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Abstract: Single-cell RNA sequencing (scRNA-seq) has emerged as a transformative technology, offer-

ing unparalleled insights into the intricate landscape of cellular diversity and gene expression dynamics.

The analysis of scRNA-seq data poses challenges attributed to both sparsity and the extensive number of

genes implicated. An increasing number of computational tools are devised for analyzing and interpreting

scRNA-seq data. We present a multiscale differential geometry (MDG) strategy to exploit the geometric

and biological properties inherent in scRNA-seq data. We assume that those intrinsic properties of cells lies

on a family of low-dimensional manifolds embedded in the high-dimensional space of scRNA-seq data.

Subsequently, we explore these properties via multiscale cell-cell interactive manifolds. Our multiscale

curvature-based representation serves as a powerful approach to effectively encapsulate the complex re-

lationships in the cell-cell network. We showcase the utility of our novel approach by demonstrating its

effectiveness in classifying cell types. This innovative application of differential geometry in scRNA-seq

analysis opens new avenues for understanding the intricacies of biological networks and holds great po-

tential for network analysis in other fields.

Key words: Differential geometry, multiscale network analysis, scRNA-seq data, cell interactive manifold,

machine learning, cell type classification, CCP, dimensionality reduction.
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1 Introduction

Biological networks serve as abstract representations of biological systems, with biological entities or nodes

representing genes, proteins, or metabolites, and edges signifying connections or relationships between

corresponding biological entities. Critical networks in humans or animals encompass protein-protein in-

teractions, protein-DNA interactions, protein-metabolite interactions, gene regulatory networks (GRNs),

signal transduction networks, as well as metabolic and biochemical networks [1]. The complex biological

network are intricately regulated by the dynamic expression levels of genes over both time and space. Con-

sequently, the analysis of gene expression data plays a pivotal role in the realm of biological and medical

research. For instance, it helps identify characteristic genes intimately linked to diverse cancer types and

adeptly classifies tissue samples into distinct categories of normalcy and malignancy [2].

Single-cell RNA-sequencing (scRNA-seq) is a powerful and recent method for studying the gene expres-

sion of tens of thousands of single cells simultaneously, providing insights into the molecular states of

individual cells through their transcriptional profiles [3]. This technique represents a notable advancement

over conventional bulk RNA-sequencing, which only evaluates average gene expression levels across a

cell population. While average gene expression profiles are adequate for characterizing the overall tissue

state, they mask signals from individual cells, thus overlooking tissue heterogeneity. The use of scRNA-seq

technology has facilitated the discovery of new cell types [4], the identification of novel markers for spe-

cific cell types [4, 5], the exploration of cellular heterogeneity [5, 6], and the trajectory inference of cellular

differentiation [7].

Despite its potential for revealing novel biological insights, scRNA-seq data present challenges such as

sparsity, noisiness, and technical artifacts, which are beyond those encountered in bulk RNA samples [8].

Consequently, specific pre-processing and normalization methods tailored for scRNA-seq are essential.

Commonly, scRNA-seq analysis involves dimension reduction techniques to mitigate noise and ensure

computational tractability. However, the selection of dimension reduction method significantly impacts

downstream analyses such as clustering [9] and pseudo-time reconstruction [8].

Principal component analysis (PCA) is a key technique in scRNA-seq and has been extensively used for

clustering single cells [10]. PCA is a linear dimension reduction method that obtains a low-dimensional

data representation along orthogonal linear axes, maximizing the proportion of variance accounted for on

each axis in Euclidean space [11]. Various methods have been designed based on PCA, such as pcaReduce,

which uses a novel agglomerative clustering method atop PCA to cluster cells. Kernel PCA, employing ker-

nel functions in a reproducing kernel Hilbert space, and accommodate non-linearity in data with complex

algebraic/manifold structures. Some works combine graph Laplacians with PCA to incorporate nonlinear

manifold in intrinsic geometrical structure [12] and generalize the traditional pairwise graph relations and

capture multiscale geometrical structure in persistent Laplacian [13]. In addition to PCA, other dimension-

ality reduction techniques for the analysis of scRNA-seq data include independent components analysis

(ICA) [14], Laplacian eigenmaps [15], t-distributed stochastic neighbor embedding(t-SNE) [16], uniform

manifoldapproximation and projection (UMAP) [17], deep learning methods [3, 18], and non-negative ma-

trix factorization (NMF) methods [19, 20].

Single-cell RNA sequencing (scRNA-seq) unveils gene associations and transcriptional networks within

cell populations. Cell-cell and gene-gene networks from scRNA-seq aids understanding complex interac-

tions and regulatory relationships. They are critical in cell type identification, the comprehension of tissue

function through the analysis of ligand-receptor interactions inferred from scRNA-seq data [21], and de-

ciphering co-expression patterns, the transcriptional regulatory landscape, and cell transitions states [22].

High-dimensional scRNA-seq data encompasses intricate manifolds. Mapper [23] based on topological

data analysis (TDA), offers a structural abstraction of often high-dimensional data and serves as a useful

tool for scRNA data. Single-cell topological data analysis (scTDA) was then developed to study tempo-
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ral, unbiased transcriptional regulation using the scRNA seq data [24], and single-cell topological sim-

plicial analysis (scTSA) was proposed based on temporal filtration to analyze single-cell genomics [25].

K-Nearest-Neighbors Topological PCA was proposed for processing scRNA seq data [26]. A topological

NMF approach has been introduced for analyzing scRNA seq data [27]. These topological methods rely on

algebraic topology, which involves the construction of a simplicial complex and the computation of topo-

logical invariants. As a result, they effectively capture both the topological and geometric structures within

scRNA-seq data. It is intriguing to preserve topological structures among cells in a low dimensional space

and then interpret the biophysical meaning of high dimensional structure and geometry.

Differential geometry is a branch of mathematics that deals with the study of curves, surfaces, and other ge-

ometric objects using techniques from calculus and linear algebra. It provides a framework for understand-

ing the intrinsic geometry of spaces and is widely used in various areas of mathematics and physics, in-

cluding general relativity and differential topology. Differential geometry approaches have had enormous

success in the multiscale modeling of biomolecular systems [28], molecular surface representation [29],

and geometric learning of biomolecular properties [30]. Curvature analysis offers useful quantitative mea-

surement of low-dimensional manifold embedded in a high-dimensional ambient space and holds great

promise for scRNA-seq data. Sritharan et al. [31] explored the viability of two approaches from differential

geometry to estimate the Riemannian curvature of these low-dimensional manifolds. They applied their

extrinsic approach to study scRNA-seq data of blood, gastrulation,and brain cells, and computed Rieman-

nian curvature of scRNA-seq data manifold. Recent works [32] investigated hyperbolic geometry to model

cell-differentiation trajectories, which assumes the gene expression across multiple cell types exhibits a

low-dimensional hyperbolic structure. Huynh et al. [33] utilized Ricci curvature to analyze cell states in

single-cell transcriptomic data on k-nearest neighborhood graphs built from PCA embeddings.

In this study, we aim to introduce multiscale differential geometry (MDG) modeling of scRNA-seq data. We

assume that the intrinsic biological and geometric properties of cells lies on a family of low-dimensional dif-

ferentiable manifolds embedded in the high-dimensional scRNA-seq data. We employed our recently de-

veloped correlated clustering and projection (CCP)-assisted UMAP methodology to preprocess scRNA-seq

data. This process involves conducting dimensionality reduction to project the data onto a low dimensional

space, with the belief that the projection preserves faithful genetic variation, expression, and other biolog-

ical information. To facilitate manifold analysis, we carry out a discrete-to-continuum mapping to obtain

a volumetric density of the data, rendering cell-cell interactive manifolds. This enables multiscale differ-

ential geometry analysis by computing multiscale cell-cell interactive curvatures and elucidating cell–cell

relationships in the original network. We demonstrated the efficacy of our multiscale differential geometry

approach by classifying cell types using 12 scRNA-seq datasets, pairing the multiscale curvature repre-

sentation of cells with a machine learning algorithm. Comparison results with predictive models based

on embeddings from standard dimensionality reduction methods validate the descriptive and predictive

ability of multiscale differential geometry embeddings. Our multiscale differential geometry also possesses

significant potential for offering insights to a variety of other networks in science and engineering.

2 Method

2.1 UMAP-assisted CCP Dimensionality reduction

Dimensionality reduction is crucial for analyzing single-cell RNA sequencing (scRNA-seq) data. PCA and

UMAP are two popular dimensionality reduction techniques and have been used in various applications

including scRNA-seq data analysis [34,35]. In particular, UMAP gained tremendous success and popularity

in data visualization [17]. Its most prominent strength lies in balancing both local and global structures of

data. We use the dimensionality reduction methods for benchmarking analysis. We utilized Correlated

Clustering and Projection (CCP) [36], a new data-domain dimensionality reduction method, to map our
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Figure 1: Illustration of the multiscale differential geometry (MDG) strategy for analyzing scRNA-seq data in the cell type classification

task. Raw scRNA-seq data is preprocessed by correlated clustering and projection (CCP) approach, followed by UMAP dimensonality

reduction. The resulting data forms the basis for constructing cell interactive manifolds, enabling the derivation of cell interactive

curvatures through MDG analysis. The MDG modeling approach can then be employed for dissecting cellular heterogeneity, including

tasks such as cell type classification.

scRNA-seq data to lower dimensions. We further integrated the power of UMAP with CCP to interpret the

original scRNA-seq data. Below we provide an overview of CCP and data abstraction procedures.

The CCP procedure comprises two main steps: gene partitioning and gene projection. In essence, CCP

maps clusters of similar genes into a collection of super genes that encapsulate pairwise nonlinear gene-

gene correlations across all cells [36]. This results in a super-gene representation. A preprocessing was

performed first for the original scRNA-seq data. Assume M to be the number of samples (cells) and I to be

the number of genes. Then we have the log-transformed scRNA-seq data Z ∈ R
M×I . Each row represents

expression information of all genes in each sample, while each column indicates the expression information

of a gene in all samples.

2.1.1 CCP Feature partitioning

Let Z = {z1, ..., zi, ..., zI} be the collection of columns or gene vectors in Z , and zi ∈ R
M . CCP implements

k-means clustering on the set Z , resulting in clusters Z1, ..., ZN , Z = ⊎N
n=1Z

n, N << I . The clustering is

performed on genes. Let S = {1, ..., I} be the enumeration of the original genes. According to the k-means

gene clustering results, we can have a gene number partition S = {S1, ..., SN} with Sn = {i|zi ∈ Zn}, i.e.,

Sn is the set of gene numbers in the gene clustering Zn.

2.1.2 CCP Feature projection

With the gene partitioning, we establish the notation zS
n

m ∈ R
|Sn| to represent the set of Sn genes in the mth

sample. Here, |Sn| indicate the cardinality of gene number set Sn. These genes are projected into a super-

gene xn
m using the flexibility rigidity index (FRI) introduced in [37]. The key of FRI lies in the utilization of

kernel functions. Denote ∥zS
n

i −zS
n

j ∥ as distance between cell i and cell j for the cluster of Sn genes, and the
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gene-gene correlation between the two cells within the cluster of genes Sn are defined by CSn

ij = Φ(∥zS
n

i −

zS
n

j ∥; ηS
n

, τ, κ), where Φ is a correlation kernel, and ηS
n

, τ, and κ > 0 are parameters. Commonly employed

metrics || · || for calculating the correlation include Euclidean, Manhattan, and Wasserstein distances.

The correlation kernels satisfy the following admissibility conditions

Φ(∥zS
n

i − zS
n

j ∥; ηS
n

, τ, κ) → 0, as∥zS
n

i − zS
n

j ∥ → ∞ (1)

Φ(∥zS
n

i − zS
n

j ∥; ηS
n

, τ, κ) → 1, as∥zS
n

i − zS
n

j ∥ → 0. (2)

Commonly used kernel functions, such as radial basis functions, follow this pattern. Specifically, we utilize

the generalized exponential function represented as:

Φ(∥z∥; η) = e−(∥z∥/η)κ , κ > 0, η > 0, (3)

where z is a general vector.

We employ the following modeling approach for gene expression data:

Φ(∥zS
n

i − zS
n

j ∥; ηS
n

, τ, κ) =











e
−

(

∥zS
n

i −z
Sn

j ∥

ηSn
τ

)κ

∥zS
n

i − zS
n

j ∥ < rS
n

c

0, otherwise.

In this model, we introduce a cutoff distance denoted as rS
n

c and a scale parameter ηS
n

, representing the

resolution of gene-gene correlation and are determined by the data. The parameter κ indicate the power of

the exponential function, while τ serves as a scale parameter.

Pairwise gene-gene correlation matrix CSn

= {CSn

ij } reveals cell-cell similarity or interactions, and can also

be mathematically perceived as the weighting of the edges in a weighted graph, given the cutoff rS
n

c . The

cutoff rS
n

c is determined as the 2-standard deviations of the pairwise distances. On the other hand, ηS
n

can

be regarded as the algebraic connectivity, defined as the average minimal distance between the cluster of

genes

ηS
n

=

∑M
m=1 min

zSn

j
∥zS

n

m − zS
n

j ∥

M
.

Leveraging the correlation function, we project Sn genes into a super-gene using FRI for ith sample,

xn
i =

M
∑

m=1

Φ(∥zS
n

i − zS
n

m ∥; ηS
n

, τ, κ).

By performing this projection for all gene clusters, we get the lower dimensional super-gene representation

for ith sample (cell), denoted as xi = (x1
i , ..., x

N
i ).

The number N in the super-gene representation xi = (x1
i , ..., x

N
i ) indicates the gene clustering in the feature

partitioning step, and It has impact on the representative ability of super-genes for each cell. In our previous

study [36], we systematically investigated the performance of super-gene representation with different N

values. As N increase, the super-gene representation can lead to better machine-learning predictions. When

N equals 300, the super-gene representations has proven to be effective and robust descriptors for the

cells [36].

2.1.3 CCP-assisted UMAP dimensionality reduction

UMAP is an essential dimensionality reduction technique. We further employ UMAP to carry dimension

reduction on the aforementioned super-gene representations. The target dimension is 3D; specifically, the
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CCP super-gene representation xi = (x1
i , ..., x

N
i ) is projected to a vector of length three. We still adopt

notation of x for gene representation of cells. The resulting vector xi = (x1
i , x

2
i , x

3
i ) is referred to as CCP-

assisted UMAP (CCP-UMAP) representation. The set X = {x1, ...,xM} becomes new gene representations

for the M cells, and X ∈ R
M,3. UMAP has the advantage of robustness when reducing data to lower

dimensions, which underlies its popularity for data visualization. In our recent investigations [27], the

integration of UMAP and CCP can significantly improve UMAP visualization and prediction accuracy in

scRNA-seq data analysis. This motivates us to employ UMAP to project the CCP-preprocessed data onto

a low dimensional gene representation. Subsequently, we utilize advanced mathematical tools for further

analysis of scRNA-seq data. It is believed that CCP-UMAP representation X preserve sufficient information

in CCP super-gene representations.

2.2 Multiscale differential geometry modeling of cell-cell interactions

Figure 1 illustrates our multiscale differential geometry strategy for scRNA-seq data analysis. The CCP-

UMAP representation provides a foundation for analyzing cell-cell similarity or interaction networks in

low dimensional space. The resulting scRNA-seq data contain significant amount heterogeneity informa-

tion in cells. Our objective is to utilize advanced differential geometry modeling to capture interactions

and correlations among cells, thereby revealing intrinsic heterogeneity information. To this end, we must

convert discrete point cloud data into a density distribution by a discrete to continuum mapping. Then,

manifolds are extracted and curvatures are evaluated.

2.2.1 Cell-cell interactive manifolds

a) b)

c) d)

c=20

c=15 c=0.1

Figure 2: a. A demonstration of flexibility-rigidity correlation kernel defined by general exponential functions at different powers. At

large κ value, the kernel function essentially becomes an ideal low-pass filter (ILF). A larger η value indicates a lower resolution and a

slower decay. We can vary the values of η and κ to modulate the multiscaling modeling. b-d: The isosurfaces of a cell-cell interactive

manifold for a cell (marked with hexagon ) in the scRNA-seq dataset GSE67835 at various isovalue values c. The parameters η = 1

and κ = 8 are used in the density function (5).
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We first extract low-dimensional cell-cell interactive manifolds from the CCP-UMAP representations. This

is done via a multiscale discrete to continuum mapping algorithm. We assume that single-cell properties are

sampled on low-dimension manifolds defined by density functions. Given a cell-cell interactive manifold,

we can apply tools from differential geometry to extract features suitable for machine learning tasks.

In the CCP-UMAP representation X = {x1, ...,xM}, vector xi represents ith cell, and ∥x − xi∥ is the Eu-

clidean distance between a point x ∈ R
3 and the sample xi. The unnormalized gene expression density are

given by a discrete to continuum mapping,

ρ(x; η) =

M
∑

i=1

Φ(∥x− xi∥; η), (4)

where Φ is a C2 correlation kernel or density estimator. The correlation between a point with all cells are

characterized by

ρ(x; η) =

M
∑

i=1

e−(∥x−xi∥/η)
κ

, κ > 0, (5)

if Φ is defined to be the exponential kernel function (3).

The kernel function reflects the topological connectivity of a cell-cell network or graph consisting of cells

and characterizes the geometric compactness of the connectivity network. We construct a multiscale ge-

ometric representation based on the FRI theory, which cast the point cloud data into a density map. The

conversion is achieved using resolution parameters η and κ, which facilitates the multiscale analysis of com-

plex data. As shown in Figure 2a, the exponential kernal function show different correlation scales under

various power values κ. It demonstrate the decay property of exponential and or other density functions.

A larger η value indicates a lower resolution and a slower decay. Note that other C2 correlation kernels or

density estimators can be utilized so long as they meet the admissibility conditions (1).

The correlation function ρ is regulated by scale parameter η and decay parameter κ. By choosing multiple

η and κ values, multi-scale characterizations are induced. In our multiscale modeling, we set a lower and

upper bound for η as

ηmin = +

∑M
m=1 minxi

∥xm − xi∥

M
,, ηmax = +

∑M
m=1 maxxi

∥xm − xi∥

M
,, (6)

where notation +·, indicates the ceiling of the average distances, and xi ∈ X . This way, the correlation

function (5) gives cell-cell interactive manifold representations. Figure 1 offers a visualization of a cell-cell

interaction manifold generated by specifying a particular isovalue of the kernel function (5) for a designated

cell, indicated by a hexagon. The shape evolution of isosurfaces for the manifold through varying isovalues

can be observed Figure 2.

2.2.2 Multiscale differential geometry of differential manifolds

The aforementioned density functions renders the interactive manifold, which makes it feasible to use dif-

ferential geometry to interpret cell-cell interactions. We have defined calculus on differentiable manifolds.

Consider a C2 mapping M : U → R
n+1, where U ¢ R

n is open and the closure of U is compact [29].

Here, M(u) = (M1(u), ...,Mn(u),Mn+1(u)) is a position vector on a hypersurface, and u = (u1, ..., un) ∈ U .

Tangent vectors or directional vectors of M are Vi = ∂M
∂ui

, i = 1, ...n. The Jacobian matrix of M is DM =

(V1, V2, ..., Vn). Given the notation < · > as the Euclidian inner product in R
n+1, the first fundamental form

I is then given by I(Vi, Vj) :=< Vi, Vj > for any two tangent vector Vi, Vj ∈ TuI, where TuI is the tangent

hyperplane at I(u). In the coordinate I(u), the first fundamental form is a symmetric and positive matrix

(gij) = (I(Vi, Vj)).
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Let N(u) be the unit normal vector given by the Gauss map N : U → R
n+1

N(u1, ..., un) = V1 × V2 × ...× Vn/∥V1 × V2 × ...× Vn∥ ∈§u M, (7)

where × denotes the cross product in R
n+1 and §u M is the normal space of M at point p = M(u). The

normal vector N is orthogonal to the tangent hyper-plane TuM at M(u). With the normal vector N and the

tangent vector Vi, we can define the second fundamental form:

II(Vi, Vj) = (hij)i,j=1,2,··· ,n = (ï−
∂N

∂ui
, Vjð)ij , (8)

The mean curvature can be calculated by H = hijg
ji, where we use the Einstein summation convention,

and gji = (gij)
−1. In addition, the Gaussian curvature is given by K =

Det(hij)
Det(gij)

.

2.2.3 Multiscale cell-cell interactive curvatures

With the above theory of differentiable manifold, both the mean curvature H and Gaussian curvatures

can be utilized to measure the cell-cell correlations based on the interactive manifolds ρ. The Gaussian

curvature K and mean curvature H for the interactive manifold can be evaluated as below [38]:

K =
2ρxρyρxzρyz + 2ρxρzρxyρyz + 2ρyρzρxyρxz

g2
−

2ρxρzρxzρyy + 2ρyρzρxxρyz + 2ρxρyρxyρzz
g2

(9)

+
ρ2zρxxρyy + ρ2xρyyρzz + ρ2yρxxρzz

g2
−

ρ2xρ
2
yz + ρ2yρ

2
xz + ρ2zρ

2
xy

g2

where g = ρ2x + ρ2y + ρ2z . The mean curvature is the average second derivative with respect to the normal

direction,

H =
1

2g
3

2

[2ρxρyρxy + 2ρxρzρxz + 2ρyρzρyz − (ρ2y + ρ2z)ρxx − (ρ2x + ρ2z)ρyy − (ρ2x + ρ2y)ρzz],

Meanwhile, the minimum curvature µmin, and maximum curvature, µmax, can be calculated by:

µmin = H −
√

H2 −K

µmax = H +
√

H2 −K

In differential geometry, there are several important curvature concepts used to measure how much a ge-

ometric object deviates from being flat. These concepts can be applied to curves, surfaces, and higher-

dimensional manifolds. In biomolecular studies, they have played important roles in stereo specificity of

biomolecular surfaces [39], protein–protein interaction hot spots, ligand binding pockets [40]. Mean curva-

ture and gaussian curvature can be suitable descriptions for cell-cell interactions.

Given the density function ρ, the Gaussian and mean curvatures are continuous and can be analytically

determined. This renders their expressions free of numerical errors and directly suitable for cell-cell model-

ing. Furthermore, the associated computational expense is low due to the fast decaying effect of the kernel

within a short manifold band [41].

2.2.4 Multiscale differential geometry modeling of cell-cell interactions

Given the CCP-UMAP representation, the interactive manifold (5) enables us to utilize our differential

geometry for cell-cell interaction analysis. The aforementioned Gaussian and mean curvatures provide a

quantitative measure (K,H) of a sample cell’s interaction with other cells. By adjusting the values of η and

κ in the correlation function (5), we gather a collection of Gaussian and mean curvatures, thereby achieving
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multiscale modeling. The encoded mutliscale differential geometry information become suitable inputs for

machine learning predictions.

Specifically, suppose we have a set of η values, ηi for i = 1, 2, · · · , p, and a set of κ values, κj for j =

1, 2, · · · , q. For the mth cell among the M cells, there is a curvature vector Cm = {(Ki,j
m , Hi,j

m )|i = 1, 2, · · · , p; j =

1, 2, · · · , q} and Cm ∈ R
2p·q . The curvature set C = {C1, C2, · · · , CM} serves as cell-cell interaction features

and C ∈ R
M×(2p·q). We call such multiscale differential geometry modeling of cell-cell interactions or net-

work analysis as MDG.

2.3 Residue-similarity analysis

Residue-Similarity (R-S) scores and indexes was proposed in our previous work [42]. It can be an alternative

visualization approach in addition to available dimensionality reduction techniques. Assume the interested

data with a set Ω = {(xm, ym)|xm ∈ R
N , ym ∈ ZL}

M
m=1, where xm is the mth data point. The label ym

indicates the ground truth or cluster label in classification or clustering problem. The dataset has M data

samples and xm ∈ R
N is the feature representation. L indicate the number of data types, namely, ym ∈

[0, 1, 2, · · · , L] . The whole set Ω is partitioned into L classes ωl = {xm ∈ Ω|ym = l} according to the labels

ym = l and hence Ω = ∪L−1
i=0 wl.

There are two components in R-S scores. The residue score is defined to be the normalized inter-class sum

of the distances. Suppose xm ∈ ωl, the inter-class sum of the distances is defined to be

R(xm) =
∑

xj /∈ωl

||xm − xj ||,

where || · || is a certain distance metric. The residue score for xm is given as

Rm :=
1

Rmax
R(xm), (10)

where Rmax = max
xm∈Ω

R(xm). The similarity score Sm is the average of the intra-class scores. Specifically, for

any xm ∈ ωl,

Sm :=
1

|ωl|

∑

xj∈ωl

(

1−
||xm − xj ||

dmax

)

, (11)

where dmax = max
xi,xj∈Ω

||xi − xj ||. Both the residue score and similarity score range between 0 and 1. The

Euclidean distance can be a metric to define the R-S scores. Generally, a large residue score Rm indicates the

data has large dissimilarity from other class data, while a high similarity score Sm suggests that the data in

the same class is well-clustered.

The class residue index (CRI) and class similarity index can be defined for each class. For a class ωl, the two

indexes are defined as CRIl =
1

|wl|

∑

m Rm and CSIl =
1

|wl|

∑

m Sm. Their range are in [0, 1]. Analogously,

we have residue index (RI) and similarity index (SI) for the whole set as RI= 1
L

∑

lCRIl and SI= 1
L

∑

lCSIl.

Furthermore, with Residue Index (RI) and the Similarity Index (SI), we can calculate the disparity in residue

similarity by simply taking RSD = RI − SI. It is denoted as Residue Similarity Disparity (RSD). Besides,

the Residue-Similarity Index (RSI) can be computed as RSI = 1 − |RI − SI|. These scores or indices can be

utilized to assess the performance of a given machine-learning features. Specially, in the current study, we

use them to measure certain feature representation derived from scRNA-seq data. We name this type of

analysis as RS analysis.
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2.4 Machine learning algorithms

Machine learning modeling provides accurate, efficient and robust predictions. The original scRNA-seq

data is not immediately suitable for machine learning. We integrate the proposed differential geometry cur-

vature representation C of cell-cell interactions with machine learning algorithms, resulting in MDG predic-

tive models. In this work, we mainly utilize gradient boosting decision tree (GBDT) as our machine learn-

ing algorithm. The hyperparamters we employed in GBDT model are: n_estimators = 2000,max_depth =

7,min_samples_split = 5, learning_rate = 0.002, subsample = 0.8,max_features = ”sqrt”. In the following

section, we will demonstrate the predictive performance of our machine learning models.

2.5 Evaluation metrics

In this study, we test the performance of our machine learning models mainly on some classification tasks

for scRNA-seq data. We demonstrated the effectiveness our models by comparing to some state-of-the-art

methods. Commonly used evaluation metrics in classification problems include recall, precision, F1-score,

and AUC. The definitions for them are given below:

Recall = True Positive/(True Positive + False Negative)

Precision = True Positive/(True Positive + False Positive)

F1-Score = 2× (Precision × Recall)/(Precision + Recall)

In the context of imbalanced datasets, where the number of instances in each class is not equal, macro-

metrics can be useful. Single-cell RNA sequencing (scRNA-seq) data often exhibits class imbalance, where

certain cell types may be less frequent than others. Macro-metrics in the multi-class classification are used

to calculate performance metrics on a per-class basis and then average them, providing an overall perfor-

mance measure. Macro-recall, macro-precision, macro-F1, and macro-AUC are often considered metrics.

Assuming that there are c classes in a given dataset, we have definitions for the several macro metrics as

below:

macro-Recall =
1

c
×

c
∑

i=1

Recalli, macro-Precision =
1

c
×

c
∑

i=1

Precisioni

macro-F1 =
1

c
×

c
∑

i=1

F1i, macro-AUC =
1

c
×

c
∑

i=1

AUCi

In the analysis of single-cell RNA sequencing data, the macro metrics provide a more balanced assessment

of a model’s effectiveness across different classes, ensuring that the performance on minority classes is not

overshadowed by the majority ones.

3 Results

3.1 Single-cell RNA sequencing datasets

We can utilize the above differential geometry curvatures to analyze single cell RNA sequencing data

(scRNA-seq). Due to the high dimensionality of scRNA-seq data, dimensionality reduction techniques,

such as principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), non-

negative matrix factorization (NMF), and UMAP can be used to project original data into low-dimensional

space, giving us low-dimensional embeddings.

We benchmark our multiscale models against these dimensionality reduction techniques on some scRNA-

seq datasets to show the representative power of MDG. We build machine learning models by integrating
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these low-dimensional embeddings with GBDT algorithm. Twelve scRNA-seq datasets are used in the

benchmark test, and their details can be found in Table 1. The data was normalized using either reads

per kilobase of transcript per million (RPKM), transcript per million (TPM) or counts per million (CPM).

Notably, the cell type column indicate the number of cell types in each dataset and they served as the

classification labels in our machine learning modeling.

Table 1: Accession ID, source organism, and the counts for samples, genes, cell types and normalization for 12 datasets

Accession ID Reference Organism Samples Genes Cell types Normalization

1 GSE45719 Deng [43] Mouse 300 22431 8 RPKM

2 GSE67835 Darmanis [44] Human 420 22084 8 CPM

3 GSE75748 cell Chu [45] Human 1018 19097 7 TPM

4 GSE75748 time Chu [45] Human 758 19189 6 TPM

5 GSE82187 Gokce [46] Mouse 705 18840 10 TPM

6 GSE84133 h1 Baron [47] Human 1937 20125 14 TPM

7 GSE84133 h2 Baron [47] Human 1724 20125 14 TPM

8 GSE84133 h3 Baron [47] Human 3605 20125 14 TPM

9 GSE84133 h4 Baron [47] Human 1308 20125 14 TPM

10 GSE84133 m1 Baron [47] Mouse 822 14878 13 TPM

11 GSE84133 m2 Baron [47] Mouse 1064 14878 13 TPM

12 GSE94820 Villani [48] Human 1140 26593 5 TPM

Figure 3: The statistical analysis of sample distances within dataset GSE45719 and GSE67835 based on the CCP-UMAP representations.

The resulting plots display the maximum, average, and minimum distances of each sample from other cells, represented by light blue,

dark blue, and red curves, respectively. Additionally, a yellow line is included to denote the average values for each of these three

distance metrics. The x-axis indicates the row index of cells in the original scRNA-seq file.

3.2 MDG and benchmark machine learning models

Classifying cell types is an important task in the study of scRNA-seq data. Machine learning models based

on our MDG features can serve as useful tools in this regard. We demonstrate the predictive ability of MDG

through classification predictions.

In our MDG model, we select a variety of η and κ values. We restrict two bounds for η value as in condition

(6). It is critical to analyze the CCP-UMAP representation X to determine η bounds. Figure 3 illustrates the

distributions of minimum, average, and maximum distances between the samples and other cells in dataset

GSE45719. The range of distances falls between 0.095 and 20.83. We consider a maximum value of 21 for
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the parameter η in the exponential kernel. For η, we utilize a range of values from 1 to 21 in increments

of 0.5, i.e., η = 1, 1.5, 2, · · · , 21. The parameter κ is set at 5 and 10. Similarly, for dataset GSE67835 with

minimum and maximum distances of 0.13 and 10.16, the minimum and maximum η values are set to 1 and

10, respectively. Additional distance distributions for the remaining datasets are presented in Figure S1. As

all 12 datasets exhibit a minimum distance value close to 0, we set a common minimum η value of 1. The

strategy for setting η and κ values remains consistent across these datasets.

Our CCP-UMAP representation X offer a three dimensional data for differential geometry modeling. To

make fair comparisons, we use dimensionality reduction algorithms to project original scRNA-seq data

to three dimensions. For the aforementioned four dimensionality reduction techniques, the original data

was log-transformed, and genes with variance less than 10−6 were removed prior to the reduction. We

name the resulting features as PCA, UMAP, tSNE, and NMF, corresponding to the dimensionality reduction

algorithms.

To asses our machine learning models, we test five-fold cross validations using a variety of evaluation

metrics as mentioned before. To mitigate the effects of randomness, we construct machine learning models

ten times with different random seeds and then compare the averages of the evaluation scores.

3.3 MDG aids in cell type classification with scRNA-seq data

In this section, we demonstrate the performance of MDG models in cell type classifications. Table 2 shows

the comparisons between our models with other models. It can be observed that our MDG model achieves

the highest average macro-Recall value of 0.9472 for the 12 datasets. The macro-Recall score is identical

to balanced accuracy in multi-classification prediction problems, which is the average of the true positive

rate across all classes. The MDG model gives macro-Recall values of over 0.9 for all the 12 datasets, which

indicates the model robustness for the cell type classification tasks. It achieves the best predictions for 11 of

the 12 datasets compared to the other four models in terms of macro-Recall as shown in Figure 4 or Table 2.

The average macro-Recall score by MDG model is 1.2%, 18.1%, 23.0%, and 17.6% higher than UMAP, PCA,

NMF, and tSNE models.

Out of the four dimensionality reduction methods, UMAP model has the highest average macro-Recall

score of 0.9211. It is not as effective as our MDG model, but is still far superior to the other three di-

mensionality reduction methods. The comparisons in terms of macro-Recall, macro-AUC, and macro-F1

show that UMAP model achieves the best predictions for 5, 5, and 5 tasks among the 12 prediction tasks.

MDG model win most of the remaining tasks except that the tSNE model give a best prediction based on

macro-AUC. UMAP is recognized for its ability to preserve both local and global structures when projecting

high-dimensional data into a lower-dimensional space [17]. Its performance with current embedding con-

firms its dimensionality reduction power. However, UMAP has relatively poor performance for GSE45719

and GSE75748time datasets with macro-Recall values below 0.9. It is likely due to that the two datasets

have large amounts of gene yet small numbers of samples.

tSNE models give the second best predictions among the four dimensionality reduction methods. It has an

average macro-Recall of 0.8057, which is much lower than those by MDG and UMAP models. The model

based on NMF data performs the worst among these models. The average macro-Recall value for these

classification tasks is only 0.7701. This indicates that NMF data is not suitable in analyzing scRNA-seq

data.

The PCA models has poorer performance than MDG, UMAP, and tSNE. They can give good performance

for dataset GSE84133human2 and GSE94820. But the average macro-Recall value for these dataset is 0.8019.

PCA is a linear dimensionality reduction technique. It is effective at capturing linear relationships and

structures in the data, while the scRNA-seq data that is both complex and non-linear. The current PCA-

reduction data is not well suitable to characterize those non-linear interactions between cells. Despite that
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tremendous popularity of PCA in single cell data analysis, its low dimension reduction is not suitable for

machine learning analysis for the single cell data through our investigations.

The comparisons between MDG model with other models in terms of macro-F1 and macro-AUC are pre-

sented in Figures 5 and 6 or Tables 3 and 4. DG-MM attains the top 7 macro-F1 scores among the 12 tasks

and the top 6 macro-AUC scores across the 12 tasks. These findings further highlight the advantages of

MDG models over others. Additional comparisons of these model with accuracy and macro-Precision are

provided in section S2 of the Supporting information.

The CCP-UMAP features are used in our MDG modeling. These features can be directly employed in ma-

chine learning modeling. We evaluate performance of its models against those using dimensionality reduc-

tion embeddings, and table S3 presents the results of these comparisons. Additionally, we comparisons of

the MDG model with these models are illustrated in Tables S3 and S4. All these comparisons demonstrated

the outstanding performance of the MDG modeling.

Figure 4: The macro-Recall comparisons of our MDG model with other models for 12 cell type classification tasks. Other models are

using dimensionality reduction embeddings from PCA, UMAP, NMF, and tSNE. Our MDG model achieves the highest macro-Recall

of 0.947 and got the best results for 8 out of the 12 tasks.

Datasets
Macro-Recall comparison

MDG PCA UMAP NMF tSNE

1 GSE45719 0.962 0.78 0.848 0.747 0.532

2 GSE67835 0.92 0.876 0.921 0.8 0.699

3 GSE75748cell 0.968 0.887 0.934 0.848 0.811

4 GSE75748time 0.93 0.901 0.87 0.873 0.708

5 GSE82187 0.955 0.863 0.966 0.857 0.807

6 GSE84133human1 0.945 0.644 0.938 0.626 0.883

7 GSE84133human2 0.95 0.805 0.951 0.715 0.916

8 GSE84133human3 0.935 0.575 0.918 0.55 0.909

9 GSE84133human4 0.988 0.884 0.984 0.895 0.924

10 GSE84133mouse1 0.952 0.826 0.949 0.719 0.783

11 GSE84133mouse2 0.935 0.684 0.94 0.716 0.839

12 GSE94820 0.925 0.898 0.925 0.895 0.857

Average macro-Recall 0.9471 0.8019 0.9287 0.7701 0.8057

Table 2: The macro-Recall comparisons of our MDG model with other models in cell type classification predictions. Other models are

using features from dimensionality reduction algorithms including PCA, UMAP, NMF, and tSNE.
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Figure 5: The Macro-F1 comparisons of our MDG model with other models for 12 cell type classification tasks. Other models are using

dimensionality reduction embeddings from PCA, UMAP, NMF, and tSNE. Our MDG model achieves the highest F1 of 0.947 and got

the best results for 7 out the 12 tasks.

Datasets
Macro-F1 comparison

MDG PCA UMAP NMF tSNE

1 GSE45719 0.959 0.77 0.842 0.739 0.526

2 GSE67835 0.926 0.879 0.929 0.799 0.707

3 GSE75748cell 0.969 0.885 0.936 0.846 0.814

4 GSE75748time 0.929 0.901 0.871 0.872 0.708

5 GSE82187 0.95 0.86 0.968 0.852 0.815

6 GSE84133human1 0.949 0.636 0.946 0.622 0.895

7 GSE84133human2 0.95 0.798 0.952 0.71 0.931

8 GSE84133human3 0.934 0.561 0.927 0.538 0.924

9 GSE84133human4 0.986 0.88 0.984 0.888 0.926

10 GSE84133mouse1 0.955 0.834 0.954 0.722 0.794

11 GSE84133mouse2 0.936 0.682 0.948 0.71 0.847

12 GSE94820 0.925 0.896 0.926 0.893 0.855

Average Macro-F1 0.9473 0.7985 0.9319 0.7659 0.8118

Table 3: The Macro-F1 comparisons of our DGMM model with other models in cell type classification predictions. Other models are

using features from dimensionality reduction algorithms including PCA, UMAP, NMF, and tSNE.

3.4 RS analysis

In our previous studies, we found that RSI is associated with classification accuracy [36, 42]. RSI uses the

features and labels to compute the scores. In addition, residue-similarity (R-S) plot can serve as visual-

ization tool for the scRNA-seq data. We use it to visualize the predictions by our models for each class.

The residue (R) and similarity (S) scores are computed for each sample based on the given features for the

scRNA-seq data.

In our study, we compared MDG modeling with four other dimensionality reduction models. We assess

the five kinds of embeddings via RS analysis. We used five-fold cross-validation to divide the feature data

into five parts, where four parts were used to train GBDT models, and one part was used as a test set. Then,

R and S scores were computed for each sample in the five test sets. In the RS-plot, the x-axis and y-axis

correspond to R and S scores of the samples, respectively. In the plots, samples were colored according to

their predicted labels from the GBDT classifier. Figure 7 shows a comparison between the R-S plot of MDG,

PCA, UMAP, NMF, and tSNE embeddings for GSE75748 time data. The columns indicate different classes
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Figure 6: The Macro-AUC comparisons of our MDG model with other models for 12 cell type classification tasks. Other models are

using dimensionality reduction embeddings from PCA, UMAP, NMF, and tSNE. Our MDG model achieves the highest AUC of 0.991

and got the best results for 6 out of the 12 tasks.

Datasets
Macro-AUC comparison

MDG PCA UMAP NMF tSNE

1 GSE45719 0.994 0.95 0.965 0.944 0.831

2 GSE67835 0.986 0.984 0.992 0.975 0.92

3 GSE75748cell 0.996 0.983 0.992 0.974 0.965

4 GSE75748time 0.99 0.979 0.971 0.98 0.927

5 GSE82187 0.995 0.992 0.993 0.988 0.961

6 GSE84133human1 0.987 0.951 0.979 0.944 0.98

7 GSE84133human2 0.991 0.984 0.989 0.977 0.988

8 GSE84133human3 0.989 0.951 0.989 0.94 0.99

9 GSE84133human4 0.996 0.991 0.998 0.993 0.99

10 GSE84133mouse1 0.987 0.972 0.995 0.954 0.961

11 GSE84133mouse2 0.989 0.967 0.992 0.967 0.979

12 GSE94820 0.986 0.982 0.992 0.977 0.976

Average Macro-AUC 0.9905 0.9738 0.9872 0.9678 0.9557

Table 4: The Macro-AUC comparisons of our DGMM model with other models in cell type classification predictions. Other models

are using features from dimensionality reduction algorithms including PCA, UMAP, NMF, and tSNE.

of cell types in the original scRNA-data, while the rows correspond to the five models.

Both residue and similarity scores range from 0 to 1, where 1 is the most optimal. If the samples cluster in the

top-right corner, it indicates that samples within a class closely resemble each other, and different classes are

clearly distinct from one another. Consequently, RSI can be correlated with classification accuracy. The RSI

for MDG, PCA, UMAP, NMF, and tSNE models are 0.454, 0.820, 0.978, 0.932, and 0.584. Despite the low RSI

of our DG-MM features, its integration with GBDT still offers superior predictions. This is attributed to the

merits of GBDT algorithm in reducing overfitting. This reflects the descriptive ability of DG-MM features

for cell-cell interactions despite that it suffers from overfitting issues. UMAP features gives the highest RSI,

which is consistent with its superior classification predictions over than dimensionality reduction modeling.

Figure 7 shows the prediction results for GSE75748 time data by the five models. The macro-Recall scores

are 0.93, 0.901, 0.97, 0.873, and 0.708 for MDG, PCA, UMAP, NMF, and tSNE models, respectively. These

models all show poor predictions for classifying 72h and 96h cell types. According to [45], GSE75748 time

data records ES cell differentiation from pluripotency to definitive endoderm (ED) at 0th hour, 12th hour,

14



24th hour, 36th hour, 72th hour, and 9th hour over 4 days. The misclassification of the 72th hour, and 96th

hour data is consistent with the finding that cells from 72th hour and 96th hour were relatively homoge-

neous [45]. Our MDG model provide better predictions for the cell types at the two times than the other

four models as seen in the last two columns in Figure 7. There are various misclassifications as seen in

the R-S plots. Through the visualization, we can observed the relatively better classification by our model

while the tSNE model performs the worst.

Figure 7: The rs-plot of MDG, PCA, UMAP, NMF, and tSNE features for GSE75748 time data. The columns indicate different classes

of cell types in the original scRNA-data, while the rows correspond to the five models.

4 Discussion

Our multiscale differential geometry modeling is accomplished by collecting Gaussian and mean curva-

tures at various η values. The chosen η values span a range between 1 and the mean maximum pairwise

distance in the CCP-assisted UMAP embeddings. The selected step size ∆η is 0.5. Additionally, we assess

the performance by employing a subset of these resultant features in various aspects. Figure 8 displays the

macro-Recall scores of five-fold cross validation classifications for dataset GSE45719 using various embed-

dings.

In addition to concatenating Gaussian and mean curvatures, we assessed performance using either Gaus-

sian or mean curvatures individually. For the GSE45719 dataset, we initially computed both types of curva-

tures at η values ranging from 1 to 21, with a step size ∆η equal to either 1 or 0.5, i.e. ηi = 1, 1+∆η, · · · , 21.

Correspondingly, we obtain Gaussian and mean curvatures (Kηi , Hηi). We collected the curvatures with

η starting at 1 and concluding at a predetermined value greater than 1 and less than 21. As illustrated in
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Figure 8, the utilization of additional features results in improved performance across all three scenarios,

whether employing Gaussian curvature, mean curvature, or their concatenations. On the other hand, the

concatenation of Gaussian and mean curvatures shows improved performance compared to using only

Gaussian or mean curvatures, especially when a smaller concluding value, ηi, is employed. However, as

the concluding value ηi increases, the concatenation does not give significant advantages over solely using

Gaussian or mean curvatures.

These multiscale curvature-based embedding reach their predictive power plateau around ηi = 12 for all

the three scenarios. As shown in Figure 3, the mean of average pairwise distance in CCP-assisted UMAP

embedding is around 12. This suggest that concluding η value can be set to the mean of average distance

rather than mean of maximal distance in Eqn 6. The curvature features based on the η value greater than

12 in the current case can be redundant, but the GBDT algorithm have metrics of prioritizing important

features and reducing overfitting, which make our curvature embedding robust in the classification predic-

tions. In practice, it is sufficient to choose either Gaussian or mean curvatures with the concluding η value

set to be the mean of average distance in the CCP-assisted UMAP embeddings. But the addition of more

Gaussian and mean concatenation curvatures cause slightly improved predictions.

Figures 8a and 8b compare predictions made with accumulated curvature features using different values of

∆η. Smaller values of ∆η tend to result in better predictions. In the instance of concatenating Gaussian and

mean curvatures, the macro-Recall is 0.962 with ∆η = 0.5, whereas the macro-Recall is 0.956 with ∆η = 1.

Consequently, the ∆η value of 0.5 is a preferred option in our multiscale modeling.

Figure 8: The multiscale modeling performance is evaluated based on accumulated curvatures. Gaussian curvature, mean curvature,

or their concatenations are the three types of features utilized. The parameter dx, set equal to either 1 or 0.5, determines the step size

for collecting curvature at a η, and incorporating it into the final features.

5 Conclusion

In this study, we developed a multiscale differential geometry (MDG) model for analyzing and inter-

preting scRNA-seq data. We employed correlated clustering and projection (CCP)-assisted UMAP (CCP-

UMAP) methodology to preprocess scRNA-seq data. CCP is our recently proposed dimensionality reduc-

tion method that projects each cluster of similar genes into a super-gene defined as accumulated pairwise

nonlinear gene-gene correlations among cells. Its integration with UMAP projects the original scRNA-

seq data onto a 3D space that faithfully preserve enough geometric and biological information inherent in

scRNA-seq data. We assume that those intrinsic properties lies on a family of low-dimensional manifolds

embedded in the high-dimensional scRNA-seq data. The multiscale low-dimensional manifolds are con-

structed by discrete-to-continuum mapping based on the derived CCP-UMAP embeddings and are then
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used to capture the interactive cell-cell interactions in the cell network. Gaussian and mean curvatures

from differential geometry offer quantitative estimates of the cell-cell interactions and give rise to multi-

scale differential geometry embeddings for scRNA-seq data. The cell-cell interactions within these mani-

folds preserve the neighboring similarity of the original data, revealing the complex topological structure

among cells. This, in turn, allows for the elucidation of cell–cell relationships in the network.

We compared its representative ability with embeddings from standard dimensionality reduction methods

in classifying cell types. These embeddings are paired with gradient boosting decision tree clustering algo-

rithm to provide machine learning predictions. Their comparison demonstrate the utilization of multiscale

curvatures can be an effective tool of scRNA-seq data interpretation. A multiscale analysis was provided

to showcase the necessity of various cell-cell interactive manifolds utilized, which was reflected by the

enhanced clustering performance resulting from the accumulation of additional curvatures.

The multiscale differential geometry analysis serves as an effective approach to decipher distinct cell fea-

tures and cell–cell relationships from the high dimensional space of scRNA-seq data. The complex topolog-

ical and geometric structures are well captured. The scRNA-seq data is characterized by high-dimensional

data at single cell level for a population of cells, which gives a foundation for dissection of cell hetero-

geneity. Many other challenging problems exist in disciplines such image analysis, environmental science,

social science, astronomy and astrophysics involving point specific high-dimensional data. Dimensionality

reduction or networks analysis tools are needed to address these challenges. Our MDG approach is not

restricted to the analysis of scRNA-seq data; it also holds the potential to be applied to a variety of other

networks in science and engineering.

6 Code and Data availability

All data and the code needed to reproduce this paper’s result can be found at

https://github.com/WeilabMSU/MDG.

CCP is made available through our web-server at

https://weilab.math.msu.edu/CCP/ or through the source code https://github.com/hozumiyu/CCP.

Source code of RSI and R-S plot can be found at https://github.com/hozumiyu/RSI.
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