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Abstract

This paper proposes a new numerical method for a fully-coupled,
quasi-static thermo-poroelasticity model in a unified enriched Galerkin
(EG) method framework. In our method, the mechanics sub-problem
is solved using a locking-free EG method, and the flow and heat
sub-problems are solved using a locally-conservative EG method. The
proposed method offers mass and energy conservation properties with
much lower costs than other methods with the same properties, including
discontinuous Galerkin methods and mixed finite element methods. The
well-posedness and optimal a priori error estimates are carefully derived.
Several numerical tests confirm the theoretical optimal convergence rates
and the mass and energy conservation properties of the new method.
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1 Introduction

Thermal-hydraulic-mechanical (THM) processes refer to a complex interplay
of heat transfer, fluid flow, and mechanical responses in natural and engineered
porous media. Modeling THM systems has been a subject of great interest in
various disciplines, including petroleum engineering, geothermal energy pro-
duction, and biomedical engineering. One of the widely used mathematical
models to describe the THM processes is based on Biot’s non-isothermal con-
solidation theory [1], known as the thermo-poroelasticity model. This model is
an extension of the well-known Biot’s poroelasticity model [2], which describes
the interaction of a deformable porous medium with the fluid flow inside
the medium under the iso-thermal condition. The governing equations of the
thermo-poroelasticity model have three primary variables: the displacement of
the solid, fluid pressure, and temperature, and they consist of the momentum,
mass, and energy balance equations. The resulting system of partial differen-
tial equations (PDEs) is fully coupled and nonlinear. In this paper, we consider
a fully coupled, linear thermo-poroelasticity model, where the energy balance
equation is linearized for simplicity but still retains coupling terms with the
momentum and mass balance equations.

The complex nature of the thermo-poroelasticity model poses extreme chal-
lenges to developing and analyzing numerical schemes. In general, any desirable
numerical methods for the thermo-poroelasticity model should preserve the
underlying physical laws, such as mass and energy conservation, and be robust
with respect to physical and simulation parameters. There have been various
numerical methods utilized to solve THM models in the past [3], including
finite volume [4, 5], finite difference [6], continuous Galerkin (CG) [7-9], dis-
continuous Galerkin (DG) [10], and boundary element [11] methods. While
some methods utilize the same type of numerical solvers for the entire system
(e.g., CG [9] and mixed finite element method [12]), most numerical solvers
combine different types of numerical methods tailored for each of the momen-
tum, mass, and energy equations. This is mainly because the three balance
equations are different types of PDEs; hence they should be handled differently.
However, combining different types of numerical solvers for the coupled system
may require special care for the sub-solvers to communicate seamlessly with
each other when transferring the solution data. Moreover, a rigorous numeri-
cal analysis for such methods is arduous to conduct. This explains the lack of
literature dedicated to the mathematical analysis of the numerical solvers of
THM models.

The main objective of this paper is to design and analyze a physics-
preserving and computationally efficient numerical method to study the
thermo-poroelasticity model in a unified numerical framework. Our method
is based on the enriched Galerkin (EG) methods. The EG method is a new
class of finite element methods that combines the advantages of the CG and
DG methods. Its computational costs are much lower than those of the DG
method due to the fewer degrees of freedom, leading to a simpler sparse lin-
ear system. Moreover, the EG method inherits desirable properties from the
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DG method, such as local mass conservation and flexibility with discontinu-
ous coefficients, which the CG method lacks. The original EG method [13],
which will be called the locally-conservative EG (LC-EG) method, was devel-
oped to study a second-order elliptic problem and has been used for studying
coupled flow and transport phenomena in porous media [14-17]. Later, the
authors developed a new type of EG method, to be called the locking-free EG
(LF-EG) method, to simulate incompressible elastic materials [18]. Since then,
this new LF-EG method has been applied to the Stokes flow [19] and poroe-
lasticity model [20]. The new method we propose here utilizes both LC-EG
and LF-EG methods to solve the thermo-poroelasticity system. This coupled
EG method preserves the underlying physical law for each sub-system, such as
mass and energy conservation and incompressibility, at a lower computational
cost than other methods with similar capabilities, for instance, a mixed finite
element method [12]. We conduct a convergence analysis for the fully-coupled,
fully-discrete EG method to prove optimal-order error estimates.

The outline of the rest of this paper is as follows. Section 2 describes the
governing equations, followed by the description of the variational problem
in Section 3. In Section 4, we define our coupled EG method and discuss its
well-posedness and mass and energy conservation properties. Then, Section 5
is dedicated to establishing optimal-order error estimates. Section 7?7 briefly
remarks on extending our EG method for the case of a very large Lamé
constant A. Finally, we provide some numerical results in Section 6.

2 Governing Equations

Let Q be a bounded, convex, and Lipschitz domain in R¢, d = 2,3, with the

boundary 92 and let T = (0, 7] with 7" > 0. Then, let u: 2 x I — R% be the
vector-valued displacement of the solid, p : €2 x I — R the scalar-valued fluid
pressure, and 6 : Q x I — R the scalar-valued temperature. Then, governing
equations for thermo-poroelasticity are derived by coupling momentum bal-
ance for mechanics based on linear elasticity, mass balance for the pressure,
and energy balance for the temperature as follows:

-V - (o(u) —apl —3arKy0I) =f inQxI (la)
%(cop+av-u—3am9) -V -(KVp)=yg inQxI (1b)
% (Cab + 3ar K400V - u — 3a,bop) — V- (DVE) =n  in Qx| (1c)

In the momentum balance equation (la), o(u) is the standard stress tensor
from linear elasticity. It satisfies the constitutive equation o (u) := 2ue(u) +
MV - u)I, where €(u) := $[Vu+ (Vu)?] is the strain tensor, I is the d x d
identity tensor, and p, A are the Lamé constants. The Lamé constants are
assumed to be in the range p € [pg, 1] and A € [0, 00) for some 0 < pg < g <
oo. Also, f is the body force, « is the Biot- Willis constant, K4, := (3\ +2u)/3
is the drained isothermal bulk modulus, and ap is the volumetric skeleton
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thermal dilation coefficient. The total stress tensor is given by &(u,p,0) =
o(u) — apl — 3ar K401

The second equation (1b) is the mass balance equation for the fluid, assum-
ing the Darcy law for the volumetric fluid flux: ¢ = —KVp. We ignore the
gravity effect and set the fluid viscosity to be one here for a simple presen-
tation of the numerical method. However, including the gravity term and the
fluid viscosity in the numerical formulation is straightforward. Here, K € R%*¢
is the permeability tensor, which is symmetric and uniformly positive-definite
and satisfies the following assumption: there exist positive constants kmin, Fmax
such that for any x € ),

kmin€T € < ETK(X)€ < kmax€TE, VE € R (2)

In addition, ¢g = 1/M, where M is Biot’s modulus, 3, is the thermal dilation
coefficient, and ¢ is the volumetric fluid source/sink term.

Finally, the energy balance equation, or the heat transfer equation (1c),
is obtained by assuming local thermal equilibrium between solid and fluid in
pores. Therefore, this energy balance equation is expressed in terms of a single
temperature variable § with the effective total heat conductivity Cy. Also,
7 is the volumetric heat source/sink term and 6, is a reference temperature
and is assumed to be nonzero. The use of this reference temperature in the
heat equation is justified due to small magnitudes of ar and a,, [21, 22]. In
addition, the bulk thermal conductivity tensor D, which is symmetric and
uniformly positive-definite and assumed to satisfy the following: there exist
positive constants dmin, dmax such that for any x € Q,

dmin€” € < ETD(X)€ < dmax€’€, VE € R™ 3)

To complete the system of governing equations (1), we have to provide ini-
tial conditions and boundary conditions. To this end, consider three partitions
{T4,T:},{Tp, T}, and {T';, Ty} of O such that

M =Tqul;=T,uUl;=T,UTy.

Then, the boundary conditions are given as

u=up on I'y, on =ty on I, (4a)
p=pponly, KVp-n=gqgyonly, (4b)
#=0ponT,, DVO -n=syonly, (4c)

where n is the outward unit normal vector to 9. On the other hand, the
initial conditions are given as

u(,0)=u’ p(-,00=p" 6(,0=0" Ve (5)
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These initial conditions must themselves satisfy some constraints, such as the
equilibrium equation and the compatibility equation. If the initial conditions
are in an equilibrated state, namely satisfying the governing equations in a
steady state, they can simply be ignored as we need only to solve the perturbed
state.

3 Variational Formulation

In this section, we derive a variational formulation for the model problem (1)
and propose a fully-discrete EG method. The standard notation for the L2-
and Sobolev spaces and their associated inner products and norms will be used
here. Also, for any subset I" of 9Q, HJ*(2) = {ve H™(Q) |v=0o0onT}.

In order to derive a variational problem, we multiply (1a), (1b), and (1c) by
v € [Hyp, ()% we Hyp (), and s € Hjp (Q), respectively, and integrate
by parts. Then, the resulting variational formulation reads as follows: At every
time t € (0,7, find (u(-,t),p(-,t),0(-,t)) € [H*(Q)]¢ x H(Q) x H'(Q) such
that u = up on I'y, p = pp on I'y, and @ = 0p on I, and satisfy, for all

(v,w,s) € [Hyp, ()] x Hol,rp () x Hyr (),

au(u7v) - Oé(p, V. V) - 3aTKdT(03 V- V) = (f7 V) + (tNav)Fta

(6a)
co(pe,w) + a(V - ug, w) = 3am (0, w) + a”(p, w) = (9, w) + (¢, w)r,,
(6b)
Cd(eta 5) + 304T-Kd7‘60(V - Uy, S) - 304m00(pt7 s) + 30(9’ S) = (777 S) + (SN7 S)Fm
(6c)

where the bilinear forms a%(-,-), aP(-,-), and a’(-,-) are defined by

a'(u,v) := 2u(e(n),e(v)) + M(V-u,V-v) Vu,v e [H(Q)],
af(p,w) := (KVp, Vw) Vp,w € H(Q),
a’(0,s) := (DV#, Vs) V0, s € H'(Q).

The well-posedness of the same variational problem as (6) except for an extra
nonlinear coupling term —KVp - V0 in the temperature equation (6¢) was
studied in [9], where they studied the standard CG method for the model.

4 Discretization by Enriched Galerkin Method

Let T, = {K} be a shape-regular triangulation of the domain 2 into triangu-
lar or rectangular elements with a mesh size h = max hxi, where hg is the

diameter of K € Tj,. We denote by &, the set of all edges in the mesh and by
EL the set of all the interior edges. For each K € Ty, denote the boundary of
K by 0K and the outward unit normal vector to 9K by ng. If e € &/, we
assign to e a fixed unit normal vector ne.
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The EG formulation requires jump and average operators. First, let us
define the following broken Sobolev subspace on 7j: For any real number > 0,

H*(Tp) = {w e L*(Q) |w|x € H(K), K € Ty},

equipped with a broken inner product (w,q)7, = > g7, (w,q) k. Then, for
any function w € H*(T) with s > 1/2 and e € &/, let

[w] =w" —w™ and {w}z%(uﬁr—kw*),
+

where wt = (w|g=+)|.. Here, KT are the two neighboring elements of e. If
e € 01, then e belongs to only one triangle K, and we define

[w] = {w} = (wl)le-

The above definitions of the broken Sobolev space and jump and average oper-
ators can be naturally extended to vector-valued functions. We will use the
same notations in that case.

For the spatial discretization of the weak form (6) by our EG method, let
us introduce our LF-EG space [18] for the displacement and LC-EG space
[14, 16] for the pressure and temperature on 7. First, let P, (FE) be the space
of all polynomials of degree at most & > 0 on a set E and Q(F) be the space
of all polynomials on a set E that are of degree < k in each of the variables x;
fori=1,...,d. We then let P{“ and Q{“ be the standard linear and bilinear
CG finite element spaces on triangular and quadrilateral meshes. That is,

PYC = {y € H'(Q) | ¢|x € P1(K) VK €T},
QY :={y e H'(Q) | ¢|x € Qi(K) VK € Ty}.

We use a notation C{¢ for PY“ on a triangular mesh and Q¢¢ on a
quadrilateral mesh.
To define the LF-EG space, we need the following discontinuous space:

DPC ={v € LX) ||k = cx(x—xk), cx €ER VK €Ty},
where x = [z1,--- ,24]7 and x is the center of K € 7;,. Then, the LF-EG
space for the displacement is constructed by enriching the vector-valued CG
space, [C{%]?, by this space DPY. That is,

Vi = [CT9) @ DPY,

in which the direct sum above is true because [C{'%]?NDPE contains only the
zero constant function.
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To define the LC-EG space for the pressure and temperature, let PY G be
the piecewise constant space on 7p:

P9 = {v € L*(Q) | Y|k €Po(K) VK €Ty}.
Then, the LC-EG space is defined as
W, = C{Y + PPC.
Both V5 and W require only one additional local degree of freedom per

element compared to the linear CG spaces regardless of the dimension d.
These EG spaces are equipped with the following energy norms:

1

Ivlv = (leW37 + B8R VD B.e,)? YV E Vh,
1

lwliw = (IVwl§ 7 + B8 Twl Be,)?  Yw e Wh.

The penalty parameter 4P in the norm || - ||yy can be replaced by £%. Indeed,
we use the same value for 5P and 8% in all of our numerical experiments to be
presented in Section 6.

To discretize (6) in time, we employ the backward Euler method for sim-
plicity. However, higher-order time-stepping methods can also be considered
in practice to achieve the same convergence orders in space and time. For
a positive integer N, At = T/N is the time step and ™ = nAt¢. For any
known function ¢(t), the function value at time ¢™ is denoted by ¢™. That is,
¢" = ¢(t"). In our EG method, (u}, p}, 07) is an approximation of (u”, p™, ™),
where n = 0,..., N. We use the following notation for the backward difference
formula of a time derivative of both vector-valued and scalar-valued functions:

n+1 n
n+1 ¢ (b
Dt(b At

Finally, our fully-discrete mixed EG method reads as follows: Given
(U, pit, 07) € Vi x Wy, x Wy, for 0 < n < N — 1, find (u)tt, pptt o0+t €
Vi X Wy x Wy, such that

ap(uptt,v) —abp (v, i) — 3ar Kag by (v, 07 = gt (t" T v), (7a)
co(Dipptt, w) + abp(Diuptt w) — 3ay, (D0 w) + af (pp ™, w)

g (t" 1 w), (7b)

Ca(D16;, 5) + 3ar KarOobn (Dyup ', ) — Bam 0o (D p,ﬁ, s)+ap (Ot s)

gl (1"t s), (7c)

for V(v,w, s) € Vp x Wi, x Wy, where the bilinear forms are defined as

aj, (w, v) := 2u(e(w), e(v))7, + AV - W,V -v)7, = ({o(W)n.}, [V)esor,
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— (W] {o(v)n)eror, + B0 WD VD eceror,
all(¢, w) := (KVq, Ve)7, — ({(KVq-n.} [w]eror, - {KVw 0.}, [deror,
+ 8740 [al, Do,
a(,s) = (DVq,Vs)7, — {DVq-n.} [seror, — ({DVs-n.}, [al)eror,
+ 8% ol [sDeror,
bi(v,w) = (V- v,w)7; — ({w}, V] n)eror,

and the linear functionals are defined as

gh(t; v) == (£(t), V)7, + (tn (1), vir, — (up(t),o(v)ne)r,
+ 8%(h; fup(t), v)r,,
gt w) = (g(t),w)7, + (an (), w)r, — afw, (up)e(t) - ne)r,
— (KVw - ne,pp(t))r, + 7 (h; 'pp(t), w)r,,
gh(t; s) == (n(t), s)7 + (snv(t), 8)r,, — 3arKarfo(s, (up)e(t) - ne)r,
— (DVs - n,0p(t)r, + 8°(h; " 0p (1), s)r

where he = |e|77 and |e| denotes the length of e in two dimensions and the
area in three dimensions. Also, % > 0, A7 > 0, and Y > 0 are penalty
parameters, which are assumed to be constants in this paper.

4.1 Well-posedness and conservation properties

We start with this subsection with continuity and coercivity lemmas that
will be useful for the well-posedness and convergence analysis of the proposed
method. The detailed proofs are available in the paper [20] by the authors.

Lemma 4.1 There ewist constants Ca,,,Ca,, and Ca, > 0,all independent of h,
such that

ah(v,w) < Ca, vivliwly  Y(v,w) e [H (T x [H (T,)]% (8a)
al (q,w) < Ca, lallwlwllw  Y(g,w) € H'(T) x H'(Ty), (8b)
ah(q,5) < Capllallwlislw  V(a,s) € H () x H'(Tp,). (8¢)

Lemma 4.2 There exist constants Cy and Cj > 0, both independent of h, such that
bi(v,w) < Gyllvivllwllo  V(v,w) € [H' (Ty)]" x L*(€), (92)
by (v, w) < Cyl[Vijollwlhw ¥(v,w) € [H Q)] x H'(Ty). (9b)

Lemma 4.3 For large enough 8%, 8P, and 8% > 0, the bilinear forms aj,al, and a‘z
satisfy the following coercivity conditions: there exist ku,kp > 0, and kg > 0, such
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that
rul[VI[$H <ak(v,v) Vv €V, (10a)
rpllwliy < af(w,w) Yw e Wy, (10b)
kollsl3y < al(s,s) Vs €Wy, (10c)

Lemma 4.4 The fully-coupled and fully-discrete EG method (7) for solving the
thermo-poroelasticity problem (1) has a unique solution, provided that the penalty
parameters 8%, 8P, and B° are large enough.

Proof Given a unique solution from the previous time step n, we want to prove the
existence and uniqueness at each time step n + 1 for n = 0,..., N — 1. Thanks to
the finite dimensionality of the solution space, it suffices to prove the uniqueness at
each time step. To this end, consider the following homogeneous problem

aj(up ™, v) = aby(v,pp ) = Bar Karby (v, 6,7) = 0, (11a)
co(ph 7w) + abp(u n'H, w) — 3o¢m(9n+1,w) + Atah( "+17w) =0, (11b)

Ca(07 ) 5) + Bar Kg0obp (W s) — Bambo(pp T, s) + Atal (077 5) =0 (11c)

for Vv € Vp, Yw € Wy, and Vs € W,. We wish to prove that the solution to
this homogeneous problem is only a trivial solution. Then, take v = 6'0u"""1 w =

Gopn"'1 s = O"'H (11) to obtain
Boa (up T i) + cobo (i i) + GoAtal (bt o)
+cd(9”+1 Oy + Atal) (071,07 — 6ambo (07T p T = 0.

Using the coercivity of the bilinear forms ah,ah, and ah in (10) for large enough

B, AP, and ,89 and applying the Cauchy-Schwarz and Young’s inequalities to the
last term, we obtain the following lower bound for the left-hand side of the above
equation, which is less than 0 as the right-hand side is equal to 0:

1 1 1
P + cobollpy TG + GorpAtllpy TSy

+ CallGi B + o A I3y = 3ambo (1657413 + ligp13)

Opkulluy

= Gorullu} TS + (co — 3am)ollp TG + GorpAt|py T3y
+(Cq — 3amb0) 105G + me At]|67 T3y < 0.

Therefore,

n+1 pn+1 _ Hen-{-l

v =llpy, " llw = lw =0,
from which we see the homogeneous system (11) has only a trivial solution. (]

([aj,

We will now show that our EG method conserves mass and energy (or
enthalpy) [22] on each mesh element. To see this, let us fix an interior element
K € Tp, and integrate the mass and energy balance equations, (1b) and (1c),
by parts over K. If we let q, = —KVp and qg = —DV#, we have

(ap -ng, ok = (9, 1)k — co(pe, 1)k — a{ug - ng, Dog + 3am (0, 1)k,
(12a)



Springer Nature 2021 BTEX template

10 EG for thermo-poroelasticity

(ao - ng,ox = (0, 1)k — Ca(0s, 1)k — 3arKa-bo(u; - ng, L)ox
=+ 30ém90(pt, 1)[(. (12b)

The above equations, (12a) and (12b), represent the local mass and energy
conservation equations satisfied by the true solution p and 6, respectively. The
following lemma derives discrete counterparts of these conservation equations
satisfied by our EG method.

Lemma 4.5 The EG method defined in (7) satisfies discrete local mass and energy
equations.

Proof To derive a discrete counterpart of (12a), take w = 1g in (7b), where 1x
is a characteristic function. Then, using the fact that Vw = 0 and the divergence
theorem, we can obtain

—{xVp g} Do+ 870 [ ] Dox
= (""" V) —co(Depp T 1) i — a({(DtuZH : HK} or +3am (D 1) .
Therefore, by defining the normal component of our numerical fluid flux qu'Ll by
apht e = = {KVpp T ongeh 8 o]
we can obtain a discrete counterpart of (12a):
(aph! n Dok = (6" Dk — co(Depp ™ 1) ke — a({DtUTl 'HK} Dok
+ 3am (D) 1) k. (13a)
Similarly, by defining our numerical thermal flux qz)zl by
ayh nie = —{DVO onge b+ p0h ! o]
we can obtain a discrete counterpart of (12b):
(agh! - n, Dok = (1" Dk = Ca(De0) 1) ke
- 3aTKdr9o<{DtuZ+1 : HK} Do + 3ambo(Depy ™, k. (13b)
O

5 A Priori Error Estimates

In this section, we establish the error estimates for the fully discrete EG
method. To define an approximate initial solution (uf,p?,69) and to aid
our convergence analysis, we first consider the following elliptic projection
(n, Pry0n) € Vi x Wi, x W, of the true solution (u,p, ) defined by:

aj (un, v) = aj(u,v) v eV, (14a)
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ah (pn,w) = ab (p,w) we Wy, (14b)
al (0,s) =al(b,s 5 € Wh. (14c)

Assume that our numerical solution at the initial time ¢t = 0 is defined by
elliptic projections of the initial solutions given in (5):

u) =a), pj)=py, and 65 = 0. (15)

Then, we have the following error estimates.

Theorem 5.1 For1<n < N, let (u”,p",0") be the true solution and (u},py, 0} )
be the numerical solution of the EG method at time t". Assume that the true solution
and initial and boundary data satisfy sufficient regularity conditions and that co —
3am > 0 and Cq — 3amby > 0. Then, provided that the penalty parameters 3%, 37,
and 69 are large enough and At = O(h) < 1, we have the following optimal a priori
error estimates:

N
n ni2 n n2 n n2

_ t ( — 0" —0 )
121‘?1\/”11 uply + A n§_l lp" — prllw + || kllw

< [n? (I3 + 1613 + 16°13 + laellF 20,7 2oy + IpelE2o,1, 201 )
1O 0.1 1112y ) + (AO (et 20,7, a1 (@) + Iueell Z20.7; 22000

Hpeel 70,7 22()) + 106l 22 (0.7 LZ(Q)))] : (16)

The proof of this theorem will be conducted in several steps. First, note that
the errors in the solution variables can be split into two parts:

u-—u, = Xu+&u, p_ph:Xp+§pa 0 — 0 = X6 + &,

where

Xu:u_ﬁha Xp:p_pha X@Ze—éhv
Sa=Up—Up, & =D —Pry o =0np—0h

We will first analyze the auxiliary error at the first time step, (£}, ;, £}), then
use it to analyze the errors at subsequent steps. Then, the main result, (16), is
a consequence of the error estimates of the elliptic projections to be proved in
subsection 5, the auxiliary error estimates (32) to be proved in subsection 5,
and the triangle inequality.

5.1 Preliminary lemmas

In this subsection, we will present some useful lemmas to be repeatedly used in
our analysis. First, one key ingredient for the error estimates is the interpola-
tion operators I} : [H}(Q)]? — Vp, and I}V : H'(2) — W),. They are defined



Springer Nature 2021 BTEX template

12 EG for thermo-poroelasticity

in [18, Section 4] and [14] and their useful properties and error estimates are
studied there too. To make our paper self-contained, we present them here
without proof.

Lemma 5.1 There exists an interpolation operator H}f : [HI(Q)}d — Vp, that
satisfies

(V- (v—TI}v),1)g =0 VK € T, (17a)
v —I}v]; S CR™ lvlm, 0<j<m<2  Vvel[H(Q) (17b)
V- (v—Tv)[; <CR IV v, 0<j<1, WvelH* Q) (17¢)
vy < Cllvii ¥v e [Hor, @], (17d)
v —T¥vly < CR™ Hvlm, 1<m<2 vv € [H*(Q)]%, (17e)

where C' > 0 is a generic constant independent of h.

Lemma 5.2 There exists an interpolation operator H,‘:v : Hl(Q) — W, that satisfies

(w—TYw, 1)k =0 VK €Ty, (18a)
lw =TV wl; < Ch™ I wlm, 0<j<m<2 Vwe H(Q), (18b)
lw — Y wlly < Chljw|2 Yw € H(Q). (18¢)

Lemma 5.3 We have the following error estimates for the elliptic projection
(Up, Ph, 0p) defined in (14):

[u— @y lo + hllu—Gplly < Ch|ull2, (19a)
Ip = Brllo + hllp — Brllw < CR?|Ip|2, (19b)
10 — Onllo + RlIO — Byl < CR?|0]2- (19¢)

Proof To prove the energy norm error estimate in (19a), first subtract a}f(l‘[%m V)
from both sides of (14a) to get

all(y, — Y u,v) = af(u— ) u,v).
Take v = uy — H}fu and use the coercivity condition (10a) and the continuity
condition (8a) on the left- and right-hand side of the above equation, respectively,
to obtain
wul| iy — T 0]} < Cayflu — T ully [y, — Ty,
This inequality, together with (17e), yields

_ Y
lay, — Opully < Chllul|s.

Then, the desired error bound can be obtained by using the triangle inequality. We
can prove the energy norm error estimates for p, and 0}, in (19b) and (19¢) in the
same manner. Using these results in the standard duality arguments, we can prove
the L2-norm error estimates. (|
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Lemma 5.4 Let ¢ € C?(0,T; H™(T,)) be a scalar or vector-valued function for
some m > 0, and let E be a set belonging to either &, or Tp. Then, we have the
following Taylor expansions and error bounds:

¢ =" + / $e(s) ds, (202)
Lo
D" = o / Gu(s) ds, (20b)
gt
D"t = grt 4 Ait/ (s — t") oy (s) ds, (20c)
and
16" 5.6 < CUIE" N8 + 9t L20,em; miy), 0<J<m,  (21a)
1D ljp < (A2 6t aen s mromys  0<<m,  (21D)
16" = 0y < (A0 9ullpzqen inors ms(py,  0Si<m. (2lo)

Note that the error estimates in (21b) are particularly true for ¢ = xu,
where ¥ = u, p, or 6. Hence, we have the following corollary.

Corollary 5.1 Let v =u,p, or 0. Then, on any set E belonging to either E, or Ty,

1 )
DX 58 < (AD) 2 lxy, p2n ens1, i)y, 5 =0, 1. (22)
Another inequality to be used frequently in our analysis is the following:

Lemma 5.5 For any symmetric bilinear form ¢ on X x X for some Hilbert space
X, we have

c(a—b,a) > =(c(a,a) — c(b,b)) Va,be X. (23)
5.2 Auxiliary error estimates

Lemma 5.6 For 0 <n < N — 1, let (u"+1,p"+1,9"+1) be the true solution and
(uz+1,pz+1 6‘”+1) be the numerical solution of the EG method. Then, they satisfy
the following equations:

aj(ent!,v) —ab (v, ) — Bar Kg by (v g5
=aby,(v,xp ") + 3ar Kby (v, xg ), (24a)
co(De&p ™ w)r, + aby (D™ w) = Bam (Digg T w) g, +af (G w)
= —co(Dixpt w)7, — abp(Dixitt w) + Bam (Dexg ™ w) T,
+eo(Dp" = ppt w)g, + abp (D™ — upt!
— 3am (D" — 07 w7, (24b)
Ca(D&y ™, 8) 7, + 3ar K g 00by (D&t s) — 3ambo(Deep™, )7, + ap(Ep ™, s)

7w)
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= —Cy(Dexg ™t 8) 7, — 3arKg00bn(Dexw™, s) + 3ambo(Dexp ™, 8) T,
+ Cd(DtenJrl — 9?+1, S)Th + 3aTKdr90bh(Dtun+1 — u?Jrl, S)
— 3amby (DtpnJrl — p?+1, $)Ts (24c)

Proof Tt is easy to check that the true solution (u, p, ) satisfies the following system
at time ¢ :

ajl(u" ! v) — aby(v,p" ) = 3arKaby(v,0" ) = gh(t" 1), (25a)
co(py T w) g, + aby(uf T w) = 3am (07 w) g, +al (p" T w) = gl (1" w),
(25b)

Ca(07, 5)7;, + 3arKaboby (uf ™, s) — Bambo(p) ', 5) 7, +an (0"t s)
—gl(t"ts)  (250)
for V(v,w, s) € Vp, x Wy, x Wj,. Subtracting (7) from (25) and doing some algebraic

manipulations, we obtain the desired error equations in (24). O

We will first analyze the auxiliary error at the first time step, (£5,&),&5),
then use it to analyze the errors at subsequent steps.

Lemma 5.7 Assume that
co > 3am and Cg > 3ambo. (26)

Then, provided that the penalty parameters 8%, 5P, and 6‘9 are large enough, we have
the following auxiliary error estimates:

12 1,2 1,2 1.2 1,2
€ally + I€plw + o llw + 16116 + (169110
2 (11002 L 114012 2 2
< C [0 (1113 + 16°1F + el 2o, a0 £112)) + IPelFqo,a0; 112 2)
2 2 2 2
H0tlZ20,a; Hl(Q))) + (A?) (Hutt”m(o,m; r2) T Ipeell 200,48 £2(0)

H0etl1 720, At L2<Q>>>] ' o

Proof Consider (24) with n = 0. Take (v,w,s) = (Qoﬁlll,ﬂoAtgé,Atgé) in the
equation and use (58,52,52) = (0,0,0), then add the three resulting equations to
obtain

Ooaj (€n, &u) + OoAtal (&5, &) + Atap (€5, £5) + coblo(Ep, &) T
+ Ca(€5,€9) 7, — 6ambo(£5, )T,
= Ooaby, (Eu, xp) + 30007 K 4rby (€4, x4) — ablo Atby (Dixa, &)
— 3ar Kar00Atby (Dixu, &) + afoAtby (Diu' — uf, &)
+ 3arK 4,00 Atby, (D' — uf, &5) — cobo At(Dixp, &) 75, + 3amAtlo(Dixp, €))7,
— CaAt(Dixp, €4) 7, + BamboAt(Dixg, &)1, + coboAt(Dip" — pt, E3) T,
— BamboAt(Dip' — pt,€5)T, + CaAUDO" — 0, €))7,
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— 3amboAt(D9" — 07, &) T; Z Pi- (28)

We can bound below the left-hand side (LHS) of (28) using the coercivity condi-
tions in (10) for the first three terms and applying the Cauchy-Schwarz and Young’s
inequalities to the last term to obtain the following lower bound:

LHS > Oorull€a]lS + OorpAtllep]sy + roAtl4 15y
+ (co — 3am)BollEpl13 + (Ca — 3ambo)|1€5 3.

We also want to bound the right-hand side of (28). Applying (9a) to the first two
terms and (9b) to the next four terms, then using the Cauchy-Schwarz and Young’s
inequalities (19), and (21), we can bound the first six terms as follows:

Z@ < 90f~6u|\€u|\v +00rp ]| |13y + roALlIE )

+ OUIxplId + 613 + Atll Dexulld + At Dea’ — i)
< 5 (OorallEhIB + BompAtliEplBy + oAt I3y)
+C [0 (Il 15 + 16M1F + 1wellZ 20,40 £ (0) ) + (AO Il (0.a6: 2(0) ]
< 2 (Oorall€ I + GorpAtligh By + o tlEh )
+C [ ("5 + 16017 + el Z 20,00 111 () ) + (A0 Il Fa0.86 L2002 -
The rest of the terms can be bounded similarly.

14

> i < ea At |1l + e2At]1€5113
=7

+ CAL(IDexpls + 1 Dexlis + 1 Dep” — pilId + 106" - 6713)
< a1 AWolIE I3 + 2 At I8 + C [n* (IpellZ20,a0 11 () + 1061 20.80 7 (2 )
+(An? (||ptt||2L2(o,At; 2@y + 1961720, At Lz(Q)))] :
Putting together the lower-bound and upper-bound of (28), we have
Borul€ull + borp A€ [Ty + roAtEg [Ty
+ (co — 3am — 1 A€ 1 + (Ca — 3ambo — e2A1)[1€5113

< [0 (I9°1F + 1613 + laelZa0.a0 1 (@) + IPeE2 (0,00 117 (00

H0:l1 72 0,a1. Hl(Q))) +(At)? (HuttH%%o,At; r2@) + Ipeel Z20,a0: 22(02))

H0et 11720, ac: Lz(Q)))]

for some positive constants €1 and e3. Thanks to the assumptions in (26), the coeffi-
cients in front of H{},H% and ||¢}]|3 can be made positive for sufficiently small ¢; and
€2. Therefore, we obtain the desired error estimate. O
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Lemma 5.8 Assume the conditions in (26), v.e., co—3am > 0 and Cq—3amby > 0,

and that the penalty parameters B, AP, and Be are large enough. Then, we have the
following auxiliary error estimates:

N

1 2 2
L2 65 B+ s IG5 1y + A3 (1D 1% + I1Deg IF + IDeE8 113 )
n

2 0,2 02 2 2
<[P (I°1F + 16°13 + el Bz 2y + WPt 2o, 10 (o)

1
+H0elZ2 0.1 Hl(Q))) +(At)? (|\utt|\2L2(o,T; @)+ E”uttH%Q(O,T; £2(59))

Hlpee 2 0,75 £2(0y) + 16217 20,7, L2(Q)))] : (29)

Proof First note that (24a) holds at every time step n, 1 < n < N — 1. Therefore, we
can obtain the following equation with the discrete time derivative for 1 <n < N—1:

aj (Dieh ™, v) — aby (v, D& ™) — 3ap K g by (v, Digy )

= —aj (Dixu ™, v) + aby (v, Dixp ™) + 3ar Kby (v, Dixg ). (30)

Take v = OgAtDyé T w = GgAtDy&y !, and s = AtDyg; ™ in (30), (24b), and
(24c), respectively, add the three equations, then use the definitions of the elliptic
projections in (14), rearrange the terms to collect the terms in a similar form so that
we can analyze multiple terms together. Then, we can obtain

foAtay (D™, D ™) + oaf, (G, 67 — &) +an (€T g — &)
+ coboAt(Degf T, Degy T +OdAt<Dt5"+1 Digy™ T,

— 6amboAt(Degyt Degpth 7

= b Atby, (Dl Dix i) 4 3ar K 4,00 Atby, (Dign ™, D
— abAtby (Dixa ', Digp ™) — Bar K400 Atby (Dixat, Digg )

I

1
Dixg™)

+ afpAtby, (D" — uf T Dt 4 3ar K00 Atby, (Dea™ T — u T Dygp
— cobo At(Dyxptt, Dt&”“)ﬁ + 3amboAt(Dexp T, Degy T,

+ om0 At(Dyx T, Dts"“) — Cabo At(Dyxy ™, Degy ™,

+ ol At(Dep™ = pP Y Degp T 7, = BamboAtlo(Dep™ T — P, Degg T,
—BamQOAt(DtG"H 07 Dyt 4 CyAl(D0" T — 9;?“ D&y ™

14
= ZCI%-.
=1

Now, take summation over time from n = 1 to M — 1 on both sides for an arbitrary
integer 2 < M < N. Then, using the Cauchy-Schwarz and Young’s inequalities, (23),
and the coercivity and continuity of the bilinear forms, the left-hand side is bounded
below by

M—-1

0
LHS > forudst Y~ 1D IS + 2 (k&g I3y — Ca, 65 130)
n=1
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M-1
1
5(*@0”5 "3y = CaolI€51I50) + (co — Bam)bort > Dy ™3
n=1
M-—1
+(Cq = 3ambo)At > D& l5. (31)
n=1

We also need to bound the right-hand side. For the first four terms, we use the
continuity condition (9a) of the bilinear form by, then apply the Cauchy-Schwarz
and Young’s inequalities and use (22) along with the projection errors (19) and the
trace inequality to obtain

M—-1 4
> D%
n=1 i=1
1 M-—1 1 M-1
< S00malt 3 IDign % + oo = 3am)0oAt Y Dy I3
n=1 n=1
1 M—1 M-—1
1 1 1
+ 5(Ca = 3ambo) At 37 [IDigg T F + Cae S (IDod™ I + 100G 8
n=1 n=1
+IDexg ™ 13)
1 1 =
< 5forulrt Z DG + g(co = 3am)boAt > Dy IS
n=1 n=1
1
+ 5(Ca = 3ambo) At Z IDegy G + Cn® (HutH%?(&T; H2(Q))

n=1
2 0 2
Hpellz2 0,7 m11(02)) + 110el2200,7; 51 (02)) ) -
We similarly bound the next two terms. But, in this case, we use (21c) and that
1
D™t —uf S = [le(Dpa™ ™ = uf THIIE + 8Ylhe 2 (Deu™ T = ui ) |F 0

due to the continuity of u and u; across the interior edges (faces). As a result, we
have

M-1 6
PIDILY
n=1 i=5

1 M-—1 1 M-—1
< 5(c0 = 3am)foAt Z 1Deg HIE + 5 (Ca — Bambo)At 7 | Dey ™1

n=0 n=1
1 M—-1 1 M—-1
1

< 5 (co = 3am)foAt nZO 1D:€5 M I6 + 5 (Ca — Bambo) At nzl IDeg 115

1
+C(At)? (HuttH%?(O,T; Hi(Q) T EHuttH%%o,T; L2(aQ))> :

Once again, we bound the rest of the terms in the same manner as before.
M-—1 14

> D %

n=1 =7
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M—1 M1
1
6(0d — 3ambp)At Z ||Dt£n+1HO 42 (Cd — 3ambo)At Z 1Dy €n+1H
n=1 n—1
+C (Do M3 + 1D I8 + D™ = 5 + 120 — 07 17)
1 M1 M-1
S 6(60 - 3&7” eoAt Z HD £n+1||0 4= (Cd _ 3am00 At Z ||D £n+1H
n=0 n=0

+C [h2 <||Pt||2L2(o,T; i) + 1017207 Hl(Q)))

+(AL)? (HpttH%%o,T; 2y + 10617207 L?(Q)))] :

Now, using the bound for the left-hand side in (31) and collecting the above bounds
for the terms on the right-hand side, then combining with (27), we arrive at

M-1
HOHuAt Z ||th”+1||v+ 90’%“5 "5y + 52 ||€9 [

LA N A
+ 5 Z co — Bam)fol| De&p IE + 5 Z (Ca = Bambo)[| Degg 3
= =

<C [h2 (||p I3+ 16°1F + el Z2 0,7, m200) + IPell T2 0,7 111 (92
1
+||9t|\2L2(0,T; Hl(Q))) +(At)? (HllttHzL?(O,T; i)t EHutt”%?(O,T; L2(92))

Hipeel720,7: 22 () + 106l 22 (0.7 L%Q)))] :

Note that all coefficients on the LHS are positive. Since this inequality holds for
any arbitrary integer M between 2 and N, the discrete Gronwall lemma yields the
desired error estimate (29). O

Lemma 5.9 Assume the conditions in (26) and that the penalty parameters 8%, 5P,
and 59 are large enough. Also, assume that At = O(h) < 1. Then, we have the
following auxiliary error estimate:

N
At ( n2 n2 ) n2 n2 n2
HZ::O &5l + 1€5 1w ) + | maz ligally + | maz &6+ maz 15
2 02 0,2 2 2
< C [0 (I°1F + 1617 + el Za o7 o) + IPel 2o, a1 (o)
2 2 2 2
+0¢llz2 0,7 Hl(Q))) + (At) (HuttHLZ(o,T; mq)) tleellz20,7; L2(00))

Hipeel 2207 120y + 10672 0,7 L%Q)))] : (32)

Proof Take v = OgAtDyeR 1! w = HOAtf"Jrl, and s = Atfg""l in (24) and add the
three equations and take summation over time from n = 1 to M — 1 for an integer
2 < M < N to obtain

S

Z (0ak (et €™ — &) + dortab (5 &) + Atal (65,5 )
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M-1
+ Z (0000(6 i _£p7 TL+1)7_h +Cd(£ . _697£n+1) 1)
n=1
M-—1
—3ambort > (D g + (D™ 67 )
n=1

M—
Z (000 At (DT X5 ™) + Bar Kar 0o Atba (Dl x5 ™)

GOAtbh(DtX7L+1> 7Y — 3 Kg00Atby, (Dexa ™ €5
+ a@oAtbh(Dtu 1 u?"'l, ;,H_l) + 3aTKdT90Atbh(Dtu ntl_ n+17£n+1)
— cobo At(Dexp 0T 1+ BamboAt(Dixp T g T,
+ 3ambo At(Dyxy "H) — CaboAt(Dyxt en ™ 7,

+ coboAt(Dyp™ T — Pt ;LH)Th — 3amboAt(Dyp" Tt — n+1,€n+1)

+CdAt(Dt0"+1 9n+1’£n+1)Th . SameoAt(DtG"H . 0’tﬂ+17 gﬂ)n]

14
=>_T (33)

We can bound the left-hand side (LHS) of (33) from below, similarly to what we did
to obtain (31). However, we use the following form of summation by parts to deal
with the last term:

l

M—-1

Z (¢n+1 n n+1_|_ Z ¢n+1 wn-{-l wn)
n=1

= ¢MyM ¢w+z T M = ™).

Then,
LHS

>

N | —

M—
fo(rulléa’ I} — Caull€alD) + Z (ornlles™ 5y + ralles ™ Iv)
1
+ Seolo(631 13 ~ Ca, IERIR) + 5 CallE I3 — Cas I IR)

M
—3ambo(&),€67) T, + 3ambo(Ep, £5) T, — 3ambo(At) Z (Degp ™, D™,

M-1
1 M2 12 1 1
> S00(ulléd! I = Caull€hlD) + At 37 (bomplie ™ I3y + malles ™ Iy )
n=1
1 M 1 M
+ 500016118 = Ca, IE513) + 5 CalllEs” 15 — CasliEh 13)
3amb M M
— 22220 (g 18 + 11" I3 + 1&g 13 + 1€5 15

M—1
3
— Seambo(A0” 37 (D& + 11Dey 115

n=1
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M—-1
1
> S00kull€l! I + At S (Bomplléy ™ I3 + wallés T 3w)
n=1
1 1
+ 5 (co — 3am)00l[&" |13 + 5 (Ca — Bamb0) 165" 13
1 1 1
— 500Cay IE4]% = 5 (0Ci, + 3am)6ollEh |3 — 5 (CaCay + 3ambo) 1513
M—-1
3 00 (A 2 D n+1 D n+1
— Sambo(at) Y- (1D 5 + 1Degs 13
n=1

As this lower-bound of the LHS is bounded above by the right-hand side (RHS) of
(33), we can obtain

1
5 (BorullEd 15 + (co — 3am)8ol&3" I8 + (Ca — 3ambo) 3" 5)

M-1
+at 3 (Gorlley ™ I + moligg )
n=1
M—
< rHs Ikl + )16 + 816 + (30° 3 (IIDtE”“lo+”th"HHO)}-

(34)
To complete the analysis, we turn to bound the RHS. First, rewrite 77 using sum-
mation by parts and bound it using the continuity of by, the Cauchy-Schwarz
and Young’s inequalities, and appropriate Taylor expansions and projection error

estimate as follows:
M-1

Ti=af Y bueat -t

n=1

M—1
= afp (bh@?f Xp') = b€ xp) — At > by (€l DM“))
n=1

M—1
1 M2 1,2 M2 12 1
< glorulléa’ [V + O {lIgally + lxp o + [Ixpllo + At > (Hfull\ﬂ-llthXnJr ||o)}

n=1

Similarly,

T2 < Goﬁullﬁu 5 +c

M—-1
1
€SI + I3 + 113 + e 3 (Iex} + 1Dt m)] .

n=1
The rest of the terms, 73,...,714, can be bounded in the same manner as in the
proof of Lemma 5.8. This will lead us to the following upper-bound of RHS:

RHS

—_

M—
At 1
< J0oruled I3 + 5 Z (Goraliey™ 15w + wollg ™)

M-1
1 1
657 (e 3+ IEg 1) + 1EhB + T3 + I lE + 71

M—-1
12 1 1 1
+h g +at > (1D 18 + 1D I3 + 10 1)

n=1
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M-1
+At > (1D — w4 D" = S + D™ — 67T )}
n=1
1 At 1 1
< J0omall€d I3 + 5 ) (ornllen ™ Iy + ralles ™ I3v)
n=1
M—1
1 1 12 2 0,2 0,2
+C|ae > (I I8+ e THR) + el + n* (Ip°1F + 16°)17
n=1

HluelZz0.7: 5y + el 207 m10) + 10617201 Hl(Q)))
+(At)? (||utt\|%2(o,:r; 2y + et 7201 22y + 106l 2207 L2(Q)))] -

Now, use this upper-bound and error estimates for the auxiliary errors at time thin
(27) and those for the discrete time derivatives in (29) to bound the right-hand side
of (34). Finally, applying the discrete Gronwall lemma, we arrive at the desired error
estimate (32). O

6 Numerical Experiments

This section presents a set of numerical experiments aimed at validating the
theoretical results presented in Section 5 and demonstrating the effectiveness
and robustness of the proposed EG method. The computations are performed
using deal.II, a finite element library [23], on quadrilateral meshes.

6.1 Example 1. Optimal convergence for smooth solutions

To verify the optimal convergence rate of the proposed method as proven in
Theorem 5.1, we evaluate the method’s performance on smooth solutions. The
spatial domain is = (0,1)2, the final time is T = 0.1, and the following
manufactured analytical solution is used:

u = [sin(wxt) cos(myt), cos(mat) sin(myt)], p = cos(t+x—y), 0 =sin(t+z—y),

from which the right-hand side functions f, g, and h are obtained. The physical
parameters are chosen to be simple numbers: « = A =y = ¢y = Cy = 1,

Ftop
(1, 1) l Case [ Boundary conditions ‘

1 Fy=Tp=Tr=0900Q

Tiett Fright
I Iy= Ff =TIy, = Ftop U T'bottom

I't= Fp =Ty =Tlery U Fright
(0,0)
Fbottom

Fig. 1: Example 1: Boundary labels (left) and boundary conditions for two
test cases (right).
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ar = 0.3, a,, = 0.001, Ky = (3N +2p)/3,6p =1, and K =D =1, where I
is the 2 x 2 identity matrix. The penalty parameters are chosen as g% = P =
B¢ = 1000.

As for boundary conditions, we consider two different combinations of
boundary conditions. For case I, we impose pure Dirichlet boundary condi-
tions for all three variables directly found from the exact solution. For case
II, we use mixed boundary conditions, where we impose Neumann boundary
condition for u and Dirichlet boundary conditions for p and 6 on the left and
right sides, whereas we impose Dirichlet boundary condition for u and Neu-
mann boundary conditions for p and 6 on the top and bottom sides. These
boundary conditions for the two cases are summarized in Figure 1.

We solved the EG method and measured errors on five uniform meshes,
starting with the initial mesh and timestep sizes of h = 0.25 and At = 0.01,
halving them in each refinement cycle. The errors were measured in [ju —
up e o,1; 11 (70))0 1P — PrllL2co,1; 5 (7))s and |0 — On|| L2 (0,7 21 (77,)) nOTms,
respectively. The convergence results are summarized in Figure 2, illustrating
the expected optimal convergence rates for both cases.

Error

o= |lu — w || ey
=o=|lp — pullz=(r
e [10 = Onllrzmy

0.0156

0.0312

0.0625 0.125 0.25
Mesh size

(a) Casel

Error

== |u — |z
=o=|lp — pullz=gr
e (|0 = Ol 2y

0.0156

0.0312

0.0625 0.125 0.25
Mesh size

(b) Case II

Fig. 2: Example 1: Convergence results.

6.2 Example 2. Solution with a large A

In this example, we test our EG method against a solution with a large A
value. The error constant in our error estimates (16) depends on the Lamé
constant \; hence the performance of our method may not be as good when A
is large. In this case, we can extend the EG method (7) by slightly modifying
the bilinear form aj and the linear functional g} as follows. On a triangular
mesh, we simply add an additional penalty term A2~“h.([V - w],[V - v]) el
to the bilinear form aj}. On the other hand, it requires more modification on a
quadrilateral mesh, where, in addition to a new penalty term, we also use the
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reduced integration for the divergence operator in both a} and g}

ap(w,v) :=2u(e(w),e(v)) 1, + A(PoV - w, PV - V)T,
+ ({Cpe(w) + A PoV - wine}, [VD)eror, — ([w], {(2ne(v) + A PoV - vineberor,
+ 8% (he WL VD) ceeror, + A hel[PoV - WIL [P0V - v])ey  (352)

and

gh(t; v) = (£(1), V)7 + (tn (1), vir, — (up(t), (2ue(v) + A PoV - v)n)r,
+ B (h tup(t), V)., (35b)

where Pg is the local L?-projection onto the piecewise constant space P5 G
No error estimates have yet been proved independently of A for these modified
methods. However, the following numerical test shows promising results for
the case of a large A.

Here, our manufactured solution is

1 1
u = |sin(mxt) sin(wyt) + th, cos(mxt) cos(mwyt) + th )
p=cos(t+x—y), and § =sin(t + x — y)

in a computational domain  x I = (0,1)? x (0,0.1]. The functions f, g, and h
are obtained from the exact solution. For boundary conditions, we employ pure
Dirichlet boundary conditions for all variables. Note that V-u = 2t/A — 0 as
A — oo at any time t. We used the following physical parameters: o = p =
co=Cq=1,ar =107% a,, = 1078, A = 10%, K4, = (3\ +2u1)/3, 6p = 1, and
K = D = 1. As before, we used " = 87 = 8% = 1000. But, we also used an
additional penalty parameter v* = 107" in (35). With the above physical and
penalty parameters, we performed the same convergence study as in Example
1. The convergence behaviors of the EG method are illustrated in Figure 3,
where we see the optimal convergence rates for all three variables even when
A is very large. In other words, no Poisson locking is shown.

6.3 Example 3. Injection and production of the fluid

This example considers a more realistic scenario in, for example, geothermal
reservoir simulations, where we simulate injection-production processes in the
domain. Our spatial domain is = (0,1)? with injection and production wells
situated at (0.25,0.5) and (0.75,0.5), respectively. The injection and production
functions for the pressure and temperature are defined as

(—=1000(z—=z1)%—1000(y—y1)?) (—=1000(z—22)%—1000(y—y2)?) (36

9(z,y) = gee — gee a)

h(z,y) = heel1000(@=21)*=1000(y—y1)*) _ p, o(~1000(z—22)*~1000(y—v2)*) (3]
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Fig. 3: Example 2: Convergence results with a large A\ value.

with g. = 1, he = 10, (21,31) = (0.25,0.5) and (z2,y2) = (0.75,0.5), while
the external force function f = 0. Regarding the boundary conditions, we
impose the homogeneous Dirichlet boundary condition for u (up = 0) and the
homogeneous Neumann boundary conditions for both p and 6 (¢gn = sy = 0)
on the entire boundary 0. The initial conditions are set to be u® = 0,p" = 0,
and #° = 100. Additionally, the following physical parameters are used: A = 10,
p=1ar=10"% a, =10% a=1, ¢ = 1072, Cy = 10.0, §y = 100, K =
107%I, and D = I. The penalty parameters were set to g% = P = 5% = 1000.
Finally, we used the mesh and time step sizes h = 0.02, and At = 0.001, and
the final time is T' = 1.

The simulation results at the final time are shown in Figures 4-6. First,
Figure 4 (a) presents the vector fields of the displacement, where we clearly
observe the expansion and compression of the medium due to injection and
production, respectively. Figure 4 (b) provides another perspective, illustrating
the deformation of the mesh by the projected displacement. Figures 5 and 6
illustrate the pressure and temperature profiles. We note that the temperature
solution is more diffusive than the pressure due to the larger conductivity than
the permeability value.

Fig. 4: Example 3: Displacement, u, at T' = 1 illustrated by vector fields (left)
and a deformed mesh (right).
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Fig. 5: Example 3: Pressure, p, at T =1 (left) and a cross-section across the
line y = 0.5 (right).
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Fig. 6: Example 3: Temperature, 0, at T =1 (left) and a cross-section across
the line y = 0.5 (right).
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6.4 Example 4. A solution in a heterogeneous medium
and local conservation property

In this final example, we consider a heterogeneous domain Q = (—0.5,0.5)2
with a larger permeability and conductivity zone in the center of the domain
than the rest of the domain, as shown in Figure 7 (left). Specifically, the perme-
ability and conductivity values are K = 107'I and D = I in the middle layer
and K = 107%I and D = 1071 in other layers. As in Example 3, we simulate
injection-production processes realized by the source and sink functions defined
as in (36) with g. = he = 1072, (21,y1) = (—0.25,0), and (22, y2) = (0.25,0).
Also, the external force function is f = 0. We imposed the homogeneous Neu-
mann boundary conditions for all three variables on the entire boundary 0f2.
The initial conditions are set to be u® = 0,p° = 0, and §° = 1.

The rest of the data are as follows: A = 1, o = 1, ¢ = 1072, Cy = 1,
ar =107, a,,, = 1075, @ = 1, and y = 1. This time, we used the following
penalty parameters: % = P = 3% = 100. We also used mesh and time step
sizes of h = 0.01 and At = 0.1 with T' = 20.

Figure 7 depicts vector fields of the displacement, u, while Figure 8 depicts
the pressure and temperature solutions at the final time. These figures show
that all three solutions have no oscillations or non-physical phenomena near
the material interfaces.

As one of our primary interests is the local conservation properties of our
EG method, we measured the residuals in the discrete local mass and energy
conservation equations, (13a) and (13b). It is well-known that the classical
CG method lacks these properties. Hence, for comparison’s sake, we solved the
same problem using the bilinear CG method and measured the residuals in
the continuous local mass and energy conservation equations, (12a) and (12b).
More specifically, we measured the absolute difference between the left- and
right-hand sides of these conservation equations on each mesh element K € Tj,.
The residuals of the local mass conservation equations, (13a) and (12a), are

® I]g::OI'H® —2e-5
K =101 ”n
D =101 /% .
W v 1.6e-07
Y
(a) Example 4: domain (b) Vector fields of u

Fig. 7: Example 4: Heterogeneous medium with injection and production wells
(left) and the vector fields of u at T' = 20 (right).
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Fig. 8: Example 4: (a) Pressure and (b) temperature profiles at 7' = 20.

Pressure

Temperature

denoted by R, and those of the local energy conservation equations, (13b)
and (12b), are denoted by Ry. Note that R, and Ry are piecewise constant
functions on the mesh 7},. Figures 9 and 10 show the residuals at the final time
of the simulation. The figures show that the EG method produces several-
order magnitude smaller residuals than the CG method for both the mass and
energy conservation equations. Also, it appears that while the larger residuals
in the CG method are concentrated near the wells, those in the EG method
are mostly near the domain boundary in the middle layer. We also monitored
the maximum residuals over time, that is, ||Rg| po () and ||Ry||pq) for 0 <
t < T, for mass and energy conservation equations. These results are depicted
in Figure 11, where we observe that the maximum residual values for mass
and energy conservation in the EG method decrease over time as the system
approaches its equilibrium state. However, the maximum residual values in the
CG method remain nearly constant during the entire simulation period.

I6-5e-10 [2.1e-07

— 4e-10
“le7
2e-10
l 0.0e+00 l 0.0e+00
(a) Rp from EG (b) Rp from CG

Fig. 9: Example 4. Residual, R, in the local mass conservation equations at
the final time.
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Fig. 10: Example 4: Residual, Ry, in the local energy conservation equations
at the final time.
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Fig. 11: Example 4. Maximum local mass and energy residuals over time.
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