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Protein mutations can significantly influence protein solubility, which results in altered protein functions and
leads to various diseases. Despite tremendous effort, machine learning prediction of protein solubility changes
upon mutation remains a challenging task as indicated by the poor scores of normalized Correct Prediction
Ratio (CPR). Part of the challenge stems from the fact that there is no three-dimensional (3D) structures for
the wild-type and mutant proteins. This work integrates persistent Laplacians and pre-trained Transformer for
the task. The Transformer, pretrained with hundreds of millions of protein sequences, embeds wild-type and
mutant sequences, while persistent Laplacians track the topological invariant change and homotopic shape
evolution induced by mutations in 3D protein structures, which are rendered from AlphaFold2. The resulting

machine learning model was trained on an extensive data set labeled with three solubility types. Our model
outperforms all existing predictive methods and improves the state-of-the-art up to 15%.

1. Introduction

Genetic mutations alter the genome sequence, leading to changes in
the corresponding amino acid sequence of a protein. These alterations
have far-reaching implications on the protein’s structure, function, and
stability, affecting attributes such as folding stability, binding affinity,
and solubility. The consequences of protein mutations have been ex-
tensively studied in diverse fields such as evolutionary biology, cancer
biology, immunology, directed evolution, and protein engineering [1].
Understanding the impact of genetic mutations on protein solubility is
crucial in various fields, including protein engineering, drug discovery,
and biotechnology. Accurately analyzing and predicting the impact of
mutations on protein solubility is therefore crucial in many fields, facil-
itating the engineering of proteins with desirable functions. There are
numerous intricately interconnected factors impacting protein solubil-
ity, ranging from amino acid sequence arrangement, post-translational
modifications, protein-protein interactions, to environmental condi-
tions, such as solvent type, ion type and concentration, the presence
of small molecules, temperature, etc. Unfortunately, the existing data
set does not contain sufficient information. This complexity poses sig-
nificant challenges for the accurate prediction and modeling of protein
solubility, often requiring multifaceted computational approaches for
reliable outcomes.

Computational predictions serve as a valuable complement to ex-
perimental mutagenesis analysis of protein stability changes upon mu-
tation. Such computational approaches offer several advantages, in-
cluding being economical, efficient, and provide a viable alternative
to labor-intensive site-directed mutagenesis experiments [2]. As a re-
sult, the development of accurate and reliable computational tech-
niques for mutational impact prediction could substantially enhance
the throughput and accessibility of research in protein engineering and
drug discovery.

Over the years, a variety of computational methods have been
developed to explore the effects of mutations on protein solubility,
including but not limited to CamSol [3], OptSolMut [4], PON-Sol [5],
SODA [6], Solubis [7], and others as summarized in a recent review [8].
CamSol employs an algorithm to construct a residue-specific solubility
profile, although no explicit method has been made publicly available.
OptSolMut is trained on 137 samples, each featuring single or mul-
tiple mutations affecting solubility or aggregation. PON-Sol utilizes a
random forest model trained on a dataset of 406 single amino acid
substitutions labeled as solubility-increasing, solubility-decreasing, or
exhibiting no change in solubility. SODA, which is based on the PON-
Sol data, specifically targets samples with decreasing solubility [6].
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Solubis is an optimization tool that increases protein solubility and
integrates interaction analysis from FoldX [2], aggregation prediction
from TANGO [9], and structural analysis from YASARA [10]. Recently,
PON-Sol2 [11] extended the original PON-Sol dataset and employed
a gradient boosting algorithm for sequence-based predictions. Despite
intensive effort, the current prediction accuracy in terms of normalized
Correct Prediction Ratio (CPR) remains very low, calling for innovative
strategies.

Topological data analysis (TDA) is a relatively new approach for
data science. Its main technique is persistent homology [12,13]. The
essential idea of persistent homology is to construct a multiscale anal-
ysis of data in terms of topological invariants. The resulting changes
of topological invariants over scales can be used to characterize the
intricate structures of data, leading to an unusually powerful approach
in describing protein structure, flexibility, and folding [14]. Persistent
homology was integrated with machine learning for the classification
of proteins in 2015 [15], which was one the first integrations of
TDA and machine learning, and the predictions of mutation-induced
protein stability changes [16,17] and protein—protein binding free en-
ergy changes [18,19]. One of the major achievements of TDA is its
winning of D3R Grand Challenges, an annual worldwide competition
series in computer-aided drug design [20,21]. A nearly comprehensive
summary of the early success of TDA in biological science was given in
a review [22].

However, persistent homology only tracks the changes in topo-
logical invariants and cannot capture homotopic shape evolution of
data over scales or induced by mutations. To overcome this limitation,
Wei and coworkers introduced persistent combinatorial Laplacians, also
called persistent spectral graphs, on point clouds [23] and evolutionary
de Rham-Hodge method on manifolds [24] in 2019. The essence of
these methods is the persistent topological Laplacians (PTLs) either on
point clouds or on manifolds. PTLs not only fully capture the topo-
logical invariants in its harmonic spectra as those given by persistent
homology, but also capture the homotopic shape evolution of data
during the multiscale analysis or a mutation process. PTLs were applied
to the predictions of protein flexibility [23] and protein-ligand binding
free energies [25], protein—protein interactions [26,27], and protein
engineering [1]. The most remarkable accomplishment by persistent
Laplacian is its accurate forecasting of emerging dominant SARS-CoV-2
variants BA.4 and BA.5 about two months in advance [28].

However, TDA approaches depend on the biomolecular structures,
which may not be available. In fact, many proteins involved in the
present study do not have 3D structures. In recent years, advanced
natural language processing (NLP) models, including Transformers and
long short-term memory (LSTM), have been widely implemented across
various domains to extract protein sequence information. For example,
Tasks Assessing Protein Embedding (TAPE) introduced three different
architectures, namely transformer, dilated residual network (ResNet),
and LSTM [29]. Additionally, LSTM-based models like Bepler [30] and
UniRep [31] have been developed. Additionally, large-scale protein
transformer models trained on extensive datasets comprising hundreds
of millions of sequences have made significant advancements in the
field. These models, including Evolutionary Scale Modeling (ESM) [32]
and ProtTrans [33,34], have exhibited exceptional performance in cap-
turing a variety of protein properties. ESM, for instance, allows for fine-
tuning based on either downstream task data or local multiple sequence
alignments [35]. More recently, a Transformer-based ensemble frame-
work was developed to predict protein-protein interaction sites by
integrating transformers and gated convolutional neural networks [36].
In the present work, we leverage the pre-trained ESM transformer
model to extract crucial information from protein sequences.

In this work, we will integrate transformer-based sequence embed-
ding and persistent topological Laplacians to predict protein solubility
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changes upon mutation. While sequence-based models can be applied
without 3D structural information, the PTL-based features require high-
quality structures. We generate 3D structures of wild type proteins from
AlphaFold2 [37] to facilitate topological embedding. By combining
both embedding approaches, they naturally complement each other
in classifying protein solubility changes upon mutation. These embed-
dings are fed into an ensemble classifier, gradient boosted trees (GBT),
to build a machine learning model, called TopLapGBT. We validate
TopLapGBT on the classification of protein solubility changes upon
mutation. We demonstrate that this integrated machine learning model
gives rise to a substantial improvement as compared to existing state-of-
the-art models. Residue-Similarity plots are also applied to assess how
well the TopLapGBT model classify three solubility labels.

2. Results
2.1. Overview of TopLapGBT

TopLapGBT integrates both structure-based and sequence-based fea-
tures, derived from protein structures and sequences respectively, into
a unified model. Our architecture comprises three distinct embedding
modules: persistent Laplacian-based embeddings, sequence-based em-
beddings, and auxiliary feature embeddings, all of which feed into an
ensemble classifier as depicted in Fig. 1.

In the persistent Laplacian-based feature embedding module, we
employ persistent Laplacian techniques to generate features that encap-
sulate the structural attributes of proteins both pre- and post-mutation.
This approach is particularly effective in capturing the structural al-
terations induced by mutations within the localized neighborhoods of
the mutation sites. Mathematically, the persistent Laplacian builds a
sequence of simplicial complexes through a filtration process, thereby
characterizing atom—-atom interactions across multiple scales (details in
the Methods section). In the sequence-based feature embedding mod-
ule, a pre-trained transformer model generates latent feature vectors
extracted from protein sequences. Specifically, the transformer model
used here is a 650M-parameter protein language model, trained on a
corpus of 250M protein sequences spanning multiple organisms [39].
Finally, the auxiliary feature embedding module incorporates a variety
of attributes such as surface area, partial charge, pK, shifts, solvation
free energy, and secondary structural information, synthesized from
both protein sequences and structures. These three distinct sets of fea-
ture embeddings are subsequently concatenated to produce a compre-
hensive feature vector. This vector is then fed into a gradient-boosting
tree classifier to categorize the mutation-induced samples.

2.2. Performance of TopLapGBT on PON-Sol2 dataset

In our study, we utilize the dataset employed by PON-Sol2 as
detailed in [11]. The dataset is comprised of 6328 mutation samples,
originating from 77 distinct proteins. These samples are categorized
into three labels: decrease in solubility, increase in solubility, and no
change in solubility. Specifically, the dataset contains 3136 samples
demonstrating a decrease in solubility, 1026 samples showing an in-
crease, and 2166 samples with no change. Notably, the dataset exhibits
a class imbalance, with a ratio of 1 : 0.69 : 0.34, indicating a bias
towards samples that exhibit a decrease in solubility. To assess the
performance of our model, we initially carry out a random 10-fold
cross-validation on the dataset. Subsequently, an independent blind
test prediction is executed to provide further validation of the model’s
efficacy.

In Table 1, we present a comparative analysis of the performance of
both single layer and double layer classifiers of PON-Sol2 [11] against
our proposed model, TopLapGBT, using 10-fold cross-validation. It
should be noted that PON-Sol2 incorporates feature selection tech-
niques such as recursive feature elimination (RFE). To provide a robust
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Fig. 1. The illustration of the workflow for TopLapGBT. Protein sequences are first preprocessed by AlphaFold 2 to generate wild type protein structures. Mutant proteins are
generated from the Jackal software [38]. The structure-based features from persistent Laplacian, auxiliary and sequence-based features are then concatenated to form a long feature
input for gradient boosting tree to classify the protein solubility changes upon mutation. The predicted labels are also analyzed on Residue-Similarity (R-S) plots.

Table 1

Comparison of performance metrics between TopLapGBT and both single layer and double layer classifiers of PON-Sol2 in the 10-fold cross validation. The negative solubility
samples are denoted as “—” whereas the positive solubility change samples are denoted as “+”. The samples with no solubility change are denoted as “N”. Performance metrics
include the positive predicted values (PPV), negative predicted values (NPV), sensitivity, specificity, correct prediction ratio (CPR) and generalized correlation (GC?). PPV refers to
the proportions of positive predictions for each solubility class while NPV refers to the proportions of negative predictions for each solubility class. CPR calculates the percentage
of correctly classified samples while GC> measures the correlation coefficient of the classification. All normalized metrics are also reported. For each metric, the first value is
without normalization while the second one is with normalization.

Model

Performance metric

PON-Sol2 [11] TopGBT TopLapGBT

Single three-class classifier Two-layer three-class classifier - -

All Features 30 features All features 34 features - -

selected by RFE selected by RFE

PPV - 0.842/0.742 0.835/0.729 0.875/0.793 0.869/0.781 0.868/0.785 0.873/0.797
N 0.657/0.536 0.658/0.543 0.635/0.521 0.647/0.534 0.686/0.554 0.681/0.557
+ 0.563/0.730 0.586/0.752 0.520/0.696 0.538/0.714 0.646/0.797 0.627/0.779
NPV - 0.913/0.954 0.901/0.947 0.893/0.942 0.891/0.941 0.932/0.965 0.931/0.964
N 0.841/0.824 0.847/0.832 0.847/0.829 0.855/0.838 0.864/0.849 0.858/0.842
+ 0.877/0.737 0.877/0.738 0.877/0.736 0.878/0.739 0.886/0.749 0.888/0.757
Sensitivity - 0.919/0.919 0.906/0.906 0.892/0.892 0.891/0.891 0.937/0.937 0.934/0.934
N 0.701/0.701 0.717/0.717 0.724/0.724 0.738/0.738 0.752/0.752 0.735/0.735
+ 0.329/0.329 0.326/0.326 0.336/0.336 0.340/0.340 0.359/0.359 0.395/0.395
Specificity - 0.831/0.839 0.825/0.831 0.875/0.883 0.868/0.874 0.860/0.872 0.867/0.881
N 0.812/0.697 0.807/0.697 0.785/0.667 0.792/0.678 0.821/0.697 0.823/0.707
+ 0.948/0.938 0.954/0.947 0.938/0.927 0.941/0.932 0.962/0.954 0.953/0.944
CPR 0.747/0.650 0.746/0.650 0.743/0.651 0.747/0.656 0.780/0.682 0.792/0.688
GC? 0.317/0.298 0.309/0.289 0.322/0.313 0.323/0.312 0.371/0.354 0.376/0.361

assessment of TopLapGBT’s performance, we conduct 10 repeated runs,
and the mean values of these runs are reported to account for any
randomness in the model’s output.

Performance evaluation of our model, TopLapGBT, is conducted
using a range of metrics, including Positive Predictive Value (PPV),
Negative Predictive Value (NPV), Sensitivity, Specificity, Correct Pre-
diction Ratio (CPR), and Generalized Squared Correlation (GC?). PPV
and NPV quantify the proportions of correct positive and negative
predictions for each solubility class, respectively. Given that we are
dealing with a K-class problem with three distinct solubility classes,
CPR and GC? are particularly relevant for providing a holistic view of
the model’s performance [40]. Specifically, CPR measures the overall

accuracy of the model, while GC? quantifies the correlation coefficient
of the classification, ranging from 0 to 1. Larger values for these metrics
denote better performance. Importantly, due to the class imbalance in
the number of mutation samples across the categories, all performance
metrics are normalized to ensure a robust and reliable evaluation of the
model’s efficacy (further details are elaborated in the Methods section).

The proposed model, TopLapGBT, demonstrates significant perfor-
mance gains over existing featurization methods in PON-Sol2 across all
evaluation metrics [11]. Specifically, normalized CPR and GC? scores of
TopLapGBT stand at 0.688 and 0.361, marking improvements of 4.88%
and 15.71% over PON-Sol2, respectively. These gains underscore the
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Table 2

Performance of TopLapGBT with existing state-of-the-art models on the independent blind test classification. The negative solubility samples are denoted as
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whereas the

positive solubility change samples are denoted as “+”. The samples with no solubility change are denoted as “N”. Performance metrics include the positive predicted values (PPV),
negative predicted values (NPV), sensitivity, specificity, correct prediction ratio (CPR) and generalized correlation (GC?). PPV refers to the proportions of positive predictions for
each solubility class while NPV refers to the proportions of negative predictions for each solubility class. CPR calculates the percentage of correctly classified samples while GC?
measures the correlation coefficient of the classification. All normalized metrics are also reported. For each metric, the first value is without normalization while the second one

is with normalization.

Performance metric Independent Test

PON-Sol [5] SODA SODAC(S as SODA(10 as SODA(17 as PON-Sol2 [11] TopGBT TopLapGBT
Threshold) Threshold) Threshold)

PPV - 0.593/0.428 0.427/0.258 0.606/0.428 0.673/0.468 0.742/0.585 0.804/0.643 0.781/0.649 0.789/0.645
N 0.427/0.385 NaN/NaN 0.425/0.365 0.397/0.357 0.383/0.350 0.600/0.475 0.617/0.462 0.624/0.475

+ 0.151/0.373 0.080/0.229 0.047/0.149 0.060/0.184 0.098/0.284 0.233/0.472 0.524/0.761 0.476/0.718

NPV - 0.514/0.691 0.373/0.537 0.508/0.684 0.502/0.677 0.501/0.677 0.794/0.887 0.843/0.920 0.842/0.918
N 0.685/0.700 0.642/0.667 0.761/0.739 0.797/0.782 0.797/0.782 0.804/0.793 0.816/0.795 0.826/0.809

+ 0.881/0.693 0.832/0.605 0.848/0.633 0.858/0.649 0.858/0.649 0.879/0.684 0.881/0.692 0.880/0.688

Sensitivity - 0.263/0.263 0.488/0.488 0.195/0.195 0.098/0.098 0.068/0.068 0.802/0.802 0.867/0.867 0.864/0.864
N 0.456/0.456 0.000/0.000 0.759/0.759 0.886/0.886 0.954/0.954 0.671/0.671 0.692/0.692 0.713/0.713

+ 0.448/0.448 0.253/0.253 0.069/0.069 0.057/0.057 0.046/0.046 0.161/0.161 0.126/0.126 0.115/0.115

Specificity - 0.812/0.824 0.318/0.297 0.867/0.869 0.951/0.944 0.975/0.976 0.796/0.777 0.747/0.765 0.759/0.763
N 0.659/0.636 1.000/1.000 0.426/0.340 0.249/0.204 0.144/0.116 0.751/0.630 0.760/0.597 0.760/0.606

+ 0.617/0.623 0.558/0.573 0.786/0.802 0.863/0.872 0.936/0.942 0.920/0.910 0.983/0.980 0.981/0.977

CPR 0.356/0.389 0.282/0.247 0.381/0.341 0.375/0.347 0.382/0.356 0.671/0.545 0.707/0.562 0.711/0.564

GC? 0.010/0.011 NaN/NaN 0.041/0.045 0.022/0.022 0.016/0.016 0.181/0.157 0.205/0.184 0.206/0.185

merit of incorporating both structure-based and sequence-based fea-
tures into the model. To elucidate the contribution of Persistent Lapla-
cian (PL)-based features, we also present a comparative analysis with
our TopGBT model in Table 1. The TopGBT model utilizes persistent
homology-based embeddings alongside auxiliary and pre-trained trans-
former features. While TopGBT still outperforms all existing PON-Sol2
models, the incorporation of PL-based features in TopLapGBT leads to
an incremental improvement of 1% and 2% in CPR and GC? metrics,
respectively. This validates our approach of leveraging Persistent Lapla-
cian to comprehensively capture both the topological and homotopic
nuances in the evolution of protein structures.

2.3. Performance of TopLapGBT on independent test set

To robustly assess the performance of TopLapGBT, we subjected
it to an independent test using the same dataset employed by PON-
Sol2 [11]. In this validation, TopLapGBT consistently outperformed all
five existing models, as evidenced in Table 2. Specifically, TopLapGBT
registers a normalized CPR of 0.564 and a normalized GC? of 0.185,
surpassing PON-Sol2 by 3.49% and 17.83%, respectively. Relative to
TopGBT, the inclusion of PL-based features in TopLapGBT yielded in-
cremental gains in both CPR and GC? metrics, thereby further substan-
tiating the utility of Persistent Laplacian in capturing the homotopic
shape evolution within protein structures.

3. Discussion

The performance of machine learning models generally relies on
the nature of the input features. In our model, the PL-based features
depend on one main element which is the quality of the protein
structures from AlphaFold 2 (AF2). The quality of AF2 structures are
crucial in determining the performance of TopLapGBT. Recently, AF2
structures have been reported to achieve comparable performance to
nuclear magnetic resonance (NMR) structures while ensemble meth-
ods can be used to enhance the performance by combining multiple
NMR structures [1]. This allows AF2 structures to serve as a practical
substitute for experimental structural data. Although AF2 structures
are not as reliable as X-ray structures, the fusion of sequence-based
pre-trained transformer features and PL-based features provides robust
featurization even for low quality AF2 structural data. PL elucidates

the precise mutation geometry and topology, while sequence-based
pre-trained transformer features capture evolutionary patterns from
an extensive sequence library. This synergy holds significance and
can be applied to a diverse range of other challenges in the field of
biomolecular research. For the rest of this section, we analyze the
model’s performance based on the region of the mutations and the type
of mutations. We also discuss the performance of different feature types
using the Residue-Similarity plots.

3.1. Performance analysis based on different mutation regions

To delve deeper into the model’s performance, we categorize muta-
tion samples based on their structural regions: interior and surface, as
depicted in Fig. 2 pre- and post-mutations. These regions are defined
by their relative accessible solvent area (rASA), using a cutoff value
c. A residue at the mutation site is classified as buried or interior
if its rASA falls below this cutoff. While the discrete nature of ¢
initially raised concerns, given that amino acids have a continuous
exposure profile, empirical analyses on databases from organisms like
Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens have
shown that an optimal rASA cutoff of approximately 25% is effective
for distinguishing between surface and interior residues [41]. In our
analysis, we apply this framework to identify surface and interior
residues in the solubility dataset. We observe that some mutation sites
undergo a regional transition, moving from one structural domain to
another, consequent to the mutation.

To gain nuanced insights into TopLapGBT’s performance, we seg-
ment the results according to the mutation’s structural location within
the protein. We present these segmentations as heatmap plots that
delineate both mutation regions and amino acid types. Structural re-
gions are defined based on relative accessible surface area (rASA) [41].
By categorizing residues as either interior or surface, we can examine
the influence of continuous amino acid exposure on solubility change
classification post-mutation. Fig. 2(b) displays accuracy scores for four
types of mutations: interior—interior, interior-surface, surface-interior,
and surface-surface. TopLapGBT attains an average accuracy score
of 0.770 across these categories. Extended data in Figure S1 further
breaks down accuracy scores for all 20 distinct amino acids within each
region-pair, revealing variations in residue-residue pair performance.
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Fig. 2. (a) The definitions of the structural regions on the protein label 213133708 with mutation ID: 1283 W. For both wild type and mutant type, amino acids in the proteins
are classified under surface or interior regions based on the rASA of the residue. The residue ID 283 of protein label 213133708 was mutated from isoleucine (interior region)
to tryptophan (surface region). Structures are plotted with the software Illustrate [42]. (b) A comparison of performance of TopLapGBT among different mutation region types.
The y-axis represents the region type for the original residue and the x-axis represents the region type for the mutated residue. The numbers indicated in each cell corresponds
to the number of mutation samples in each region-region mutation pair. The accuracy scores (CPR) for both interior—interior and interior-surface are 0.813 and 0.812 while the

accuracy score for both surface-interior and surface-surface are 0.725 and 0.730.
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Fig. 3. A comparison of 10-fold cross validation accuracy scores (CPR) for (a) different mutation groups and (b) its associated amino acid types. The y-axis labels the residue
type of the original protein, whereas the x-axis labels the residue type of the mutant. The squares colored in black in (b) have zero mutation samples. For a reverse mutation, the

labels are taken with reverse solubility change unless the change is zero.

3.2. Performance analysis based on different mutation types

Switching focus to mutation types, our model’s capability in classi-
fying solubility changes also merits exploration across the 20 distinct
amino acid types in the dataset. In addition to this, we subgroup
amino acids as charged, polar, hydrophobic, or special case. Table S1
enumerates the sample counts for each mutation group pair. Fig. 3(a)
displays accuracy scores for each mutation group pair, while Fig. 3(b)
shows scores for each amino acid pair. Notably, the special-charged and
special-polar groups register the highest accuracy, whereas the polar-
hydrophobic and polar-special groups underperform. One plausible
reason could be the inherent complexity in accurately classifying muta-
tions with non-negative solubility changes. It is worth noting that PON-
Sol2 employed a two-layer classifier to improve classification [11].
Our results indicate that TopLapGBT surpasses the performance of this
two-layer system.

3.3. Feature analysis based on residue-similarity plots

The Residue Similarity Index (RSI) serves as a potent metric for
evaluating the efficacy of dimensionality reduction in both clustering

and classification contexts [43]. RSI has proven its value in generating
classification accuracy scores that align well with supervised methods
in single-cell typing. When applied to our solubility change dataset,
Residue-Similarity (R-S) plots can be constructed to scrutinize how the
Residue Index (RI) and Similarity Index (SI) may indicate the quality
of cluster separation.

Fig. 4 juxtaposes the R-S plots derived from TopLapGBT against
those from various feature sets utilized in model training. Across all
visualizations, samples manifest a range of classification outcomes —
both correct and incorrect - for each true label. However, a noteworthy
observation is that Transformer-pretrain and persistent Laplacian-based
features demonstrate superior clustering attributes compared to aux-
iliary features. The high RI and SI scores for auxiliary features cause
these data points to cluster near the upper regions of their respective
sections. Despite this, the integrative use of all three feature types in
TopLapGBT results in appreciable clustering performance, corroborated
by the CPR metrics obtained in 10-fold cross-validation. To solidify the
rationale behind adopting robust supervised classifiers like TopLapGBT,
we contrast the R-S plots with UMAP visualizations (shown in Figure
S2). It becomes evident that UMAP plots fail to form clusters that are
as distinct as those observed in R-S plots, thereby reinforcing the need
for a specialized approach to classify mutation samples effectively.
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color and marker correspond to the predicted label from TopLapGBT.

The impetus for utilizing structure-based features stems from the
multifaceted relationship that exists among protein sequence, structure,
and solubility. Factors such as hydrophobicity, charge distribution,
and intermolecular interactions contribute to the complexity of pro-
tein solubility. Traditional prediction methods, which often rely on
empirical rules or rudimentary descriptors, fall short in capturing this
intricate molecular interplay. By employing advanced mathematical
techniques like persistent Laplacian (PL) coupled with machine learn-
ing algorithms, we can decipher the complex patterns and relation-
ships embedded within protein sequences and structures. Persistent
Laplacian, in particular, provides a robust mathematical representation
that captures both the topological and homotopic evolution of protein
structures. Furthermore, machine learning models rooted in advanced
mathematics offer several advantages for classifying changes in protein
solubility. These models are well-suited for handling high-dimensional
and complex data sets, such as those involving protein sequences and
structures. They are also capable of learning non-linear relationships
and capturing nuanced dependencies that are often overlooked by tra-
ditional linear models. Importantly, these advanced models can adeptly
manage class-imbalanced datasets, which are commonly encountered in
protein solubility studies.

4. Conclusion

In the multifaceted quest to understand mutation-induced solubil-
ity changes, various scientific domains including quantum mechanics,
molecular mechanics, biochemistry, biophysics, and molecular biology
have made significant contributions. Despite these concerted efforts,
state-of-art models have limitations, as evidenced by their normalized
CPR value of 0.656 even after employing feature selection methods.
Persistent homology (PH) has emerged as a powerful tool for capturing
the complexity of biomolecular structures and has achieved noteworthy
success in drug discovery applications. However, its inability to capture
the nuances of homotopic shape evolution, crucial for delineating
molecular interactions in proteins, presents a critical shortcoming.

Our study introduces TopLapGBT, a novel model that integrates
persistent Laplacian (PL) features with pretrained transformer features,
thereby bridging the gap in capturing both topology and homotopic
shape evolution. This innovative fusion leads to significant advance-
ments in classification performance. Specifically, TopLapGBT achieves
normalized CPR and GC? scores of 0.688 and 0.361, respectively,
marking improvements of 4.88% and 15.71% over the state-of-the-art
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PON-Sol2. These findings are further corroborated by an independent
blind test, where TopLapGBT continues to outperform existing models.
In summary, our proposed TopLapGBT model not only achieves
superior performance over existing state-of-the-art methods but also
introduces a more nuanced approach for the classification of protein
solubility changes upon mutation. These results underscore the trans-
formative potential of integrating geometric and topological features
with machine learning in advancing the field of molecular biology.

5. Materials and methods

In this section, we endeavor to elucidate key mathematical and
computational foundations that are instrumental for the work presented
in this study. Specifically, we delve into spectral graph theory, sim-
plicial complex, and persistent Laplacian methods, highlighting their
significance in capturing topological and spectral properties essential
for the characterization of proteins. Additionally, we discuss machine
learning and deep learning paradigms, focusing on their role in pro-
cessing, analyzing, and interpreting these complex features, especially
within the confines of test datasets and validation settings.

5.1. Persistent Laplacian characterization of proteins

Simplicial complex. A simplicial complex is made up of a set of sim-
plices and generalizes beyond graph networks at higher dimensions
[44-47]. Every simplex is a finite set of vertices which can be inter-
preted as the atoms in a protein structure. Essentially, simplices can
be a point (0-simplex), an edge (1-simplex), a triangle (2-simplex), a
tetrahedron (3-simplex), or in higher dimensions, a p-simplex. In other
words, a k-simplex ¢* = {vg, vy, ..., 0} is the convex hull formed by
k + 1 affinely independent points vy, vy, ..., v, as follows,

k
ok = {AOUO A0+ AUy + - + A 0g | z A=1Vi0< A, < 1}
i=0

A geometric simplicial complex K is a finite set of geometric sim-
plexes that satisfy two essential conditions. First, any face of a simplex
from K is also in K. Second, the intersection of any two simplexes in K
is either empty or shares faces. Commonly used methods to construct
simplicial complexes are Cech complex, Vietoris-Rips complex, Alpha
complex, Clique complex, Cubic complex, and Morse complex [44-47].

Chain group. A kth chain group C, is a free Abelian group generated by
oriented k-simplices 6¥. A boundary operator 9 : C, — C,_, defined
on an oriented k-simplex ¢* can be written as

k
k i N
Ot = Y (=D [vg, 01, U3, o, By o 0],
o

where [vy, vy, 0, ...,0;,...,0;] is an oriented (k — 1)-simplex, which is
constructed by the all the vertices except v;, i.e., removing v; from the
simplex. The boundary operator satisfies d,_,9, = 0.

The adjoint of 9;, which is

0, : Gy =~ Cy,

satisfies the inner product relation (d,(f),g) = (f.0;(g)), for every
f € Cy, g € C,_,. This will be used in the combinatorial Laplacian.

Combinatorial Laplacian. For the k-boundary operator 9, : C, — C_,;
in K, define B, to be an m x n matrix representation of the boundary
operator under the standard bases {c}_ and {aj.“l }7, of G, and C;_,.
Similarly, the matrix representation of 9d; is the transpose matrix BZ,
with respect to the same ordered bases of the boundary operator 9.

More specifically, let m and n be the number of (k — 1)-simplices and
p-simplices respectively in a simplicial complex K. The m x n boundary
matrix B, has entries defined as follows:

1, if Ul.k_l < 0'],‘,0':‘_1 ~ ;‘
i ; k-1 k k-1 k
B.(i,j))=49 -1, ifo; <oj.0;7 o

0, if O’;{_l %< cr;.‘.
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where | <i<mand | <j < n. Here, 6*~! < 6* represents the ith (k—1)-
#~! is a face of jth k-simplex o and of~! ~ o indicates the
coefficient of ¢¥~! in 9;(c*) is 1. Likewise, c¥~! £ o* means that ¢*~!
is not a face of aj’.‘ and ¢! » aj’.‘ indicates that the coefficient of ¢~
in 6k(oj’f) is —1.

Then the k-combinatorial Laplacian or the topological Laplacian is
a linear operator 4, : C,(K) - Ci(K)

simplex o

4y = akﬂdzH

+ 070 @
The k-combinatorial Laplacian exhibits an » X n matrix representation
L, and is given by

L, = Bk+lBZ+]

+B/B,. 2
In the case k =0, then L, = BIB]T since g, is a zero map.

The number of rows in B, represents the number of (k—1)-simplices
in K and the number of columns refers to the number of k-simplices in
K. Furthermore, the upper k-combinatorial Laplacian matrix is Li’ =
B, +,BZ+1 and the lower k-combinatorial Laplacian matrix is L_ =
B/B,. Recall that since 9, is a zero map, hence Ly(K) = BB with
B, being a zero matrix and K being an oriented simplicial complex
of dimension 1. In fact, the 0-combinatorial Laplacian matrix L,(K) is
actually the graph Laplacian in spectral graph theory.

The above graph Laplacian matrices can be explicitly described in

terms of the simplex relations. More precisely, L, can be described as

d(e?), ifi=j
LoG,j)=4-1, ifi#jand 6?'\0';)
0, ifi#j anda?/-\a?,

which is equivalent to the graph Laplacian. Furthermore, when k > 0,
L, can be expressed as

dieb)+k+1, ifi=j

1, ifi#j,0f ~ % ok — o and 6% ~ o¥
LG, j) = y o ’ ! ’

-1, 1fi7éj,<7‘.k/\0';“,0';‘v0';‘ and 0':‘»»00';‘

0, if i # j, and either o¥ ~ a}‘ or ok £ oj’.‘.

k=1~ ok if they have the same orientation,

Here, we denote o;

i.e. similarly oriented. Furthermore, we say that two k-simplices o*
and o/’.‘ are upper adjacent (resp. lower adjacent) neighbors, denoted
as of ~ a}‘ (resp. oF — aj’.‘), if they are both faces of a common (k + 1)-
simplex (resp. they both share a common (k — 1)-simplex as their face).
In addition, if the orientations of their common lower simplex are the
same, it is called similar common lower simplex (¢} — 0';‘ and 6¥ ~ o%).
On the other hand, if the orientations are different, it is called dissimilar
common lower simplex (o — a;‘ and o » a;‘). The (upper) degree of
a k-simplex of, denoted as d(c¥), is the number of (k + 1)-simplices, of
which a,." is a face.

The eigenvalues of combinatorial Laplacian matrices are indepen-
dent of the choice of the orientation [48]. Furthermore, the multiplicity
of zero eigenvalues, i.e. the total number of zero eigenvalues, of L
corresponds to the kth Betti number g, , according to the combinatorial
Hodge theorem [49]. The kth Betti numbers are topological invariants
that describe the k-dimensional holes in a simplicial complex. In partic-
ular, fy, #; and p, represents the numbers of independent components,
rings and cavities, respectively.

Persistent Laplacian. Persistent Laplacian (PL) were first introduced by
integrating graph Laplacian and multiscale filtration [23]. Analyzing
the spectra of k-combinatorial Laplacian matrix allows both topological
and geometric information (i.e. connectivity and robustness of simple
graphs) to be obtained. However, this method is genuinely free of met-
rics or coordinates, which induced too little topological and geometric
information that can be used to describe a single configuration.
Therefore, PL was extended to simplicial complexes. This allows a
sequence of simplicial complexes from a filtration process to generate
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persistent Laplacian which is largely inspired by persistent homology
and in earlier works in multiscale graphs. For the rest of this section,
we introduce mainly on the construction of PL. First, a k-combinatorial
Laplacian matrix is symmetric and positive semi-definite. Therefore, its
eigenvalues are all real and non-negative. The multiplicity of zero spec-
tra (also called harmonic spectra) reveals the topological information,
and the geometric information will be preserved in the non-harmonic
spectra.

A key concept of PL is the filtration process. Essentially, an ever-
increasing filtration value f is used to generate a series of topological
spaces, which are represented by a nested sequence of multiscale
simplicial complexes. Naturally, PL generates a sequence of simplicial
complexes induced by varying a filtration parameter [23]. For an
oriented simplicial complex K, its filtration is a nested sequence of
simplicial complexes (K,) | of K

2=KyCK, C-CK, =K.

This nested sequence of simplicial complexes induces a family of
chain complexes

¢ ‘ ‘ ¢ t
dk+2 t l)k+l ' dk al 1 a0
=6, 5C=s-5C 50 . 3)
t* +1 g ot ot* o
k+2 k+1 k 1 0 teR+

where C; = C,(K,) is the chain group for the subcomplex K, and its
k-boundary operator is d; : Cy(K,) = C_;(K,). In the case k < 0, then
C,(K,) is an empty set and a;{ is a zero map. For 0 < k < dim(K,), the
boundary operator

k
d(op) = Y (-1ol!, ek, ©)

i=0
with ¢* = [vy, ..., v,] being the k-simplex, and ¢! = [vg, ..., 5, ..., v;]
being the (k — I1)-simplex for which its vertex v; is removed. Sim-
ilarly, the adjoint of 0] is the operator J;* C_1(K) = Ci(K)).
The topological and spectral characteristics can then be studied from
L,(K,) by varying the filtration parameter and diagonalizing the k-
combinatorial Laplacian matrix. The multiplicity of the zero spectra of
L, is the persistent Betti number £, which represents the number of
k-dimensional holes in K,. In other words,

ﬁ = d1m(L ) — rank(L )= nulhty(L ) = # of harmonic spectra of L;(.

)

In particular, ﬁ(’) represents the number of connected components in
K, B} counts the number of one-dimensional cycles in K, and f; reveals
the number of two-dimensional voids in K;. In addition, the spectra of
L can be written in the following ascending order

Spectra(Ll) = {(A)L, (A, .. s (AL ) )

where L here is an n x n matrix. The p-persistent k-combinatorial
Laplacian can be extended based on the boundary operator as well.
Further details can be found in [23].

In order to illustrate the difference between PL and PH, Fig. 5
describes a point cloud, basic simplices, a filtration process and the
comparison between persistent Laplacian and persistent homology bar-
codes of 13 points. The filtration process in Fig. 5(c) shows the different
stages of a Rips filtration process for the 13 points. Fig. 5(d) shows the
persistent homology barcodes (in blue) and persistent non-harmonic
spectra (in red). It can be seen that the non-harmonic spectra provides
the additional homotopic shape evolution that is missing in persistent
homology in the later part of the filtration process.

5.2. Persistent Laplacian descriptors
In order to capture the mutation-induced solubility change, we

apply the persistent Laplacian (PL) to characterize the interactions
between the mutation site and the rest of the protein. To describe
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these interactions, we first propose the interactive PL with the distance
function DI(A;, A;) describing the distance between two atoms A; and
A; defined as

DI(A,. 4,) = {oo, if LOC([.KI-) =Loc(4)), o
DE(A;, A)), otherwise.

where DE(,-) is the Euclidean distance between the two atoms and
Loc(-) refers to the atom’s location which is either in the mutation site
or in the rest of the protein. Here, we construct two types of simplicial
complexes in our PL computation, such as Vietoris-Rips complex (VC)
and Alpha complex (AC). Both complexes are used to characterize
the first order interactions and higher order patterns respectively. To
capture and characterize different types of atom—atom interactions, we
generate the PL based on different atom subsets by selecting one type
of atom in the mutation site and one other atom type in the rest of
the protein. Different types of atom—atom interactions characterize the
different interactions in proteins. For example, interactions generated
from carbon atoms are associated with hydrophobic interactions. Sim-
ilarly, interactions between nitrogen and oxygen atoms correlate to
hydrophilic interactions and/or hydrogen bonds. Both types of inter-
actions are illustrated in Fig. 6. Interactive PLs have the capability to
unveil additional details about bonding interactions and offer a fresh
and distinct representation of molecular interactions in proteins.

The set of persistent spectra from each persistent Laplacian com-
putation consists of "/ ', and VDE where y € {M, W) refers to the
mutant protein or the wild type proteln a € {C,N,O} is the atom
type chosen in the rest of the protein and g € {C, N, O} is the atom
type chosen in the mutation site. VDa’ applies the distance DI-based
filtration to generate O- d1mens1onal Laplac1an using the Vietoris-Rips
complex and V/[ffﬂ applies the Euclidean distance DE-based filtration
to generate 1 and 2-dimensional Laplacian using the alpha complex. In
total, there are 54 sets of persistent spectra. The persistent spectra from
PL contains both harmonic and non-harmonic spectra that are capable
of revealing the molecular mechanism of protein solubility.

For zero dimensions, we consider both the harmonic spectra and
non-harmonic spectra information for each persistent Laplacian. Filtra-
tion using Rips complex with DI distance is used. The 0-dimensional
PL features are generated from 0 A to 6 A with 0.5 A gridsize. For
the non-harmonic spectra information, we count the number of non-
harmonic spectra and calculate seven statistical values of non-harmonic
spectra such as sum, minimum, maximum, mean, standard deviation,
variance and the sum of eigenvalues squared. This generates eight
statistical values for each of the nine atomic pairs. Therefore, the
dimension of 0-dimensional PL features for a protein is 72. In total,
the 0-dimensional PL-based feature size after concatenating features at
different dimensions for wild type and mutant is 1872.

For one or two dimensions, we perform the filtration using Alpha
complex with the DFE distance. The limited number of atoms in the
local protein structure can create only a few high-dimensional sim-
plexes, resulting in minimal alterations in shape. As a result, it suffice to
consider features from only harmonic spectra of persistent Laplacians
by coding the topological invariants for the high-dimensional interac-
tions. Using GUDHI [51], the persistence of the harmonic spectra can be
represented by persistent barcodes. The topological feature vectors are
generated by computing the statistics of bar lengths, births and deaths.
Bars shorter than 0.1 A are excluded as they do not exhibit any clear
physical meaning. The remaining bars are then used for computing
the statistics: (1) sum, maximum and mean for lengths of bars; (2)
minimum and maximum for the birth values of bars; (3) minimum and
maximum for the death values of bars. Each set of point clouds leads to
a seven-dimensional vector. These features are calculated on nine single
atomic pairs and one heavy atom pair. The dimension of one- and two-
dimensional PL feature vectors for a protein is 140. In total, the higher-
dimensional PL-based feature size after concatenating features at differ-
ent dimensions for wild type, mutant and their difference is 420.
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Fig. 5. The illustration of (a) point cloud, (b) basic simplices and (c) the filtration process and (d) Comparison between PH barcodes [12,50] and the non-harmonic spectra of
persistent Laplacians (PLs) [23] from the filtration process in (c). The x-axis represents the filtration parameter f. By discretizing the filtration region into equal-sized bins and
adding all the Betti bars together, the topological invariants are summarized into persistent Betti numbers that acts a topological descriptor extracted from protein structures.
Persistent Laplacians (PLs) [23] for thirteen points. The first non-zero eigenvalues of dimension 0, Ay(r), and dimension 1, 4,(r), of PLs are depicted in red. The harmonic spectra
of PLs return all the topological invariants of PH, whereas the non-harmonic spectra of PLs capture the additional homotopic shape evolution of PLs during the filtration that are
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Fig. 6. An illustration of interactive PL showing hydrophilic interactions based on DI-based filtration (left) and hydrophobic interactions based on DE-based filtration (right) at
a mutation site. (a) Hydrophilic interactions between the nitrogen atoms (red) and oxygen atoms (yellow). (b) Hydrophobic interactions between the carbon atoms (cyan) and
oxygen atoms (dark blue). The hexagon ring is colored in red and the triangle is colored in yellow. (c) The PH barcodes and PL for dimension 0 of the hydrophilic interactions
in (a). (d) The PH barcodes and PL for dimension 0 and dimension 1 of the hydrophobic interactions in (b). The Betti-1 bar is due to the red hexagon ring in (b).



J. Wee et al.
5.3. Persistent homology

Persistent homology is part of the harmonic spectra of PL. The
homology groups in PH illustrate the persistence of topological in-
variants, hence providing the harmonic spectral information in PL.
The site- and element-specific PH features are generated in a similar
way as compared to PL. Similar to PL, filtration construction is also
employed to PH. For the zero dimension, the filtration parameter can
be discretized into several equally spaced bins, namely [0, 0.5], (0.5,
11, ---, (5.5, 6] A. The death value of the bars are summed in each bin
resulting in 12 x 18 features.

For each bin, we count the numbers of persistent bars, resulting
in a nine-dimensional vector for each point cloud. Similarly, this is
performed for each of the nine single atomic pairs. Hence, the dimen-
sion of PH features for a protein is 216. For one or two dimensions,
the identical featurization from the statistics of persistent bars in PH
is used. The PH embedding combines features at different dimensions
as described above and concatenated for wild type, mutant and their
difference, resulting in a 648-dimensional vector.

5.4. Transformer features

Recently, we have seen significant advancements in modeling pro-
tein properties using large-scale protein transformer models trained on
hundreds of millions of sequences. These models, like ESM [32] (evo-
lutionary scale modeling) and ProtTrans [33,34], have demonstrated
impressive performance. Moreover, hybrid fine-tuning approaches that
leverage both local and global evolutionary data have proven to en-
hance these models even further. For instance, eUniRep is an improved
LSTM-based UniRep model achieved through fine-tuning with knowl-
edge extracted from local multiple sequence alignments (MSAs). Ad-
ditionally, the ESM model can be fine-tuned using either downstream
task data or local MSAs. In our research, we employed the ESM-1b
transformer, a model that falls under the transformer architecture. This
particular variant was trained on a dataset of 250 million sequences us-
ing a masked filling procedure and boasts an architecture comprising 34
layers with a whopping 650 million parameters. The ESM transformer’s
primary role in our work was to generate sequence embeddings. At
each layer of the ESM model, it encoded a sequence of length L into
a matrix sized at 1280xL, excluding the start and terminal tokens. For
our study, we utilized the sequence representation derived from the
final (34th) layer and computed the average along the sequence length
axis, resulting in a 1280-component vector.

5.5. Performance metrics

PPV and NPV assesses the true positive and true negative proportion
of the predicted results for each solubility class. PPV and NPV are com-
puted based on TP, TN, FP and FN which represents the true positive,
true negative, false positive and false negative values for each solubility
class. For each solubility class, PPV and NPV can be computed by:

TP

PPV= ————. ®
TP+ FP

NPy = N (C)]
TN+ FN

Furthermore, specificity and sensitivity can be computed by the follow-
ing:
TN

Specificity = ————. 10

pecificity = 7m0 (10$)

Sensitivity = —— L. an
TP+ FN

The correct prediction ratio (CPR) and generalized squared correlation
(GC?) are used to evaluate the overall performance of TopLapGBT. CPR
and GC? can be computed as

1
CPR = — Z z,;, and (12)

10
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GC? 13)

_ 1 2 (Zij - eij)z
NEK-D & ¢
where K is the number of classes and N is the number of samples. Here,
z;; represents the number of samples of class i to class j. Let x; = 37, z;;
be the number of inputs from class i, and y; = ¥, z;; be the number of
inputs predicted to class j. Then the expected number of samples in
(i, j)-th entry of the multiclass confusion matrix is
Xy
eij = T
Since the mutational samples across the three solubility classes are
imbalanced, we normalized the values to provide more reliable calcu-
lation of performance metrics.

6. Software and resources

Protein sequences are first preprocessed by AlphaFold 2 to gener-
ate wild type protein structures. In particular, 3D protein structures
are generated from protein sequences using ColabFold [52]. Mutant
proteins are generated from the Jackal software [38]. All TopLapGBT
models are built using the sklearn machine learning library [53]. The
hyperparameters for all the TopLapGBT are: n_estimators = 20,000,
learning rate = 0.05, max_depth = 7, subsample = 0.4, min_sample_split
= 3 and max features = sqrt. The PQR files, which contains the partial
charge information of the proteins, are generated from the PDB2PQR
software [54]. The PQR files for both the wild type proteins are gen-
erated with AMBER force field. The solvation energy and surface area
information are calculated from the in-house online software package
ESES [55] and MIBPB [56]. The pKa values are computed from the
PROPKA software package [57]. The position-specific-scoring matrices
(PSSM) are computed from the BLAST+ software [58] using the nr
database. The secondary structure features and torsion angle sequence-
based information are calculated from SPIDER [59]. The persistent
Laplacian descriptors for both VR complexes and alpha complexes are
calculated using the GUDHI software library [60]. All computational
work in support of this research was performed using the resources
from the National Super Computing Centre of Singapore (NSCC).

Code and data availability

The 3D protein structures and the TopLapGBT code can be found
in https://github.com/ExpectozJJ/TopLapGBT. The source code for the
R-S plot can be found at https://github.com/hozumiyu/RSI.
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