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Abstract

Single-cell RNA sequencing (scRNA-seq) is widely used to reveal heterogeneity in cells, which has
given us insights into cell-cell communication, cell differentiation, and differential gene expression. How-
ever, analyzing scRNA-seq data is a challenge due to sparsity and the large number of genes involved.
Therefore, dimensionality reduction and feature selection are important for removing spurious signals
and enhancing downstream analysis. Traditional PCA, a main workhorse in dimensionality reduction,
lacks the ability to capture geometrical structure information embedded in the data, and previous graph
Laplacian regularizations are limited by the analysis of only a single scale. We propose a topological
Principal Components Analysis (tPCA) method by the combination of persistent Laplacian (PL) tech-
nique and La ; norm regularization to address multiscale and multiclass heterogeneity issues in data. We
further introduce a k-Nearest-Neighbor (kNN) persistent Laplacian technique to improve the robustness
of our persistent Laplacian method. The proposed kNN-PL is a new algebraic topology technique which
addresses the many limitations of the traditional persistent homology. Rather than inducing filtration via
the varying of a distance threshold, we introduced kNN-tPCA, where filtrations are achieved by varying
the number of neighbors in a kNN network at each step, and find that this framework has significant
implications for hyper-parameter tuning. We validate the efficacy of our proposed tPCA and kNN-tPCA
methods on 11 diverse benchmark scRNA-seq datasets, and showcase that our methods outperform other
unsupervised PCA enhancements from the literature, as well as popular Uniform Manifold Approximation
(UMAP), t-Distributed Stochastic Neighbor Embedding (tSNE), and Projection Non-Negative Matrix
Factorization (NMF) by significant margins. For example, tPCA provides up to 628%, 78%, and 149%
improvements to UMAP, tSNE, and NMF, respectively on classification in the F1 metric, and kNN-tPCA
offers 53%, 63%, and 32% improvements to UMAP, tSNE, and NMF, respectively on clustering in the
ARI metric.
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1 Introduction

Single cell RNA sequencing (scRNA-seq) is a relatively new method that profiles transcriptomes of individual
cells, revealing vast information in the heterogeneity within cell population, which has lead to further under-
standing of gene expression, gene regulation, cell-cell communication, cell differentiation, spatial transcrtip-
tomics, signal transduction pathways, and more [1,2]. The workflow of a typical scRNA-seq analysis involves
single cell isolation, RNA extraction and sequencing using a library and downstream analysis. With the
technological improvements, more than 20,000 genes can be profiled, which has led to a high-dimensionality
challenge. Despite the improvements in the methodology that allows for more accurate reading of genes
and increasing the number of sequenced cells per experiment, analyzing the data for downstream analysis
remains a hurdle. Numerous methods and procedures have been proposed to analyze the data [3-9]. Specific
challenges in scRNA-seq data analysis include drop-out events-induced zero expression read count, inade-
quate sequencing depth-induced inconsistent low reading counts, noise data, and high dimensionality [8,10].
Therefore, dimensionality reduction and feature selection to eliminate low signals is an essential step in
analyzing scRNA-seq data.

Various dimensionality reduction and feature selection methods have been proposed for analyzing scRNA-
seq data. SCRNA by non-negative and low rank representation (SinLRR) assumes that scRNA-seq data is
inherently low rank and finds the smallest ranked matrix that approximates the original data [11]. Single-cell
interpretation via multikernel learning (SIMLR) utilizes multiscale kernel to learn a cell-cell similarity metric
that can be used for downstream analysis [12]. Deep learning has also been used to perform dimensionality
reduction [13-16].

Traditional dimensionality has also been widely incorporated into scRNA-seq analysis pipeline. Non-
linear dimensionality reduction, such as uniform manifold approximation and projection (UMAP), t-distributed
stochastic neighbor embedding (t-SNE), multidimensional scaling (MDS) and isomap have been utilized for
visualization [17-20]. However, directly applying such algorithm can be challenging because these methods
rely on distance calculation and data sparsity, but high dimensional scRNA-seq data may suffer from poor
distance calculations. Recently, correlated clustering and projection (CCP) has been used on scRNA-seq
data and its visualization [21,22]. CCP utilizes gene-gene correlation to partition genes, and uses cell-cell
correlation on the partitioned genes to project the original genes into super-genes. Non-negative matrix
factorization (NMF) has been widely utilized due to its interpretability. NMF uses matrix factorization,
where the basis can be interpreted as meta-gene, which are weighted sums of the original genes. Numerous
NMF with various constrains has been proposed for scRNA-seq [23,24]. One of the oldest dimensionality
reduction methods, principal components analysis (PCA) is still one of the most popular method used for
scRNA-seq [25].

PCA is a linear dimensionality reduction algorithm, where the goal is to compute a orthonormal basis
that maximizes the variance of the projected data. The first component is call the principle component,
where the variance of the projected data is maximized. The subsequent components 7 are orthogonal to the
i — 1 components and maximizes the variance of the residual of the approximation. Though PCA is popular
because of its efficiency and is linear due to the having no reliance on utilizing metric computation, it has
its drawbacks. First, PCA lacks concrete interpretability because of its eigenmode-representation the data.
In scRNA-seq, there are many 0-counts in the data, i.e. the gene is not expressed, which can contribute
to the principle component and the coefficient matrix can be dense. Second, PCA assumes that the noise
of the data is Gaussian, which may not model scRNA-seq data well because the original data is a count
matrix. To tackle the first problem, sparse PCA (sPCA) was introduced [20], where by adding a I; penalty
term on the basis, it allowed for sparsity in the principle components. An alternative formulation of PCA
was introduced by Nie et. al. [26] to improve robustness of PCA by assuming the noise is sampled from the
Laplace distribution, which is called rPCA. Graph regularization was further introduced by Jiang et. al.
which utilizes a graph Laplacian to incorporate nonlinear manifold structure to the reduction [27]. However,



graph Laplacian can only capture a single scale, and is not able to capture the topological structure of the
data.

We introduced persistent Laplacian-Enhanced PCA theory in previous works, which was shown to out-
perform all other state-of-the-art PCA enhancements for microarray data analysis [28]. Persistent Laplacian,
also called persistent combinatorial Laplacian or persistent spectral graph, was introduced as a new gener-
ation of topological data analysis (TDA) methods in 2019 [29]. It has stimulated a variety of theoretical
developments [30-33] and led to remarkable applications [34-36]. PLPCA has the ability to recognize the
stability of topological features in our data at multiple scales, and provide a more thorough spatial view
through the filtration of a simplicial complex, which induces a sequence of simplicial complexes. Accounting
for the spectra of each corresponding Laplacian matrix for each complex in the sequence enables us extract
this topological information, improving our ability to preserve intrinsic geometrical information during di-
mensionality reduction. We can accomplish this by constructing a weighted sum of each Laplacian matrix,
generating an accumulated spectral graph. However, PLPCA requires intensive parametrization.

The objective of the present work is to introduce Ly ; norm regularization to improve the sparsity and
heterogeneity constraint in PLPCA. The resulting technique, called topological PCA (tPCA), allows us to
significantly reduce the distribution of the weightings in the accumulated spectral graph, while still achieving
near optimal performance. Additionally, we introduce a k-nearest neighbor (kNN) persistent Laplacian
algorithm to improve the robustness of our tPCA. The performance of resulting kNN-tPCA does not depend
on parameter search. We extensively validate the performance of tPCA and kNN-tPCA for clustering and
classification on a series of 11 scRNA-seq datasets. We demonstrate that our new method is superior to
other PCA enhancements as well as NMF.

Our work then proceeds as follows. First, we review the mathematical formulations of each of the
enhancements that build up to tPCA. Specifically, graph regularization and sparseness. We then discuss the
tools for perssistent Laplacian theory which we will incorporate to arrive at our final procedure: RpLSPCA,
or tPCA. We then validate the performance of this new method on a set of 11 scRNA-seq datasets against
other notable PCA enhancements, as well as NMF| for clustering and classification. Extensive tests indicate
that our methods are the state of the art procedure for dimensionality reduction prior to clustering and
classification. Specifically, over the 11 tested datasets, tPCA outperforms UMAP on average by 628% on the
F1 metric. Lastly, we visualize the tPCA Eigen-Genes via UMAP and tSNE, as well as Residue Similarity
Plots to further assess the performance of our methods.

2 Methods

In this section, we provide an overview of PCA and its derivatives, including sparse PCA (sPCA), and graph
Laplacian regularized sparse PCA (gLSPCA). We then introduce our method, topological PCA (tPCA) and
a less parameter-intensive alternative kKNN-tPCA. We will first define the notation used in the following
subsection.

2.1 Notations
We summarize our notations as follows.

1. X = {x1,...,Xn} € RMXN where x; € RM indicates the jth sample or cell, and M is the number of
genes.

2. ||A||lr = 1/25-\[:1 Zﬁl A;; is the frobenius norm of matrix A.

3. ||A]l21 = Zjvzl lajl|2 is the Iy ;1 norm of A, where the summation is taken after taking the I norm of
each column. Alternatively, we can think of this as taking the lo-norm of the genes and taking the sum



over the cells.
4. Tr(A) is the trace of matrix A.

5. Let m << M the dimension of the subspace, and M is the number of original dimension, ie the number
of genes.

6. Let IV be the number of samples or cells.

7. U € R™*M is the principle components, or the basis of the lower dimensional subspace of X, and m
is the number of dimension.

8. Q € R™*N is the projection of X onto the subspace spanned by U.

2.2 PCA

Principal Component Analysis has historically served as the baseline approach for dimensionality reduction
during gene expression data analysis [37]. The goal of PCA is to express some high dimensional data
X € RMXN in a lower dimensional space. This is accomplished via computing the principal components,
which are the eigenvectors of the covariance of X corresponding to the largest eigenvalues. Alternatively, we
can express PCA as finding a m-dimensional subspace that approximate the data matrix, i.e.,

win [ X —UQ"7, st Q"Q =In (1)

where QT Q = I is the orthonormal constrain, and Iy is the N x N, or cell by cell, identity matrix. When
the original matrix X is O-mean 1-variance scaled, we can see that this formulation is equivalent to take the
eigenvectors of the covariance matrix. Alternatively, the orthonormal constrain can be applied to U, which
yields traditional PCA.

2.3 Sparse PCA

PCA requires that the principal components be expressed as linear combinations of all the features with
non-zero weightings. However, in the context of gene expression data analysis, this introduces unnecessary
computational complexity and noise, because many genes are not expressed in the cells, or is only expressed
under particular circumstances [3]. Therefore, the interpretability of PCA is significantly aided by the
introduction of Sparse PCA (sPCA), which allows for zero weightings [20]. Sparse PCA can take several
forms, notably the inclusion of an L ; norm penalty term in the objective function as in Eq. 2:

min X — UQlr + BlQll21. st QTQ = Iy (2)

The Ly norm is defined as ||All2;1 = Y., ||ail|2, or first calculating the Ly norm of each row, and then
computing the L; norm of row-based Ly norms. The [ parameter scales the sparse regularization term.

2.4 Graph Laplacian Regularized Sparse PCA

While the inclusion of sparse regularization should address some of the shortcomings of PCA relating to
interpretability, it does not address the inability of PCA in recognizing complex geometric structures which
are present in the higher dimensional space. Graph Laplacian has been commonly used to incorporate
geometric information into the reduction such that similar samples in high dimension will be closer in
the lower dimensional embedding. This can be accomplished with neighbor graphs with pairwise edges,
specifically, the Laplacian operator [38].

Let G(V, E, W) be a nearest neighbor graph, where V is the set of vertices, E is the edge, and w are the
weights of the edges. E can be defined as E = {(x;,x;) : x; € Ni(x;) or x; € Ni(x;)}, where Nj(x;) is



the k-nearest neighbors of sample j under some metric. For pairs of points in the edge set, we can define a
weight satisfying the following two properties

O(x;,x5) =1 as|x; — x| =0

O(x;,%x;) = 0 as||x; — x| = oo,

Such condition is satisfied by a class of functions called radial basis functions. For this work, we utilize the
Gaussian kernel as the edge weights

e~ lxexil®/mif x i € Ni(xs)
- { j (3)

0, otherwise.

The matrix W is known as the weighted adjacency matrix. Here, n € R defines the geodesic distance, or
the width of the Gaussian kernel. We can then define the Graph Laplacian L, by taking

L=D-W, (4)
N

D;; = Z Wi js (5)
=1

where D is the degree matrix, defined as the row sum of W, which shows the total connectivity of the vertex
i. Laplacian graph provides a graphical embedding, which can be used as a regularization for PCA [27].

In order to incorporate manifold regularization into the PCA framework, consider the distance ||q; —q;||?,
where q; and q; correspond to the lower dimensional representation of samples x; and x;, respectively. Using
the graph weights W;;, we see that if W;; — 1, ie x; and x; are similar, then ||q; — q;|| — 0. Alternatively,
if W;; — 0, ie x; and x; are dissimilar, ||q; —q;||*> — oc. Using this fact, we want to minimize the following.

1 N
R=32 Wilai—al

j

N N
1
5 2 Wisdl i +afa; — Y Wijalaj
i

N ’ N
=Y Diala;— Y Wyala
: i
= Tr(Q"DQ) - Tr(QTWQ)
= Tr(Q"LQ).

Utilizing the sparse PCA and the manifold regularization, we obtain the graph Laplacian sparse PCA
(gLSPCA)

min .Y — UQ"|lr + BllQll21 +7TR(QTLQ), st. QTQ = Iy. (6)

We also observe that the loss function of gLSPCA is Frobenius norm regularization, which is sensitive to
outliers and data heterogeneity when dealing with multiclass data. We then propose replacing Frobenius
norm regularization with Lp; norm regularization to achieve robustness. This yields the following new
objective function, which we call Robust graph Laplacian Sparse PCA (RgLSPCA),

win X = UQ7 o + BQll21 +1T(QTLQ), 54 QTQ = I (7)



2.5 Topological PCA

While the inclusion of sparseness and graph Laplacian regularization seeks to address interpretability and
geometric structure capture, it still lacks the ability to recognize the stability of topological features at
multiple scales, as well as homotopic shape information [29]. To this end, we turn to persistent Laplacian
regularization. Like persistent homology, persistent spectral graph theory tracks the birth and death of
topological features of data as they change over scales [30,39]. We perform this analysis via a filtration
procedure on our data to construct a family of geometric structures [29]. We then can study the topological
properties of each configuration by its corresponding Laplacian matrix.

First, we must briefly review the notion of a simplex, simplicial complex, g-chain, and boundary. A
0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and so on. Generally, we consider a
g-simplex, o4. A simplicial complex is then a means of approximating a topological space by gluing together
the faces of simplices. More formally, a simplicial complex K is a collection of simplices such that:

1. If 04 € K and o, is a face of o, then o, € K.
2. The nonempty intersection of any two simplices is a face of both simplices.

A ¢-chain is then defined as a formal sum of g-simplices in a simplicial complex K with coefficients in Z,.
The set of g-chains has a basis in the set of g-simplices in K, and this set forms a finitely generated free
Abelian group Cy(K). We then define the boundary operator as a homomorphism relating the Chain groups,
Oy : Cy(K) = Cy—1(K). The boundary operator is defined as:

9404 = Z(_l)iaq—l- (8)

=0

where 041 is a ¢ — 1 simplex. The sequence of chain groups connected by this homomorphism is then a
Chain Complex:

2 0 (K) 2 oy () 2
It is well known that the boundary operator and the Chain Complex associated with a simplicial complex
gives the number of g-dimensional holes in that topological space. Specifically, the gth Homology Group is
defined as H, = kerd,/Imd,. This is also known as the gth Betti Number, 8,. The matrix representation of
the gth boundary operator with respect to the standard basis in C,;(K) and C,_1(K) is given as B,. Besides
considering the Homology of our topological space, we can also consider its cohomology. To that end, we
define the adjoint operator of 9, as:

0y : Cyr (K) — Cy(K), (9)

and the transpose of B;, denoted BqT, is the matrix representation of ) with respect to the same basis. We
can now define the g-combinatorial Laplacian matrix as:

Ly = Bg1Bl 1 + Bl B, (10)

The harmonic spectrum of the g-combinatorial Laplacian matrix reveals the dimension of the gth Homology
group, or the number of g-dimensional holes in our simplicial complex. The non-harmonic spectrum then
reveals further homotopic shape information [40]. Intuitively, 3y reveals the number of connected components
in K, 81 reveals the number of loops in K, and 35 reveals the number of 2D voids in K.

However, this framework is confined to the analysis of only a single simplicial complex, or the connec-
tivities at only a single scale. To enrich our spectral information, Persistent spectral graph theory proposes
creating a sequence of simplicial complexes by varying a filtration parameter [40]:

{0} =K¢CK,C..CK,=K.



For each subcomplex K; we can denote its chain group to be Cy(K}), and the g-boundary operator 82 :
Cy(K;) = Cy—1(Ky). By convention, we define Cy(K;) = {0} for ¢ < 0 and the g-boundary operator to then
be the zero map. The boundary operator and adjoint boundary operator are otherwise defined similarly as
before for each K in the sequence, which allows us to define a sequence of Chain Complexes.

Next, we introduce persistence to the Laplacian spectra. Define the subset of C};‘”’ whose boundary is
in C!_; as C,?, assuming the natural inclusion map from C}_, — C;lej.

ChP .= {B € CIHP|9L7(B) € CL_4 ). (11)

On this subset, one may define the p-persistent g-boundary operator denoted by 33’1’ : (Cf]’p — 0371 and
corresponding adjoint operator (3};’1’)* : 0271 — (Cfl’p, as before. The matrix representation of the p-persistent
g-boundary operator in simplicial basis is then B(tl’_fl, and the matrix representation of the adjoint operator
is again the transpose. This allows us to define the g-order p-persistent Laplacian matrix as:

Liv =By (B )T + (BL) B (12)

We may again recognize the multiplicity of zero in the spectrum of /.Zg’p as the ¢’'th order p-persistent Betti
number B(tl’p which counts the number of (independent) ¢-dimensional voids in K, that still exists in K4, [29].
We can then see how the g’th-order Laplacian is actually just a special case of the ¢’th-order 0-persistent
Laplacian at a simplicial complex K, or rather, at a snapshot of the filtration.

We can capture a more thorough view of the spatial features of our data by focusing on the O-persistent
Laplacian as we have done in previous works [28]. Specifically, we calculate Vietoris-Rips complexes by
varying a filtration parameter on the weighted entries of our Laplacian matrix, which correspond to the
weighted edges in our graph structure. By gradually increasing a distance threshold, we induce a sequence of
simplicial complexes and subgraphs to analyze. In previous works on Persistent Laplacian-enhanced PCA,
we provided a convenient computational method for this. For a graph Laplcian matrix L, observe:

li'a. ‘a ‘7 .:17"'7
L = (lij), li; = {ZJ ' %gn] } ! (13)
i — j=1"'ij-

For i # j, let lmax = max(l;;), lmin = min(li;), d = lmax —lmin. Set the ¢! Persistent Laplacian L!,t = 1,..., p:
0, if I;; < (t/p)d + lmi

t __ t t ’ ] in

L' = (l;;), l;; = {

(14)
—1, otherwise.

Here,
ih==>"1; (15)
=1

We then weight each L! in the sequence and sum to consolidate each subgraph into a single term, denoted
PL. This new term should encode the persistence of topological features as the filtration progresses over
multiple scales

PL:=Y ¢L" (16)

t=1
The optimal ¢ weightings are hyper parameters which are obtained via Grid Search. Ideally, we should
recognize which scales of connectivity contribute the most important information to our analysis, and place
greater emphasis on that corresponding Laplacian matrix in the sum. More details regarding this procedure
can be found in our previous works [28]. Substituting this PL term into Eq. 7 gives rise to Robust Persistent
Laplacian Sparse PCA (RpLSPCA) which is obtained via the following optimization formula:

min |X = UQ" | + B Qllas +7TH(QT(PL)Q), 54 Q7Q = L. (17)



For convenience, we can also refer to this method simply as Topological PCA (tPCA). This method should
better retain geometrical structure information by emphasizing topological features that are persistent at
multiple scales through the harmonic spectra, while the non harmonic spectra contributes other geometric
shape information.

2.6 KNN Induced Persistent Laplacians

Rather than varying a distance threshold on the entries of our weighted Laplacian matrix to induce filtration,
we can instead vary the number of neighbors we use to construct each graph structure. This construction
has been used in the past to establish kNN-based persistent homology techniques, and extends naturally to
the construction of a sequence of Persistent Laplacians [41]. Observe Figure 1. We then can replace PLs in
Eq. 16 by kNN-PLs

(18)

s Uiy T

Lk = (15, 1k = =1, if i # j and x; € Ni(xi)
Y 0, otherwise

£ =0.50 c=0.75 e =1.00

Vietoris Rips (0) @

Complex Q) i (/
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=
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Figure 1: Comparison of inducing filtration via Vietoris Rips Complex, which is reliant on a chosen distance threshold e, and
k-nearest-neighbors induced filtration, which is induced by varying the number of nearest neighbors at each node in our graph.

We vary k from 1 to p to establish a sequence of p Persistent Laplacians with different connectivities
at each scale of the filtration. Again, diagonal entries are set equal to negative row sums, giving the
total connectivity of each vertex. While the Vietoris-Rips based construction requires a choice of scale
parameter for the Gaussian Kernel weighting of our graph Laplacian for the sake of normalization, the
kNN construction eliminates the need for this since the filtrations do not depend on varying a distance
threshold [41]. Furthermore, the sparseness of scRNA-seq data can affect distance measurements, leading
to difficulties in establishing meaningful connections between cells when reliant on a distance metric. By
inducing filtration through varying the number of neighbors rather than a distance threshold, the result is
then a more standardized sequence of connectivity. We also tend to observe the formation of more connected
cycles via this method, which lends itself to richer, more interesting topological features in our data. We now
validate the performance of these new methods against other enhanced PCA procedures, as well as NMF
and tSNE,; on several benchmark scRNA-seq datasets.



3 Results

3.1 Data and Preprocessing

Table 1 shows the summary of the data, including the GEO accession ID, reference, source organism, number
of samples, number of genes, and number of cell types. For each dataset, log-transform was applied, and
genes with values less than 1076 were set to zero. Afterward, 20% — 25% of the lowest variance genes were
dropped. In certain instances where a class had fewer than 15 samples, we dropped that class from the
analysis. For the PCA methods, values were then demeaned and scaled by the standard deviation, while for
NMF, values were standardized by sklearn’s NMF function. Note the differing dimensionality and number
of cell types of each dataset, underscoring the comprehensiveness of our proposed methods.

Table 1: Accession ID, source organism, and the counts for samples, genes, cell types and normalization for 11 datasets

Accession 1D Reference Organism Samples Genes Cell types

GSE67835 Darmanis [42]  Human 420 22084 8
GSET75748 cell Chu [43] Human 1018 19097 7
GSE75748 time Chu [43] Human 758 19189 6
GSER82187 Gokee [44] Mouse 705 18840 10
GSE94820 Villani [45] Human 1140 26593 5
GSE84133humanl Veres [46] Human 1937 20125 14
GSE84133human?2 Veres [46] Human 1724 20125 14
GSE84133human3 Veres [46] Human 3605 20125 14
GSE84133mousel Veres [46] Mouse 822 14878 13
GSE84133mouse2 Veres [46] Mouse 1064 14878 13
GSE45719 Deng [47] Mouse 300 22431 8

3.2 Evaluation Metrics
3.2.1 Adjusted Rand Index (ARI)

ARI describes how well two clusterings agree with each other by comparing pairs of data points and their
respective class assignments. It also can account for possible random agreement and adjusts the similarity
score accordingly, assigning a value in the range of -1 to 1. A value of 1 indicates a perfect agreement between
clusterings, a value of 0 indicates a random chance agreement, and a value of -1 suggests that the clusterings
are less similar than they would be by chance. For two clusterings X = {X1,..., X,} and Y = {Y1,..., Y5},
we construct a contingency table A € R"*® with elements a;; which describe the overlap between X; and
Y;. We then take row sums and column sums to obtain another set of values: {q,...,¢,} is the set of row
sums and {p1, ..., ps} is the set of column sums. We can then define the Adjusted Rand Index as:

X ()

2y (%) — (2 (%)
(2 (5) 2 (%)

(
3 (‘“) +22;(3)) -

ARI = (19)

3.2.2 Normalized Mutual Information (NMI)

Mutual Information considers a split of the data according to clusters and a split according to true class labels,
and measures how these splittings agree with each other. NMI then corrects for any bias and normalizes the
scores between 0 and 1. A value of 1 indicates a perfect agreement between the splittings while a value of 0
indicates random chance agreement. The mathematical definition of NMI is given as:

MI(T, P)

NMITP) = )y 5(P)) 2

(20)



Where MI(+, ) and E(-) represent mutual information and entropy and T, P represent the true and predicted
cluster labels, respectively.

3.2.3 Classification Metrics

Regarding the evaluation metrics used to measure performance for classification tasks, beyond simple ac-
curacy, there are several metrics that are commonly considered. Notably, Precision, Recall, and F1-Score.
Below we list the mathematical definition of each.

True Positive
Recall = 21
eea True Positive 4+ False Negative (21)

Precisi True Positive (22)
recision =
True Positive + False Positive
Precision x Recall
F1-S =2 23
core Precision + Recall (23)

We note that the Fl-score is particularly relevant as it accounts for both precision and recall, making
it more robust to class imbalances within the data. In our case, there are noticeable imbalances between
cell types in each of the tested dataset, so we emphasize this metric as the most informative in measuring
performance.

Given that our datasets generally contain multiple classes, the evaluation criterion we employ is the mean
for each cell type. This evaluation approach is commonly known as a macro metric, where performance
measures are calculated for each cell type individually and then averaged to obtain an overall score.

1
Macro-R llsz Recall; 24
acro-Reca ¢ 2 eca (24)
Macro-Precision Ly Precision (25)
- ion = — g ision;
=

Macro-Precision x Macro-Recall
M -F1=2 26
acto Macro-Precision + Macro-Recall (26)

3.2.4 Residue Similarity Scores

To enhance visualization, Residue Similarity (RS) scores can be computed [21]. Traditional visualization
techniques often involve reducing the data to two or three dimensions, which may result in the loss of
structure and integrity in multiclass data. R-S plots were introduced as a method to visualize results while
better preserving the underlying structure of the data.

An R-S plot consists of two main components: the residue score and the similarity score. The residue
score is calculated as the sum of distances between classes, capturing the dissimilarity between them. On
the other hand, the similarity score represents the average similarity within each class, indicating the degree
of similarity between instances belonging to the same class. By considering both scores, R-S plots provide a
comprehensive representation of the data’s structure in a visualization.

Given data of the form {(Z;, ;)| € RN, y; € Z;},, we have y; representing the class label of our ith
data point #; € X. Say that our data has NV samples, M features, and L classes. We can then partition our
dataset X into subsets containing each of the classes by taking C; = {&; € X|y; = l}. For each class [ we
then define the residue score as follows:

" 1 S o
Ri = R(%:) = & > lIE - ], (27)

max

Z;¢C
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where ||-|| denotes the Euclidean distance between vectors and Rpax is the maximal residue score for that
subset. The similarity score, meanwhile, is given as:

5 1= 5(&) wz( Tt 28

max

where dyax is the maximal pairwise distance of the dataset. For constructing R-S plots, we then take
R(Z) to be the z-axis and S(Z) to be the y-axis.

3.3 Comparison of tPCA and Other Methods for KMeans Clustering

We tested tPCA’s performance on the datasets described in Table 1, and compared it to PCA, sPCA,
RegLLSPCA, NMF, UMAP, and tSNE. For this analysis, we performed K-Means clustering after reducing the
dimensionality of each dataset such that the number of dimensions equals the number of clusters. To ensure
the greatest accuracy in our analysis, we used sklearn’s KMeans function, and increased the number of times
the k-means algorithm is run with different centroid seeds from 10 to 150. We then performed the clustering
with 30 random instances and considered the average performance. To further facilitate a fair and accurate
comparison, we utilized sklearn’s NMF function, initialized as non-negative random matrices with values
scaled by the square root of the mean of X and divided by the number of components. We also increased
the number of maximum iterations from 200 to 300, and took the average performance over 20 random
initializations. Likewise, we also compare our method to sklearn’s tSNE over 20 random intializations with
maximum iterations increased to 300. For UMAP, we used the default minimum distance allowed for packing
points together in the embedding space, the low value generally should improve clustering performance by
providing a cleaner separation between clusters. We used the default number of nearest neighbors in UMAP’s
kNN structure, which was 15. This value is the same as the initial number of neighbors used to describe the
manifold structure in tPCA.

We do, however, note certain weaknesses with NMF, UMAP, and tSNE in this analysis. First, methods
such as NMF tend to perform poorly when reducing to such low dimensionality, while methods such as
tSNE and UMAP have notable issues with structure preservation. Specifically, neither method is capable of
strictly preserving the density or distance in our data. Therefore, we expect that our procedure should prove
substantially more effective as a preprocessing step than any of these methods for clustering via KMeans
or classifying via K-Nearest-Neighbors, as both models are reliant on the intrinsic distance and density in
the data. For the clustering analysis, a summary of our results for Adjusted Rand Index and Normalized
Mutual Information can be found in Tables 2,3. For kNN-Induced tPCA, when results are shown as (-),
this implies that a generic connectivity weighting was used, and there was no parameter optimization needed
on that dataset to obtain nearly optimal performance.
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Table 2: Comparison of tPCA and other methods for Adjusted Rand Index

Dataset and Method ‘ kNN-tPCA  tPCA  RgLSPCA sPCA PCA NMF tSNE UMAP

GSE67835 (0.9496)*  0.9552 0.9496 0.7625 0.7604 0.6926 0.4200 0.5579
GSE75748cell 0.7475 0.7789 0.7454 0.7440 0.7440 0.7530 0.5301 0.6511
GSE75748time (0.7123)*  0.7129 0.7036 0.6128 0.6128 0.6852 0.3746 0.3677
GSES82187 (0.9932)* 0.9932 0.7622 0.7530 0.7530 0.5113 0.4727 0.5193
GSE94820 0.5731 0.5749 0.5159 0.5396 0.5396 0.5400 0.3820 0.3917

GSES84133humanl (0.7942)*  0.8065 0.7914 0.5675 0.5675 0.6436 0.4446 0.5396
GSE84133human?2 (0.9277)* 0.9277 0.9162 0.8090 0.8090 0.6168 0.6237  0.5680
GSE84133human3 (0.8727)*  0.8722 0.7799 0.6976 0.6976 0.6061 0.5964 0.7016

GSE84133mousel 0.7746 0.7699 0.7699 0.7688 0.6320 0.5417 0.5391  0.4293
GSES84133mouse2 0.6172 0.6139 0.6165 0.5041 0.5041 0.4029 0.3978 0.3851
GSE45719 0.4262 0.4386 0.4212 0.4133 0.4133 0.4073 0.4068 0.4088

We see from the results in Table 2 that persistent Laplacian-enhanced PCA is able to outperform not
only the other enhanced PCA procedures, but also NMF, UMAP, and tSNE, on all of the tested datasets for
Adjusted Rand Index. We specifically note the superior performance on GSE82187. our tPCA outperformed
RgLSPCA’s ARI score by a considerable margin of 0.231. These results clearly indicate the superior ability
to preserve local non-linear geometric structure achieved by persistent Laplacian regularization compared to
graph Laplacian regularization, and the result is superior performance in clustering analysis. Furthermore, in
several instances KNN-Induced Laplacian regularization was able to match the performance of the standard
construction without any optimization. Overall, it was shown to at least outperform the other procedures
on all but one tested dataset, and with a fraction of the effort required for parameter search.

Table 3: Comparison of tPCA and other methods for Normalized Mutual Information

Dataset and Method ‘ kNN-tPCA tPCA RgLSPCA sPCA PCA NMF tSNE ~ UMAP

GSE67835 (0.9224)*  0.9275 0.9224 0.8192 0.8174 0.78630 0.5817 0.7272
GSET75748cell 0.8850 0.9230 0.8825 0.8810 0.8810 0.9036 0.6940 0.7956
GSET75748time (0.8276)*  0.8338 0.8248 0.7220 0.7220 0.8074 0.4847  0.5047
GSES82187 (0.9853)* 0.9853 0.8967 0.8995 0.8995 0.8040 0.6849 0.7841
GSE94820 0.6757 0.6738 0.6275 0.6367 0.6367 0.6444 0.4949 0.4831

GSES84133humanl (0.8412)*  0.8604 0.8391 0.7905 0.7905 0.8142 0.6550 0.7748
GSE84133human? (0.9158)* 0.9158 0.9036 0.7816 0.7816 0.7603 0.7044 0.7571
GSE84133human3 (0.8742)*  0.8736 0.8131 0.8159 0.8160 0.7644 0.6921 0.8226

GSE84133mousel 0.8587 0.8514 0.8581 0.8473 0.7480 0.6847 0.6159 0.6671
GSE84133mouse2 0.7924 0.7918 0.7923 0.7094 0.7095 0.6424 0.5860 0.6403
GSE45719 0.6549 0.6747 0.6116 0.6022 0.6022 0.5897 0.5960 0.6034

Once again, the results in Table 3 showcase the superiority of tPCA in all tested cases for NMI. We
again note the remarkably superior performance of our method on the GSE82187 dataset specifically, where
we outperform RgLSPCA in NMI by 0.089. Again, we also note the ability of the kNN-tPCA to provide
optimal or near optimal performance compared to the distance based construction while not requiring an
extensive parameter tuning procedure. Now, we can average the performance in each metric over all tested
datasets to reveal the extent to which tPCA and kNN-tPCA outperform the other methods overall, across
our 11 tested datasets.
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Table 4: Comparison of tPCA and other methods for each performance metric averaged over all tested datasets

Method ARI NMI

kNN-tPCA 0.7625 0.8393
tPCA 0.7676 0.8464
RgLSPCA 0.7247  0.8156
sPCA 0.6520  0.7732
PCA 0.6401  0.7640
NMF 0.5818  0.7455
tSNE 0.4716  0.6172
UMAP 0.5018  0.6872

We see from the final results in Table 4 that, on average, tPCA outperforms NMF by a significant measure
of 31.92% for ARI and 13.53% for NMI, and RgLSPCA by 3.78% for NMI and 5.92% for ARI. kNN-tPCA,
meanwhile, outperforms NMF by 31.05% for ARI and 12.58% for NMI, and RgLSPCA by 2.91% for NMI
and 5.22% for ARI. To intuitively illustrate this point, in Figure 2 we provide a barplot comparing the
performance metrics of the mentioned procedures averaged over each of the 11 tested datasets.

0.904 tPCA

kNN-tPCA
RgLSPCA
sPCA

PCA

NMF
UMAP
tSNE

0.80 1

0.70

0.60 -

0.50 1

0.40-

ARI NMI
Metric

Figure 2: NMF and ARI comparisons for each method averaged over all datasets.

From the depicted image it is clearly evident that both methods for tPCA are superior to all other tested
dimensionality reduction techniques, particularly other PCA enhancements. We especially emphasize the
superiority of kNN-tPCA given the significantly reduced need for parameter optimization with this method.
These results strongly reaffirms the importance of incorporating the topological information and multi-scale
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analysis that is possible with topological PCA into a dimensionality reduction technique. While previous
techniques can capture some geometrical structure information through graph Laplacian regularization,
we see that incorporating the additional filtrations greatly improves performance. Having confirmed the
efficacy of our methods, we can move to examining the impact that kNN-induced filtration has on the scale
of parameter tuning in more detail, as well as comparing different visualization techniques of the Eigen-Genes
each method produces.

3.4 Comparison of kKNN-tPCA and Other Methods for Classification

To further validate the efficacy of our proposed method, we can supplement these clustering results with a
classification study using kNN. The classification of various cell types begins by randomly splitting our gene
expression data into training and testing sets. The kNN model is trained on 60% of the data, and then tested
on the remaining 40%. To mitigate the impact of data distribution, we employed a 5-fold cross-validation
approach. The classification accuracy was calculated as the average performance over five repetitions. The
mean accuracy of the classification was then recorded for subspace dimensions ranging from {100, 90, ..., 10,
1}. The results of this analysis can be seen in Tables 5 and 6.

14



Table 5: Comparison of average results for kNN-tPCA and Other Methods for Classification after dimensionality reduction
to m = 1,10, ...,100

Dataset Method Mean-ACC Mean Macro-REC Mean Macro-PRE Mean Macro-F1

GSE67835 kNN-tPCA  0.8909 0.8345 0.8672 0.8455
RgLSPCA 0.8808 0.8032 0.8358 0.8084

sPCA 0.8319 0.6872 0.7918 0.7052

PCA 0.7732 0.6172 0.7631 0.63805

NMF 0.4136 0.2749 0.2740 0.2620

tSNE 0.6470 0.4986 0.5037 0.4835

UMAP 0.1793 0.1380 0.0509 0.0588

GSET75748cell | KNN-tPCA  0.9568 0.9267 0.9332 0.9291
RgLSPCA 0.9499 0.9204 0.9260 0.9218

sPCA 0.9305 0.9006 0.9175 0.9046

PCA 0.7222 0.5731 0.6603 0.5736

NMF 0.4210 0.3784 0.3784 0.3784

tSNE 0.5292 0.5257 0.5402 0.5224

UMAP 0.3505 0.3554 0.2485 0.2678
GSE75748time | kKNN-tPCA  0.8222 0.8006 0.8874 0.8068
RgLSPCA 0.7928 0.7660 0.8692 0.7667

sPCA 0.7590 0.7307 0.8353 0.7222

PCA 0.7587 0.7303 0.8352 0.7219

NMF 0.3792 0.3501 0.3625 0.3312

tSNE 0.3858 0.3394 0.3309 0.3178

UMAP 0.2305 0.1975 0.1006 0.1114

GSE82187 kNN-tPCA  0.9028 0.8520 0.9115 0.8710
RgLSPCA 0.8422 0.7280 0.8273 0.7489

sPCA 0.7357 0.5917 0.6890 0.5958

PCA 0.7222 0.5731 0.6603 0.5736

NMF 0.6164 0.3831 0.4070 0.3773

tSNE 0.5887 0.5648 0.5710 0.5621

UMAP 0.4791 0.1896 0.1272 0.1374

GSE94820 kNN-tPCA  0.8914 0.8346 0.8677 0.8455
RgLSPCA 0.8803 0.8029 0.8349 0.8072

sPCA 0.8319 0.6872 0.7918 0.7052

PCA 0.7732 0.6172 0.7631 0.6380

NMF 0.6618 0.4001 0.4592 0.4263

tSNE 0.3330 0.3288 0.3358 0.3110

UMAP 0.2485 0.1983 0.0748 0.0906

We see from this first round of results that kKNN-tPCA provides a stellar improvement to performance
metrics for classifications using kNN, carried out after dimensionality reduction. Notably, we observe a 2.95%
improvement in F'1-Score when compared to the standard graph regularization in tPCA and a remarkable
17.5% improvement when compared to traditional PCA. Compared to other dimensionality reduction tech-
niques such as UMAP, tSNE, and NMF, the results are even more significant. This demonstrates the
comprehensiveness of tPCA in being able to reduce data to a variety of embeddding dimensions while also
preserving important structural information in the data. The results in Table 5 as well as those in Table
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6 demonstrate that kNN induced Persistent Laplacian regularization for PCA is a comprehensive method
capable of enhancing the performance of classification tasks for Single Cell RNA-Sequence data analysis.
Combined with the results in Table 4, we can conclude that tPCA is a superior dimensionality reduction

technique for a variety of Machine Learning methods.

To intuitively illustrate these results, in Figure 3 we have provided an illustration depicting the distribu-
tion of Accuracy and F1 performance between PCA, RgLSPCA, and kNN-tPCA as we vary the dimension-
ality of our reduced space on GSE82187. This clearly indicates the superior performance of our proposed
method across a wide range of reduced dimensions, especially as the number of dimensions grows larger,
where PCA typically suffers from stability issues. This clearly further validates our findings.

F1 Comparison Over Different Dimensions ACC Comparison Over Different Dimensions

GSE82187 GSE82187
1.00 - 1.00+ -~ PCA
—m— kNN-tPCA
0.90 0.951 —e— RgLSPCA
0.80 1 090
0.85 1
0.70 H
0.80 4
0.60 - 0.75 |
0.50 1 0.70 1
0.40 0.65 |
030 1 ° ' ' ' ' ' 0.60 4 ' ' ' ' ' '
0 20 40 60 80 100 0 20 40 60 80 100

Figure 3: Distributions of ACC and F1 performance for PCA, RgLSPCA, and kNN-tPCA as we vary the number of reduced

subspace dimensions.
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Table 6: Comparison of average results for kNN-tPCA and Other Methods for kNN Classification after dimensionality reduction
to m = 1,10, ...,100

Dataset Method Mean-ACC Mean Macro-REC Mean Macro-PRE Mean Macro-F1

GSE45719 kKNN-tPCA  0.9282 0.9022 0.9119 0.9055
RgLSPCA 0.9282 0.9003 0.9112 0.9038

sPCA 0.8371 0.8209 0.8735 0.8296

PCA 0.8426 0.8260 0.8757 0.8356

NMF 0.2470 0.2413 0.2460 0.2196

tSNE 0.4376 0.4452 0.4426 0.4302

UMAP 0.1581 0.1454 0.071 0.0856
GSE84133humanl | kKNN-tPCA  0.8911 0.8209 0.8745 0.8417
RgLSPCA 0.8837 0.8075 0.8718 0.8308

sPCA 0.8279 0.7679 0.8633 0.7951

PCA 0.8279 0.7680 0.8633 0.7952

NMF 0.5109 0.3973 0.3800 0.3672

tSNE 0.7697 0.6175 0.6180 0.5960

UMAP 0.1858 0.1818 0.0827 0.0979
GSER84133human2 | kNN-tPCA  0.9216 0.8761 0.8997 0.8829
RgL.SPCA 0.9157 0.8687 0.8993 0.8765

sPCA 0.9178 0.8657 0.8861 0.8727

PCA 0.8973 0.8271 0.8903 0.8395

NMF 0.5383 0.3652 0.3718 0.3521

tSNE 0.5786 0.5302 0.5651 0.5258

UMAP 0.1322 0.1759 0.0758 0.0903
GSE84133human3 | kKNN-tPCA  0.9062 0.8487 0.8758 0.8600
RgLSPCA 0.9034 0.8461 0.8734 0.8573

sPCA 0.8838 0.8178 0.8615 0.8358

PCA 0.8279 0.7680 0.8633 0.7952

NMF 0.5712 0.4298 0.4568 0.3990

tSNE 0.7226 0.5889 0.6358 0.5867

UMAP 0.2047 0.1773 0.0948 0.1054

GSE84133mousel | kKNN-tPCA  0.9172 0.8825 0.8995 0.8898
RegL.SPCA 0.9149 0.8766 0.8986 0.8857

sPCA 0.9011 0.8541 0.8887 0.8665

PCA 0.9011 0.8544 0.8889 0.8666

NMF 0.5620 0.4004 0.4215 0.3886

tSNE 0.8928 0.6995 0.7092 0.6924

UMAP 0.3541 0.2593 0.1458 0.1691

GSE84133mouse2 | KNN-tPCA  0.9213 0.8963 0.9002 0.8976
RgLSPCA 0.9209 0.8953 0.8995 0.8968

sPCA 0.9018 0.8542 0.8894 0.8667

PCA 0.9011 0.8544 0.8889 0.8666

NMF 0.5403 0.3428 0.3567 0.3309

tSNE 0.6695 0.3759 0.3752 0.3627

UMAP 0.2501 0.1563 0.0897 0.1008
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When we average each of the performance metrics over the 11 tested datasets, we can assess the total
improvement that our method provides compared to other techniques as shown in Table 7. We can then
intuitively visualize these results by examining Figure 4, which clearly showcases the superiority of kNN-
tPCA for classification tasks on a variety of datasets with different dimensionalities and data imbalances.

Table 7: Comparison of kNN-tPCA and other methods for each performance metric averaged over all tested datasets

Method ACC REC PRE F1

kNN-tPCA 0.9045 0.8613 0.8935 0.8704
RgLSPCA 0.8920 0.8377  0.8770  0.8458
sPCA 0.8507  0.7798  0.8443  0.7908
PCA 0.8134 0.7280  0.8138  0.7403
NMF 0.4965 0.3603  0.3739  0.3484
tSNE 0.5958  0.5013  0.5115  0.4900
UMAP 0.2520  0.1977  0.1056  0.1195
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Figure 4: ACC, PRE, REC, and F1 comparisons for each methods averaged over all datasets.

We specifically note that, on average, KkNN-tPCA outperforms RgLSPCA by a margin of 1.39% for Macro-
ACC, 1.88% for Macro-PRE, 2.82% for Macro-REC, and 2.91% for Macro-F1. This clearly demonstrates the
benefits of incorporating multi-scale analysis through the inclusion of persistent Laplacians. Furthermore,
we note that our method outperforms traditional PCA by up to a considerable 18.3% for these metrics over

the 11 datasets.
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4 Discussion

4.1 Parameter Analysis

Regarding the optimization of hyper-parameters for tPCA, we especially note the presence of the ¢ weights
in the PL term: .
PL:=Y (L' (29)

t=1

Which must be manually chosen for each dataset depending on the connectivity information that is most
important. Specifically, for p filtrations we generally consider a distribution of {1,1/2,...,1/p,0} and per-
form a parameter search over this distribution, while also simultaneously searching for an optimal v value.
However, for larger p this clearly becomes an extremely computationally intensive task, with the number
of parameter combinations equaling ((p + 1)P)(Size of v distribution). Therefore, rather than considering
all parameter combinations over this distribution at once, we can instead consider different combinations
of scales of connectivity, say, long, middle, and close range. In other words, for 7 filtrations, testing com-
binations of p = 7,5,3, and from there recognizing which scales contribute the most valuable information
to narrow our search. Doing so reduces the number of combinations from ((p + 1)?)(Size of ~ distribution)
to (m)((p + 1)3)(Size of v distribution), where m is the number of connectivity combinations we need to
test to achieve the best results. In practice, we found that generally m = 3 obtained allowed us to obtain
optimal performance, which is a considerable improvement from the traditional approach to grid search,
though clearly still not preferable for practical purposes.

Ideally, the more standardized filtrations present with kNN Laplacians will reduce the need for parameter
optimization entirely, significantly reducing computation and time requirements. As opposed to performing
grid search for each dataset, we can universally choose a given set of weights that decrease as connectivity
information decreases, such as {(; = 1/t},¢ = 1,...,p, and observe whether there is still a meaningful
improvement in performance without the need for any parameter search. In case there is still need for some
optimization, we can at least significantly restrict the parameter distribution, decreasing the amount of time
needed for tuning. Specifically, we weight connectivities as being either unimportant (¢ = 0), or important
(¢ =1). This results in the number of tested parameter combinations equaling (27P)(Size of « distribution).
Ultimately, in practice with 8 filtrations we found that this meant fewer than 1/5 the amount of tested
parameter combinations were needed to obtain optimal or near optimal results compared to the original
construction. In most cases, however, no parameter search was even necessary at all. In Figure 5, we include
a chart illustrating the scale of the respective parameter searches as we vary the number of filtrations.
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Scale of Parameter Search: Distance Based vs. kNN Construcition
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Figure 5: Comparison of the scales of parameter searches necessary between the limited approach to distance based filtrations

and the limited approach to kNN-Induced filtrations.

We see from this that, for a reasonable number of filtrations, the parameter search necessary for the kNN
construction is a fraction of that needed for the standard construction, while the results listed in Table 4
showcase that the performance is still optimal or at least near optimal compared to other dimensionality

reduction techniques.

The S and  parameters are similarly found via grid search. In Figure 6, we depict how different parameter
combinations impact the accuracy of our K-Means clustering. Ultimately, parameter values ranging from

10719 to 100 were found to produce stable results.
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Figure 6: Variations in KMeans accuracy for different combinations of v and 3 parameter values
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4.2 Visualization of tPCA Eigen-Gene

In the context of scRNA-seq clustering, an eigen-gene refers to the principal components produced by our
dimensionality reduction. Eigen-genes summarize the gene expression patterns within a cluster given that
they are linear sums of the features which explain the most variation in that cluster. By reducing our data
to two dimensions via UMAP or tSNE, we can visualize our eigen-genes in a 2D plot. This visualization can
identify the clusters with similar or distinct gene expression profiles.

For a dataset containing, say, 20,000 genes, an aggressive reduction to k = 2 dimensions typically results
in poorly maintaining the integrity of the data, leading to ineffective visualizations of the eigen-genes. Thus,
an important step in the data visualization process is pre-processing. If we first reduce our data to, say,
k = 50 dimensions via PCA before then reducing again to k = 2 dimensions via tSNE or UMAP, we should
see an improvement in the representation of our clusters. However, given the associated weaknesses with
traditional PCA that we have discussed previously, there may be additional benefit to be gained from pre-
processing the data with Topological PCA instead. In Figures 7, 8, 9 we compare the 2D visualizations for
several of the tested datasets when pre-processing via PCA and tPCA to assess this improvement in terms
of visualization and potential biological insights.
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Figure 7: Comparison of visualization techniques between PCA-enhanced tSNE and UMAP, and kNN-tPCA-Enhanced tSNE
and UMAP for GSE84133mousel. Data was log-transformed, with low variance genes removed. For kNN-tPCA-Enhanced
tSNE and UMAP, ¢ weights were chosen universally as {¢:} = {1/¢} for the tth filtration, and data was reduced to k = 50
dimensions. Cells are color coded according to true cell types provided by original authors. Labels 0 through 12 correspond
to B cells, T cells, Activated Stellate, o cells, 8 cells, d cells, Ductal cells, Endothelial cells, v cells, Immune cells (other),
Macrophage cells, Quiescent Stellate, and Schwann cells respectively.

In Figure 7, we compare visualization techniques for GSE84133mousel. In Veres et al, 8 cells were
found to have heterogeneity between two distinct subpopulations [46]. However, traditional PCA-enhanced
tSNE separates the subpopulations into two clusters that are far away and considerably mixed with ¢ and
other cell types. Our method manages to visualize the cells more similarly, while still displaying the genetic
heterogeneity in the population. Furthermore, there is considerably improved separation between the g cells
and other cell types, particularly § cells. For UMAP, we observe that PCA-enhanced UMAP clusters all
cell types into two relatively homogeneous clusters. Pre-processing with kKNN-tPCA, meanwhile, manages
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to separate all cell types fairly well, with the exception of Endothelial and Quiescent Stellate cells. This
is likely explained by quiescent stellate cells being located primarily around vascular cells in the pancreas,
including Endothelial cells, leading to similar gene expression profiles between the two cell types. Gaining
a further understanding of this spatial organization is crucial for understanding the mechanisms underlying
pancreatic diseases.
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Figure 8: Comparison of visualization techniques between PCA-enhanced tSNE and UMAP, and kNN-tPCA-Enhanced tSNE
and UMAP for GSE82187. Data was log-transformed, with low variance genes removed. For KNN-tPCA-Enhanced tSNE and
UMAP, ¢ weights were chosen universally as {¢:} = {1/t} for the tth filtration, and data was reduced to k = 50 dimensions.
Cells are color coded according to true cell types provided by original authors. Labels 0 through 9 correspond to Astro cells,
Ependy-C cells, Ependy-Sec cells, Macrophage cells, Microglia cells, NSC cells, Neuron cells, OPC cells, Oligo cells, and Vascular
cells respectively.

In Figure 8, we compare visualization techniques for GSE82187. For tSNE as well as UMAP, we note
improved separation between Astro, Ependy-C, and OPC cells when pre-processing with tPCA rather than
traditional PCA. Furthermore, like with traditional PCA-enhanced UMAP and tSNE, kNN-tPCA pre-
processing still enables us to identify the distinct D1 and D2 medium spiny neuron subtypes even when
inducing sparsenss in our principal components. In both of our improved visualizations, there seems to be
more of a continuous gradient between the subtypes rather than a discrete separation. Continuous gradients
indicate that neurons within each subtype lie on a spectrum of gene expression values, with many cells having
a range of intermediate expression values. These results are supported by the findings in Gokce et al [44].
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Figure 9: Comparison of visualization techniques between PCA-enhanced tSNE and UMAP, and kNN-tPCA-Enhanced tSNE
and UMAP for GSE75748cell. Data was log-transformed, with low variance genes removed. For kNN-tPCA-Enhanced tSNE
and UMAP, ¢ weights were chosen universally as {(;} = {1/t} for the tth filtration, and data was reduced to k = 50 dimensions.
Cells are color coded according to true cell types provided by original authors. Labels 0 through 6 correspond to DEC cells,
EC cells, H1 cells, H9 cells, HFF cells, NPC cells, and TB cells respectively.

In Figure 9, we compare visualization techniques for GSE75748cell. We note for both tSNE and UMAP,
the PCA pre-processed version clusters H1 and H9 cells into one homogeneous cluster given the similar
gene expression profile of these cells [43]. However, the kKNN-tPCA enhanced versions were still able to
differentiate these cell types. The same can be said of DEC and EC cells. DEC cells were also found to have
lower similarity in their clustering with kNN-tPCA enhanced tSNE, indicating a heterogeneous pool of DEC
cells. These results are supported by the findings in Chu et al [43]. In both instances when pre-processing
with tPCA, the H9 cells formed two distinct clusters, indicating some kind of possible heterogeneity in the
genetic profiles of these cells.

4.3 RS Plot Analysis

To more effectively visualize our gene expression data after dimensionality reduction, we can generate
Residue-Similarity plots for some of the tested datasets [21]. We can then compare results for classify-
ing cell types after reducing the data via RgLSPCA and kNN-tPCA. In Figure 10 we produce RS plots for
each method on GSE82187 to compare classification accuracy. We observe a significant improvement, partic-
ularly in identifying the cell types in panels two and eight, or Ependy-C and Vascular cells respectively. Note
specifically that for Ependy-C cells the samples are situated in the top-right corner, indicating a significantly
improved cluster boundary separation and inter-cluster similarity in that clustering when utilizing persistent
Laplacian regularization.
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Figure 10: RS plots of clusters generated from RgLSPCA and kNN-tPCA based dimensionality reduction. The z-axis is the
residual score, and the y-axis is the similarity score. Each section corresponds to one cluster and the data were colored according
to the predicted labels from kNN on the GSE82187 dataset at k£ = 100.

Similarly, for GSE67835 we note a considerable improvement in our ability to correctly identify replicating
fetal neurons and Microglia in panels five and six respectively. For Microglia cells in particular, we again
observe a significant improvement in the residual score for that clustering, indicating that tPCA yields a
greater dissimilarity between these cells and other cell types than RgLSPCA.. Specifically, tPCA improves the
separation between Microglia and quiescent fetal neurons/OPC cells. In panel one, we note that classification
after dimensionality reduction via kNN-tPCA has a slightly greater tendency to misidentify OPC cells with
lower similarity scores as Microglia cells, indicating that these cells exhibited a similar gene expression profile,
which is supported by the findings in Darmanis et. al. for a subset of the OPC population [42].
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Figure 11: RS plots of clusters generated from RgLSPCA and kNN-tPCA based dimensionality reduction. The z-axis is the
residual score, and the y-axis is the similarity score. Each section corresponds to one cluster and the data were colored according
to the predicted labels from KNN on the GSE67835 dataset at k = 100.
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5 Conclusion

Single Cell RNA sequencing technologies have grown considerably in popularity in recent years, and with
the ability to reveal vast amounts of information regarding the drivers behind various diseases as well as
potential bio-therapeutic targets, effective analysis of this data is of paramount importance in the field of
biomedical research. As we have seen, intrinsic high dimensionality of the data introduces computational
complexity as well as considerable noise, hindering any meaningful analysis. Thus, dimensionality reduction
is a crucial step of the process, and we seek, as always, to maximize the accurate representation of our data
in the new, reduced space. To this end, we propose topological PCA for scRNA-seq clustering. This method
combines a new robustness via Ls; norm regularization, sparsity constraints, and improved geometrical
structure capture via persistent Laplacian regularization.

Extensive benchmark testing on 11 scRNA-seq datasets showcases that our proposed method significantly
outperforms other similar PCA enhancements, as well as non-negative matrix factorization, for KMeans
clustering after dimensionality reduction. While previous methods such as graph Laplacian Sparse PCA
account for sparsity and local geometry preservation, the method is limited by analysis of a simplicial complex
at only a single scale. Furthermore, Frobenius norm regularization is sensitive to outliers. The incorporation
of a persistent Laplacian term contributes to multi-scale analysis through a sequence of filtrations, as well as
persistent homology information derived from the harmonic spectra of our Laplacian matrices. Compared
to NMF, we observe an average improvement of 13.53% for NMI and 31.92% for ARI.

While our method achieves superb results for clustering analysis after dimensionality reduction, there is
still considerable room for improvement. First, our method considers only £y Laplacian, and therefore lacks
higher order connectivity information. Furthermore, there remains the work of continuing our parameter
analysis, to arrive at a means of optimizing our {¢} weights which is more efficient and produces more
optimal results than simple grid search. While kNN-induced persistent Laplacians seem to be less dependent
on parameter tuning, there is still added benefit to examining means of optimizing the performance, and so
we should hope to achieve this in a more efficient manner.

6 Data and Model Availability

The data and model used to produce these results can be obtained at the Single Cell Data Processing and
RpLSPCA scRNA-seq GitHub Repositories:

Topological PCA GitHub repository: https://github.com/seanfcottrell/ Topological-PCA

Single Cell Data Processing GitHub repository: https://github.com/hozumiyu/SingleCellDataProcess
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