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Abstract

Single-cell RNA sequencing (scRNA-seq) is widely used to reveal heterogeneity in cells, which has

given us insights into cell-cell communication, cell differentiation, and differential gene expression. How-

ever, analyzing scRNA-seq data is a challenge due to sparsity and the large number of genes involved.

Therefore, dimensionality reduction and feature selection are important for removing spurious signals

and enhancing downstream analysis. Traditional PCA, a main workhorse in dimensionality reduction,

lacks the ability to capture geometrical structure information embedded in the data, and previous graph

Laplacian regularizations are limited by the analysis of only a single scale. We propose a topological

Principal Components Analysis (tPCA) method by the combination of persistent Laplacian (PL) tech-

nique and L2,1 norm regularization to address multiscale and multiclass heterogeneity issues in data. We

further introduce a k-Nearest-Neighbor (kNN) persistent Laplacian technique to improve the robustness

of our persistent Laplacian method. The proposed kNN-PL is a new algebraic topology technique which

addresses the many limitations of the traditional persistent homology. Rather than inducing filtration via

the varying of a distance threshold, we introduced kNN-tPCA, where filtrations are achieved by varying

the number of neighbors in a kNN network at each step, and find that this framework has significant

implications for hyper-parameter tuning. We validate the efficacy of our proposed tPCA and kNN-tPCA

methods on 11 diverse benchmark scRNA-seq datasets, and showcase that our methods outperform other

unsupervised PCA enhancements from the literature, as well as popular UniformManifold Approximation

(UMAP), t-Distributed Stochastic Neighbor Embedding (tSNE), and Projection Non-Negative Matrix

Factorization (NMF) by significant margins. For example, tPCA provides up to 628%, 78%, and 149%

improvements to UMAP, tSNE, and NMF, respectively on classification in the F1 metric, and kNN-tPCA

offers 53%, 63%, and 32% improvements to UMAP, tSNE, and NMF, respectively on clustering in the

ARI metric.
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1 Introduction

Single cell RNA sequencing (scRNA-seq) is a relatively new method that profiles transcriptomes of individual

cells, revealing vast information in the heterogeneity within cell population, which has lead to further under-

standing of gene expression, gene regulation, cell-cell communication, cell differentiation, spatial transcrtip-

tomics, signal transduction pathways, and more [1,2]. The workflow of a typical scRNA-seq analysis involves

single cell isolation, RNA extraction and sequencing using a library and downstream analysis. With the

technological improvements, more than 20,000 genes can be profiled, which has led to a high-dimensionality

challenge. Despite the improvements in the methodology that allows for more accurate reading of genes

and increasing the number of sequenced cells per experiment, analyzing the data for downstream analysis

remains a hurdle. Numerous methods and procedures have been proposed to analyze the data [3–9]. Specific

challenges in scRNA-seq data analysis include drop-out events-induced zero expression read count, inade-

quate sequencing depth-induced inconsistent low reading counts, noise data, and high dimensionality [8,10].

Therefore, dimensionality reduction and feature selection to eliminate low signals is an essential step in

analyzing scRNA-seq data.

Various dimensionality reduction and feature selection methods have been proposed for analyzing scRNA-

seq data. ScRNA by non-negative and low rank representation (SinLRR) assumes that scRNA-seq data is

inherently low rank and finds the smallest ranked matrix that approximates the original data [11]. Single-cell

interpretation via multikernel learning (SIMLR) utilizes multiscale kernel to learn a cell-cell similarity metric

that can be used for downstream analysis [12]. Deep learning has also been used to perform dimensionality

reduction [13–16].

Traditional dimensionality has also been widely incorporated into scRNA-seq analysis pipeline. Non-

linear dimensionality reduction, such as uniform manifold approximation and projection (UMAP), t-distributed

stochastic neighbor embedding (t-SNE), multidimensional scaling (MDS) and isomap have been utilized for

visualization [17–20]. However, directly applying such algorithm can be challenging because these methods

rely on distance calculation and data sparsity, but high dimensional scRNA-seq data may suffer from poor

distance calculations. Recently, correlated clustering and projection (CCP) has been used on scRNA-seq

data and its visualization [21, 22]. CCP utilizes gene-gene correlation to partition genes, and uses cell-cell

correlation on the partitioned genes to project the original genes into super-genes. Non-negative matrix

factorization (NMF) has been widely utilized due to its interpretability. NMF uses matrix factorization,

where the basis can be interpreted as meta-gene, which are weighted sums of the original genes. Numerous

NMF with various constrains has been proposed for scRNA-seq [23, 24]. One of the oldest dimensionality

reduction methods, principal components analysis (PCA) is still one of the most popular method used for

scRNA-seq [25].

PCA is a linear dimensionality reduction algorithm, where the goal is to compute a orthonormal basis

that maximizes the variance of the projected data. The first component is call the principle component,

where the variance of the projected data is maximized. The subsequent components i are orthogonal to the

i− 1 components and maximizes the variance of the residual of the approximation. Though PCA is popular

because of its efficiency and is linear due to the having no reliance on utilizing metric computation, it has

its drawbacks. First, PCA lacks concrete interpretability because of its eigenmode-representation the data.

In scRNA-seq, there are many 0-counts in the data, i.e. the gene is not expressed, which can contribute

to the principle component and the coefficient matrix can be dense. Second, PCA assumes that the noise

of the data is Gaussian, which may not model scRNA-seq data well because the original data is a count

matrix. To tackle the first problem, sparse PCA (sPCA) was introduced [20], where by adding a l1 penalty

term on the basis, it allowed for sparsity in the principle components. An alternative formulation of PCA

was introduced by Nie et. al. [26] to improve robustness of PCA by assuming the noise is sampled from the

Laplace distribution, which is called rPCA. Graph regularization was further introduced by Jiang et. al.

which utilizes a graph Laplacian to incorporate nonlinear manifold structure to the reduction [27]. However,
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graph Laplacian can only capture a single scale, and is not able to capture the topological structure of the

data.

We introduced persistent Laplacian-Enhanced PCA theory in previous works, which was shown to out-

perform all other state-of-the-art PCA enhancements for microarray data analysis [28]. Persistent Laplacian,

also called persistent combinatorial Laplacian or persistent spectral graph, was introduced as a new gener-

ation of topological data analysis (TDA) methods in 2019 [29]. It has stimulated a variety of theoretical

developments [30–33] and led to remarkable applications [34–36]. PLPCA has the ability to recognize the

stability of topological features in our data at multiple scales, and provide a more thorough spatial view

through the filtration of a simplicial complex, which induces a sequence of simplicial complexes. Accounting

for the spectra of each corresponding Laplacian matrix for each complex in the sequence enables us extract

this topological information, improving our ability to preserve intrinsic geometrical information during di-

mensionality reduction. We can accomplish this by constructing a weighted sum of each Laplacian matrix,

generating an accumulated spectral graph. However, PLPCA requires intensive parametrization.

The objective of the present work is to introduce L2,1 norm regularization to improve the sparsity and

heterogeneity constraint in PLPCA. The resulting technique, called topological PCA (tPCA), allows us to

significantly reduce the distribution of the weightings in the accumulated spectral graph, while still achieving

near optimal performance. Additionally, we introduce a k-nearest neighbor (kNN) persistent Laplacian

algorithm to improve the robustness of our tPCA. The performance of resulting kNN-tPCA does not depend

on parameter search. We extensively validate the performance of tPCA and kNN-tPCA for clustering and

classification on a series of 11 scRNA-seq datasets. We demonstrate that our new method is superior to

other PCA enhancements as well as NMF.

Our work then proceeds as follows. First, we review the mathematical formulations of each of the

enhancements that build up to tPCA. Specifically, graph regularization and sparseness. We then discuss the

tools for perssistent Laplacian theory which we will incorporate to arrive at our final procedure: RpLSPCA,

or tPCA. We then validate the performance of this new method on a set of 11 scRNA-seq datasets against

other notable PCA enhancements, as well as NMF, for clustering and classification. Extensive tests indicate

that our methods are the state of the art procedure for dimensionality reduction prior to clustering and

classification. Specifically, over the 11 tested datasets, tPCA outperforms UMAP on average by 628% on the

F1 metric. Lastly, we visualize the tPCA Eigen-Genes via UMAP and tSNE, as well as Residue Similarity

Plots to further assess the performance of our methods.

2 Methods

In this section, we provide an overview of PCA and its derivatives, including sparse PCA (sPCA), and graph

Laplacian regularized sparse PCA (gLSPCA). We then introduce our method, topological PCA (tPCA) and

a less parameter-intensive alternative kNN-tPCA. We will first define the notation used in the following

subsection.

2.1 Notations

We summarize our notations as follows.

1. X = {x1, ...,xN} ∈ R
M×N , where xj ∈ R

M indicates the jth sample or cell, and M is the number of

genes.

2. ∥A∥F =
√

∑N
j=1

∑M
i=1

Aij is the frobenius norm of matrix A.

3. ∥A∥2,1 =
∑N

j=1
∥aj∥2 is the l2,1 norm of A, where the summation is taken after taking the l2 norm of

each column. Alternatively, we can think of this as taking the l2-norm of the genes and taking the sum
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over the cells.

4. Tr(A) is the trace of matrix A.

5. Let m << M the dimension of the subspace, and M is the number of original dimension, ie the number

of genes.

6. Let N be the number of samples or cells.

7. U ∈ R
m×M is the principle components, or the basis of the lower dimensional subspace of X, and m

is the number of dimension.

8. Q ∈ R
m×N is the projection of X onto the subspace spanned by U .

2.2 PCA

Principal Component Analysis has historically served as the baseline approach for dimensionality reduction

during gene expression data analysis [37]. The goal of PCA is to express some high dimensional data

X ∈ R
M×N in a lower dimensional space. This is accomplished via computing the principal components,

which are the eigenvectors of the covariance of X corresponding to the largest eigenvalues. Alternatively, we

can express PCA as finding a m-dimensional subspace that approximate the data matrix, i.e.,

min
U,Q

∥X − UQT ∥2F , s.t. QTQ = IN (1)

where QTQ = IN is the orthonormal constrain, and IN is the N ×N , or cell by cell, identity matrix. When

the original matrix X is 0-mean 1-variance scaled, we can see that this formulation is equivalent to take the

eigenvectors of the covariance matrix. Alternatively, the orthonormal constrain can be applied to U , which

yields traditional PCA.

2.3 Sparse PCA

PCA requires that the principal components be expressed as linear combinations of all the features with

non-zero weightings. However, in the context of gene expression data analysis, this introduces unnecessary

computational complexity and noise, because many genes are not expressed in the cells, or is only expressed

under particular circumstances [3]. Therefore, the interpretability of PCA is significantly aided by the

introduction of Sparse PCA (sPCA), which allows for zero weightings [20]. Sparse PCA can take several

forms, notably the inclusion of an L2,1 norm penalty term in the objective function as in Eq. 2:

min
U,Q

∥X − UQT ∥F + ´∥Q∥2,1, s.t. QTQ = IN (2)

The L2,1 norm is defined as ∥A∥2,1 =
∑n

i=1
∥ai∥2, or first calculating the L2 norm of each row, and then

computing the L1 norm of row-based L2 norms. The ´ parameter scales the sparse regularization term.

2.4 Graph Laplacian Regularized Sparse PCA

While the inclusion of sparse regularization should address some of the shortcomings of PCA relating to

interpretability, it does not address the inability of PCA in recognizing complex geometric structures which

are present in the higher dimensional space. Graph Laplacian has been commonly used to incorporate

geometric information into the reduction such that similar samples in high dimension will be closer in

the lower dimensional embedding. This can be accomplished with neighbor graphs with pairwise edges,

specifically, the Laplacian operator [38].

Let G(V,E,W ) be a nearest neighbor graph, where V is the set of vertices, E is the edge, and É are the

weights of the edges. E can be defined as E = {(xj ,xi) : xi ∈ Nk(xj) or xj ∈ Nk(xi)}, where Nk(xj) is
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the k-nearest neighbors of sample j under some metric. For pairs of points in the edge set, we can define a

weight satisfying the following two properties

Φ(xi,xj) → 1 as∥xi − xj∥ → 0

Φ(xi,xj) → 0 as∥xi − xj∥ → ∞.

Such condition is satisfied by a class of functions called radial basis functions. For this work, we utilize the

Gaussian kernel as the edge weights

Wij =

{

e−∥xi,xj∥
2/¸ if xj ∈ Nk(xi)

0, otherwise.
(3)

The matrix W is known as the weighted adjacency matrix. Here, ¸ ∈ R defines the geodesic distance, or

the width of the Gaussian kernel. We can then define the Graph Laplacian L, by taking

L = D −W, (4)

Dii =
N
∑

j=1

Wi,j , (5)

where D is the degree matrix, defined as the row sum of W , which shows the total connectivity of the vertex

i. Laplacian graph provides a graphical embedding, which can be used as a regularization for PCA [27].

In order to incorporate manifold regularization into the PCA framework, consider the distance ∥qi−qj∥
2,

where qi and qj correspond to the lower dimensional representation of samples xi and xj , respectively. Using

the graph weights Wij , we see that if Wij → 1, ie xi and xj are similar, then ∥qi − qj∥ → 0. Alternatively,

if Wij → 0, ie xi and xj are dissimilar, ∥qi −qj∥
2 → ∞. Using this fact, we want to minimize the following.

R =
1

2

N
∑

ij

Wij∥qi − qj∥
2

=
1

2

N
∑

ij

Wijq
T
i qi + qT

j qj −
N
∑

ij

Wijq
T
i q

T
j

=
N
∑

i

Diiq
T
i qi −

N
∑

ij

Wijq
T
i q

T
j

= Tr(QTDQ)− Tr(QTWQ)

= Tr(QTLQ).

Utilizing the sparse PCA and the manifold regularization, we obtain the graph Laplacian sparse PCA

(gLSPCA)

min
U,Q

∥X − UQT ∥F + ´∥Q∥2,1 + µTR(QTLQ), s.t. QTQ = IN . (6)

We also observe that the loss function of gLSPCA is Frobenius norm regularization, which is sensitive to

outliers and data heterogeneity when dealing with multiclass data. We then propose replacing Frobenius

norm regularization with L2,1 norm regularization to achieve robustness. This yields the following new

objective function, which we call Robust graph Laplacian Sparse PCA (RgLSPCA),

min
U,Q

∥X − UQT ∥2,1 + ´∥Q∥2,1 + µTr(QTLQ), s.t QTQ = In. (7)
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2.5 Topological PCA

While the inclusion of sparseness and graph Laplacian regularization seeks to address interpretability and

geometric structure capture, it still lacks the ability to recognize the stability of topological features at

multiple scales, as well as homotopic shape information [29]. To this end, we turn to persistent Laplacian

regularization. Like persistent homology, persistent spectral graph theory tracks the birth and death of

topological features of data as they change over scales [30, 39]. We perform this analysis via a filtration

procedure on our data to construct a family of geometric structures [29]. We then can study the topological

properties of each configuration by its corresponding Laplacian matrix.

First, we must briefly review the notion of a simplex, simplicial complex, q-chain, and boundary. A

0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and so on. Generally, we consider a

q-simplex, Ãq. A simplicial complex is then a means of approximating a topological space by gluing together

the faces of simplices. More formally, a simplicial complex K is a collection of simplices such that:

1. If Ãq ∈ K and Ãp is a face of Ãq then Ãp ∈ K.

2. The nonempty intersection of any two simplices is a face of both simplices.

A q-chain is then defined as a formal sum of q-simplices in a simplicial complex K with coefficients in Z2.

The set of q-chains has a basis in the set of q-simplices in K, and this set forms a finitely generated free

Abelian group Cq(K). We then define the boundary operator as a homomorphism relating the Chain groups,

∂q : Cq(K) → Cq−1(K). The boundary operator is defined as:

∂qÃq =

q
∑

i=0

(−1)iÃq−1. (8)

where Ãq−1 is a q − 1 simplex. The sequence of chain groups connected by this homomorphism is then a

Chain Complex:

...
∂q+1

−−−→ Cq(K)
∂q

−→ Cq−1(K)
∂q−1

−−−→ ....

It is well known that the boundary operator and the Chain Complex associated with a simplicial complex

gives the number of q-dimensional holes in that topological space. Specifically, the qth Homology Group is

defined as Hq = ker∂q/Im∂q. This is also known as the qth Betti Number, ´q. The matrix representation of

the qth boundary operator with respect to the standard basis in Cq(K) and Cq−1(K) is given as Bq. Besides

considering the Homology of our topological space, we can also consider its cohomology. To that end, we

define the adjoint operator of ∂q as:

∂∗
q : Cq−1(K) → Cq(K), (9)

and the transpose of Bq, denoted BT
q , is the matrix representation of ∂∗

q with respect to the same basis. We

can now define the q-combinatorial Laplacian matrix as:

Lq := Bq+1B
T
q+1 + BT

q Bq. (10)

The harmonic spectrum of the q-combinatorial Laplacian matrix reveals the dimension of the qth Homology

group, or the number of q-dimensional holes in our simplicial complex. The non-harmonic spectrum then

reveals further homotopic shape information [40]. Intuitively, ´0 reveals the number of connected components

in K, ´1 reveals the number of loops in K, and ´2 reveals the number of 2D voids in K.

However, this framework is confined to the analysis of only a single simplicial complex, or the connec-

tivities at only a single scale. To enrich our spectral information, Persistent spectral graph theory proposes

creating a sequence of simplicial complexes by varying a filtration parameter [40]:

{∅} = K0 ¦ K1 ¦ ... ¦ Kp = K.
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For each subcomplex Kt we can denote its chain group to be Cq(Kt), and the q-boundary operator ∂t
q :

Cq(Kt) → Cq−1(Kt). By convention, we define Cq(Kt) = {0} for q < 0 and the q-boundary operator to then

be the zero map. The boundary operator and adjoint boundary operator are otherwise defined similarly as

before for each Kt in the sequence, which allows us to define a sequence of Chain Complexes.

Next, we introduce persistence to the Laplacian spectra. Define the subset of Ct+p
q whose boundary is

in Ct
q−1 as Ct,p

q , assuming the natural inclusion map from Ct
q−1 → Ct+p

q−1.

C
t,p
q := {´ ∈ Ct+p

q |∂t,p
q (´) ∈ Ct

q−1}. (11)

On this subset, one may define the p-persistent q-boundary operator denoted by ∂̂t,p
q : Ct,p

q → Ct
q−1 and

corresponding adjoint operator (∂̂t,p
q )∗ : Ct

q−1 → C
t,p
q , as before. The matrix representation of the p-persistent

q-boundary operator in simplicial basis is then Bt,p
q+1, and the matrix representation of the adjoint operator

is again the transpose. This allows us to define the q-order p-persistent Laplacian matrix as:

Lt,p
q := Bt,p

q+1(B
t,p
q+1)

T + (Bt
q)

TBt
q. (12)

We may again recognize the multiplicity of zero in the spectrum of Lt,p
q as the q’th order p-persistent Betti

number ´t,p
q which counts the number of (independent) q-dimensional voids inKt that still exists inKt+p [29].

We can then see how the q’th-order Laplacian is actually just a special case of the q’th-order 0-persistent

Laplacian at a simplicial complex Kt, or rather, at a snapshot of the filtration.

We can capture a more thorough view of the spatial features of our data by focusing on the 0-persistent

Laplacian as we have done in previous works [28]. Specifically, we calculate Vietoris-Rips complexes by

varying a filtration parameter on the weighted entries of our Laplacian matrix, which correspond to the

weighted edges in our graph structure. By gradually increasing a distance threshold, we induce a sequence of

simplicial complexes and subgraphs to analyze. In previous works on Persistent Laplacian-enhanced PCA,

we provided a convenient computational method for this. For a graph Laplcian matrix L, observe:

L = (lij), lij =

{

lij , i ̸= j, i, j = 1, ..., n

lii = −
∑n

j=1
lij .

(13)

For i ̸= j, let lmax = max(lij), lmin = min(lij), d = lmax−lmin. Set the t
th Persistent Laplacian Lt, t = 1, ..., p:

Lt = (ltij), l
t
ij =

{

0, if lij f (t/p)d+ lmin

−1, otherwise.
(14)

Here,

ltii = −
n
∑

j=1

ltij . (15)

We then weight each Lt in the sequence and sum to consolidate each subgraph into a single term, denoted

PL. This new term should encode the persistence of topological features as the filtration progresses over

multiple scales

PL :=

p
∑

t=1

·tL
t. (16)

The optimal · weightings are hyper parameters which are obtained via Grid Search. Ideally, we should

recognize which scales of connectivity contribute the most important information to our analysis, and place

greater emphasis on that corresponding Laplacian matrix in the sum. More details regarding this procedure

can be found in our previous works [28]. Substituting this PL term into Eq. 7 gives rise to Robust Persistent

Laplacian Sparse PCA (RpLSPCA) which is obtained via the following optimization formula:

min
U,Q

∥X − UQT ∥2,1 + ´∥Q∥2,1 + µTr(QT (PL)Q), s.t QTQ = In. (17)
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For convenience, we can also refer to this method simply as Topological PCA (tPCA). This method should

better retain geometrical structure information by emphasizing topological features that are persistent at

multiple scales through the harmonic spectra, while the non harmonic spectra contributes other geometric

shape information.

2.6 KNN Induced Persistent Laplacians

Rather than varying a distance threshold on the entries of our weighted Laplacian matrix to induce filtration,

we can instead vary the number of neighbors we use to construct each graph structure. This construction

has been used in the past to establish kNN-based persistent homology techniques, and extends naturally to

the construction of a sequence of Persistent Laplacians [41]. Observe Figure 1. We then can replace PLs in

Eq. 16 by kNN-PLs

Lk = (lkij), l
k
ij =

{

−1, if i ̸= j and xj ∈ Nk(xi)

0, otherwise
(18)

Vietoris Rips

Complex

kNN Induced

Filtration

� = 1 � = 2 � = 3

� = 0.50 � = 0.75 � = 1.00

Figure 1: Comparison of inducing filtration via Vietoris Rips Complex, which is reliant on a chosen distance threshold ϵ, and

k-nearest-neighbors induced filtration, which is induced by varying the number of nearest neighbors at each node in our graph.

We vary k from 1 to p to establish a sequence of p Persistent Laplacians with different connectivities

at each scale of the filtration. Again, diagonal entries are set equal to negative row sums, giving the

total connectivity of each vertex. While the Vietoris-Rips based construction requires a choice of scale

parameter for the Gaussian Kernel weighting of our graph Laplacian for the sake of normalization, the

kNN construction eliminates the need for this since the filtrations do not depend on varying a distance

threshold [41]. Furthermore, the sparseness of scRNA-seq data can affect distance measurements, leading

to difficulties in establishing meaningful connections between cells when reliant on a distance metric. By

inducing filtration through varying the number of neighbors rather than a distance threshold, the result is

then a more standardized sequence of connectivity. We also tend to observe the formation of more connected

cycles via this method, which lends itself to richer, more interesting topological features in our data. We now

validate the performance of these new methods against other enhanced PCA procedures, as well as NMF

and tSNE, on several benchmark scRNA-seq datasets.
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3 Results

3.1 Data and Preprocessing

Table 1 shows the summary of the data, including the GEO accession ID, reference, source organism, number

of samples, number of genes, and number of cell types. For each dataset, log-transform was applied, and

genes with values less than 10−6 were set to zero. Afterward, 20%− 25% of the lowest variance genes were

dropped. In certain instances where a class had fewer than 15 samples, we dropped that class from the

analysis. For the PCA methods, values were then demeaned and scaled by the standard deviation, while for

NMF, values were standardized by sklearn’s NMF function. Note the differing dimensionality and number

of cell types of each dataset, underscoring the comprehensiveness of our proposed methods.

Table 1: Accession ID, source organism, and the counts for samples, genes, cell types and normalization for 11 datasets

Accession ID Reference Organism Samples Genes Cell types

GSE67835 Darmanis [42] Human 420 22084 8

GSE75748 cell Chu [43] Human 1018 19097 7

GSE75748 time Chu [43] Human 758 19189 6

GSE82187 Gokce [44] Mouse 705 18840 10

GSE94820 Villani [45] Human 1140 26593 5

GSE84133human1 Veres [46] Human 1937 20125 14

GSE84133human2 Veres [46] Human 1724 20125 14

GSE84133human3 Veres [46] Human 3605 20125 14

GSE84133mouse1 Veres [46] Mouse 822 14878 13

GSE84133mouse2 Veres [46] Mouse 1064 14878 13

GSE45719 Deng [47] Mouse 300 22431 8

3.2 Evaluation Metrics

3.2.1 Adjusted Rand Index (ARI)

ARI describes how well two clusterings agree with each other by comparing pairs of data points and their

respective class assignments. It also can account for possible random agreement and adjusts the similarity

score accordingly, assigning a value in the range of -1 to 1. A value of 1 indicates a perfect agreement between

clusterings, a value of 0 indicates a random chance agreement, and a value of -1 suggests that the clusterings

are less similar than they would be by chance. For two clusterings X = {X1, ..., Xr} and Y = {Y1, ..., Ys},

we construct a contingency table A ∈ R
r×s with elements aij which describe the overlap between Xi and

Yj . We then take row sums and column sums to obtain another set of values: {q1, ..., qr} is the set of row

sums and {p1, ..., ps} is the set of column sums. We can then define the Adjusted Rand Index as:

ARI =

∑

ij

(

aij

2

)

− (
∑

i

(

qi
2

)
∑

j

(

pj

2

)

)
1

2
(
∑

i

(

qi
2

)

+
∑

j

(

pj

2

)

)− (
∑

i

(

qi
2

)
∑

j

(

pj

2

)

)
(19)

3.2.2 Normalized Mutual Information (NMI)

Mutual Information considers a split of the data according to clusters and a split according to true class labels,

and measures how these splittings agree with each other. NMI then corrects for any bias and normalizes the

scores between 0 and 1. A value of 1 indicates a perfect agreement between the splittings while a value of 0

indicates random chance agreement. The mathematical definition of NMI is given as:

NMI(T, P ) =
MI(T, P )

(E(T ) + E(P ))/2
(20)
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Where MI(·, ·) and E(·) represent mutual information and entropy and T, P represent the true and predicted

cluster labels, respectively.

3.2.3 Classification Metrics

Regarding the evaluation metrics used to measure performance for classification tasks, beyond simple ac-

curacy, there are several metrics that are commonly considered. Notably, Precision, Recall, and F1-Score.

Below we list the mathematical definition of each.

Recall =
True Positive

True Positive + False Negative
(21)

Precision =
True Positive

True Positive + False Positive
(22)

F1-Score = 2
Precision× Recall

Precision + Recall
(23)

We note that the F1-score is particularly relevant as it accounts for both precision and recall, making

it more robust to class imbalances within the data. In our case, there are noticeable imbalances between

cell types in each of the tested dataset, so we emphasize this metric as the most informative in measuring

performance.

Given that our datasets generally contain multiple classes, the evaluation criterion we employ is the mean

for each cell type. This evaluation approach is commonly known as a macro metric, where performance

measures are calculated for each cell type individually and then averaged to obtain an overall score.

Macro-Recall =
1

c

c
∑

i=1

Recalli (24)

Macro-Precision =
1

c

c
∑

i=1

Precisioni (25)

Macro-F1 = 2
Macro-Precision×Macro-Recall

Macro-Precision +Macro-Recall
(26)

3.2.4 Residue Similarity Scores

To enhance visualization, Residue Similarity (RS) scores can be computed [21]. Traditional visualization

techniques often involve reducing the data to two or three dimensions, which may result in the loss of

structure and integrity in multiclass data. R-S plots were introduced as a method to visualize results while

better preserving the underlying structure of the data.

An R-S plot consists of two main components: the residue score and the similarity score. The residue

score is calculated as the sum of distances between classes, capturing the dissimilarity between them. On

the other hand, the similarity score represents the average similarity within each class, indicating the degree

of similarity between instances belonging to the same class. By considering both scores, R-S plots provide a

comprehensive representation of the data’s structure in a visualization.

Given data of the form {(x⃗i, yi)|x⃗i ∈ R
N , yi ∈ Zl}

M
i=1, we have yi representing the class label of our ith

data point x⃗i ∈ X. Say that our data has N samples, M features, and L classes. We can then partition our

dataset X into subsets containing each of the classes by taking Cl = {x⃗i ∈ X|yi = l}. For each class l we

then define the residue score as follows:

Ri := R(x⃗i) =
1

Rmax

∑

x⃗j /∈Cl

∥x⃗i − x⃗j∥, (27)
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where ∥·∥ denotes the Euclidean distance between vectors and Rmax is the maximal residue score for that

subset. The similarity score, meanwhile, is given as:

Si := S(x⃗i) =
1

|Cl|

∑

x⃗j∈Cl

(

1−
∥x⃗i − x⃗j∥

dmax

)

, (28)

where dmax is the maximal pairwise distance of the dataset. For constructing R-S plots, we then take

R(x⃗) to be the x-axis and S(x⃗) to be the y-axis.

3.3 Comparison of tPCA and Other Methods for KMeans Clustering

We tested tPCA’s performance on the datasets described in Table 1, and compared it to PCA, sPCA,

RgLSPCA, NMF, UMAP, and tSNE. For this analysis, we performed K-Means clustering after reducing the

dimensionality of each dataset such that the number of dimensions equals the number of clusters. To ensure

the greatest accuracy in our analysis, we used sklearn’s KMeans function, and increased the number of times

the k-means algorithm is run with different centroid seeds from 10 to 150. We then performed the clustering

with 30 random instances and considered the average performance. To further facilitate a fair and accurate

comparison, we utilized sklearn’s NMF function, initialized as non-negative random matrices with values

scaled by the square root of the mean of X and divided by the number of components. We also increased

the number of maximum iterations from 200 to 300, and took the average performance over 20 random

initializations. Likewise, we also compare our method to sklearn’s tSNE over 20 random intializations with

maximum iterations increased to 300. For UMAP, we used the default minimum distance allowed for packing

points together in the embedding space, the low value generally should improve clustering performance by

providing a cleaner separation between clusters. We used the default number of nearest neighbors in UMAP’s

kNN structure, which was 15. This value is the same as the initial number of neighbors used to describe the

manifold structure in tPCA.

We do, however, note certain weaknesses with NMF, UMAP, and tSNE in this analysis. First, methods

such as NMF tend to perform poorly when reducing to such low dimensionality, while methods such as

tSNE and UMAP have notable issues with structure preservation. Specifically, neither method is capable of

strictly preserving the density or distance in our data. Therefore, we expect that our procedure should prove

substantially more effective as a preprocessing step than any of these methods for clustering via KMeans

or classifying via K-Nearest-Neighbors, as both models are reliant on the intrinsic distance and density in

the data. For the clustering analysis, a summary of our results for Adjusted Rand Index and Normalized

Mutual Information can be found in Tables 2,3. For kNN-Induced tPCA, when results are shown as (·)∗,

this implies that a generic connectivity weighting was used, and there was no parameter optimization needed

on that dataset to obtain nearly optimal performance.
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Table 2: Comparison of tPCA and other methods for Adjusted Rand Index

Dataset and Method kNN-tPCA tPCA RgLSPCA sPCA PCA NMF tSNE UMAP

GSE67835 (0.9496)* 0.9552 0.9496 0.7625 0.7604 0.6926 0.4200 0.5579

GSE75748cell 0.7475 0.7789 0.7454 0.7440 0.7440 0.7530 0.5301 0.6511

GSE75748time (0.7123)* 0.7129 0.7036 0.6128 0.6128 0.6852 0.3746 0.3677

GSE82187 (0.9932)* 0.9932 0.7622 0.7530 0.7530 0.5113 0.4727 0.5193

GSE94820 0.5731 0.5749 0.5159 0.5396 0.5396 0.5400 0.3820 0.3917

GSE84133human1 (0.7942)* 0.8065 0.7914 0.5675 0.5675 0.6436 0.4446 0.5396

GSE84133human2 (0.9277)* 0.9277 0.9162 0.8090 0.8090 0.6168 0.6237 0.5680

GSE84133human3 (0.8727)* 0.8722 0.7799 0.6976 0.6976 0.6061 0.5964 0.7016

GSE84133mouse1 0.7746 0.7699 0.7699 0.7688 0.6320 0.5417 0.5391 0.4293

GSE84133mouse2 0.6172 0.6139 0.6165 0.5041 0.5041 0.4029 0.3978 0.3851

GSE45719 0.4262 0.4386 0.4212 0.4133 0.4133 0.4073 0.4068 0.4088

We see from the results in Table 2 that persistent Laplacian-enhanced PCA is able to outperform not

only the other enhanced PCA procedures, but also NMF, UMAP, and tSNE, on all of the tested datasets for

Adjusted Rand Index. We specifically note the superior performance on GSE82187. our tPCA outperformed

RgLSPCA’s ARI score by a considerable margin of 0.231. These results clearly indicate the superior ability

to preserve local non-linear geometric structure achieved by persistent Laplacian regularization compared to

graph Laplacian regularization, and the result is superior performance in clustering analysis. Furthermore, in

several instances KNN-Induced Laplacian regularization was able to match the performance of the standard

construction without any optimization. Overall, it was shown to at least outperform the other procedures

on all but one tested dataset, and with a fraction of the effort required for parameter search.

Table 3: Comparison of tPCA and other methods for Normalized Mutual Information

Dataset and Method kNN-tPCA tPCA RgLSPCA sPCA PCA NMF tSNE UMAP

GSE67835 (0.9224)* 0.9275 0.9224 0.8192 0.8174 0.78630 0.5817 0.7272

GSE75748cell 0.8850 0.9230 0.8825 0.8810 0.8810 0.9036 0.6940 0.7956

GSE75748time (0.8276)* 0.8338 0.8248 0.7220 0.7220 0.8074 0.4847 0.5047

GSE82187 (0.9853)* 0.9853 0.8967 0.8995 0.8995 0.8040 0.6849 0.7841

GSE94820 0.6757 0.6738 0.6275 0.6367 0.6367 0.6444 0.4949 0.4831

GSE84133human1 (0.8412)* 0.8604 0.8391 0.7905 0.7905 0.8142 0.6550 0.7748

GSE84133human2 (0.9158)* 0.9158 0.9036 0.7816 0.7816 0.7603 0.7044 0.7571

GSE84133human3 (0.8742)* 0.8736 0.8131 0.8159 0.8160 0.7644 0.6921 0.8226

GSE84133mouse1 0.8587 0.8514 0.8581 0.8473 0.7480 0.6847 0.6159 0.6671

GSE84133mouse2 0.7924 0.7918 0.7923 0.7094 0.7095 0.6424 0.5860 0.6403

GSE45719 0.6549 0.6747 0.6116 0.6022 0.6022 0.5897 0.5960 0.6034

Once again, the results in Table 3 showcase the superiority of tPCA in all tested cases for NMI. We

again note the remarkably superior performance of our method on the GSE82187 dataset specifically, where

we outperform RgLSPCA in NMI by 0.089. Again, we also note the ability of the kNN-tPCA to provide

optimal or near optimal performance compared to the distance based construction while not requiring an

extensive parameter tuning procedure. Now, we can average the performance in each metric over all tested

datasets to reveal the extent to which tPCA and kNN-tPCA outperform the other methods overall, across

our 11 tested datasets.
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Table 4: Comparison of tPCA and other methods for each performance metric averaged over all tested datasets

Method ARI NMI

kNN-tPCA 0.7625 0.8393

tPCA 0.7676 0.8464

RgLSPCA 0.7247 0.8156

sPCA 0.6520 0.7732

PCA 0.6401 0.7640

NMF 0.5818 0.7455

tSNE 0.4716 0.6172

UMAP 0.5018 0.6872

We see from the final results in Table 4 that, on average, tPCA outperforms NMF by a significant measure

of 31.92% for ARI and 13.53% for NMI, and RgLSPCA by 3.78% for NMI and 5.92% for ARI. kNN-tPCA,

meanwhile, outperforms NMF by 31.05% for ARI and 12.58% for NMI, and RgLSPCA by 2.91% for NMI

and 5.22% for ARI. To intuitively illustrate this point, in Figure 2 we provide a barplot comparing the

performance metrics of the mentioned procedures averaged over each of the 11 tested datasets.

ARI NMI
Metric

0.40

0.50

0.60

0.70

0.80

0.90 tPCA
kNN-tPCA
RgLSPCA
sPCA
PCA
NMF
UMAP
tSNE

Figure 2: NMF and ARI comparisons for each method averaged over all datasets.

From the depicted image it is clearly evident that both methods for tPCA are superior to all other tested

dimensionality reduction techniques, particularly other PCA enhancements. We especially emphasize the

superiority of kNN-tPCA given the significantly reduced need for parameter optimization with this method.

These results strongly reaffirms the importance of incorporating the topological information and multi-scale
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analysis that is possible with topological PCA into a dimensionality reduction technique. While previous

techniques can capture some geometrical structure information through graph Laplacian regularization,

we see that incorporating the additional filtrations greatly improves performance. Having confirmed the

efficacy of our methods, we can move to examining the impact that kNN-induced filtration has on the scale

of parameter tuning in more detail, as well as comparing different visualization techniques of the Eigen-Genes

each method produces.

3.4 Comparison of kNN-tPCA and Other Methods for Classification

To further validate the efficacy of our proposed method, we can supplement these clustering results with a

classification study using kNN. The classification of various cell types begins by randomly splitting our gene

expression data into training and testing sets. The kNN model is trained on 60% of the data, and then tested

on the remaining 40%. To mitigate the impact of data distribution, we employed a 5-fold cross-validation

approach. The classification accuracy was calculated as the average performance over five repetitions. The

mean accuracy of the classification was then recorded for subspace dimensions ranging from {100, 90, ..., 10,

1}. The results of this analysis can be seen in Tables 5 and 6.
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Table 5: Comparison of average results for kNN-tPCA and Other Methods for Classification after dimensionality reduction

to m = 1, 10, ..., 100

Dataset Method Mean-ACC Mean Macro-REC Mean Macro-PRE Mean Macro-F1

GSE67835 kNN-tPCA 0.8909 0.8345 0.8672 0.8455

RgLSPCA 0.8808 0.8032 0.8358 0.8084

sPCA 0.8319 0.6872 0.7918 0.7052

PCA 0.7732 0.6172 0.7631 0.63805

NMF 0.4136 0.2749 0.2740 0.2620

tSNE 0.6470 0.4986 0.5037 0.4835

UMAP 0.1793 0.1380 0.0509 0.0588

GSE75748cell kNN-tPCA 0.9568 0.9267 0.9332 0.9291

RgLSPCA 0.9499 0.9204 0.9260 0.9218

sPCA 0.9305 0.9006 0.9175 0.9046

PCA 0.7222 0.5731 0.6603 0.5736

NMF 0.4210 0.3784 0.3784 0.3784

tSNE 0.5292 0.5257 0.5402 0.5224

UMAP 0.3505 0.3554 0.2485 0.2678

GSE75748time kNN-tPCA 0.8222 0.8006 0.8874 0.8068

RgLSPCA 0.7928 0.7660 0.8692 0.7667

sPCA 0.7590 0.7307 0.8353 0.7222

PCA 0.7587 0.7303 0.8352 0.7219

NMF 0.3792 0.3501 0.3625 0.3312

tSNE 0.3858 0.3394 0.3309 0.3178

UMAP 0.2305 0.1975 0.1006 0.1114

GSE82187 kNN-tPCA 0.9028 0.8520 0.9115 0.8710

RgLSPCA 0.8422 0.7280 0.8273 0.7489

sPCA 0.7357 0.5917 0.6890 0.5958

PCA 0.7222 0.5731 0.6603 0.5736

NMF 0.6164 0.3831 0.4070 0.3773

tSNE 0.5887 0.5648 0.5710 0.5621

UMAP 0.4791 0.1896 0.1272 0.1374

GSE94820 kNN-tPCA 0.8914 0.8346 0.8677 0.8455

RgLSPCA 0.8803 0.8029 0.8349 0.8072

sPCA 0.8319 0.6872 0.7918 0.7052

PCA 0.7732 0.6172 0.7631 0.6380

NMF 0.6618 0.4001 0.4592 0.4263

tSNE 0.3330 0.3288 0.3358 0.3110

UMAP 0.2485 0.1983 0.0748 0.0906

We see from this first round of results that kNN-tPCA provides a stellar improvement to performance

metrics for classifications using kNN, carried out after dimensionality reduction. Notably, we observe a 2.95%

improvement in F1-Score when compared to the standard graph regularization in tPCA and a remarkable

17.5% improvement when compared to traditional PCA. Compared to other dimensionality reduction tech-

niques such as UMAP, tSNE, and NMF, the results are even more significant. This demonstrates the

comprehensiveness of tPCA in being able to reduce data to a variety of embeddding dimensions while also

preserving important structural information in the data. The results in Table 5 as well as those in Table
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6 demonstrate that kNN induced Persistent Laplacian regularization for PCA is a comprehensive method

capable of enhancing the performance of classification tasks for Single Cell RNA-Sequence data analysis.

Combined with the results in Table 4, we can conclude that tPCA is a superior dimensionality reduction

technique for a variety of Machine Learning methods.

To intuitively illustrate these results, in Figure 3 we have provided an illustration depicting the distribu-

tion of Accuracy and F1 performance between PCA, RgLSPCA, and kNN-tPCA as we vary the dimension-

ality of our reduced space on GSE82187. This clearly indicates the superior performance of our proposed

method across a wide range of reduced dimensions, especially as the number of dimensions grows larger,

where PCA typically suffers from stability issues. This clearly further validates our findings.
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Figure 3: Distributions of ACC and F1 performance for PCA, RgLSPCA, and kNN-tPCA as we vary the number of reduced

subspace dimensions.
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Table 6: Comparison of average results for kNN-tPCA and Other Methods for kNN Classification after dimensionality reduction

to m = 1, 10, ..., 100

Dataset Method Mean-ACC Mean Macro-REC Mean Macro-PRE Mean Macro-F1

GSE45719 kNN-tPCA 0.9282 0.9022 0.9119 0.9055

RgLSPCA 0.9282 0.9003 0.9112 0.9038

sPCA 0.8371 0.8209 0.8735 0.8296

PCA 0.8426 0.8260 0.8757 0.8356

NMF 0.2470 0.2413 0.2460 0.2196

tSNE 0.4376 0.4452 0.4426 0.4302

UMAP 0.1581 0.1454 0.071 0.0856

GSE84133human1 kNN-tPCA 0.8911 0.8209 0.8745 0.8417

RgLSPCA 0.8837 0.8075 0.8718 0.8308

sPCA 0.8279 0.7679 0.8633 0.7951

PCA 0.8279 0.7680 0.8633 0.7952

NMF 0.5109 0.3973 0.3800 0.3672

tSNE 0.7697 0.6175 0.6180 0.5960

UMAP 0.1858 0.1818 0.0827 0.0979

GSE84133human2 kNN-tPCA 0.9216 0.8761 0.8997 0.8829

RgLSPCA 0.9157 0.8687 0.8993 0.8765

sPCA 0.9178 0.8657 0.8861 0.8727

PCA 0.8973 0.8271 0.8903 0.8395

NMF 0.5383 0.3652 0.3718 0.3521

tSNE 0.5786 0.5302 0.5651 0.5258

UMAP 0.1322 0.1759 0.0758 0.0903

GSE84133human3 kNN-tPCA 0.9062 0.8487 0.8758 0.8600

RgLSPCA 0.9034 0.8461 0.8734 0.8573

sPCA 0.8838 0.8178 0.8615 0.8358

PCA 0.8279 0.7680 0.8633 0.7952

NMF 0.5712 0.4298 0.4568 0.3990

tSNE 0.7226 0.5889 0.6358 0.5867

UMAP 0.2047 0.1773 0.0948 0.1054

GSE84133mouse1 kNN-tPCA 0.9172 0.8825 0.8995 0.8898

RgLSPCA 0.9149 0.8766 0.8986 0.8857

sPCA 0.9011 0.8541 0.8887 0.8665

PCA 0.9011 0.8544 0.8889 0.8666

NMF 0.5620 0.4004 0.4215 0.3886

tSNE 0.8928 0.6995 0.7092 0.6924

UMAP 0.3541 0.2593 0.1458 0.1691

GSE84133mouse2 kNN-tPCA 0.9213 0.8963 0.9002 0.8976

RgLSPCA 0.9209 0.8953 0.8995 0.8968

sPCA 0.9018 0.8542 0.8894 0.8667

PCA 0.9011 0.8544 0.8889 0.8666

NMF 0.5403 0.3428 0.3567 0.3309

tSNE 0.6695 0.3759 0.3752 0.3627

UMAP 0.2501 0.1563 0.0897 0.1008
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When we average each of the performance metrics over the 11 tested datasets, we can assess the total

improvement that our method provides compared to other techniques as shown in Table 7. We can then

intuitively visualize these results by examining Figure 4, which clearly showcases the superiority of kNN-

tPCA for classification tasks on a variety of datasets with different dimensionalities and data imbalances.

Table 7: Comparison of kNN-tPCA and other methods for each performance metric averaged over all tested datasets

Method ACC REC PRE F1

kNN-tPCA 0.9045 0.8613 0.8935 0.8704

RgLSPCA 0.8920 0.8377 0.8770 0.8458

sPCA 0.8507 0.7798 0.8443 0.7908

PCA 0.8134 0.7280 0.8138 0.7403

NMF 0.4965 0.3603 0.3739 0.3484

tSNE 0.5958 0.5013 0.5115 0.4900

UMAP 0.2520 0.1977 0.1056 0.1195
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Figure 4: ACC, PRE, REC, and F1 comparisons for each methods averaged over all datasets.

We specifically note that, on average, kNN-tPCA outperforms RgLSPCA by a margin of 1.39% for Macro-

ACC, 1.88% for Macro-PRE, 2.82% for Macro-REC, and 2.91% for Macro-F1. This clearly demonstrates the

benefits of incorporating multi-scale analysis through the inclusion of persistent Laplacians. Furthermore,

we note that our method outperforms traditional PCA by up to a considerable 18.3% for these metrics over

the 11 datasets.
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4 Discussion

4.1 Parameter Analysis

Regarding the optimization of hyper-parameters for tPCA, we especially note the presence of the · weights

in the PL term:

PL :=

p
∑

t=1

·tL
t (29)

Which must be manually chosen for each dataset depending on the connectivity information that is most

important. Specifically, for p filtrations we generally consider a distribution of {1, 1/2, ..., 1/p, 0} and per-

form a parameter search over this distribution, while also simultaneously searching for an optimal µ value.

However, for larger p this clearly becomes an extremely computationally intensive task, with the number

of parameter combinations equaling ((p + 1)p)(Size of µ distribution). Therefore, rather than considering

all parameter combinations over this distribution at once, we can instead consider different combinations

of scales of connectivity, say, long, middle, and close range. In other words, for 7 filtrations, testing com-

binations of p = 7, 5, 3, and from there recognizing which scales contribute the most valuable information

to narrow our search. Doing so reduces the number of combinations from ((p + 1)p)(Size of µ distribution)

to (m)((p + 1)3)(Size of µ distribution), where m is the number of connectivity combinations we need to

test to achieve the best results. In practice, we found that generally m = 3 obtained allowed us to obtain

optimal performance, which is a considerable improvement from the traditional approach to grid search,

though clearly still not preferable for practical purposes.

Ideally, the more standardized filtrations present with kNN Laplacians will reduce the need for parameter

optimization entirely, significantly reducing computation and time requirements. As opposed to performing

grid search for each dataset, we can universally choose a given set of weights that decrease as connectivity

information decreases, such as {·t = 1/t}, t = 1, ..., p, and observe whether there is still a meaningful

improvement in performance without the need for any parameter search. In case there is still need for some

optimization, we can at least significantly restrict the parameter distribution, decreasing the amount of time

needed for tuning. Specifically, we weight connectivities as being either unimportant (· = 0), or important

(· = 1). This results in the number of tested parameter combinations equaling (2p)(Size of µ distribution).

Ultimately, in practice with 8 filtrations we found that this meant fewer than 1/5 the amount of tested

parameter combinations were needed to obtain optimal or near optimal results compared to the original

construction. In most cases, however, no parameter search was even necessary at all. In Figure 5, we include

a chart illustrating the scale of the respective parameter searches as we vary the number of filtrations.
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Scale of Parameter Search: Distance Based vs. kNN Construcition
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Figure 5: Comparison of the scales of parameter searches necessary between the limited approach to distance based filtrations

and the limited approach to kNN-Induced filtrations.

We see from this that, for a reasonable number of filtrations, the parameter search necessary for the kNN

construction is a fraction of that needed for the standard construction, while the results listed in Table 4

showcase that the performance is still optimal or at least near optimal compared to other dimensionality

reduction techniques.

The ´ and µ parameters are similarly found via grid search. In Figure 6, we depict how different parameter

combinations impact the accuracy of our K-Means clustering. Ultimately, parameter values ranging from

10−10 to 1010 were found to produce stable results.
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Figure 6: Variations in KMeans accuracy for different combinations of µ and ´ parameter values
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4.2 Visualization of tPCA Eigen-Gene

In the context of scRNA-seq clustering, an eigen-gene refers to the principal components produced by our

dimensionality reduction. Eigen-genes summarize the gene expression patterns within a cluster given that

they are linear sums of the features which explain the most variation in that cluster. By reducing our data

to two dimensions via UMAP or tSNE, we can visualize our eigen-genes in a 2D plot. This visualization can

identify the clusters with similar or distinct gene expression profiles.

For a dataset containing, say, 20,000 genes, an aggressive reduction to k = 2 dimensions typically results

in poorly maintaining the integrity of the data, leading to ineffective visualizations of the eigen-genes. Thus,

an important step in the data visualization process is pre-processing. If we first reduce our data to, say,

k = 50 dimensions via PCA before then reducing again to k = 2 dimensions via tSNE or UMAP, we should

see an improvement in the representation of our clusters. However, given the associated weaknesses with

traditional PCA that we have discussed previously, there may be additional benefit to be gained from pre-

processing the data with Topological PCA instead. In Figures 7, 8, 9 we compare the 2D visualizations for

several of the tested datasets when pre-processing via PCA and tPCA to assess this improvement in terms

of visualization and potential biological insights.

GSE84133 Mouse 1

tSNE UMAP

kNN-tPCA tSNE kNN-tPCA UMAP

Figure 7: Comparison of visualization techniques between PCA-enhanced tSNE and UMAP, and kNN-tPCA-Enhanced tSNE

and UMAP for GSE84133mouse1. Data was log-transformed, with low variance genes removed. For kNN-tPCA-Enhanced

tSNE and UMAP, · weights were chosen universally as {·t} = {1/t} for the tth filtration, and data was reduced to k = 50

dimensions. Cells are color coded according to true cell types provided by original authors. Labels 0 through 12 correspond

to B cells, T cells, Activated Stellate, ³ cells, ´ cells, ¶ cells, Ductal cells, Endothelial cells, µ cells, Immune cells (other),

Macrophage cells, Quiescent Stellate, and Schwann cells respectively.

In Figure 7, we compare visualization techniques for GSE84133mouse1. In Veres et al, ´ cells were

found to have heterogeneity between two distinct subpopulations [46]. However, traditional PCA-enhanced

tSNE separates the subpopulations into two clusters that are far away and considerably mixed with ¶ and

other cell types. Our method manages to visualize the cells more similarly, while still displaying the genetic

heterogeneity in the population. Furthermore, there is considerably improved separation between the ´ cells

and other cell types, particularly ¶ cells. For UMAP, we observe that PCA-enhanced UMAP clusters all

cell types into two relatively homogeneous clusters. Pre-processing with kNN-tPCA, meanwhile, manages
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to separate all cell types fairly well, with the exception of Endothelial and Quiescent Stellate cells. This

is likely explained by quiescent stellate cells being located primarily around vascular cells in the pancreas,

including Endothelial cells, leading to similar gene expression profiles between the two cell types. Gaining

a further understanding of this spatial organization is crucial for understanding the mechanisms underlying

pancreatic diseases.

GSE82187

tSNE UMAP

kNN-tPCA tSNE kNN-tPCA UMAP

Figure 8: Comparison of visualization techniques between PCA-enhanced tSNE and UMAP, and kNN-tPCA-Enhanced tSNE

and UMAP for GSE82187. Data was log-transformed, with low variance genes removed. For kNN-tPCA-Enhanced tSNE and

UMAP, · weights were chosen universally as {·t} = {1/t} for the tth filtration, and data was reduced to k = 50 dimensions.

Cells are color coded according to true cell types provided by original authors. Labels 0 through 9 correspond to Astro cells,

Ependy-C cells, Ependy-Sec cells, Macrophage cells, Microglia cells, NSC cells, Neuron cells, OPC cells, Oligo cells, and Vascular

cells respectively.

In Figure 8, we compare visualization techniques for GSE82187. For tSNE as well as UMAP, we note

improved separation between Astro, Ependy-C, and OPC cells when pre-processing with tPCA rather than

traditional PCA. Furthermore, like with traditional PCA-enhanced UMAP and tSNE, kNN-tPCA pre-

processing still enables us to identify the distinct D1 and D2 medium spiny neuron subtypes even when

inducing sparsenss in our principal components. In both of our improved visualizations, there seems to be

more of a continuous gradient between the subtypes rather than a discrete separation. Continuous gradients

indicate that neurons within each subtype lie on a spectrum of gene expression values, with many cells having

a range of intermediate expression values. These results are supported by the findings in Gokce et al [44].
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GSE75748 Cell

tSNE UMAP

kNN-tPCA tSNE kNN-tPCA UMAP

Figure 9: Comparison of visualization techniques between PCA-enhanced tSNE and UMAP, and kNN-tPCA-Enhanced tSNE

and UMAP for GSE75748cell. Data was log-transformed, with low variance genes removed. For kNN-tPCA-Enhanced tSNE

and UMAP, · weights were chosen universally as {·t} = {1/t} for the tth filtration, and data was reduced to k = 50 dimensions.

Cells are color coded according to true cell types provided by original authors. Labels 0 through 6 correspond to DEC cells,

EC cells, H1 cells, H9 cells, HFF cells, NPC cells, and TB cells respectively.

In Figure 9, we compare visualization techniques for GSE75748cell. We note for both tSNE and UMAP,

the PCA pre-processed version clusters H1 and H9 cells into one homogeneous cluster given the similar

gene expression profile of these cells [43]. However, the kNN-tPCA enhanced versions were still able to

differentiate these cell types. The same can be said of DEC and EC cells. DEC cells were also found to have

lower similarity in their clustering with kNN-tPCA enhanced tSNE, indicating a heterogeneous pool of DEC

cells. These results are supported by the findings in Chu et al [43]. In both instances when pre-processing

with tPCA, the H9 cells formed two distinct clusters, indicating some kind of possible heterogeneity in the

genetic profiles of these cells.

4.3 RS Plot Analysis

To more effectively visualize our gene expression data after dimensionality reduction, we can generate

Residue-Similarity plots for some of the tested datasets [21]. We can then compare results for classify-

ing cell types after reducing the data via RgLSPCA and kNN-tPCA. In Figure 10 we produce RS plots for

each method on GSE82187 to compare classification accuracy. We observe a significant improvement, partic-

ularly in identifying the cell types in panels two and eight, or Ependy-C and Vascular cells respectively. Note

specifically that for Ependy-C cells the samples are situated in the top-right corner, indicating a significantly

improved cluster boundary separation and inter-cluster similarity in that clustering when utilizing persistent

Laplacian regularization.
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RgLSPCA kNN-tPCAGSE82187

Figure 10: RS plots of clusters generated from RgLSPCA and kNN-tPCA based dimensionality reduction. The x-axis is the

residual score, and the y-axis is the similarity score. Each section corresponds to one cluster and the data were colored according

to the predicted labels from kNN on the GSE82187 dataset at k = 100.

Similarly, for GSE67835 we note a considerable improvement in our ability to correctly identify replicating

fetal neurons and Microglia in panels five and six respectively. For Microglia cells in particular, we again

observe a significant improvement in the residual score for that clustering, indicating that tPCA yields a

greater dissimilarity between these cells and other cell types than RgLSPCA. Specifically, tPCA improves the

separation between Microglia and quiescent fetal neurons/OPC cells. In panel one, we note that classification

after dimensionality reduction via kNN-tPCA has a slightly greater tendency to misidentify OPC cells with

lower similarity scores as Microglia cells, indicating that these cells exhibited a similar gene expression profile,

which is supported by the findings in Darmanis et. al. for a subset of the OPC population [42].

kNN-tPCA RgLSPCAGSE67835

Figure 11: RS plots of clusters generated from RgLSPCA and kNN-tPCA based dimensionality reduction. The x-axis is the

residual score, and the y-axis is the similarity score. Each section corresponds to one cluster and the data were colored according

to the predicted labels from KNN on the GSE67835 dataset at k = 100.
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5 Conclusion

Single Cell RNA sequencing technologies have grown considerably in popularity in recent years, and with

the ability to reveal vast amounts of information regarding the drivers behind various diseases as well as

potential bio-therapeutic targets, effective analysis of this data is of paramount importance in the field of

biomedical research. As we have seen, intrinsic high dimensionality of the data introduces computational

complexity as well as considerable noise, hindering any meaningful analysis. Thus, dimensionality reduction

is a crucial step of the process, and we seek, as always, to maximize the accurate representation of our data

in the new, reduced space. To this end, we propose topological PCA for scRNA-seq clustering. This method

combines a new robustness via L2,1 norm regularization, sparsity constraints, and improved geometrical

structure capture via persistent Laplacian regularization.

Extensive benchmark testing on 11 scRNA-seq datasets showcases that our proposed method significantly

outperforms other similar PCA enhancements, as well as non-negative matrix factorization, for KMeans

clustering after dimensionality reduction. While previous methods such as graph Laplacian Sparse PCA

account for sparsity and local geometry preservation, the method is limited by analysis of a simplicial complex

at only a single scale. Furthermore, Frobenius norm regularization is sensitive to outliers. The incorporation

of a persistent Laplacian term contributes to multi-scale analysis through a sequence of filtrations, as well as

persistent homology information derived from the harmonic spectra of our Laplacian matrices. Compared

to NMF, we observe an average improvement of 13.53% for NMI and 31.92% for ARI.

While our method achieves superb results for clustering analysis after dimensionality reduction, there is

still considerable room for improvement. First, our method considers only L0 Laplacian, and therefore lacks

higher order connectivity information. Furthermore, there remains the work of continuing our parameter

analysis, to arrive at a means of optimizing our {·} weights which is more efficient and produces more

optimal results than simple grid search. While kNN-induced persistent Laplacians seem to be less dependent

on parameter tuning, there is still added benefit to examining means of optimizing the performance, and so

we should hope to achieve this in a more efficient manner.

6 Data and Model Availability

The data and model used to produce these results can be obtained at the Single Cell Data Processing and

RpLSPCA scRNA-seq GitHub Repositories:

Topological PCA GitHub repository: https://github.com/seanfcottrell/Topological-PCA

Single Cell Data Processing GitHub repository: https://github.com/hozumiyu/SingleCellDataProcess
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