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ABSTRACT

Today’s mainstream vehicles are partially automated via Adaptive Cruise Control (ACC)
that relies on on-board sensors to automatically adjust speed to maintain a safe following
distance. Contrary to expectations for automated vehicles, ACC may reduce capacity at
bottlenecks because its delayed response and limited initial acceleration during queue
discharge could increase the average headway. Fortunately, EV’s unique powertrain
characteristics such as instantaneous torque and regenerative braking could allow ACC to
adopt shorter headways and accelerate more swiftly to maintain shorter headways during
queue discharge, therefore reverse the negative impact on capacity. This has been verified
in a series of field experiments, which demonstrate that EVs with ACC could potentially
achieve a capacity as high as 2,931 veh/hr/lane in steady-state conditions, and it can be

sustained in non-steady-state conditions where speeds fluctuate and queues form.
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1. Introduction

Advancements in vehicle automation and driver assistance have presented new opportunities to
transportation researchers and practitioners as they promise to be an alternative solution to
reduce traffic congestion. While full automation may not yet be production ready, partial
automation has become ubiquitous today. Using on-board sensors such as radar, most of the new
vehicles sold today can automatically adjust the speed and maintain a safe following distance via
an advanced driver assistance systems (ADAS) feature known as adaptive cruise control (ACC).
ACC on today’s mainstream vehicles can operate at both high and low speeds, including in stop-
and-go conditions.

ACC adoption and market penetration have been increasing over time since its
introduction and will eventually require traffic engineers and planners to re-evaluate their
assumptions about traffic flow characteristics in the coming years. Meanwhile, many researchers
have paid significant attention to the traffic flow impact of ACC, primarily to ACC equipped
vehicles powered by internal combustion engines (ICE). Specifically, many have conducted field
experiments and developed models to show that the longitudinal car following behavior of ACC
is string unstable, in which minor speed fluctuations amplify into major disturbances further
upstream (Gunter et al. 2019; Knoop et al. 2019; Makridis, Mattas, and Ciuffo 2019; Gunter et
al. 2020; Ciuffo et al. 2021; Li et al. 2021; Makridis et al. 2021; M. Wang et al. 2018). In
addition, contrary to the expectation that automated vehicles could mitigate congestion, ICE
powered vehicles equipped with ACC may reduce roadway capacity and increase congestion,
and this has been investigated through simulation and field experiments (Vander Werf et al.
2002; James et al. 2019; Chon Kan, Lapardhaja, and Kan 2021; Lapardhaja et al. 2021; Shang

and Stern 2021; Chon Kan, Murshed, and Kan 2022). Specifically, ACC could increase the



average headway at queue discharge because the limited initial power and torque generated by
ICE leads to delayed response during initial acceleration. This could reduce capacity, as
suggested by field experiments (Chon Kan, Lapardhaja, and Kan 2021; Chon Kan, Murshed, and
Kan 2022). To capture these field observations, many have developed microscopic level car
following models (Milanés and Shladover 2014; He et al. 2022; Shang, Rosenblad, and Stern
2022; Yang et al. 2022) and macroscopic level models such as the fundamental diagram (Shi and
Li2021; Li et al. 2022) for ACC equipped vehicles. Others have investigated the interaction
between ACC and human drivers (Gong et al. 2022). Overall, a plethora of research findings on
the traffic flow impact of ACC have been negative or do not report significant benefits (James et
al. 2019; Vander Werf et al. 2002; Shang and Stern 2021; Shladover, Su, and Lu 2012; Alkim,
Bootsma, and Hoogendoorn 2007; Mattas et al. 2018).

Unfortunately, these research efforts have only concentrated on vehicles equipped with
ICE and at most hybrid electric powertrain, and there is still a lack of knowledge about how low-
level automated vehicles such as ACC equipped vehicles will affect capacity when paired with
fully electric powertrain, which has significantly different power delivery, acceleration, and
braking characteristics. Interestingly, electrification of vehicle powertrain has become
increasingly ubiquitous and mainstream, and the combination of fully electric vehicles (EVs)
with ADAS could present new opportunities that have not yet been discovered. This is an
important area that deserves significant attention, especially considering the ever-increasing
popularity and market penetration of EVs as stricter emissions regulations will incentivize

greater EV adoption in the near future.

1.1. Background: EV powertrain characteristics

The combination of EVs and ADAS features such as ACC cannot be overlooked when modeling
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traffic flow because the unique powertrain characteristics of fully EVs could present significant
opportunities to improve capacity and reduce congestion. ICE gradually increases its torque
output as the engine speed increases. Since power is the product of torque and engine speed,
higher power output on ICE would only be attainable after reaching higher engine speeds, and
ICE yields low to moderate acceleration prior to peak acceleration at the highest engine speed.
But realistically, human drivers seldom operate at high engine speeds but rather at low to
medium engine speeds (3500 revolutions per minute or lower) to maintain driver comfort,
reasonable fuel economy, and long-term reliability of the vehicle powertrain. This is because
ICE cannot deliver both efficiency and performance at the same time, and modern transmissions
paired with ICE are typically designed to avoid operating at larger gear ratios and higher engine
speeds unless there is a strong demand for acceleration. Similarly, ADAS features such as ACC
are designed to behave alike and an ACC equipped vehicle that is paired with ICE could not
generate significant power and acceleration during normal operation conditions (at medium to
low engine speeds, as designed by the ACC control algorithm). Conversely, EVs produce very
high maximum torque almost instantaneously at relatively low engine speeds, when accelerating
from both higher and lower speeds. Revisiting the concept that power is the product of torque
and engine speed, EVs could produce relatively higher power at lower ranges of engine speeds as
illustrated in Figure 1. As a result, the unique powertrain characteristics of EVs mean that EVs
yield an immediate higher acceleration for a broad range of speeds under normal operating

conditions', at low to medium engine speeds, which is the typical operation condition for ADAS

! During the field experiments in this study, it was evident that the brisk acceleration of EVs equipped

with ACC provided a comfortable and smooth ride for passengers, without any jarring sensations.



features such as ACC. This enhanced performance at a broad speed range also translates to
higher energy efficiency in EVs when compared to ICE vehicles (Fiori et al. 2019), particularly
in congested traffic. Moreover, the electric motors of EVs apply regenerative braking
immediately upon releasing the throttle, and the regenerative braking alone could yield an
instantaneous deceleration of as much as 2.5 m/s? on mainstream EVs. If the mechanical brakes
were applied in addition to the regenerative braking effect from simply releasing the throttle,
EVs could easily apply a deceleration of 5.0 m/s? without much delay. Combining the
instantaneous torque with the strong braking performance from electric motor’s regenerative
braking, EVs with ACC could potentially adopt shorter headways and accelerate more swiftly to
maintain shorter headways when speeds fluctuate and during queue discharge, thereby improve
capacity and reverse the previously mentioned negative impact of ACC. While it appears
promising, this claim must be validated by observations from field experiments. Unfortunately,
none have specifically addressed the impact of pairing ACC with EVs unique powertrain
characteristics on roadway capacity.
[Figure 1 here]

This study intends to conduct field tests to quantify the potential impact of EVs with

ACC on capacity. The field tests provide a novel and comprehensive set of trajectory level car

following data that encompasses most of the traffic conditions, the data could then be used to

" During the field tests, the maximum acceleration rate did not exceed 2.5 m/s* while average
deceleration rate was about 3.4 m/s*. Those rates fall within the recommended ranges for operation of
transportation facilities and geometric design (AASHTO 2018; ITE 2009). The main difference is that
those acceleration and deceleration values were more attainable and can be sustained longer over a

wide range of speeds.



develop and calibrate models at the microscopic level, and the corresponding models could be
integrated into simulation for prospective analyses on the traffic flow impact of EVs with ADAS
and serve as an analysis tool for developing traffic operations and control strategies for future
scenarios with higher EV adoption. This comprehensive dataset captures steady-state traffic
conditions as well as non-steady-state conditions in which queues form and speed fluctuations
and disturbances are present; these speed fluctuations and disturbances may represent real world
traffic features such as ingress and egress of traffic from on-ramps and off-ramps, turning
movements, etc. and low-speed queues that form near bottlenecks. Microscopic level trajectory
data are collected using high precision GPS from a series of carefully designed car-following
experiments using EVs with ACC to capture a leader and follower interaction and important
parameters such as minimum headway and spacing, and speed and acceleration profiles. These
experiments replicate real world conditions when vehicles travel in steady-state conditions with
constant headways, reduce speeds when queues form, and accelerate during queue discharge at
and near bottlenecks. This study discusses the analysis of GPS data from the field to determine
the potential impact of ACC on capacity in a variety of traffic conditions.

In the following section, the experiment setup and characteristics are presented. Next, the
experimental data is analysed and the implication on capacity is discussed. Finally, conclusions
are drawn and recommendations for future work are discussed. Lastly, in the Appendix, a

description of the dataset is provided.

2. Research Approach: Field Experiments

Conducting experiments through field observations is the most reliable method for this research

because there are currently no established simulation tools that could accurately model the



behavior of EVs equipped with ACC?. Ideally, installing cameras or detectors on roadways
typically yields the most accurate measurement for flow, capacity, density, and mean speeds.
However, this method cannot yield any meaningful and viable results in today’s traffic stream
because there is currently a very low market penetration of ACC-equipped EVs. Instead, this
study will prospectively assess the impact of ACC-equipped EVs on capacity by examining GPS
data collected from carefully designed car following experiments in controlled environments
using two test vehicles: a leading vehicle as the point of reference, and a following vehicle that is
an EV equipped with ACC. Furthermore, the empirical data could serve as benchmark data to
develop and calibrate car following models that are used as inputs for microscopic simulation,
which could scale-up the two-vehicle car following experiment to analyses of larger traffic
streams. Specifically, an ICE vehicle (2021 Toyota Camry) with a 3,310 Ib. curb weight and
maximum power output of 203 horsepower at 6,600 rpm from a 2.5-liter naturally aspirated
engine was used as the leading vehicle in the field experiments. For the following vehicle, we
selected a mainstream EV (2022 Hyundai IONIQ 5) with a curb weight of 4,414 1bs. and the
powertrain delivers 225 horsepower and 258 Ib.-ft. of torque. These selections are intended to
ensure consistency with previous experiments (Chon Kan, Lapardhaja, and Kan 2021; Chon
Kan, Murshed, and Kan 2022) by maintaining a similar a weight-to-power ratio. We assume that
the EVs selected in this field test could potentially represent a large portion of mainstream ACC-
equipped EVs on the road in the near future. Moreover, recent studies demonstrate that the
variations between different ACC systems from several manufacturers are not significant

(Makridis, Mattas, and Ciuffo 2019). Consequently, we anticipate that the findings in this

? Currently, there are no validated car following models designed to accurately capture the behavior of

ACC-equipped EVs using real-world data.



experiment can be generalized in the near future, as mainstream EVs with ACC become more
prevalent®. The ACC system of EVs used in this study is functional in full-speed range and has
four different following gap settings (short, medium, long, and extra-long) for the driver to select
from, which can generate a wide range of the headways and spacings.

In addition to testing the Hyundai IONIQ 5, the field test included two other electric
vehicles (EVs) from different manufacturers — the 2022 Tesla Model 3 and the 2023 Polestar 2,
under the same scenarios for comparison. The Tesla Model 3 has a curb weight of 3,686 pounds,
and its powertrain generates 221 horsepower and 302 Ib-ft of torque. The Polestar 2, on the other
hand, has a curb weight of 4,400 pounds and an output of 231 horsepower and 243 1b-ft of torque
from its powertrain. Although the power to weight ratio of the Tesla Model 3 is inconsistent and
much more favorable compared with the other EVs tested, the Tesla Model 3 was selected to be
inclusive of the popular options in today’s EV market. EV models from other manufacturers
were not attainable or available at the time of field experiments. An ICE vehicle (2022 Toyota
Corolla) with a 2,910 Ib. curb weight and maximum power output of 139 horsepower at 6,000
rpm from a 1.8-liter naturally aspirated engine was used as the leading vehicle in the field
experiments involving the Tesla Model 3 and Polestar 2 as the following vehicles. To avoid bias,
the vehicles used in the field tests were consumer-grade vehicles obtained from car rental
agencies and dealerships, identical to the vehicles available to ordinary consumers and not
vehicles specially prepared by the vehicle manufacturers.

Trajectory data from both the leading and following vehicles were collected using one of

the most advanced GPS devices known as Racebox. Racebox offers a remarkably high 25 Hz

3 As EV market shares grow and more EV models become available further investigation on their distinct

behavior needs to be conducted.



frequency and an excellent 10 cm accuracy, for collecting position data including variables such
as latitude, longitude, and altitude every 0.04 seconds and compute cumulative distance traveled,
speed and acceleration. The GPS coordinates obtained could also be used to determine spacing
and headway between adjacent vehicles.

To ensure the synchronization of the timestamps from both GPS devices and minimize
errors, a carefully designed pre-experiment procedure was implemented. This involved
performing a synchronized deceleration of both vehicles from a predetermined speed, followed
by a frame-by-frame analysis of accompanying video footage. This allowed for the precise

alignment of the data sets, thereby reducing errors associated with timestamp offset.

2.1. Car following experiments

Initially, both vehicles were aligned in a single lane with an (initial) spacing (front bumper to
front bumper) of [ + A of each other, where [ is the leading vehicle length and A is a fixed
distance to prevent collisions between the leading vehicle’s rear bumper and the following
vehicle’s front bumper. Then, the two vehicles sequentially began to accelerate manually up to a
pre-defined free-flow speed, and we conducted experiments for four different free-flow speeds:
96 km/hr, 88 km/hr, 72 km/hr, and 56 km/hr. To avoid safety hazards and unnecessary
interruption to nearby traffic at the test site, speeds above sustained free flow speeds above 96
km/hr and below 56 km/hr were not considered. After reaching the pre-defined free-flow speed,
the driver of the following vehicle (EV) activated the ACC with the desired speed set the same as
the free-flow speed, or 8 km/hr (5 mph) or 16 km/hr (10 mph) than the free-flow speed,
depending on the experimental trial that is performed. The driver of the leading vehicle activated

the cruise control and the remained at the free-flow speed. To minimize the spacing between the
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vehicles, the following vehicle's driver manually accelerated slightly beyond the pre-defined
free-flow speed. Afterward, the driver re-activated ACC, allowing it to automatically adjust the
spacing relative to the leading vehicle. This stabilization process is intended to replicate the
equilibrium condition at capacity, in which vehicles enter the roadway from various locations
and adjust their headways and spacings and eventually reach the minimum allowable spacing
(and headway) to be sustained for an extended period and distance, therefore achieving the
maximum sustained flow (and capacity). At this point, there have not been interruptions due to
merging, changes in speed limit, or other potential disruptions that could cause a bottleneck,
reduce speed, form queues, or even potentially diminish capacity. A set of the effective
timestamps of both vehicles was chosen after this stabilization process is completed at time ¢; for
example, their stable cruising speed (after stabilization) is identical at 96 km/hr as shown in
Figure 2. Beyond the time t, the cumulative distance traveled and spacing can be calculated to
estimate the minimum headway and maximum flow (at capacity) under steady-state condition.
[Figure 2 here]

The field experiments are also intended to study the car following behaviors of ACC-
equipped EVs beyond steady-state conditions; for example, at bottlenecks where vehicles
approach the back of the queue and accelerate during queue discharge. To replicate slight speed
fluctuations and larger speed fluctuations observed at bottlenecks, the driver of the leading
vehicle applied normal decelerations manually to a congested speed that is lower than the free-
flow speed. This deceleration can represent disruption from a sudden change in speed limit,
merging vehicles from on-ramps, diverging vehicles at and near off-ramps, etc. Such a scenario
can lead to a bottleneck and allow queues to form. Then, both vehicles returned to their initial

free-flow speed after staying at a lower speed for 10 seconds or more if conditions allow. The
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driver of the leading vehicle accelerated manually under normal acceleration while the following
vehicle accelerated via ACC. This process enables the replication of queue discharge that occurs
downstream of a bottleneck. For each free-flow speed, the cycle of deceleration and acceleration
is repeated for various congested speeds lower than the free-flow speed. Table 1 illustrates the
tested free-flow speeds with their corresponding lower speeds. Figure 3 displays an example of
the speed profile tested with 88 km/hr free-flow speed and various congested speeds in the speed
fluctuations. Similar procedures were applied to experiments using other free-flow speeds shown
in Table 1. In total, 136 repetitions were performed for all gap settings, encompassing various
free-flow speeds and speed fluctuations with vehicles having the same desired speed.

[Table 1 here]

[Figure 3 here]

To complement the aforementioned experiments, additional repetitions were conducted to
study the effects of the ACC's behavior when the maximum desired speed of the following
vehicle exceeds the leading vehicle's free-flow speed. Two scenarios were examined, one where
the maximum desired speed of the following vehicle was +8 km/hr higher and another where it
was +16 km/hr higher. Overall, an additional 136 repetitions were performed for all gap settings,
covering a wide range of free-flow speeds and speed fluctuations with the following vehicles
having +8 and +16 km/hr higher maximum desired speeds (68 trials for each desired speed

combination).

2.2. Test sites and Data Analysis

Field experiments were conducted on isolated portions of rural public roads in Dixon, California,

on approximately 10-km stretches of Pendrick, Robben, and Sikes Rds. The remote locations and
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lack of interference from other road users allowed us to reproduce various traffic conditions
efficiently throughout the data collection process. Robben Rd. was primarily used while Pedrick
Rd. and Sikes Rd. were alternate locations in case the conditions were less ideal on Robben Rd.
Vehicle trajectories were constructed using the position data (longitude and latitude)
generated from each Racebox GPS unit every 0.04 seconds in the field experiments. These
vehicle trajectories were used to extract joint estimates of spacing and headway between the

leading and following vehicle.

3. Results and Discussion

Field experiments demonstrate that EVs with ACC can achieve considerably shorter headways,
reaching as low as 1.23 seconds at constant speeds in steady-state conditions. This could
potentially yield higher capacities of up to 2,931 veh/hr*, compared to ICE vehicles with ACC.
This finding is consistent with initial attempts to quantify the headways adopted by ACC
controllers at constant speeds in steady-state conditions (Li et al. 2022). This is a result of EV’s
instantaneous regenerative braking that allows EVs to safely follow the preceding vehicles more
closely at higher speeds. Table 2 summarizes the minimum headways and time gaps under
steady-state conditions for ACC-equipped EVs (IONIQ 5) across a range of free-flow speeds,
spanning from 56 km/hr to 96 km/hr. Similar to previous studies on ICE vehicles equipped with
ACC (Chon Kan, Lapardhaja, and Kan 2021; Chon Kan, Murshed, and Kan 2022), it is observed
that the minimum headway for EVs increases as the selected ACC gap setting transitions from

short to medium to long, and to extra-long. This same pattern is also evident when examining the

* More investigations through simulations to account for discretionary lane changes, heterogenous desired

speeds and other conditions are needed to investigate the impact on capacity.
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time gaps. However, it is noteworthy that, when considering time gaps, the speed-related
differences within the same gap setting are not particularly significant. The speed-related
variations can be attributed to ACC’s proprietary car following algorithm that accounts for the
gap with respect to the leading vehicle, instead of headway that includes the vehicle length.
Similar gaps at different speeds could lead to slight variations in headways at different speeds
when the vehicle length is accounted for.

[Table 2 here]

For ICE vehicles with ACC, a similar experiment by (Chon Kan, Lapardhaja, and Kan
2021; Chon Kan, Murshed, and Kan 2022) observed that the minimum headways are typically
1.89 seconds on average and nearly 3 seconds if the longest gap was selected. Compared with the
values shown in Table 2, EVs with ACC have the potential to provide higher capacity due to
shorter headways regardless of the speed and the preferred ACC gap selected by the driver. For
example, Table 2 shows that ACC equipped EVs could potentially achieve minimum headways
of 1.23, 1.50, and 1.77 seconds while traveling at 96 km/hr in steady-state conditions with ACC
set for short, medium, and long gaps, respectively. On the other end, EVs with ACC could
potentially yield minimum headways of 1.27, 1.60, and 1.84 seconds while traveling at 56 km/hr
in steady-state conditions with ACC set for short, medium, and long gaps, respectively.

In addition to the minimum headways established by the ACC controllers, the field
experiments demonstrated that there was relatively low variability in the observed minimum
headways: Figure 4 illustrates the distribution of the minimum headway for EVs (IONIQ 5) with
ACC at free-flow speeds of 96 km/hr, 88 km/hr, 72 km/hr, and 56 km/hr in steady-state
conditions. This could potentially yield more reliable and consistent capacities in real world

traffic. Notably, this lower variability in minimum headways for EVs with ACC starkly contrasts
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with the field experiments involving ACC-equipped ICE vehicles (Chon Kan, Lapardhaja, and
Kan 2021; Chon Kan, Murshed, and Kan 2022) and their findings, which revealed significant
variability in the minimum headway values, particularly for medium and long gap settings,
despite similar experimental conditions being for both EVs and ICE-powered vehicles.
[Figure 4 here]

Unlike ACC-equipped ICE vehicles, these shorter headways adopted by ACC equipped
EVs can be sustained beyond the ideal steady-state conditions. The exceptional powertrain
characteristics of fully electric vehicles (EVs) enabled responsive deceleration using regenerative
braking when approaching the back of queue when a leading vehicle is decelerating, and most
importantly, the instantaneous peak torque allowed for nearly immediate acceleration once the
leading vehicle began accelerating during queue discharge. This sustained the shorter headways
adopted by EVs with ACC and entails that the potentially higher capacities could be sustained
even in non-steady-state conditions, where speeds fluctuate when queues form and dissipate at
bottlenecks. Table 3 illustrates the sustained short headways, demonstrated by the minimal
deviation in headways regardless of the ACC gap setting and the extent of the speed fluctuation,
which may result from queue formation at freeway entrances and exits or near turning
maneuvers. Previous research on ACC-equipped ICE vehicles showed that headways increased
by approximately 1 second for the short gap and 1.3 seconds and 1.6 seconds for the medium and
long gap, respectively (Chon Kan, Lapardhaja, and Kan 2021), due to the ACC controller's
delayed response and sluggish acceleration during car following and queue discharge. Of course,
this can be attributed to ICE’s progressive torque power delivery with initial lower output that
leads to initially unresponsive acceleration. In contrast, Table 3 demonstrates that ACC-equipped

EVs exhibit minimal headway change, with all cases falling below 0.1 seconds. As a result,
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minimum headways and maximum flows remain consistent with the steady-state minimum
headways depicted in Table 2. Notably, even when both vehicles have the same desired speed (a
desired speed difference of 0), the headway change remains negligible, thereby preserving the
minimum headway. Most of all, this is true regardless of how the following vehicle’s desired
speed was chosen; ACC in EVs maintains constant headway as speeds fluctuated.

[Table 3 here]

Figure 5 presents a time-space diagram for both the leading and following vehicles. As
depicted in the plots, the ACC-equipped EV follower Hyundai IONIQ 5 regained its initial
minimum headway following a speed fluctuation intended to simulate approaching back of
queue and accelerating during queue discharge, which contrasts with the performance of
conventional ACC-equipped ICE vehicles, as shown by Figure 6 obtained from earlier field
experiments (Chon Kan, Lapardhaja, and Kan 2021). Figure 6 illustrates that ACC-equipped ICE
vehicle exhibits a reaction delay (possibly from the ICE powertrain) and very gradual initial
acceleration when returning to free-flow speeds (88 km/hr in this example) during queue
discharge, all of which are findings from an earlier study as benchmark. This gradual
acceleration corresponds to a rate of approximately 0.5 m/s? to 1.0 m/s? on a regular basis, which
is a very leisurely increase in speed. In the end, the headway increases. EVs produce strong
initial acceleration from the instantaneous peak torque, and as illustrated in Figure 5, the slope of
the time-space diagram is steeper for EV’s acceleration. In fact, careful examination of field data
suggests that EVs can accelerate normally and smoothly at almost twice the rate (1.5 m/s? to 2.0
m/s?).

[Figure S here]

[Figure 6 here]
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Moreover, steep decrease in speed and strong deceleration can be found on the
trajectories in Figure 5. This resembles the aggressive regenerative braking of EVs, and the
better braking performance allows ACC-equipped EVs to safely follow the leading vehicle at
shorter headways. Interestingly, shown in Figure 5, the aggressive regenerative braking applied
by the following vehicle Hyundai IONIQ 5 ACC did not amplify the speed change from the 88
km/hr free-flow speed to the 40 km/hr congested speed in this example. This is certainly
different from the example shown in Figure 6, where the ACC-equipped ICE vehicle amplified
the speed change relative to the speed fluctuations undertaken by the leading vehicles.
Observations from both field tests and trajectories in Figures 5 and 6 revealed that ACC-
equipped EVs immediately applied aggressive regenerative braking that enabled the follower to
quickly reach and maintain its desired headway as leader began decelerating, whereas the limited
braking capability resulted in the ACC-equipped ICE vehicle (follower) to decelerate for an
extended period to speeds below that of the leading vehicle’s final speed in the congested state
(after the leader completed decelerating) to finally reach its desired headway, and ultimately
amplifies speed change. This stark contrast could mean that ACC-equipped EVs may improve
stability of traffic, a vastly different outcome than the string unstable car following behavior of
ACC-equipped ICE vehicles demonstrated in Figure 6 and confirmed by various prior
experiments (Gunter et al. 2019; Knoop et al. 2019; Makridis, Mattas, and Ciuffo 2019; Gunter

et al. 2020; Ciuffo et al. 2021; Li et al. 2021; Makridis et al. 2021).

> Field tests with a larger platoon of vehicles and simulations (Zare et al. 2023) need to be conducted to
examine whether ACC-equipped EVs improve string stability compared to ACC-equipped ICE

vehicles.
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Overall, we observed that the headway values are nearly identical for before and after
speed fluctuations (i.e., disturbance) with a shorter headway than that of ACC-equipped ICE
vehicles. This highlights the superior capability of the ACC-equipped EVs in maintaining nearly
constant and steady headways in dynamic real world traffic conditions.

Furthermore, these field experiments suggest another interesting finding: setting higher
desired speed does not affect the car following behavior. As ACC-equipped EV accelerates
swiftly to follow the lead vehicle and maintain the minimum headway, it would not be possible
to accelerate beyond the leading vehicle speed even if the ACC desired speed was set higher, due
to the minimum spacing and headway constraint. Figure 7 shows the speed vs. time plots of an
example scenario. As shown, setting ACC desired speeds 8 or 16 km/hr above the desired speed
(free-flow speed) of the leading did not alter the car following trajectories, in comparison with
the scenario shown in Figure 5. On the other hand, ACC-equipped ICE vehicles would
accelerated beyond the speed of the leading vehicle to undergo a “catch-up” process before
decelerating again to ensure that the minimum headway is maintained, shown in Figure 8 (Yang,
Kan, and Yagantekin 2023).

[Figure 7 here]
[Figure 8 here]

As mentioned earlier, we conducted comparative tests using ACC equipped EVs from
two other manufacturers, the Polestar 2 from a traditional but premium manufacturer Volvo and
the Tesla Model 3 from an emerging vehicle manufacturer Tesla, using the same procedures and
under similar conditions albeit with fewer repetitions. The observations obtained from testing the
Polestar 2 mirrored those from the experiments using the Hyundai IONIQ 5, exhibiting similar

minimum headways and sustained almost constant headways even in non-steady-state conditions

18



when queues are present. As depicted in Figure 9, the time-space diagram shows similar
trajectories when decelerating while the Polestar 2 approaches the back of queue and when
accelerating during queue discharge, though there appears to be a slight amplification of the
speed change as opposed to the trajectories in Figure 5. However, the results for the Tesla Model
3 deviated from our expectations, as evidenced in Figure 7. Unlike the car following behavior of
other ACC equipped EVs such as the Hyundai IONIQ 5 and Polestar 2, the Tesla Model 3 was
unable to regain its initial minimum headway after a speed fluctuation, exhibiting characteristics
similar to those of ACC-equipped ICE vehicles. This is reflected in the larger minimum
headways and greater variability in minimum headways, leading to a substantial increase.
Furthermore, a comparison with the time-space diagrams corresponding to the same
experimental scenario for the ACC equipped ICE vehicle tested in (Chon Kan, Lapardhaja, and
Kan 2021; Chon Kan, Murshed, and Kan 2022) show that the Tesla Model 3’s car following
behavior is much similar to that of an ACC equipped ICE vehicle. It appears that the ACC
equipped by Telsa does not utilize the advantages of EV powertrain, especially the instant peak
torque that provides immediate acceleration during queue discharge, instead, the ACC equipped
by Tesla gradually accelerates at a leisurely pace as the leading vehicle accelerates during queue
dissipation. Similarly, the same “catch-up” process associated with ACC-equipped ICE vehicles
that is shown in Figure 8 can be found in Figure 11, when the desired speed of the follower
(Tesla Model 3) is set higher than that of the leader.

[Figure 9 here]

[Figure 10 here]

[Figure 11 here]
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To shed light on the divergent behavior of Tesla, as compared to the other ACC-equipped
EVs such as the Hyundai IONIQ 5 and Polestar 2, we delved into the distribution of
accelerations and decelerations. As demonstrated in Figure 12, the analysis revealed that while in
operation with ACC, Tesla Model 3 exhibits smoother acceleration and deceleration rates, with a
higher distribution of lower acceleration rates and deceleration rates as compared to the Hyundai
IONIQ 5 in the same set of experiments. This observation provides a crucial insight into the
behavior of Tesla's ACC system, suggesting that its algorithm is configured to exhibit a more
sluggish behavior akin to that of ACC-equipped ICE vehicles, despite its powertrain capabilities
to be more responsive.

As an added note, the same string unstable behavior can be observed when examining
Tesla Model 3’s trajectory in ACC mode, shown in both Figure 10 and Figure 11. The speed
change was amplified relative to the speed change underwent by the leading vehicle, same as the
trajectories that correspond to ACC-equipped ICE vehicles, shown in Figures 6 and 8. Of course,
this has broader implications for shockwaves and queue propagation that requires further
analyses.

Finally, the field experiments also revealed that the ACC system equipped by Tesla
cannot maintain constant headway even at constant speeds and in steady-state conditions, and
this often led to inconsistent car following behavior that could render traffic flow modeling
difficult and unreliable.

Nevertheless, this set of experiments provides very important initial insights on the
potential benefits of electric powertrain to vehicle automation going forward. The data generated
from these carefully planned experiments could be used to develop and validate microscopic

level models for car following, which could be used as the underlying assumption in a scaled-up
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simulation of macroscopic traffic. Ultimately, the true capacity benefit that EVs with automation
could offer would be validated and affirmed given the appropriate models and simulation tools
developed based on empirical observations.

[Figure 12 here]

4. Conclusion and Recommendation

Commercially available Adaptive Cruise Control (ACC) equipped vehicles have become
increasingly prevalent on roads today. ACC is an Advanced Driver Assistance Feature (ADAS)
that allows for partial automation by automatically adjusting speed and maintaining safe
following distance using data collected from on-board sensors. Today’s commercial ACC
systems can operate in all speed ranges and are equipped on most new mainstream vehicles. The
increasing adoption of fully electric vehicles (EVs) has brought new opportunities; EV’s unique
operating characteristics such as instantaneous torque and strong regenerative braking could
improve capacity and mitigate congestion when EVs are paired with ACC.

Field experiments demonstrate that ACC equipped EVs can achieve minimum headways
as short as 1.23 seconds at constant speeds in steady-state conditions. This could potentially lead
to an improved capacity as high as 2,931 veh/hr/lane. Moreover, deviations from the steady-state
conditions do not affect the minimum headway, as shown by an extensive set of field experiment
with a wide range of speed fluctuations to simulate approaching back of the queue and queue
discharge at and near disturbances and bottlenecks that may arise from ingress and egress at
freeway on and off-ramps, turning movements, etc. Furthermore, EVs equipped with ACC could
potentially not amplify speed changes further upstream, which could imply better stability of the
traffic stream and less abrupt queue propagation. Overall, ACC-equipped EVs could outperform

ICE vehicles with ACC, as well as human drivers, in terms of the potential capacity and
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congestion reduction benefits. Interestingly, this only applies to the tested EVs from some
manufacturers, whereas the tested EV's from other manufacturers such as Tesla deliver car
following dynamics akin to an ICE vehicle with ACC®.

We recommend future experiments to capture the effect of lane change on ACC-quipped
EV’s car following behavior, as the receiving lane change car following behavior may be distinct
from what had been observed in the car following experiments presented in this paper. In
addition, future studies should conduct field tests in naturalistic environments where traffic
conditions are more stochastic. Moreover, field tests should be conducted in mixed environments
with a combination of both ICE vehicles and EVs, especially ICE vehicles following EVs to
determine the potential impact of mixed traffic stream with vastly different powertrain
characteristics. Finally, given the valuable data presented in this field study, future work should
develop car following models unique to ACC-equipped EVs to capture the microscopic level car
following behavior, and this would establish an important foundation for developing simulation
platforms to perform prospective analyses at large scale. This would address many unknowns
related to ACC-equipped EVs, examples include macroscopic models such as the fundamental
diagram and the effectiveness of implementing dedicated lane for fully electric vehicles
operating in ACC mode, and all of which will prepare future researchers and practitioners for
new opportunities in traffic operations and management in the era of increasingly automated and
electrified vehicles. Especially in the near term, when the market penetration of ACC-equipped
EVs is relatively small and traffic engineers will need to rely heavily on effective traffic

management strategies such as preferential lane treatment or dynamic tolls to fully take

® As the Autopilot technology evolves and software updates change further investigation is required on

the car following dynamics.
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advantage of the capacity benefits offered by EVs equipped with ACC. Most of all, the effect of
powertrain characteristics on traffic flow is often overlooked and this study will shed light on a
new but very important perspective for traffic flow and operations in the coming years, as
electrification of vehicle fleet becomes more common. This experimental work could also be
expanded to test many variations of electric powertrain or motors, for example those with
different nominal voltages. Finally, electric powertrain may also be a better fit for CACC-
equipped vehicles because EVs could easily satisfy the immediate acceleration and braking
demanded by CACC control design when vehicle platoons travel with very short headways.
Although there have been many recent studies on the capacity, string stability, and energy
consumption benefits of CACC (Yu, Hua, and Wang 2023; Liu, Lu, and Shladover 2020; Hung
and Zhang 2022; W. Wang and Wu 2023; H. Wang et al. 2019; Liu, Lu, and Shladover 2019;
Liu et al. 2018; Liu et al. 2021), none have specifically addressed the potential benefit of CACC
equipped on EVs. Nevertheless, there has been recent empirical evidence demonstrating the
implementation feasibility of CACC on all types of powertrains including electric powertrain
(Flores et al. 2023). We suggest future work to investigate how electric powertrain uniquely

impact or benefit CACC operations in terms of stability, capacity, and energy consumption.
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Data Availability

The car-following data collected can be found at https://github.berkeley.edu/mingyuan-

yang/MicroSimACC-EV.
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Appendix

The data from the field experiments are organized in folders with the setup presented in Figure
13. For instance, a trial with Long gap setting, +0 desired speed, free flow speed of 72 km/hr (45
mph) and speed fluctuation down to 24 km/hr (15 mph) will be found in the path
“Long\0_desired\45\15”

[Figure 13 here]
The data consists of Time (s), the speed (km/h) of the following vehicle, the speed (km/h) of the
leading vehicle, the speed (km/h) of the following vehicle with a smoothing algorithm applied,
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the speed (km/h) of the leading vehicle with a smoothing algorithm applied, and the spacing (m)

between the leading and the following vehicle.
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Tables

Table 1 Combinations of initial and terminal field test speeds.
Table 2 Steady-state minimum headways of ACC-equipped EVs.

Table 3 Headway change for various desired speeds.
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Table 1 Combinations of initial and terminal field test speeds.

Initial free-flow Terminal reduced
speed (km/hr) speeds (km/hr)
96 72,56, 40,24, 0
88 72, 56,40, 24,0
72 56, 40, 24, 0
56 40, 24,0
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Table 2 Steady-state minimum headways of ACC-equipped EVs.

Free Flow Speed: 96 km/hr

ACC Gap Selection

Short | Medium | Long | Extra Long
Minimum headway (s) 1.23 1.50 1.77 2.30
Time Gap (s) 1.06 1.33 1.60 2.13
Free Flow Speed: 88 km/hr
ACC Gap Selection
Short | Medium | Long | Extra Long
Minimum headway (s) 1.27 1.6 1.84 2.35
Time Gap (s) 1.08 1.41 1.65 2.16
Free Flow Speed: 72 km/hr
ACC Gap Selection
Short | Medium | Long | Extra Long
Minimum headway (s) 1.40 1.69 1.92 2.41
Time Gap (s) 1.17 1.46 1.69 2.18

Free Flow Speed: 56 km/hr

ACC Gap Selection

Short | Medium | Long | Extra Long
Minimum headway (s) 1.44 1.73 1.96 2.25
Time Gap (s) 1.14 1.43 1.66 1.95
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Table 3 Headway change for various desired speeds.

Desired Speed Headway Change
Gap Setting
(unit: km/hr) (Std, unit: seconds)
0 0.074 (0.090)
Short 8 0.033 (0.052)
16 0.013 (0.042)
0 0.090 (0.075)
8 0.002 (0.076)
Medium
16 0.021 (0.067)
0 0.058 (0.058)
8 0.037 (0.041)
Long
16 0.021 (0.042)
0 0.029 (0.061)
Extra Long 8 -0.005 (0.025)
16 0.020 (0.046)
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Figures

Figure 1 Torque and power vs. engine speed for ICE (left) vs. EVs (right).

Figure 2 Initial stabilization process.

Figure 3 Example speed profile of field test.

Figure 4 Distribution of minimum steady-state headways of ACC-equipped Hyundai IONIQ
Figure 5 Hyundai IONIQ 5 time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired
speeds.

Figure 6 Toyota Corolla time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired
speeds.

Figure 7 Hyundai IONIQ 5 time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr
desired speed.

Figure 8 Toyota Corolla time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr desired
speed.

Figure 9 Polestar time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired speeds.
Figure 10 Tesla time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired speeds.
Figure 11 Tesla time-space diagram: 88 to 40 to 88 km/hr, short gap, +8 km/hr desired speed.
Figure 12 IONIQ 5 and Tesla acceleration and deceleration rates distributions.

Figure 13 Field data folder organization.

33



Torque and Power

_____________

Torque Power

ICE |
I
I
[]
]
I

Engine speed (rpm)

Torque and Power

Engine speed (rpm)
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Figure 6 Toyota Corolla time-space diagram: 88 to 40 to 88 km/hr, short gap, same desired
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