporated
these enhancements alongside label information, sparseness,
and robustness to outliers, resulting in a dimensionality
reduction technique superior to other comparable procedures
from the literature. Ultimately, we have showed that this
additional regularization resulted in a significant improvement
in performance. On average, we saw performance metrics
increase by a margin of 8.01% in accuracy, 7.49% in recall,
8.15% in precision, 11.89% in F1, and 5.14% in AUC.
Alternatively, we also achieve similarly superb results by
incorporating the PL regularization to the original PCA
approach. This method, called pLPCA, does not depend on
the availability of data labels, and thus would be preferable for
use in unsupervised machine learning tasks such as clustering.

Despite progress made by our proposed method, there is
still ample room for improvement. First, it is interesting to
examine the role of higher-dimensional Laplacians in
dimensionality reduction. Furthermore, we note the weakness
in our method associated with the extensive hyper-parameter
search necessary to optimize performance. Future research
efforts should focus on ways to develop a parameter-free
method, or at least a method with a significantly narrowed
parameter distribution. Additionally, further analysis is needed
to evaluate the performance of this procedure for feature
selection compared to other methods. Previous studies,
including Zhang et al,"® have described a feature selection
procedure that assumes linear relationships among genes,
which may not be optimal.”’ It would be advantageous to
explore more sophisticated feature selection techniques that
account for the nonlinear relationships among genes. More-
over, integrating our new dimensionality reduction procedure
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into these methods could lead to further performance
improvements.*”* Additionally, understanding the role and
significance of the selected genes in driving or correlating with
different cancer incidences is an important area for future
research. Both aspects require continued efforts in the fields of
computational and mathematical biology.
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