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ABSTRACT Electrostatics is of paramount importance to chemistry, physics, biology, and medicine. The Poisson-

Boltzmann (PB) theory is a primary model for electrostatic analysis. However, it is highly challenging to compute accurate

PB electrostatic solvation free energies for macromolecules due to the nonlinearity, dielectric jumps, charge singularity , and

geometric complexity associated with the PB equation. The present work introduces a PB based machine learning (PBML)

model for biomolecular electrostatic analysis. Trained with the second-order accurate MIBPB solver, the proposed PBML

model is found to be more accurate and faster than several eminent PB solvers in electrostatic analysis. The proposed

PBML model can provide highly accurate PB electrostatic solvation free energy of new biomolecules or new conformations

generated by molecular dynamics with much reduced computational cost.

SIGNIFICANCE This manuscript provides a Poisson-Boltzmann based machine learning (PBML) model for biomolec-

ular electrostatic analysis. The features as the input to the ML models are generated with mathematical algorithms

using biomolecular structures and force field. The learned model, which is trained using the most accurate PB solver

MIBPB on more than 4000 biomolecules shows improved efficiency and accuracy in electrostatic analysis compared

with the popular PB solvers.

1 INTRODUCTION

Electrostatics is ubiquitous in the molecular world. The anal-
ysis of molecular electrostatics is of crucial importance to
the bioscience research community. There are two significant
types of electrostatic analyses, namely, qualitative analysis for
general electrostatic characteristics, such as visualization and
electrostatic steering, and quantitative analysis for statistical,
thermodynamic and/or kinetic observable, such as solvation
free energy, solubility, and partition coefficient.

Molecular electrostatics can be analyzed by explicit or
implicit models. Explicit solvent models resolve electrostatic
effect in atomic detail and thus are more accurate but can
be very expensive for large biomolecular systems. Implicit
solvent models describe the solvent as a dielectric continuum,
while the solute molecule is modeled with an atomistic de-
scription (1). A wide variety of two-scale implicit solvent
models has been developed for electrostatic analysis, includ-
ing generalized Born (GB) (2), polarizable continuum (3) and
Poisson-Boltzmann (PB) models (4).

PB models have been applied to calculating protein titra-
tion states (5), protein-protein and protein-ligand binding
energetics (6), RNA nucleotide protonation(7), chromatin
packing (8), etc. The PB theory has also been used for the
evaluation of biomolecular electrostatic forces for molecular
Langevin dynamics or Brownian dynamics (9). GB meth-
ods are faster than PB methods, but provide only heuristic
estimates for PB electrostatic energies.

Due to its success in describing biomolecular systems, the
PB model has attracted a wide attention in both mathemat-
ical and biophysical communities. In the past two decades,
many efforts have been given to the development of accurate,
efficient, reliable and robust PB solvers. A large number of
methods have been proposed in the literature, including the
finite difference method (FDM) (10), finite element method
(FEM) (11), and boundary element method (BEM) (12, 13).
Among them, the FDM is prevalently used in the field due to
its simplicity in implementation. The emblematic solvers in
this category are Amber PBSA (14), Delphi (15) APBS (16),
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MIBPB (17), CHARMM PBEQ (10), etc.
The PB equation is a nonlinear elliptic equation with sin-

gular source term. For biomolecules, the continuum-discrete
interface is nonsmooth, resulting in a nonlinear elliptic in-
terface problem with discontinuous coefficients and singular
source terms (18). These difficulties make finding the numeri-
cal solution to the PB equation for biomolecules challenging.
There are numerous efforts in developing high order methods
for elliptic interface problems in the past two decades (19–21).
Among them, matched interface and boundary (MIB) method
offers arbitrarily high-order accuracy in principle and up to
sixth-order accurate MIB schemes have been constructed for
three-dimensional complex interfaces (21). The MIB based
second-order accurate PB solver, the MIBPB, was constructed
to take care of biomolecular interfaces and singular charges
(22). The recent development of the Eulerian solvent excluded
surface (ESES) (23), which provides analytical biomolecular
surface representation in the Cartesian domain, improves the
stability and robustness of the MIBPB solver.

Nonetheless, the generation of highly accurate electrostatic
potentials for large biomolecules can be extremely expensive.
For example, it takes days to solve the PB model on a protein
with about 50,000 atoms at the mesh of 0.2 Å on a single CPU.
Additionally, the information generated for the electrostatic
analysis of a given biomolecule is not transferable to other
proteins. Therefore, one has to carry out the separated electro-
static analysis of different proteins or the same protein with
different protonation states or conformations. These issues
call for innovative approaches, such as machine learning and
dynamic programming, to biomolecular electrostatic analysis.

Recently we have witnessed the explosion of machine
learning studies in science and engineering. In particular,
deep neural networks which discover intricate structures in
large datasets, have fueled the rapid growth in application
such as computer vision, natural language processing, speech
recognition, handwriting recognition, (24–26), etc. Machine
learning has become an indispensable tool in the analysis and
prediction of large and diverse molecular and biomolecular
data sets, including bioactivity of small molecular drugs (27)
and genomics (28). Studies in computational biology and
biophysics, such as the predictions of solvation free energies,
protein-ligand binding affinities, mutation impacts, toxicity,
partition coefficients, B-factors etc. adopt machine learning
approaches (29–32). These developments open the door for
machine learning based electrostatic analysis.

The objective of the present work is to develop a machine
learning solution of the PB equation for the electrostatic analy-
sis of biomolecules. To this end, we first construct an accurate
and efficient mathematical representation of electrostatic po-
tential to effectively characterize the probability distribution
of biomolecular electrostatics. Theoretically, the exact form
of this distribution is not available even if one solves the PB
equation for all possible biomolecular structures. However, in
practice, this probability distribution can be sampled by using
a PB solver, which provides machine learning training labels.

Our approach is based on a representability hypothesis and
a learning hypothesis. The representability hypothesis states
that the electrostatic potential of a biomolecule can be de-
scribed by a set of partial charges and their geometric relations
to the solvent. This hypothesis guilds the construction of the
feature vector for the characterization of the probability distri-
bution of biomolecular electrostatics. The learning hypothesis
states that biomolecular electrostatics can be effectively repre-
sented by a feature vector as described by the representability
hypothesis. When the probability distribution of biomolecular
electrostatics is sufficiently sampled from a training set, a
machine learning model can be established based on training
labels and associated feature vectors to accurately predict the
electrostatic potential of an unseen dataset which shares the
same probability distribution with the training set.

The protocol described above calls for an accurate PB
solver, which calculates machine learning labels and thus
the probability distribution of molecular and biomolecular
electrostatics. To this end, we apply the accurate MIBPB
solver (22) at a refined mesh size 0.2 Å to generate solvation
energy labels to minimize the numerical errors.

The representability hypothesis does not specify how to
construct an accurate and efficient representation. An aver-
age biomolecule in the human body consists of about 6,000
atoms that lie in an 18, 000-dimensional Euclidean space
(R18,000). Such a high-dimensionality makes the first principle
calculations intractable. Additionally, using macromolecular
structures in deep convolutional neural networks (CNNs) is
extremely expensive. For example, the 3D coordinates repre-
sentation of a biomolecule with about 50Å side length at a
low resolution of 0.5Å requires feature dimension of 1003Ĥ,
where = is the number of element types. The variable sizes of
biomolecules also hinder the application of machine learning
algorithms. These challenges motivate the development of
scalable and intrinsically low-dimensional representations
of biomolecular structures. Our hypothesis is that intrinsic
physics lie in low-dimensional manifolds or spaces embed-
ded in a high dimensional data space (30). Recently, a few
low-dimensional representations for biomolecules have been
developed in terms of algebraic topology (30, 33), differential
geometry (34), and graph theory (35). All of these approaches
can be used to represent biomolecular electrostatics. In this
work, we adopt the graph theory representation due to its
simplicity, in conjuration with a collection of features from the
fast GB models to predict electrostatics from the PB model.

The rest of this paper is organized as follows. After this
Introduction section, the Materials and Methods section de-
scribes models and algorithms used in the present work. We
give a brief review of the PB model, the GB model, the graph
theory, and machine learning algorithms used in developing
the proposed Poisson-Boltzmann based machine learning
(PBML) model for biomolecular electrostatic analysis. Sim-
ulation results and related discussion are presented in the
Results section. Various convergence tests have been carried
out to search for the most accurate PB solver to calculate ma-
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chine learning labels. Our feature vectors are optimized with
respect to from a few simple machine learning algorithms,
namely, linear regression, random forest, and gradient boosted
decision trees, to more complicated deep neural network
(DNN). We demonstrate that the proposed PBML model is
more accurate and reliable than commonly used PB solvers.
This paper ends with a Conclusion section.

MATERIALS AND METHODS

In this section, we briefly review essential concepts and
methods underpinning the proposed PBML model.

The Poisson-Boltzmann (PB) model

As shown in Fig. 1(a), the PB model governs electrostatics
with the interior solute domain ¬1 with fixed charges @ġ
located at atomic centers rġ for : = 1, ..., #ę, and the exterior
solvent domain ¬2 with dissolved ions approximated by the
Boltzmann distribution. These two domains are separated by
the dielectric interface �. Among a variety of surface models,
the most commonly used one is the solvent excluded surface
or molecular surface (36). For simplicity, a linearized PB
model is considered in the present work as

−∇ · n (r)∇q(r) + ¯̂2 (r)q(r) =

Ċę
∑

ġ=1

@ġX(r − rġ), (1)

where q(r) is the electrostatic potential and n (r) are the
dielectric constants given by

n (r) =

{

n1, r ∈ Ā1,

n2, r ∈ Ā2,
(2)

and ¯̂ is the screening parameter with the relation ¯̂2 = n2^
2

where ^ is the inverse Debye length measuring the ionic
effective length. The PB model has the interface conditions
on the molecular surface defined as

q1 (r) = q2 (r), n1
mq1 (r)

mn
= n2

mq2 (r)

mn
, r ∈ ÿ (3)

where q1 and q2 are the limit values when approaching the
interface from the inside or outside the solute domain, and n is
the outward unit normal vector on �. The lack of appropriate
or rigorous treatments of these interface conditions is the
major error source for many existing PB solvers. The far-field
boundary condition for the PB model is lim |r |→∞ q(r) =

0, which is approximated using the Screened Coulombic
potential.

The PB electrostatic solvation free energy is obtained by

�� =
1

2

Ċę
∑

ġ=1

@ġ (q(rġ) − q0 (rġ)) (4)

where q0 (rġ) is the solution of the PB equation as if there
were no solvent-solute interface. Note that near the interface
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Figure 1: An illustration of the PB model and the GB model. (a): the
PB model with solute region ¬1 and solvent region ¬2, separated
by molecular surface �, (b): the GB model represented by spherical
cavities with Born radii and centered charges (one is shown here).

�, the interpolation of q(rġ) in Eq. (4) using q at the grid
points can be another major error source. An interface based
scheme like MIB is required to interpolate q(rġ) (37).

The generalized Born (GB) model

With the same mathematical setting as that for the PB model,
the Generalized Born (GB) model is devised to approximate
the PB model. Compared with the PB model, the GB model
offers a relatively simple and computationally more efficient
approach to compute the long-range electrostatic interactions
in biomolecules, which is the bottleneck in classical all-atom
simulations. As illustrated in Fig. 1(b), the GB approximation
of electrostatic solvation free energy can be expressed as the
superposition of spherical cavities with effective Born radii
and centered charges (only one is shown in the figure) (38) :

��GB ≈
∑

ğ Ġ

��GB
ğ Ġ (5)

=
1

2

( 1

n2
−

1

n1

) 1

1 + UV

∑

ğ Ġ

@ğ@ Ġ

( 1

5ğ Ġ (Ağ Ġ , 'ğ , ' Ġ )
+
UV

�

)

where Ağ Ġ the distance between atoms 8 and 9 , V = n1/n2,
U = 0.571412, � the electrostatic size of the molecule, using

reciprocal of the Born radius '−1
ğ =

(

− 1
4ÿ

∮

�

r−rğ

|r−rğ |6
· dS

)1/3

,

5ğ Ġ =

√

A2
ğ Ġ
+ 'ğ' Ġexp

(

−
A2
ğ Ġ

4'ğ' Ġ

)

, (6)

To carry out the boundary integral in evaluating '−1
ğ , the

MSMS package (39) is used for the triangulation of �. Note
this integration is the most time-consuming step in the GB
calculation. The ESES softwware (23) can be used to improve
the current GB model if a higher level accuracy is desired.

The graph theory representation

Graph theory is a prime subject of discrete mathematics
and concerns graphs as mathematical structures for mod-
eling pairwise relations between vertices, nodes, or points.
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Such pairwise relations define graph edges. Algebraic graph
theory, particularly spectral graph theory, studies algebraic
connectivity, characteristic polynomial, and eigenvalues and
eigenvectors of matrices associated with the graph, such as ad-
jacency matrix or Laplacian matrix. Graphs have been widely
used in chemistry and biomolecular modeling (40). However,
the diagonalization of the interaction Laplacian matrix has
the computational complexity of O(#3) with # being the
number of matrix elements. Alternatively, geometric graph
theory bypasses the time-consuming matrix diagonalization
and can be made of O(#) in computational complexity (35).

In conjugation with machine learning algorithms, mul-
tiscale weighted colored subgraph (MWCS) was found to
outperform many other methods in representing complex
biomolecular structures (41, 42). We first consider weighted
colored subgraph (WCS) to describe electrostatic interactions
in a protein of # atoms. It incorporates kernels to charac-
terize pairwise distance-weighted atomic correlations. All
interactions are classified according to element types, lead-
ing to colored subgraphs. To use WCS for analyzing protein
electrostatic interactions, we formulate all the atoms and their
pairwise interactions into a weighted graph � (+ , �) with
vertices + and edges � . As such, the 8th atom is labeled by
both its position rğ and element type Uğ . Therefore, we express
vertices + as

+ = {(rğ ,Uğ) |rğ ∈ R
3,Uğ ∈ C, 8 = 1, 2, . . . , #}, (7)

where C = {C, N, O, S, H} contains all the commonly oc-
curring element types in a protein. Obviously, for different
biomolecular systems, we need to modify C accordingly.

To describe pairwise interactions between atoms in a
protein, we define a colored set P = {UV} with U, V ∈ C. For
each subset of element pairs Pġ , : = 1, 2, . . . , 15, a set of
involved vertices+Pġ

is a subset of+ containing all atoms that
belong to the pair in Pġ . For example, a partition P2 = {CN}

contains all pairs of atoms in the protein with one atom being
a carbon and another atom being a nitrogen. Based on this
setting, all the edges in such WCS describing pairwise atomic
interactions are defined by

�
Ă,ă,Ā

Pġ
= {¨Ă

ă,Ā (∥rğ − r Ġ ∥) |UğV Ġ ∈ Pġ ; 8, 9 = 1, . . . , #}

(8)

where ∥rğ − r Ġ ∥ defines a Euclidean distance between 8Īℎ and
9 Īℎ atoms, f indicates the type of radial basic functions (e.g.,
f = L for Lorentz kernel, f = E for exponential kernel), g is a
scale distance factor between two atoms, and Z is a parameter
of power in the kernel (i.e., Z = ^ when f = E, Z = a when
f = L). The kernel ¨Ă

ă,Ā
characterizes a pairwise correlation

satisfying the following conditions

¨
Ă
ă,Ā (∥rğ − r Ġ ∥) =

{

0 as ∥rğ − r Ġ ∥ → 0,

1 as ∥rğ − r Ġ ∥ → ∞.
(9)

Commonly used radial basis functions include generalized

exponential functions

¨
E
ă,Ą (∥rğ − r Ġ ∥) = 4

−(∥rğ−r Ġ ∥/ă (Ĩğ+Ĩ Ġ ) )
Ą

, ^ > 0, (10)

and generalized Lorentz functions

¨
L
ă,ć (∥rğ − r Ġ ∥) =

1

1 + (∥rğ − r Ġ ∥/g(Ağ + A Ġ ))ć
, a > 0,

(11)

where Ağ and A Ġ are, respectively, the van der Waals radius of
the 8Īℎ and 9 Īℎ atoms.

Centrality is widely used in graph theory or network anal-
ysis to describe node importance (43). Specifically, closeness
and harmonic centralities are defined as 1/

∑

Ġ ∥rğ − r Ġ ∥ and
∑

Ġ 1/∥rğ − r Ġ ∥, respectively. The degree of centrality simply
counts the number of edges upon a node. Our atomic centrality
for 8Īℎ atom can be regarded as an extension of the harmonic
formulation

`
ġ,Ă,ă,ć,ĭ
ğ

=

|ĒPġ
|

∑

Ġ=1

Fğ Ġ¨
Ă
ă,ć (∥rğ − r Ġ ∥),

UğV Ġ ∈ Pġ , ∀8 = 1, 2, . . . , |+Pġ
|, (12)

where Fğ Ġ is a weight function assigned to each atomic pair,
with Fğ Ġ = 1 for atomic rigidity or Fğ Ġ = @ Ġ for atomic charge.

In order to describe a centrality for the whole MWCS
� (+Pġ

, �
Ă,ă,Ā

Pġ
), we take into account a summation of the

atomic centralities

`ġ,Ă,ă,ć,ĭ
=

|ĒPġ
|

∑

ğ=1

`
ġ,Ă,ă,ć,ĭ
ğ

. (13)

It is this subgraph centrality that makes partition {CN} equiv-
alent to partition {NC}.

Since we have 15 choices of the set of weighted colored
edges Pġ , we can obtain corresponding 15 subgraph centrali-
ties `ġ,Ă,ă,ć,ĭ . By varying kernel parameters (f, g, a,F), one
can achieve multiscale centralities for multiscale weighted
colored subgraph (MWCS) (41). For a two-scale WCS, we
obtain a total of 60 descriptors for a protein.

Together with vertices + , the collection of all edges � =

{�
Ă,ă,Ā

Pġ
|: = 1, 2, . . . , 15} defines weighted graph � (+ , �).

However, here � (+ , �) has a limited descriptive power in
machine learning prediction. MWCSs � (+Pġ

, �
Ă,ă,Ā

Pġ
) and

their centralities `ġ,Ă,ă,ć,ĭ are used in the present work to
describe protein electrostatics.

Machine learning algorithms

General description

In the present work, the prediction of PB electrostatic solvation
free energy is formulated as a standard supervised learning.
The training data set D can be expressed as

D = {(x(ğ) , H (ğ) ) |x(ğ) ∈ RĤ, H (ğ) ∈ R, 8 = 1, · · · ,"},
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where x
(ğ) is the feature vector for the 8th sample in the training

set, H (ğ) = �� (ğ) as label is the electrostatic solvation free
energy of the 8th sample, = and " are the sizes of feature
vector and the training set. �� (ğ) will be given by the accurate
MIBPB solver, which is justified by a convergence analysis in
the Result section. The feature vector will be generated from
the graph theory and the GB model.

A variety of machine learning algorithms, including lin-
ear regression (LR), random forest (RF), gradient boosting
decision tree (GBDT) and deep neural network (DNN) can be
applied to predict the electrostatic free energy of the PB model.
LR is a simple approach designed for the linear approximation
of the mapping. RF and GBDT are both decision tree based
ensemble methods. RF builds a large number of uncorrelated
trees and utilizes bootstrap and aggregating (i.e., bagging).
GBDT makes use of gradient descent in conjugation with
the boosting procedure, which successively introduces weak
learners to compensate for the errors of existing learners. DNN
methods become powerful when errors are back-propagated
to correct neural weights. However, DNN methods typically
involve a large number of weights and thus are subject to
overfitting. DNN methods might not offer better predictions
unless the size of the training data is sufficiently large.

Feature Descriptions

Our ML model currently uses 367 features considering protein
structures, force field, graph theory representation, etc.

• GB model related features (240) : For each of the
15 paired elements among {C,N,S,O,H}, there are 16
features as GB terms, absolute GB terms, intermediate
GB terms, absolute intermediate GB terms, charges with
dielectric, absolute charges with dielectric, GB charge
terms, absolute GB charge terms, charges, absolute
charges, plus 6 rigidity indeces. We use the BornRadius
code (2) developed in Onufriev’s group wrapped with
python scripts to generate these features.

• Protein features (51): area (7) (C, N, O, S, H, CNOS,
CNOSH), charge (7), absolute charge (7), van der Waals
force (15), Coulomb force (15).

• Environment features (31): volume (6), hydropathy (6),
area (6), weight (6), pharma (6), sum of charge (1)

• Features from graph theory representation (45): Exp
and Lor kernels (15 × 3 kernels)

In this work, we use MWCS centrality `ġ,Ă,ă,ć,ĭ to gen-
erate a mathematical representation of biomolecular electro-
statics. In general, we seek an intrinsically low-dimensional
representation of electrostatic solvation free energies for a
large set of proteins. Specifically, we consider both the ex-
ponential kernel (f = E) and the Lorentz kernel (f = L).
Each kernel is parametrized with both the weight selections
of rigidity (F = 1) and charge (F = @). We select the powers

of the exponential kernel a = 2 and the Lorentz kernel a = 3.
The atomic features with 15 types of element partitions (Pġ ,
: = 1, 2, . . . , 15) are considered. However, the scale distance
factor g is to be optimized during the training and testing
processing. Additionally, the GB electrostatic solvation free
energies is employed as a special feature that incorporated
seamlessly with machine learning algorithms.

Generalized Born (GB) methods based gradient

boosting decision tree (GBDT)

The main idea GBDT model is to first use the features and
the labels to build a decision tree model, which is able to
give predicted labels. Then the residue between the original
labels and the predicted labels will be used as new labels,
together with the original features to build another decision
tree model, which gives another predicted labels. Using the
difference between the initial labels and the predicted labels
as the new labels, this procedure can be done recursively and
final predicted labels will be the summation of all predicted
labels. The model is optimized by minimizing the cost function
between the initial labels and their predicted values using the
gradient descent method.

In our framework of GB-based GBDT model, our first
decision tree is the GB model, whose solvation energy is
treated as the first predicted labels to initial labels, the PB-
model based solvation energy. The rest of trees are built from
our MWCS features. The loss function depends on a number
of trees, the structure of trees and MWCS features. In this
work, the loss function ! will also be optimized with respect
to MWCS parameters. The details of this model can be found
in the supplementary material.

Generalized Born (GB) methods based deep neural

network (DNN)

For DNN, we use the 367 features for each protein as the inputs
to the network for training, test, and prediction purposes. In
our model, the label is defined as H (ğ) = ��PB

ğ − ��GB
ğ

for
8 = 1, · · · ,", where ��GB

ğ
is calculated as the core feature

used outside the network. This core feature gives the global
estimate while other features fed into the network provides
local details. The quantity ��PB

ğ is obtained as training/test
data by solving the PB equation with MIBPB at refined mesh
(e.g. h=0.2). In prediction, we have ��̂PB

ğ = ��GB
ğ

+ Ĥ (ğ) ,
where Ĥ (ğ) is the predicted value from the DNN. The DNN has
multiple layers and the weights of the network are obtained
by back-propagation. We tune the parameters of the network
by sampling the parameter space to receive an optimized
combination of the parameters for best prediction accuracy.

RESULTS

This section reports results from the proposed PBML model.
Evaluation metrics, data selection, machine learning label
calculation, and feature selection are discussed before results
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are shown. We first justify the choice of MIBPB solver (17)
to generate labels compared with popular PB solvers such as
Amber (14) and DelPhi (15). We demonstrate the accuracy
and efficiency of the proposed PBML model in electrostatic
solvation free energy predictions. The numerical results of
MIBPB, Amber and DelPhi are generated with an Intel Xeon
E5-2670v2 from HPCC of Michigan State University (MSU),
and the machine learning results are produced on a desktop
with Intel Core I5 7500 and 16G Memory, using the scikit-
learn python package. The electrostatic solvation free energies
are generated with the room temperature ) = 298.15K and
dielectric constant n1 = 1, and n2 = 80.

Evaluation metrics

Through this paper, we use the mean absolute percentage error
(MAPE) and absolute relative error (ARE) for the analysis of
prediction accuracy, which are defined as

�MAPE =
100%

"

ĉ
∑

ğ=1

�

�

�

H (ğ) − Ĥ (ğ)

H (ğ)

�

�

�, �ARE =

�

�

�

H (ğ) − Ĥ (ğ)

H (ğ)

�

�

�.

where H (ğ) is the 8th label, i.e., the PB electrostatic solvation
free energy of the 8th molecule and Ĥ (ğ) is the predicted value.

Data preparation

In the present work, the selected 4294 protein structures are
obtained from the PDBbind v2015 refined set and PDBbind
v2018 refined set as the training set (44). The PDBbind v2015
core set of 195 proteins as listed in Supplementary Material
is adopted as the test set. The training set has proteins sized
from 997 to 27,713 atoms while the test set proteins range
from 1,702 to 26,236 atoms.

A data pre-processing is required before a PB solver can
be called. The protein structures in the original data set are
protein-ligand complexes. Missing atoms and side-chains
are filled using the protein preparation wizard utility of the
Schrodinger 2015-2 Suite with default parameter setting. The
Amber ff14SB general force field is applied for the atomic
van der Waals radii and partial charges.

Simulation Results

Convergence comparison of the PB solvers

We first carry out the convergence analysis of three PB solvers
for the test set of 195 proteins to justify the use of MIBPB
solver to produce accurate electrostatic solvation energy as
the labels. For each protein, we compute their electrostatic
solvation free energies at ten different mesh sizes, ranging
from 0.2 Å to 1.1 Å. For each PB solver, its results at
finest mesh size 0.2 Å are used as the references to evaluate
the relative errors for other meshes. As shown in Fig. 2(a),
the MAPEs using Amber and DelPhi are less than 1.5 %,
but that from MIBPB is less than 0.5% at all mesh sizes.
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0.2 0.4 0.6 0.8 1

Grid Size   

0

0.5

1

1.5

M
e
a
n
 A

b
s
. 
P

e
r.

 E
rr

.

Amber

DelPhi

MIBPB

(b) protein 3gnw

0.2 0.4 0.6 0.8 1
Grid Size      

-7650

-7600

-7550

-7500

-7450

S
o
l.
 E

n
e
rg

y
 (

k
a
c
l/
m

o
l)

Amber

DelPhi

MIBPB

(c) protein 3owj

0.2 0.4 0.6 0.8 1
Grid Size      

-4800

-4750

-4700

-4650

S
o
l.
 E

n
e
rg

y
 (

k
a
c
l/
m

o
l)

Amber

DelPhi

MIBPB

Figure 2: Convergence comparison among Amber, DelPhi, and
MIBPB; (a) MAPEs at ten grid sizes for Amber, DelPhi, and MIBPB
in computing the electrostatic solvation free energies of 195 test pro-
teins. For a protein in each method, the reference value is computed
at the mesh size of 0.2 Å; (b)-(c) Illustration of the electrostatic
solvation free energies obtained by Amber, DelPhi, and MIBPB at
ten different mesh sizes from 0.2 to 1.1Å for proteins 3gnw and 3owj.

We next examine the electrostatic solvation free energies
computed by three PB solvers on two sampled proteins. As
shown in Fig. 2(b-c), using the test proteins 3gnw(b) and
3owj(c), the energies obtained by MIBPB do not change much
over the mesh refinement, while those computed by Amber
and DelPhi vary more significantly. We also observed that
energies obtained by Amber and DelPhi converge toward
those of MIBPB as the mesh is refined. These tests justify
that MIBPB as the most accurate method among these three
PB solvers, to be used to compute labels for the ML models.
Some further convergence tests and comparison between PB
solvers can be found in supplementary material.

Comparison between different ML models

After justifying the use of MIBPB solver to generate the
labels, we next apply LR, RF, GBDT, and DNN to produce
corresponding learned models using the training data set.
We then use these learned models to predict the solvation
energy for the 195 proteins in the test set. The MAPE for
each learned model is shown in Table 1. The result shows that
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DNN has better performance than other three methods, thus
we use DNN as our ML algorithm for a further comprehensive
training and test of the PBML model.

Table 1: The MAPEs of LR, RF, GBDT, DNN for the test set of
195 proteins. For LR and RF, we use the default parameters. For
GBDT, we set the learning rate 0.05, the number of estimators
1500, maximum depth 5; The DNN is trained with 448 different
combination of parameters and the final optimized choice has batch
size 400, epoch 500, layers 367, 2048, 2048, 512, 512, 1.

LR RF GBDT DNN

MAPE 1.5317 0.8238 0.4432 0.3796
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Figure 3: Comparison of the MAPEs of Amber, DelPhi and PBML
(use result in Table 1 from DNN model ) of the electrostatic solvation
free energies of the test set at ten mesh sizes. The reference values
are the results of MIBPB at the grid size of 0.2 Å.

Performance of the PBML model

Our final PBML model is essentially the GB-based DNN
model, which uses the GB core feature with additional 367
features as described before. To understand the advantages of
the model and its prediction, we plotted a comparison of the
its MAPE with those of Amber and DelPhi at ten mesh sizes in
Fig. 3. Note that although Amber and DelPhi MAPEs reduce
significantly as the mesh is refined, even at the finest mesh of
0.2 Å, these two methods have not reached the accuracy of
PBML, which does not depend on grid size once the model is
trained/learned.

To further check the accuracy and efficiency of our PBML
model. We compute the solvation energy of 195 test proteins
using both the MIBPB at ℎ = 0.5 and the PBML model. Note
the PBML model is trained with the 4000+ protein training
set as described before labeled by solvation energy computed
using MIBPB at ℎ = 0.2. For this test, we use results from
MIBPB at ℎ = 0.2 as benchmark values while use results
from MIBPB at ℎ = 0.5 for the comparison with results
from the PBML model for the 195 proteins in the test set.
Fig. 4(a) shows the relative error in solvation energy and

from individual sample or average we see the PBML model
is obviously more accurate than the MIBPB model at ℎ = 0.5.
Fig. 4(b) shows the elapsed time and from individual sample
or average we see the PBML model is significantly more
efficient than the MIBPB model at ℎ = 0.5. All figures are
plotted using log scale in error and time since results from
different proteins are very variant.
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Figure 4: Accuracy and efficiency comparison on computing sol-
vation energy on 195 proteins using MIBPB at ℎ = 0.5 and DNN
based PBML model:(a): relative error in solvation energy; (b): time.
The average relative errors for PBML and MIBPB are 0.00776 and
0.02786. The average time for PBML and MIBPB is 236.5s and
1417.4s respectively.

CONCLUSION

This work introduces the Poisson-Boltzmann based machine
learning (PBML) model for the prediction of electrostatic
solvation free energies of biomolecules. Our goal is to offer
an efficient ML-based electrostatic analysis of new molecules
or new conformations of molecular dynamics at a small
fraction of time used in solving the Poisson-Boltzmann (PB)
equation at a similar level of accuracy, or at a similar level
of computational time but with a much higher accuracy than
a commonly used PB solver can ever deliver. To this end,
we first search the most accurate PB solver for generating
ML labels. The second-order accurate MIBPB solver turns
out to converge faster than two other eminent PB solvers,
namely the DelPhi and the Amber PB solver. Additionally,
we adopt multiscale weighted colored subgraph (MWCS)
for ML feature generations, which produces excellent low-
dimensional intrinsic representations of biomolecules. One
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global core feature is computed from the generalized Born
(GB) model. To maintain the efficiency, we employ a few
ML algorithms, including linear regression (LR), random
forest (RF), gradient boosting decision tree (GBDT), and
Deep Neural Network (DNN). It is found that the present
PBML model using DNN can more efficiently and accurately
produce electrostatics over traditional grid-based PB solvers.
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SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting
BJ Online at http://www.biophysj.org.

Generalize Born (GB) methods based

gradient boosting decision tree (GBDT)

It is noted that GB model provides a good approximation to
PB model. As such, its ��GB can be incorporated into the
GBDT algorithm. To this end, we outline the GB method
based GBDT algorithm as follows. Normally, the first step is
to build a decision tree T1 to fit {(x(ğ) , H (ğ) )}ĉ

ğ=1
, leading to

predicted labels {?1 (x
(ğ) )}ĉ

ğ=1
. The errors (or residues) of the

predictions are A (ğ)
2

= H (ğ)−?1 (x
(ğ) ). If A (ğ)

2
≠ 0 for some 8, one

builds another decision tree T2 to fit {(x(ğ) , A
(ğ)

2
)}ĉ
ğ=1

, leading

to new predicted labels {?2 (x
(ğ) }ĉ

ğ=1
. The errors are A (ğ)

3
=

A
(ğ)

2
− ?2 (x

(ğ) ) = H (ğ) − ?1 (x
(ğ) ) − ?2 (x

(ğ) ). The predicted
labels for {(x(ğ) , H (ğ) )}ĉ

ğ=1
are {?1 (x

(ğ) ) + ?2 (x
(ğ) )}ĉ

ğ=1
. If

|A
(ğ)

3
| > 0, one can build T3 to fit {(x(ğ) , A

(ğ)

3
)}ĉ
ğ=1

, leading to
new predicted labels {?3 (x

(ğ) )}ĉ
ğ=1

. In general, the predicted
model for the data {(x(ğ) , H (ğ) )}ĉ

ğ=1
based on  consecutive

decision trees is

Ĥ
(ğ)

ć
=

ć
∑

ġ=1

?ġ (x
(ğ) ), 8 = 1, 2, · · · ," . (14)

This is the so called boosting tree procedure. One can setup a
loss function

!ġ =

ĉ
∑

ğ=1

;ġ

(

H (ğ) − Ĥ
(ğ)

ġ

)

=

ĉ
∑

ğ=1

1

2

(

H (ğ) − Ĥ
(ğ)

ġ

)2

, (15)

to minimize the loss via the gradient descent optimization
of decision trees. A general minimization procedure is the
follows. For : = 2 to  ,

• Calculate gradient

A
(ğ)

ġ
= −

m;ġ−1

m?ġ−1 (x(ğ) )
(16)

• Construct decision tree Tġ to fit {(x(ğ) , A
(ğ)

ġ
)}ĉ
ğ=1

, lead-
ing to ?ġ as the learner function of Tġ .

• Choose learning rate Uġ such that

Uġ := argminĂ

ĉ
∑

ğ=1

;ġ−1

(

H (ğ) − Ĥ
(ğ)

ġ−1

)

+ U?ġ (x
(ğ) )

(17)

• Update model

Ĥ
(ğ)

ġ
= Ĥ

(ğ)

ġ−1
+ [Uġ ?ġ , (18)

where [ is the shrinkage, a predefined parameter.

In our work, we select “T1” to be the GB model which leads
to {?1 (x

(ğ) ) = ��GB
ğ

}ĉ
ğ=1

. The rest of trees are built from our
MWCS features. The loss function depends on a number of
trees, the structure of trees and MWCS features. In this work,
the loss function ! will also be optimized with respect to
MWCS parameters.

Convergence comparison between Amber,

Delphi, and MIBPB on 30 selected proteins

1 5 10 15 20 25 30
Protein Index

0

0.005

0.01

0.015

0.02

0.025

A
b

s
. 

R
e

l.
 E

rr
.

Amber (h=0.8) Amber (h=0.4)

DelPhi (h=0.8) DelPhi (h=0.4)

MIBPB (h=0.8) MIBPB (h=0.4)

Figure 5: Convergence comparison among Amber, DelPhi, and
MIBPB. The graph shows Absolute relative errors of Amber (dashed
lines), DelPhi (dash-dot lines), and MIBPB (solid lines) at mesh
sizes 0.4 Å (cycles) and 0.8 Å (squares) for 30 proteins. For a protein
in each method, the reference value is calculated at the mesh size of
0.2 Å.

To further investigate the convergences of the three PB
solvers, we randomly picked 30 proteins from the core set
and plot their AREs at two mesh sizes 0.4 Å (circle) and 0.8
Å (square) compared with results at 0.2 Å in Fig. 2(b). We see
that Amber and DelPhi offer a similar level of convergence,
while MIBPB returns significantly smaller errors. These 30
proteins are: 2qmj, 3ebp, 2x8z, 3bkk, 1gpk, 1f8b, 3ge7, 3huc,
3pe2, 3mfv, 2qbr, 3imc, 1saq, 3ivg, 3b3w, 3mss, 2v7a, 2zcq,
3utu, 3u9q, 3kwa, 3gbb, 1uto, 2yge, 2iwx, 3bpc, 2pcp, 2gss,
4dew, 3nox.

The list of 195 proteins from testing set

Below is the list of the 195 proteins used for testing purpose.
1lor, 1ps3, 3d4z, 3ejr, 2qmj, 3l4w, 3l4u, 3l7b, 3g2n, 3ebp,
2w66, 2wca, 2vvn, 2x97, 2xhm, 2x8z, 2x0y, 2cbj, 2j62, 3bkk,
3l3n, 2xy9, 1gpk, 1h23, 1e66, 3cj2, 2d3u, 3gnw, 3f3a, 3f3c,
3f3e, 4gqq, 1u33, 1xd0, 2wbg, 2j78, 2cet, 2zxd, 2zwz, 2zx6,
3udh, 4djv, 4gid, 3fk1, 2qft, 2pq9, 1f8d, 1f8b, 1f8c, 1n2v,
1r5y, 3ge7, 3huc, 3gcs, 3e93, 1q8t, 1q8u, 3ag9, 3owj, 2zjw,
3pe2, 2v00, 3pww, 3uri, 3mfv, 3f80, 3kv2, 2hb1, 2qbr, 2qbp,
3fcq, 1os0, 4tmn, 3pxf, 2xnb, 2fvd, 1qi0, 1w3k, 1w3l, 3imc,
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3ivg, 3coy, 3b3s, 3b3w, 3vh9, 3mss, 3k5v, 2v7a, 2brb, 3jvs,
1nvq, 3acw, 2zcr, 2zcq, 1bcu, 1oyt, 3utu, 3u9q, 2yfe, 2p4y,
3uo4, 2wtv, 3myg, 3kgp, 1o5b, 1sqa, 3kwa, 2weg, 3dd0, 2xdl,
1yc1, 2yki, 1p1q, 3bfu, 4g8m, 3g2z, 4de2, 4de1, 1vso, 3gbb,
3fv1, 2y5h, 2xbv, 1mq6, 1loq, 1lol, 1uto, 3gy4, 1o3f, 2yge,
2iwx, 2vw5, 2ymd, 2xys, 2x00, 2r23, 3bpc, 1kel, 3ozt, 3oe5,
3nw9, 1zea, 2pcp, 1igj, 1lbk, 2gss, 10gs, 3su5, 3su2, 3su3,
3n7a, 3n86, 2xb8, 3ao4, 3zsx, 3zso, 3nq3, 3ueu, 3uex, 3lka,
3ehy, 3f17, 3cft, 4des, 4dew, 3dxg, 1w4o, 1u1b, 3ov1, 3s8o,
1jyq, 1a30, 3cyx, 4djr, 3i3b, 3muz, 3vd4, 2vo5, 2vl4, 2vot,
1n1m, 2ole, 3nox, 1hnn, 2g70, 2obf, 1z95, 3b68, 3g0w, 1sln,
2d1o, 1hfs, 2jdy, 2jdm, 2jdu.
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