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Unlocking Potential Capacity Benefits of Electric Vehicles (EVs) with 

Adaptive Cruise Control (ACC)   

ABSTRACT 

Today’s mainstream vehicles are partially automated via Adaptive Cruise Control (ACC) 

that relies on on-board sensors to automatically adjust speed to maintain a safe following 

distance. Contrary to expectations for automated vehicles, ACC may reduce capacity at 

bottlenecks because its delayed response and limited initial acceleration during queue 

discharge could increase the average headway. Fortunately, EV’s unique powertrain 

characteristics such as instantaneous torque and regenerative braking could allow ACC to 

adopt shorter headways and accelerate more swiftly to maintain shorter headways during 

queue discharge, therefore reverse the negative impact on capacity. This has been verified 

in a series of field experiments, which demonstrate that EVs with ACC could potentially 

achieve a capacity as high as 2,931 veh/hr/lane in steady-state conditions, and it can be 

sustained in non-steady-state conditions where speeds fluctuate and queues form.  

Keywords: Adaptive Cruise Control (ACC), Electric Vehicle (EV), vehicle automation, 

capacity, field test 
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1. Introduction 

Advancements in vehicle automation and driver assistance have presented new opportunities to 

transportation researchers and practitioners as they promise to be an alternative solution to 

reduce traffic congestion. While full automation may not yet be production ready, partial 

automation has become ubiquitous today. Using on-board sensors such as radar, most of the new 

vehicles sold today can automatically adjust the speed and maintain a safe following distance via 

an advanced driver assistance systems (ADAS) feature known as adaptive cruise control (ACC). 

ACC on today’s mainstream vehicles can operate at both high and low speeds, including in stop-

and-go conditions.  

ACC adoption and market penetration have been increasing over time since its 

introduction and will eventually require traffic engineers and planners to re-evaluate their 

assumptions about traffic flow characteristics in the coming years. Meanwhile, many researchers 

have paid significant attention to the traffic flow impact of ACC, primarily to ACC equipped 

vehicles powered by internal combustion engines (ICE). Specifically, many have conducted field 

experiments and developed models to show that the longitudinal car following behavior of ACC 

is string unstable, in which minor speed fluctuations amplify into major disturbances further 

upstream (Gunter et al. 2019; Knoop et al. 2019; Makridis, Mattas, and Ciuffo 2019; Gunter et 

al. 2020; Ciuffo et al. 2021; Li et al. 2021; Makridis et al. 2021; M. Wang et al. 2018). In 

addition, contrary to the expectation that automated vehicles could mitigate congestion, ICE 

powered vehicles equipped with ACC may reduce roadway capacity and increase congestion, 

and this has been investigated through simulation and field experiments (Vander Werf et al. 

2002; James et al. 2019; Chon Kan, Lapardhaja, and Kan 2021; Lapardhaja et al. 2021; Shang 

and Stern 2021; Chon Kan, Murshed, and Kan 2022). Specifically, ACC could increase the 
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average headway at queue discharge because the limited initial power and torque generated by 

ICE leads to delayed response during initial acceleration. This could reduce capacity, as 

suggested by field experiments (Chon Kan, Lapardhaja, and Kan 2021; Chon Kan, Murshed, and 

Kan 2022). To capture these field observations, many have developed microscopic level car 

following models (Milanés and Shladover 2014; He et al. 2022; Shang, Rosenblad, and Stern 

2022; Yang et al. 2022) and macroscopic level models such as the fundamental diagram (Shi and 

Li 2021; Li et al. 2022) for ACC equipped vehicles. Others have investigated the interaction 

between ACC and human drivers (Gong et al. 2022). Overall, a plethora of research findings on 

the traffic flow impact of ACC have been negative or do not report significant benefits (James et 

al. 2019; Vander Werf et al. 2002; Shang and Stern 2021; Shladover, Su, and Lu 2012; Alkim, 

Bootsma, and Hoogendoorn 2007; Mattas et al. 2018). 

Unfortunately, these research efforts have only concentrated on vehicles equipped with 

ICE and at most hybrid electric powertrain, and there is still a lack of knowledge about how low-

level automated vehicles such as ACC equipped vehicles will affect capacity when paired with 

fully electric powertrain, which has significantly different power delivery, acceleration, and 

braking characteristics. Interestingly, electrification of vehicle powertrain has become 

increasingly ubiquitous and mainstream, and the combination of fully electric vehicles (EVs) 

with ADAS could present new opportunities that have not yet been discovered. This is an 

important area that deserves significant attention, especially considering the ever-increasing 

popularity and market penetration of EVs as stricter emissions regulations will incentivize 

greater EV adoption in the near future. 

1.1. Background: EV powertrain characteristics  

The combination of EVs and ADAS features such as ACC cannot be overlooked when modeling 
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traffic flow because the unique powertrain characteristics of fully EVs could present significant 

opportunities to improve capacity and reduce congestion. ICE gradually increases its torque 

output as the engine speed increases. Since power is the product of torque and engine speed, 

higher power output on ICE would only be attainable after reaching higher engine speeds, and 

ICE yields low to moderate acceleration prior to peak acceleration at the highest engine speed. 

But realistically, human drivers seldom operate at high engine speeds but rather at low to 

medium engine speeds (3500 revolutions per minute or lower) to maintain driver comfort, 

reasonable fuel economy, and long-term reliability of the vehicle powertrain. This is because 

ICE cannot deliver both efficiency and performance at the same time, and modern transmissions 

paired with ICE are typically designed to avoid operating at larger gear ratios and higher engine 

speeds unless there is a strong demand for acceleration. Similarly, ADAS features such as ACC 

are designed to behave alike and an ACC equipped vehicle that is paired with ICE could not 

generate significant power and acceleration during normal operation conditions (at medium to 

low engine speeds, as designed by the ACC control algorithm). Conversely, EVs produce very 

high maximum torque almost instantaneously at relatively low engine speeds, when accelerating 

from both higher and lower speeds. Revisiting the concept that power is the product of torque 

and engine speed, EVs could produce relatively higher power at lower ranges of engine speeds as 

illustrated in Figure 1. As a result, the unique powertrain characteristics of EVs mean that EVs 

yield an immediate higher acceleration for a broad range of speeds under normal operating 

conditions1, at low to medium engine speeds, which is the typical operation condition for ADAS 

 
1 During the field experiments in this study, it was evident that the brisk acceleration of EVs equipped 

with ACC provided a comfortable and smooth ride for passengers, without any jarring sensations.        

 



 

 

6 

 

features such as ACC. This enhanced performance at a broad speed range also translates to 

higher energy efficiency in EVs when compared to ICE vehicles (Fiori et al. 2019), particularly 

in congested traffic. Moreover, the electric motors of EVs apply regenerative braking 

immediately upon releasing the throttle, and the regenerative braking alone could yield an 

instantaneous deceleration of as much as 2.5 m/s2 on mainstream EVs. If the mechanical brakes 

were applied in addition to the regenerative braking effect from simply releasing the throttle, 

EVs could easily apply a deceleration of 5.0 m/s2 without much delay. Combining the 

instantaneous torque with the strong braking performance from electric motor’s regenerative 

braking, EVs with ACC could potentially adopt shorter headways and accelerate more swiftly to 

maintain shorter headways when speeds fluctuate and during queue discharge, thereby improve 

capacity and reverse the previously mentioned negative impact of ACC. While it appears 

promising, this claim must be validated by observations from field experiments. Unfortunately, 

none have specifically addressed the impact of pairing ACC with EVs unique powertrain 

characteristics on roadway capacity.  

[Figure 1 here] 

This study intends to conduct field tests to quantify the potential impact of EVs with 

ACC on capacity. The field tests provide a novel and comprehensive set of trajectory level car 

following data that encompasses most of the traffic conditions, the data could then be used to 

 
1 During the field tests, the maximum acceleration rate did not exceed 2.5 m/s2 while average 

deceleration rate was about 3.4 m/s2. Those rates fall within the recommended ranges for operation of 

transportation facilities and geometric design (AASHTO 2018; ITE 2009). The main difference is that 

those acceleration and deceleration values were more attainable and can be sustained longer over a 

wide range of speeds. 
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develop and calibrate models at the microscopic level, and the corresponding models could be 

integrated into simulation for prospective analyses on the traffic flow impact of EVs with ADAS 

and serve as an analysis tool for developing traffic operations and control strategies for future 

scenarios with higher EV adoption. This comprehensive dataset captures steady-state traffic 

conditions as well as non-steady-state conditions in which queues form and speed fluctuations 

and disturbances are present; these speed fluctuations and disturbances may represent real world 

traffic features such as ingress and egress of traffic from on-ramps and off-ramps, turning 

movements, etc. and low-speed queues that form near bottlenecks. Microscopic level trajectory 

data are collected using high precision GPS from a series of carefully designed car-following 

experiments using EVs with ACC to capture a leader and follower interaction and important 

parameters such as minimum headway and spacing, and speed and acceleration profiles. These 

experiments replicate real world conditions when vehicles travel in steady-state conditions with 

constant headways, reduce speeds when queues form, and accelerate during queue discharge at 

and near bottlenecks. This study discusses the analysis of GPS data from the field to determine 

the potential impact of ACC on capacity in a variety of traffic conditions.  

In the following section, the experiment setup and characteristics are presented. Next, the 

experimental data is analysed and the implication on capacity is discussed. Finally, conclusions 

are drawn and recommendations for future work are discussed. Lastly, in the Appendix, a 

description of the dataset is provided. 

2. Research Approach: Field Experiments 

Conducting experiments through field observations is the most reliable method for this research 

because there are currently no established simulation tools that could accurately model the 
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behavior of EVs equipped with ACC2. Ideally, installing cameras or detectors on roadways 

typically yields the most accurate measurement for flow, capacity, density, and mean speeds. 

However, this method cannot yield any meaningful and viable results in today’s traffic stream 

because there is currently a very low market penetration of ACC-equipped EVs. Instead, this 

study will prospectively assess the impact of ACC-equipped EVs on capacity by examining GPS 

data collected from carefully designed car following experiments in controlled environments 

using two test vehicles: a leading vehicle as the point of reference, and a following vehicle that is 

an EV equipped with ACC. Furthermore, the empirical data could serve as benchmark data to 

develop and calibrate car following models that are used as inputs for microscopic simulation, 

which could scale-up the two-vehicle car following experiment to analyses of larger traffic 

streams. Specifically, an ICE vehicle (2021 Toyota Camry) with a 3,310 lb. curb weight and 

maximum power output of 203 horsepower at 6,600 rpm from a 2.5-liter naturally aspirated 

engine was used as the leading vehicle in the field experiments. For the following vehicle, we 

selected a mainstream EV (2022 Hyundai IONIQ 5) with a curb weight of 4,414 lbs. and the 

powertrain delivers 225 horsepower and 258 lb.-ft. of torque. These selections are intended to 

ensure consistency with previous experiments (Chon Kan, Lapardhaja, and Kan 2021; Chon 

Kan, Murshed, and Kan 2022) by maintaining a similar a weight-to-power ratio. We assume that 

the EVs selected in this field test could potentially represent a large portion of mainstream ACC-

equipped EVs on the road in the near future. Moreover, recent studies demonstrate that the 

variations between different ACC systems from several manufacturers are not significant 

(Makridis, Mattas, and Ciuffo 2019). Consequently, we anticipate that the findings in this 

 
2 Currently, there are no validated car following models designed to accurately capture the behavior of 

ACC-equipped EVs using real-world data. 
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experiment can be generalized in the near future, as mainstream EVs with ACC become more 

prevalent3. The ACC system of EVs used in this study is functional in full-speed range and has 

four different following gap settings (short, medium, long, and extra-long) for the driver to select 

from, which can generate a wide range of the headways and spacings. 

In addition to testing the Hyundai IONIQ 5, the field test included two other electric 

vehicles (EVs) from different manufacturers – the 2022 Tesla Model 3 and the 2023 Polestar 2, 

under the same scenarios for comparison. The Tesla Model 3 has a curb weight of 3,686 pounds, 

and its powertrain generates 221 horsepower and 302 lb-ft of torque. The Polestar 2, on the other 

hand, has a curb weight of 4,400 pounds and an output of 231 horsepower and 243 lb-ft of torque 

from its powertrain. Although the power to weight ratio of the Tesla Model 3 is inconsistent and 

much more favorable compared with the other EVs tested, the Tesla Model 3 was selected to be 

inclusive of the popular options in today’s EV market. EV models from other manufacturers 

were not attainable or available at the time of field experiments. An ICE vehicle (2022 Toyota 

Corolla) with a 2,910 lb. curb weight and maximum power output of 139 horsepower at 6,000 

rpm from a 1.8-liter naturally aspirated engine was used as the leading vehicle in the field 

experiments involving the Tesla Model 3 and Polestar 2 as the following vehicles. To avoid bias, 

the vehicles used in the field tests were consumer-grade vehicles obtained from car rental 

agencies and dealerships, identical to the vehicles available to ordinary consumers and not 

vehicles specially prepared by the vehicle manufacturers. 

Trajectory data from both the leading and following vehicles were collected using one of 

the most advanced GPS devices known as Racebox. Racebox offers a remarkably high 25 Hz 

 
3 As EV market shares grow and more EV models become available further investigation on their distinct 

behavior needs to be conducted. 
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frequency and an excellent 10 cm accuracy, for collecting position data including variables such 

as latitude, longitude, and altitude every 0.04 seconds and compute cumulative distance traveled, 

speed and acceleration. The GPS coordinates obtained could also be used to determine spacing 

and headway between adjacent vehicles. 

To ensure the synchronization of the timestamps from both GPS devices and minimize 

errors, a carefully designed pre-experiment procedure was implemented. This involved 

performing a synchronized deceleration of both vehicles from a predetermined speed, followed 

by a frame-by-frame analysis of accompanying video footage. This allowed for the precise 

alignment of the data sets, thereby reducing errors associated with timestamp offset. 

2.1. Car following experiments 

Initially, both vehicles were aligned in a single lane with an (initial) spacing (front bumper to 

front bumper) of 𝑙 + ∆ of each other, where 𝑙 is the leading vehicle length and ∆ is a fixed 

distance to prevent collisions between the leading vehicle’s rear bumper and the following 

vehicle’s front bumper. Then, the two vehicles sequentially began to accelerate manually up to a 

pre-defined free-flow speed, and we conducted experiments for four different free-flow speeds:  

96 km/hr, 88 km/hr, 72 km/hr, and 56 km/hr. To avoid safety hazards and unnecessary 

interruption to nearby traffic at the test site, speeds above sustained free flow speeds above 96 

km/hr and below 56 km/hr were not considered. After reaching the pre-defined free-flow speed, 

the driver of the following vehicle (EV) activated the ACC with the desired speed set the same as 

the free-flow speed, or 8 km/hr (5 mph) or 16 km/hr (10 mph) than the free-flow speed, 

depending on the experimental trial that is performed. The driver of the leading vehicle activated 

the cruise control and the remained at the free-flow speed. To minimize the spacing between the 



 

 

11 

 

vehicles, the following vehicle's driver manually accelerated slightly beyond the pre-defined 

free-flow speed. Afterward, the driver re-activated ACC, allowing it to automatically adjust the 

spacing relative to the leading vehicle. This stabilization process is intended to replicate the 

equilibrium condition at capacity, in which vehicles enter the roadway from various locations 

and adjust their headways and spacings and eventually reach the minimum allowable spacing 

(and headway) to be sustained for an extended period and distance, therefore achieving the 

maximum sustained flow (and capacity). At this point, there have not been interruptions due to 

merging, changes in speed limit, or other potential disruptions that could cause a bottleneck, 

reduce speed, form queues, or even potentially diminish capacity. A set of the effective 

timestamps of both vehicles was chosen after this stabilization process is completed at time 𝑡; for 

example, their stable cruising speed (after stabilization) is identical at 96 km/hr as shown in 

Figure 2. Beyond the time 𝑡, the cumulative distance traveled and spacing can be calculated to 

estimate the minimum headway and maximum flow (at capacity) under steady-state condition. 

[Figure 2 here] 

The field experiments are also intended to study the car following behaviors of ACC-

equipped EVs beyond steady-state conditions; for example, at bottlenecks where vehicles 

approach the back of the queue and accelerate during queue discharge. To replicate slight speed 

fluctuations and larger speed fluctuations observed at bottlenecks, the driver of the leading 

vehicle applied normal decelerations manually to a congested speed that is lower than the free-

flow speed. This deceleration can represent disruption from a sudden change in speed limit, 

merging vehicles from on-ramps, diverging vehicles at and near off-ramps, etc. Such a scenario 

can lead to a bottleneck and allow queues to form. Then, both vehicles returned to their initial 

free-flow speed after staying at a lower speed for 10 seconds or more if conditions allow. The 
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driver of the leading vehicle accelerated manually under normal acceleration while the following 

vehicle accelerated via ACC. This process enables the replication of queue discharge that occurs 

downstream of a bottleneck. For each free-flow speed, the cycle of deceleration and acceleration 

is repeated for various congested speeds lower than the free-flow speed. Table 1 illustrates the 

tested free-flow speeds with their corresponding lower speeds. Figure 3 displays an example of 

the speed profile tested with 88 km/hr free-flow speed and various congested speeds in the speed 

fluctuations. Similar procedures were applied to experiments using other free-flow speeds shown 

in Table 1. In total, 136 repetitions were performed for all gap settings, encompassing various 

free-flow speeds and speed fluctuations with vehicles having the same desired speed. 

[Table 1 here] 

[Figure 3 here] 

 To complement the aforementioned experiments, additional repetitions were conducted to 

study the effects of the ACC's behavior when the maximum desired speed of the following 

vehicle exceeds the leading vehicle's free-flow speed. Two scenarios were examined, one where 

the maximum desired speed of the following vehicle was +8 km/hr higher and another where it 

was +16 km/hr higher. Overall, an additional 136 repetitions were performed for all gap settings, 

covering a wide range of free-flow speeds and speed fluctuations with the following vehicles 

having +8  and +16 km/hr higher maximum desired speeds (68 trials for each desired speed 

combination).  

2.2. Test sites and Data Analysis 

Field experiments were conducted on isolated portions of rural public roads in Dixon, California, 

on approximately 10-km stretches of Pendrick, Robben, and Sikes Rds. The remote locations and 
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lack of interference from other road users allowed us to reproduce various traffic conditions 

efficiently throughout the data collection process. Robben Rd. was primarily used while Pedrick 

Rd. and Sikes Rd. were alternate locations in case the conditions were less ideal on Robben Rd.  

Vehicle trajectories were constructed using the position data (longitude and latitude) 

generated from each Racebox GPS unit every 0.04 seconds in the field experiments. These 

vehicle trajectories were used to extract joint estimates of spacing and headway between the 

leading and following vehicle. 

3. Results and Discussion 

Field experiments demonstrate that EVs with ACC can achieve considerably shorter headways, 

reaching as low as 1.23 seconds at constant speeds in steady-state conditions. This could 

potentially yield higher capacities of up to 2,931 veh/hr4, compared to ICE vehicles with ACC. 

This finding is consistent with initial attempts to quantify the headways adopted by ACC 

controllers at constant speeds in steady-state conditions (Li et al. 2022). This is a result of EV’s 

instantaneous regenerative braking that allows EVs to safely follow the preceding vehicles more 

closely at higher speeds. Table 2 summarizes the minimum headways and time gaps under 

steady-state conditions for ACC-equipped EVs (IONIQ 5)  across a range of free-flow speeds, 

spanning from 56 km/hr to 96 km/hr. Similar to previous studies on ICE vehicles equipped with 

ACC (Chon Kan, Lapardhaja, and Kan 2021; Chon Kan, Murshed, and Kan 2022), it is observed 

that the minimum headway for EVs increases as the selected ACC gap setting transitions from 

short to medium to long, and to extra-long. This same pattern is also evident when examining the 

 
4 More investigations through simulations to account for discretionary lane changes, heterogenous desired 

speeds and other conditions are needed to investigate the impact on capacity. 
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time gaps. However, it is noteworthy that, when considering time gaps, the speed-related 

differences within the same gap setting are not particularly significant. The speed-related 

variations can be attributed to ACC’s proprietary car following algorithm that accounts for the 

gap with respect to the leading vehicle, instead of headway that includes the vehicle length. 

Similar gaps at different speeds could lead to slight variations in headways at different speeds 

when the vehicle length is accounted for. 

[Table 2 here] 

For ICE vehicles with ACC, a similar experiment by (Chon Kan, Lapardhaja, and Kan 

2021; Chon Kan, Murshed, and Kan 2022) observed that the minimum headways are typically 

1.89 seconds on average and nearly 3 seconds if the longest gap was selected. Compared with the 

values shown in Table 2, EVs with ACC have the potential to provide higher capacity due to 

shorter headways regardless of the speed and the preferred ACC gap selected by the driver. For 

example, Table 2 shows that ACC equipped EVs could potentially achieve minimum headways 

of 1.23, 1.50, and 1.77 seconds while traveling at 96 km/hr in steady-state conditions with ACC 

set for short, medium, and long gaps, respectively. On the other end, EVs with ACC could 

potentially yield minimum headways of 1.27, 1.60, and 1.84 seconds while traveling at 56 km/hr 

in steady-state conditions with ACC set for short, medium, and long gaps, respectively.  

In addition to the minimum headways established by the ACC controllers, the field 

experiments demonstrated that there was relatively low variability in the observed minimum 

headways: Figure 4 illustrates the distribution of the minimum headway for EVs (IONIQ 5) with 

ACC at free-flow speeds of 96 km/hr, 88 km/hr, 72 km/hr, and 56 km/hr in steady-state 

conditions. This could potentially yield more reliable and consistent capacities in real world 

traffic. Notably, this lower variability in minimum headways for EVs with ACC starkly contrasts 
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with the field experiments involving ACC-equipped ICE vehicles (Chon Kan, Lapardhaja, and 

Kan 2021; Chon Kan, Murshed, and Kan 2022) and their findings, which revealed significant 

variability in the minimum headway values, particularly for medium and long gap settings, 

despite similar experimental conditions being for both EVs and ICE-powered vehicles.  

[Figure 4 here] 

Unlike ACC-equipped ICE vehicles, these shorter headways adopted by ACC equipped 

EVs can be sustained beyond the ideal steady-state conditions. The exceptional powertrain 

characteristics of fully electric vehicles (EVs) enabled responsive deceleration using regenerative 

braking when approaching the back of queue when a leading vehicle is decelerating, and most 

importantly, the instantaneous peak torque allowed for nearly immediate acceleration once the 

leading vehicle began accelerating during queue discharge. This sustained the shorter headways 

adopted by EVs with ACC and entails that the potentially higher capacities could be sustained 

even in non-steady-state conditions, where speeds fluctuate when queues form and dissipate at 

bottlenecks. Table 3 illustrates the sustained short headways, demonstrated by the minimal 

deviation in headways regardless of the ACC gap setting and the extent of the speed fluctuation, 

which may result from queue formation at freeway entrances and exits or near turning 

maneuvers. Previous research on ACC-equipped ICE vehicles showed that headways increased 

by approximately 1 second for the short gap and 1.3 seconds and 1.6 seconds for the medium and 

long gap, respectively (Chon Kan, Lapardhaja, and Kan 2021), due to the ACC controller's 

delayed response and sluggish acceleration during car following and queue discharge. Of course, 

this can be attributed to ICE’s progressive torque power delivery with initial lower output that 

leads to initially unresponsive acceleration. In contrast, Table 3 demonstrates that ACC-equipped 

EVs exhibit minimal headway change, with all cases falling below 0.1 seconds. As a result, 
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minimum headways and maximum flows remain consistent with the steady-state minimum 

headways depicted in Table 2. Notably, even when both vehicles have the same desired speed (a 

desired speed difference of 0), the headway change remains negligible, thereby preserving the 

minimum headway. Most of all, this is true regardless of how the following vehicle’s desired 

speed was chosen; ACC in EVs maintains constant headway as speeds fluctuated. 

[Table 3 here] 

Figure 5 presents a time-space diagram for both the leading and following vehicles. As 

depicted in the plots, the ACC-equipped EV follower Hyundai IONIQ 5 regained its initial 

minimum headway following a speed fluctuation intended to simulate approaching back of 

queue and accelerating during queue discharge, which contrasts with the performance of 

conventional ACC-equipped ICE vehicles, as shown by Figure 6 obtained from earlier field 

experiments (Chon Kan, Lapardhaja, and Kan 2021). Figure 6 illustrates that ACC-equipped ICE 

vehicle exhibits a reaction delay (possibly from the ICE powertrain) and very gradual initial 

acceleration when returning to free-flow speeds (88 km/hr in this example) during queue 

discharge, all of which are findings from an earlier study as benchmark. This gradual 

acceleration corresponds to a rate of approximately 0.5 m/s2 to 1.0 m/s2 on a regular basis, which 

is a very leisurely increase in speed. In the end, the headway increases. EVs produce strong 

initial acceleration from the instantaneous peak torque, and as illustrated in Figure 5, the slope of 

the time-space diagram is steeper for EV’s acceleration. In fact, careful examination of field data 

suggests that EVs can accelerate normally and smoothly at almost twice the rate (1.5 m/s2 to 2.0 

m/s2).  

[Figure 5 here] 

[Figure 6 here] 
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Moreover, steep decrease in speed and strong deceleration can be found on the 

trajectories in Figure 5. This resembles the aggressive regenerative braking of EVs, and the 

better braking performance allows ACC-equipped EVs to safely follow the leading vehicle at 

shorter headways. Interestingly, shown in Figure 5, the aggressive regenerative braking applied 

by the following vehicle Hyundai IONIQ 5 ACC did not amplify the speed change from the 88 

km/hr free-flow speed to the 40 km/hr congested speed in this example. This is certainly 

different from the example shown in Figure 6, where the ACC-equipped ICE vehicle amplified 

the speed change relative to the speed fluctuations undertaken by the leading vehicles. 

Observations from both field tests and trajectories in Figures 5 and 6 revealed that ACC-

equipped EVs immediately applied aggressive regenerative braking that enabled the follower to 

quickly reach and maintain its desired headway as leader began decelerating, whereas the limited 

braking capability resulted in the ACC-equipped ICE vehicle (follower) to decelerate for an 

extended period to speeds below that of the leading vehicle’s final speed in the congested state 

(after the leader completed decelerating) to finally reach its desired headway, and ultimately 

amplifies speed change. This stark contrast could mean that ACC-equipped EVs may improve 

stability of traffic5, a vastly different outcome than the string unstable car following behavior of 

ACC-equipped ICE vehicles demonstrated in Figure 6 and confirmed by various prior 

experiments (Gunter et al. 2019; Knoop et al. 2019; Makridis, Mattas, and Ciuffo 2019; Gunter 

et al. 2020; Ciuffo et al. 2021; Li et al. 2021; Makridis et al. 2021).  

 
5 Field tests with a larger platoon of vehicles and simulations (Zare et al. 2023) need to be conducted to 

examine whether ACC-equipped EVs improve string stability compared to ACC-equipped ICE 

vehicles. 
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Overall, we observed that the headway values are nearly identical for before and after 

speed fluctuations (i.e., disturbance) with a shorter headway than that of ACC-equipped ICE 

vehicles. This highlights the superior capability of the ACC-equipped EVs in maintaining nearly 

constant and steady headways in dynamic real world traffic conditions. 

Furthermore, these field experiments suggest another interesting finding: setting higher 

desired speed does not affect the car following behavior. As ACC-equipped EV accelerates 

swiftly to follow the lead vehicle and maintain the minimum headway, it would not be possible 

to accelerate beyond the leading vehicle speed even if the ACC desired speed was set higher, due 

to the minimum spacing and headway constraint. Figure 7 shows the speed vs. time plots of an 

example scenario. As shown, setting ACC desired speeds 8 or 16 km/hr above the desired speed 

(free-flow speed) of the leading did not alter the car following trajectories, in comparison with 

the scenario shown in Figure 5. On the other hand, ACC-equipped ICE vehicles would 

accelerated beyond the speed of the leading vehicle to undergo a “catch-up” process before 

decelerating again to ensure that the minimum headway is maintained, shown in Figure 8 (Yang, 

Kan, and Yagantekin 2023).  

[Figure 7 here] 

[Figure 8 here] 

As mentioned earlier, we conducted comparative tests using ACC equipped EVs from 

two other manufacturers, the Polestar 2 from a traditional but premium manufacturer Volvo and 

the Tesla Model 3 from an emerging vehicle manufacturer Tesla, using the same procedures and 

under similar conditions albeit with fewer repetitions. The observations obtained from testing the 

Polestar 2 mirrored those from the experiments using the Hyundai IONIQ 5, exhibiting similar 

minimum headways and sustained almost constant headways even in non-steady-state conditions 
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when queues are present. As depicted in Figure 9, the time-space diagram shows similar 

trajectories when decelerating while the Polestar 2 approaches the back of queue and when 

accelerating during queue discharge, though there appears to be a slight amplification of the 

speed change as opposed to the trajectories in Figure 5. However, the results for the Tesla Model 

3 deviated from our expectations, as evidenced in Figure 7. Unlike the car following behavior of 

other ACC equipped EVs such as the Hyundai IONIQ 5 and Polestar 2, the Tesla Model 3 was 

unable to regain its initial minimum headway after a speed fluctuation, exhibiting characteristics 

similar to those of ACC-equipped ICE vehicles. This is reflected in the larger minimum 

headways and greater variability in minimum headways, leading to a substantial increase. 

Furthermore, a comparison with the time-space diagrams corresponding to the same 

experimental scenario for the ACC equipped ICE vehicle tested in (Chon Kan, Lapardhaja, and 

Kan 2021; Chon Kan, Murshed, and Kan 2022) show that the Tesla Model 3’s car following 

behavior is much similar to that of an ACC equipped ICE vehicle. It appears that the ACC 

equipped by Telsa does not utilize the advantages of EV powertrain, especially the instant peak 

torque that provides immediate acceleration during queue discharge, instead, the ACC equipped 

by Tesla gradually accelerates at a leisurely pace as the leading vehicle accelerates during queue 

dissipation. Similarly, the same “catch-up” process associated with ACC-equipped ICE vehicles 

that is shown in Figure 8 can be found in Figure 11, when the desired speed of the follower 

(Tesla Model 3) is set higher than that of the leader.  

[Figure 9 here] 

[Figure 10 here] 

[Figure 11 here] 
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To shed light on the divergent behavior of Tesla, as compared to the other ACC-equipped 

EVs such as the Hyundai IONIQ 5 and Polestar 2, we delved into the distribution of 

accelerations and decelerations. As demonstrated in Figure 12, the analysis revealed that while in 

operation with ACC, Tesla Model 3 exhibits smoother acceleration and deceleration rates, with a 

higher distribution of lower acceleration rates and deceleration rates as compared to the Hyundai 

IONIQ 5 in the same set of experiments. This observation provides a crucial insight into the 

behavior of Tesla's ACC system, suggesting that its algorithm is configured to exhibit a more 

sluggish behavior akin to that of ACC-equipped ICE vehicles, despite its powertrain capabilities 

to be more responsive.  

As an added note, the same string unstable behavior can be observed when examining 

Tesla Model 3’s trajectory in ACC mode, shown in both Figure 10 and Figure 11. The speed 

change was amplified relative to the speed change underwent by the leading vehicle, same as the 

trajectories that correspond to ACC-equipped ICE vehicles, shown in Figures 6 and 8. Of course, 

this has broader implications for shockwaves and queue propagation that requires further 

analyses. 

Finally, the field experiments also revealed that the ACC system equipped by Tesla 

cannot maintain constant headway even at constant speeds and in steady-state conditions, and 

this often led to inconsistent car following behavior that could render traffic flow modeling 

difficult and unreliable.  

Nevertheless, this set of experiments provides very important initial insights on the 

potential benefits of electric powertrain to vehicle automation going forward. The data generated 

from these carefully planned experiments could be used to develop and validate microscopic 

level models for car following, which could be used as the underlying assumption in a scaled-up 
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simulation of macroscopic traffic. Ultimately, the true capacity benefit that EVs with automation 

could offer would be validated and affirmed given the appropriate models and simulation tools 

developed based on empirical observations.  

[Figure 12 here] 

4. Conclusion and Recommendation 

Commercially available Adaptive Cruise Control (ACC) equipped vehicles have become 

increasingly prevalent on roads today. ACC is an Advanced Driver Assistance Feature (ADAS) 

that allows for partial automation by automatically adjusting speed and maintaining safe 

following distance using data collected from on-board sensors. Today’s commercial ACC 

systems can operate in all speed ranges and are equipped on most new mainstream vehicles. The 

increasing adoption of fully electric vehicles (EVs) has brought new opportunities; EV’s unique 

operating characteristics such as instantaneous torque and strong regenerative braking could 

improve capacity and mitigate congestion when EVs are paired with ACC. 

Field experiments demonstrate that ACC equipped EVs can achieve minimum headways 

as short as 1.23 seconds at constant speeds in steady-state conditions. This could potentially lead 

to an improved capacity as high as 2,931 veh/hr/lane. Moreover, deviations from the steady-state 

conditions do not affect the minimum headway, as shown by an extensive set of field experiment 

with a wide range of speed fluctuations to simulate approaching back of the queue and queue 

discharge at and near disturbances and bottlenecks that may arise from ingress and egress at 

freeway on and off-ramps, turning movements, etc. Furthermore, EVs equipped with ACC could 

potentially not amplify speed changes further upstream, which could imply better stability of the 

traffic stream and less abrupt queue propagation. Overall, ACC-equipped EVs could outperform 

ICE vehicles with ACC, as well as human drivers, in terms of the potential capacity and 
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congestion reduction benefits. Interestingly, this only applies to the tested EVs from some 

manufacturers, whereas the tested EVs from other manufacturers such as Tesla deliver car 

following dynamics akin to an ICE vehicle with ACC6. 

We recommend future experiments to capture the effect of lane change on ACC-quipped 

EV’s car following behavior, as the receiving lane change car following behavior may be distinct 

from what had been observed in the car following experiments presented in this paper. In 

addition, future studies should conduct field tests in naturalistic environments where traffic 

conditions are more stochastic. Moreover, field tests should be conducted in mixed environments 

with a combination of both ICE vehicles and EVs, especially ICE vehicles following EVs to 

determine the potential impact of mixed traffic stream with vastly different powertrain 

characteristics. Finally, given the valuable data presented in this field study, future work should 

develop car following models unique to ACC-equipped EVs to capture the microscopic level car 

following behavior, and this would establish an important foundation for developing simulation 

platforms to perform prospective analyses at large scale. This would address many unknowns 

related to ACC-equipped EVs, examples include macroscopic models such as the fundamental 

diagram and the effectiveness of implementing dedicated lane for fully electric vehicles 

operating in ACC mode, and all of which will prepare future researchers and practitioners for 

new opportunities in traffic operations and management in the era of increasingly automated and 

electrified vehicles. Especially in the near term, when the market penetration of ACC-equipped 

EVs is relatively small and traffic engineers will need to rely heavily on effective traffic 

management strategies such as preferential lane treatment or dynamic tolls to fully take 

 
6 As the Autopilot technology evolves and software updates change further investigation is required on 

the car following dynamics. 
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advantage of the capacity benefits offered by EVs equipped with ACC. Most of all, the effect of 

powertrain characteristics on traffic flow is often overlooked and this study will shed light on a 

new but very important perspective for traffic flow and operations in the coming years, as 

electrification of vehicle fleet becomes more common. This experimental work could also be 

expanded to test many variations of electric powertrain or motors, for example those with 

different nominal voltages. Finally, electric powertrain may also be a better fit for CACC-

equipped vehicles because EVs could easily satisfy the immediate acceleration and braking 

demanded by CACC control design when vehicle platoons travel with very short headways. 

Although there have been many recent studies on the capacity, string stability, and energy 

consumption benefits of CACC (Yu, Hua, and Wang 2023; Liu, Lu, and Shladover 2020; Hung 

and Zhang 2022; W. Wang and Wu 2023; H. Wang et al. 2019; Liu, Lu, and Shladover 2019; 

Liu et al. 2018; Liu et al. 2021), none have specifically addressed the potential benefit of CACC 

equipped on EVs. Nevertheless, there has been recent empirical evidence demonstrating the 

implementation feasibility of CACC on all types of powertrains including electric powertrain 

(Flores et al. 2023). We suggest future work to investigate how electric powertrain uniquely 

impact or benefit CACC operations in terms of stability, capacity, and energy consumption. 
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Data Availability 
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Appendix 

The data from the field experiments are organized in folders with the setup presented in Figure 

13. For instance, a trial with Long gap setting, +0 desired speed, free flow speed of  72 km/hr (45 

mph) and speed fluctuation down to 24 km/hr (15 mph) will be found in the path 

“Long\0_desired\45\15”  

[Figure 13 here] 

The data consists of Time (s), the speed (km/h) of the following vehicle, the speed (km/h) of the 

leading vehicle, the speed (km/h) of the following vehicle with a smoothing algorithm applied, 
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the speed (km/h) of the leading vehicle with a smoothing algorithm applied, and the spacing (m) 

between the leading and the following vehicle.  
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Tables 

Table 1 Combinations of initial and terminal field test speeds.  

Table 2 Steady-state minimum headways of ACC-equipped EVs.  

Table 3 Headway change for various desired speeds.  
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Table 1 Combinations of initial and terminal field test speeds. 

Initial free-flow 

speed (km/hr) 

Terminal reduced 

speeds (km/hr) 

96 72, 56, 40, 24, 0 

88 72, 56, 40, 24, 0 

72 56, 40, 24, 0 

56 40, 24, 0 
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Table 2 Steady-state minimum headways of ACC-equipped EVs. 

 

Free Flow Speed: 96 km/hr 

  ACC Gap Selection 

  Short Medium Long Extra Long 

Minimum headway (s) 1.23 1.50 1.77 2.30 

Time Gap (s) 1.06 1.33 1.60 2.13 

Free Flow Speed: 88 km/hr 

  ACC Gap Selection 

  Short Medium Long Extra Long 

Minimum headway (s) 1.27 1.6 1.84 2.35 

Time Gap (s) 1.08 1.41 1.65 2.16 

Free Flow Speed: 72 km/hr 

  ACC Gap Selection 

  Short Medium Long Extra Long 

Minimum headway (s) 1.40 1.69 1.92 2.41 

Time Gap (s) 1.17 1.46 1.69 2.18 

Free Flow Speed: 56 km/hr 

  ACC Gap Selection 

  Short Medium Long Extra Long 

Minimum headway (s) 1.44 1.73 1.96 2.25 

Time Gap (s) 1.14 1.43 1.66 1.95 
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Table 3 Headway change for various desired speeds. 

Gap Setting 

Desired Speed  

(unit: km/hr) 

Headway Change 

(Std, unit: seconds) 

Short 

0 0.074 (0.090) 

8 0.033 (0.052) 

16 0.013 (0.042) 

 

Medium 

0 0.090 (0.075) 

8 0.002 (0.076) 

16 0.021 (0.067) 

 

Long 

0 0.058 (0.058) 

8 0.037 (0.041) 

16 0.021 (0.042) 

Extra Long 

0 0.029 (0.061) 

8 -0.005 (0.025) 

16 0.020 (0.046) 
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Figures 

Figure 1 Torque and power vs. engine speed for ICE (left) vs. EVs (right).  

Figure 2 Initial stabilization process.  

Figure 3 Example speed profile of field test.  

Figure 4 Distribution of minimum steady-state headways of ACC-equipped Hyundai IONIQ  

Figure 5 Hyundai IONIQ 5 time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired 

speeds.  

Figure 6 Toyota Corolla time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired 

speeds.  

Figure 7 Hyundai IONIQ 5 time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr 

desired speed.  

Figure 8 Toyota Corolla time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr desired 

speed.  

Figure 9 Polestar time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired speeds.  

Figure 10 Tesla time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired speeds.  

Figure 11 Tesla time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr desired speed.  

Figure 12 IONIQ 5 and Tesla acceleration and deceleration rates distributions.  

Figure 13 Field data folder organization.  
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Figure 1 Torque and power vs. engine speed for ICE (left) vs. EVs (right). 
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Figure 2 Initial stabilization process. 
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Figure 3 Example speed profile of field test.  
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Figure 4 Distribution of minimum steady-state headways of ACC-equipped Hyundai 

IONIQ 5. 
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Figure 5 Hyundai IONIQ 5 time-space diagram: 88 to 40 to 88 km/hr, short gap, same 

desired speeds. 
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Figure 6 Toyota Corolla time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired 

speeds. 
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Figure 7 Hyundai IONIQ 5 time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr 

desired speed. 
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Figure 8 Toyota Corolla time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr 

desired speed. 
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Figure 9 Polestar time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired speeds. 
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Figure 10 Tesla time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired speeds. 
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Figure 11 Tesla time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr desired 

speed. 
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Figure 12 IONIQ 5 and Tesla acceleration and deceleration rates distributions. 
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Figure 13 Field data folder organization. 


