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Abstract ChatGPT represents a significant milestone in the field of artificial intelligence (AI), finding

widespread applications across diverse domains. However, its effectiveness in mathematical contexts has

been somewhat constrained by its susceptibility to conceptual errors. Concurrently, topological data anal-

ysis (TDA), a relatively new discipline, has garnered substantial interest in recent years. Nonetheless, the

advancement of TDA is impeded by the limited understanding of computational algorithms and coding

proficiency among theoreticians. This work endeavors to bridge the gap between theoretical topological

concepts and their practical implementation in computational topology through the utilization of ChatGPT.

We showcase how a pure theoretician, devoid of computational experience and coding skills, can effectively

transform mathematical formulations and concepts into functional codes for computational topology with

the assistance of ChatGPT. Our strategy outlines a productive process wherein a mathematician trains Chat-

GPT on pure mathematical concepts, steers ChatGPT towards generating computational topology codes,

and subsequently validates the generated codes using established examples. Our specific case studies encom-

pass the computation of Betti numbers, Laplacian matrices, and Dirac matrices for simplicial complexes,

as well as the persistence of various homologies and Laplacians. Furthermore, we explore the application

of ChatGPT in computing recently developed topological theories for hypergraphs and digraphs, as well as

the persistent harmonic space, which has not been computed in the literature, to the best of our knowledge.

This work serves as an initial step towards effectively transforming pure mathematical theories into practical

computational tools, with the ultimate goal of enabling real applications across diverse fields.
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1 Introduction

Mathematical theory guides the advancement of applied sciences, while the progress of applied sciences,

in turn, provides direction and motivation for mathematical exploration. However, the development of

these disciplines can inadvertently erect barriers between them. A theoretical mathematician often finds it

challenging to divert their focus toward translating their theoretical research into practical programs that

can be utilized by researchers in the applied sciences for numerical experiments. Conversely, an expert in

applied sciences may struggle to grasp the intricacies of advanced mathematical theories and harness this

knowledge to optimize their methods and models. This interplay between theory and application highlights

the need for bridging the gap and fostering collaboration between these two seemingly disparate domains.

Recently, ChatGPT has excelled in various domains and has been driving advancements in artificial

intelligence (AI). For example, ChatGPT is being used to assist in drug discovery and development [ST23,

WFW23]. Harnessing ChatGPT to assist theoretical mathematicians in developing algorithms and codes,

even without proficiency in computer languages, can be a game-changer. This approach addresses the

critical need for collaboration between theoretical and applied scientists, as it facilitates knowledge exchange

and interdisciplinary research. One promising avenue is to use natural language interfaces to interact with

ChatGPT. Theoretical mathematicians can engage in conversations with ChatGPT, train ChatGPT with

correct mathematical concepts or theories, and describe their computational objectives in plain language.

ChatGPT can then assist them in translating these theories into algorithms and codes, without requiring an

in-depth understanding of specific programming languages and algorithms by theoreticians. It can provide

code snippets, algorithm frameworks, and executable scripts to help theoretical mathematicians initiate

practical computational work.

Topology is one of the most profound and challenging areas in modern mathematics. In recent years,

topological data analysis (TDA) has gained significant attention in applied fields such as computer science,

molecular biology and biophysics, materials science, medical imaging, etc. An increasing number of scholars

and researchers are dedicating themselves to develop the theories on TDA [Car09, CZCG04, ELZ02, ZC04].

The computational topology is an emerging field in mathematics [EH22, KMM04]. However, the lack of

algorithm understanding and coding skills limits mathematicians’ success in computational topology. In this

work, we aim to leverage ChatGPT to close the gap between pure mathematical theories and practical codes

for computational topology.

Some traditional perspectives argue that ChatGPT may not be suitable for tasks involving complex

mathematical concepts and intricate logical reasoning due to its limited depth in mathematics. Many limi-

tations stem from several factors. First, ChatGPT’s understanding of mathematics is based on pre-existing

knowledge up to its last training data, which means it may not be aware of recent developments or special-

ized mathematical domains. Second, while it can perform various mathematical calculations and explain

some fundamental concepts, it lacks the depth of understanding and rigor that specialized mathematicians

or dedicated mathematical software can provide. Additionally, ChatGPT may struggle with highly special-

ized or research-level problems that require nuanced domain knowledge and precise mathematical proofs.

Consequently, when employing ChatGPT for coding tasks, users must supplement its capabilities with their

own expertise in mathematics and employ specific strategies to supervise and guide ChatGPT in generating

accurate codes.

When using ChatGPT, it is essential to keep the following considerations in mind:

• Answers May Not Be Definitive: ChatGPT’s responses to questions are not guaranteed to be

correct or entirely satisfactory. Its answers are based on patterns and information in its training data,

and it may not always provide accurate or complete responses.

• Variability in Responses: The same question posed to ChatGPT in different instances or chat in-

terfaces may yield different answers. This variability can occur due to the model’s inherent randomness

and sensitivity to the input phrasing.
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• Responses Evolve with Interaction: In a single chat session, ChatGPT’s answers can evolve and

become closer to what the user desires as the conversation progresses. It adapts to the user’s guidance

and context.

During the interaction with ChatGPT, we always assume that the questioners are familiar the related

mathematical theories but lacks coding experience, skill, and understanding.

In the next section, we will recall the definitions and notations for simplicial complexes and Betti

numbers. We demonstrate how to obtain practical codes for computing the Betti numbers, Laplacian, and

Dirac of a simplicial complex using ChatGPT. We intend to use the Python programming language for this

purpose, as Python is widely adopted in the scientific and data analysis communities. Also, Python offers

a rich ecosystem of libraries and tools for scientific computing and data analysis which can significantly

simplify the implementation of mathematical algorithms. In Section 3, we show how to use ChatGPT to

discover the codes for computing the Betti numbers and Laplacian matrices for hypergraphs and digraphs.

Section 4 provides a note on the persistence of homology, Laplacians, and harmonic space. In Section 5, we

present some application examples. Finally, we summarize the main works of this paper and outline further

perspectives about ChatGPT. ChapGPT version 3.5 was used in this work.

2 ChatGPT for homology, Laplacian, and Dirac

Persistent homology is one of the fundamental theoretical tools in TDA, which can describe the multi-

scale information of data sets [CZCG04, ELZ02, EH+08, ZC04]. Persistent Laplacians, including persistent

spectral graph [WNW20] and evolutionary de Rham-Hodge theory [CZTW19], were introduced in 2019.

Persistent Laplacians not only provide geometric information of data sets in terms of topological invariants

as persistent homology does, but also capture homotopic shape evolution that cannot be detected by per-

sistent homology [WNW20, LLW23, MWW22]. Their applications in real-world problems show remarkable

performance [CQWW22, MX21]. Furthermore, the persistent Dirac has also been introduced as a new com-

putational tool in TDA [AMS22, WBX23]. In this section, we review the concepts of simplicial complexes,

homology, and Betti numbers. Then we showcase the use of ChatGPT for computing Betti numbers from a

mathematical perspective. Moreover, we instruct ChatGPT to produce the codes for computing Dirac and

Laplacian operators.

Our questions to ChatGPT and the design of corresponding codes are based on our mathematical

background on homology theory. In this work, the ground field is always assumed to be K. In particular,

when we consider the Laplacian, the ground field is taken to be the real number field K = R.

2.1 Simplicial complexes and Betti numbers

Computers are more adept at handling and processing discrete objects. As a result, researchers often

focus their efforts on investigating simplicial complexes or their discrete representations, known as abstract

simplicial complexes.

Let K be an abstract simplicial complex on a finite nonempty ordered set V . Let Cp(K) be the vector

space with basis given by the p-simplices of K. We have the chain complex C∗(K) = (Cp(K))pg0. The p-th

boundary operator dp : Cp(K) → Cp−1(K) is given by

dp[v0, . . . , vp] =

p
∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vp].

Here, [v0, . . . , vp] is a p-simplex of K, and v̂i means omission of vi. Choose the basis of Cp(K) as the

lexicographic order of the p-simplices. Then we can obtain the representation matrix Bp of the boundary

operator dp. Then the p-th Betti number of K is given by

´p = np − rankBp − rankBp+1. (1)
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The Betti numbers for a simplicial complex can be computed by the above formula.

In this context, our goal is to utilize ChatGPT to provide computer codes that take an abstract simplicial

complex as input and calculates its Betti numbers as output. However, if we directly present this task to

ChatGPT, it might offer inappropriate or impractical coding suggestions, or it might recommend using

existing libraries. The former is not what we desire, and the latter does not align with our goal of modifying

and adapting the code to suit our specific needs. As shown in Fig. 1 and Fig. 2, for the same question,

ChatGPT provides different responses along with corresponding code snippets. In its responses, ChatGPT

presents a Python code, but it references external libraries such as NetworkX and Gudhi. Importantly,

referencing the Gudhi library includes functions for computing simplicial complexes and their Betti numbers,

which is not the approach we want. Additionally, the method suggested in the response to Fig. 1, involving

the 0-dimensional Laplacian matrix of the simplicial complex, is also incorrect as it cannot help us compute

the Betti numbers of the complex.
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Q: Given an abstract simplicial complex, can you give me a Python code for computing Betti numbers

for the simplicial complex?

Certainly! You can compute Betti numbers for an abstract simplicial complex using various Python

libraries, such as ‘networkx’ and ‘scipy’. First, make sure you have these libraries installed:

pip install networkx scipy

Here’s a Python code example to compute Betti numbers for a simplicial complex:

import networkx as nx

import scipy.linalg

def betti numbers(simplicial complex):

# Create a directed graph from the simplicial complex

G = nx.DiGraph()

for simplex in simplicial complex:

for i in range(len(simplex)):

for j in range(i + 1, len(simplex)):

G.add edge(simplex[i], simplex[j])

# Compute the directed graph Laplacian matrix

laplacian matrix = nx.directed laplacian matrix(G).toarray()

# Compute the matrix rank

rank = scipy.linalg.matrix rank(laplacian matrix)

# Compute the Betti numbers

num nodes = len(G.nodes())

betti 0 = num nodes - rank

betti 1 = len(simplicial complex)- num nodes + rank

return betti 0, betti 1

# Example usage

if name == " main ":

# Define your simplicial complex as a list of simplices (lists of vertices)

simplicial complex = [[O, 1],[1,2],[2,3],[3,4],[0,2,4]]

betti 0, betti 1 = betti numbers(simplicial complex)

print("Betti 0:",betti 0)

print("Betti 1:",betti 1)

In this code:

1. We create a directed graph from the simplicial complex, where each node represents a vertex, and

directed edges connect vertices if they are part of the same simplex.

2. We compute the directed graph’s Laplacian matrix using ‘nx.directed laplacian matrix’.

3. We calculate the rank of the Laplacian matrix to determine the number of independent cycles in the

complex.

4. Finally, we use the rank information to compute the Betti numbers: Betti 0 and Betti 1.

You can modify the ‘simplicial complex’ variable to represent your specific simplicial complex, and

the code will compute the corresponding Betti numbers.

Figure 1: ChatGPT provides the answer for computing Betti numbers (I)
6



Q: Given an abstract simplicial complex, can you give me a Python code for computing Betti numbers

for the simplicial complex?

Certainly! To compute the Betti numbers for an abstract simplicial complex in Python, you can

use libraries such as NetworkX or Gudhi. Here, I’ll show you how to compute Betti numbers using the

Gudhi library, which is specifically designed for topological data analysis.

First, you’ll need to install Gudhi if you haven’t already. You can install it using pip:

pip install gudhi

Now, let’s compute the Betti numbers for your simplicial complex:

import gudhi

# Create a simplicial complex

simplicial complex = gudhi.SimplexTree()

# Add simplices to the complex

# For example, adding a triangle

simplicial complex.insert([0, 1, 2])

# Add more simplices as needed

# Compute Betti numbers

betti numbers = simplicial complex.betti numbers()

# Print the Betti numbers

print("Betti numbers:", betti numbers)

Replace the ‘insert’ calls with the simplices of your simplicial complex. The code above will compute

the Betti numbers for the complex and print them.

Here’s a brief explanation of the code:

1. We import the ‘gudhi’ library.

2. We create a ‘SimplexTree’ object to represent the simplicial complex.

3. We add simplices to the complex using the ‘insert’ method. You should replace this with the

simplices from your abstract simplicial complex.

4. We compute the Betti numbers using the ‘betti numbers’ method.

5. Finally, we print the Betti numbers.

This code should work for computing Betti numbers of a simplicial complex using Gudhi. Make sure to

replace the simplices with your actual data.

Figure 2: ChatGPT provides the answer for computing Betti numbers (II)

The example mentioned above highlights the necessity of utilizing our own mathematical understanding

and expertise to guide and supervise ChatGPT in writing mathematical codes. This involves two main

aspects. First, we need to train ChatGPT to “understand” the concepts and notations we provide, such as

simplicial complexes, homology, and Betti numbers. Second, we need to design test problems for which we

know the answer and guide ChatGPT to come up with codes to compute correct results.

With regard to this matter, we intended to train ChatGPT to use the formula in Eq. (1) to calculate the

Betti numbers of a simplicial complex. During this process, we needed to make sure ChatGPT understood

what an abstract simplicial complex is. To achieve this, we began by asking ChatGPT for the definition of an
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abstract simplicial complex. We then discovered that ChatGPT can comprehend the concept of an abstract

simplicial complex. However, we had noticed that the representation of simplicial complexes may vary.

For example, the representation of ∆[1] could sometimes be given as [{0}, {1}, {0, 1}], or [[0], [1], [0, 1]], or

[(0), (1), (0, 1)]. And the order of simplices might not always follow lexicographical order. These variations in

representation might be due to differences in computer data types or mathematical expressions. To address

this issue, we had decided to standardize the representation of simplicial complexes to a format similar to

[[0], [1], [0, 1]], with simplices ordered in lexicographical order. We did not dwell on the specific computer

data types and storage mechanisms.

After confirming that ChatGPT can correctly understand abstract simplicial complexes, we decided to

guide it in generating abstract simplicial complexes in a specific manner. More precisely, by providing a finite

number of points in a Euclidean space and a real-value distance as input, ChatGPT needed to generate a Rips

complex as output. This process may not succeed in a single attempt, but through iterative questioning and

some debugging, ChatGPT successfully provided the desire code. The sample results provided by ChatGPT’s

code is shown in Fig. 3. In this example, we take the discrete point set {(0, 0), (2, 1), (2, 1), (3, 3), (3, 4)} and

the distance d = 3.0 as input.

Abstract Simplicial Complex:

Vertices: [0, 1, 2, 3, 4]

Simplices: [[0], [1], [2], [3], [4], [0, 1], [0, 2], [1, 2], [1, 3], [2, 3], [3, 4], [0, 1, 2], [1, 2, 3]]

Highest Dimension: 2

Figure 3: An example for generating a Rips complex

In order to enable ChatGPT to generate codes for computing Betti numbers correctly, we had decided

to have it first performing the computation of the boundary matrix. As before, we first confirmed whether

ChatGPT understood what the boundary operator on the chain complex associated with a simplicial complex

is. Fig. 4 shows how we approached ChatGPT with this task.
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Q: Given an abstract simplicial complex [[2], [5], [4], [1], [3], [2, 4], [1, 2], [3, 4], [2, 3], [2, 3, 4]], can you

show how to compute the boundary matrix by a Python code?

To compute the boundary matrix of an abstract simplicial complex, you can use Python. The

boundary matrix represents the boundary operators that map simplices to their faces. Here’s a Python

code to compute the boundary matrix for the given abstract simplicial complex:

import numpy as np

# Define the abstract simplicial complex as a list of simplices

complex = [[2], [5], [4], [1], [3], [2, 4], [1, 2], [3, 4], [2, 3], [2, 3, 4]]

# Extract the unique vertices from the simplicial complex

vertices = list(set([v for simplex in complex for v in simplex]))

vertices.sort() # Sort vertices for consistent ordering

# Create a dictionary to map vertices to their indices

vertex to index = {v: i for i, v in enumerate(vertices)}

# Determine the number of vertices and simplices

num vertices = len(vertices)

num simplices = len(complex)

# Initialize the boundary matrix with zeros

boundary matrix = np.zeros((num simplices, num vertices), dtype=int)

# Fill in the boundary matrix

for i, simplex in enumerate(complex):

for j, vertex in enumerate(simplex):

# Remove the j-th vertex from the simplex to get the (j-1)-face

face = simplex[:j] + simplex[j + 1:]

# Find the index of the face in the vertex list

face index = vertex to index[face[0]]

# Add 1 to the (i, face index) entry of the boundary matrix

boundary matrix[i, face index] = 1 if j % 2 == 0 else -1

# Print the boundary matrix

print("Boundary Matrix:")

print(boundary matrix)

This code first extracts the unique vertices and assigns indices to them, initializes the boundary matrix

with zeros, and then fills in the matrix according to the boundary operator rules. The result is the

boundary matrix for the given abstract simplicial complex.

Figure 4: We ask ChatGPT how to compute the boundary matrix.
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ChatGPT provided us with various responses to the task we were given. As object-oriented individuals,

we chose our preferences to proceed with the question. The result code from ChatGPT’s responses is shown

in Fig. 4. We had placed and executed the code into Python, however, obtaining an error as shown in Fig.

5.

File “C:\Users\Lenovoṡpyder-py3\ChatGPT for topology\boundary 2.py”, line 35, in <module>

face index = vertex to index[face[0]]

IndexError: list index out of range

Figure 5: Feedback information on the error.

For the debugging process, we directly input the error message to ChatGPT for feedback. After several

attempts, ChatGPT offered the code without errors by adding the code in Fig. 6 before “# Find the index

of the face in the vertex list” in Fig. 4.

if len(face) == 0:

continue

Figure 6: The code added after debugging.

We validated the code through several test examples and found that the computed boundary matrices

were incorrect. At this point, we need to review the code and understand what caused the error. Fortunately,

ChatGPT provides comments for its codes, which will help us read and understand it better. Additionally,

through interaction with ChatGPT, we can inquire about the parts of the code that are difficult to un-

derstand, and ChatGPT will respond accordingly. This process can not only help us quickly pinpoint the

reasons for code errors but also evaluate whether ChatGPT lacks the understanding of mathematical algo-

rithms. ChatGPT plays the role of providing a general code framework and interpreting the code in the

above process. In the end, we obtained the code as shown in Fig. 7, which can correctly compute Betti

numbers of a given abstract simplicial complex.
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import numpy as np

def compute betti(complex):

num simplices = len(complex)

m = len(complex[num simplices - 1]) - 1

b = [0, 0]

k = 1

for i in range(num simplices):

if len(complex[i]) == k:

b[k] += 1

else:

k += 1

b.append(b[k - 1] + 1)

boundary matrix = np.zeros((num simplices, num simplices), dtype=int)

for i, simplex in enumerate(complex):

for j, vertex in enumerate(simplex):

face = simplex[:j] + simplex[j + 1:]

face index = complex.index(face)

boundary matrix[i, face index] = 1 if j % 2 == 0 else -1

r = [0] * (m + 1)

for i in range(m):

r[i + 1] = np.linalg.matrix rank(boundary matrix[b[i + 1]:b[i + 2], b[i]:b[i +

1]])

betti = [0] * (m + 1)

if m == 0:

betti[0] = b[1] - b[0]

elif m == 1:

betti[0] = b[1] - b[0] - r[0] - r[1]

betti[m] = b[2] - b[1] - r[1]

else:

for i in range(m):

betti[i] = b[i + 1] - b[i] - r[i] - r[i + 1]

return betti

# Define the abstract simplicial complex as a list of simplices

complex = [[1], [2], [3], [4], [5], [1, 2], [2, 3], [2, 4], [3, 4], [2, 3, 4]]

# Calculate Betti numbers using the function

betti numbers = compute betti(complex)

# Print the Betti numbers

print("Betti Numbers:")

print(betti numbers)

Figure 7: The final code for computing Betti numbers.11



2.2 Computing Dirac and Laplacian matrices

In this section, we further guide ChatGPT to generate the codes for computing Dirac and Laplacian

operators of a simplicial complex.

Let K be a simplicial complex, and let C∗(K) be chain complex of K. One can endow C∗(K) with an

inner product structure given by

ïÃ, Äð =
{

1, Ã = Ä ;

0, otherwise.

Then we have the adjoint operator d∗ : C∗(K) → C∗(K) of d with respect to the above inner product. The

Dirac operator ¶ : C∗(K) → C∗(K) on K is defined by ¶ = d+d∗. The Laplacian operator ∆ : C∗(K) → C∗(K)

on K is defined by ∆ = ¶2 = d∗d + dd∗. As we know, the eigenvalues of Laplacian operators are crucial

features for capturing the shape of a data-set. The number of zero eigenvalues is equal to the Betti number,

and the second smallest eigenvalue, called the Fiedler vector, corresponds to the connectivity of the simplicial

complex. The smallest positive eigenvalue, denoted by ¼(1) is the spectral gap, which is closely related the

Cheeger constant in differential geometry. The spectral gap ¼(1) is also one of the most commonly used

features in applications.

Let Bp be the representation matrix of dp : Cp(K) → Cp−1(K). More precisely, we write

dp







e1p
...

e
kp

p






= Bp







e1p−1

...

e
kp−1

p−1







Here, e1p, . . . , e
kp

p is the basis of Cp(K). Then the representation matrix of the p-dimensional Laplacian

operator ∆p : Cp(K) → Cp(K) can be written as

Lp = BpB
T
p +BT

p+1Bp+1, p g 1.

In particular, L0 = B1B
T
1 . It is worth noting that if the represention matrix Bp for dp is given by right

multiplication, the corresponding Laplacian matrix is Lp = BT
p Bp +Bp+1B

T
p+1.

After we provided the matrix representation of Dirac and Laplacian operators to ChatGPT, it im-

mediately generates the desire code for computing the corresponding Dirac and Laplacian matrices. The

interaction with ChatGPT is shown in Fig 8 and Fig. 9. Although ChatGPT has been shown to per-

form relatively well in complex mathematical computations, its understanding of mathematical formulas is

satisfactory.
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Q: The Dirac matrix is given by the sum of the boundary matrix and its transpose matrix. Can you

provide the function for computing the Dirac matrix in coding?

Certainly! You can compute the Dirac matrix by summing the boundary matrix and its transpose.

Here’s a Python function to do that:

· · · · · ·
def compute dirac matrix(complex):

# Compute the boundary matrix

boundary matrix = compute boundary matrix(complex)

# Compute the Dirac matrix by adding the boundary matrix and its transpose

dirac matrix = boundary matrix + boundary matrix.T

return dirac matrix

· · · · · ·

This code defines a ‘compute dirac matrix’ function that takes your abstract simplicial complex

as input, computes the boundary matrix using the previously defined ‘compute boundary matrix’

function, and then computes the Dirac matrix by adding the boundary matrix to its transpose.

Figure 8: The added code for Dirac matrix.

Q: The Laplacian matrix is given by the Dirac matrix multiplies its transpose. Could you please provide

the Laplacian matrix in coding?

To compute the Laplacian matrix, you can multiply the Dirac matrix by its transpose. Here’s a

Python function to do that:

· · · · · ·
def compute laplacian matrix(complex):

# Compute the Dirac matrix

dirac matrix = compute dirac matrix(complex)

# Compute the Laplacian matrix by multiplying the Dirac matrix by its

transpose

laplacian matrix = np.dot(dirac matrix, dirac matrix.T)

return laplacian matrix

· · · · · ·

This code defines a ‘compute laplacian matrix’ function that takes your abstract simplicial complex

as input, computes the Dirac matrix using the previously defined ‘compute dirac matrix’ function,

and then computes the Laplacian matrix by multiplying the Dirac matrix by its transpose.

Figure 9: The added code for Laplacian matrix.

3 ChatGPT for hypergraphs and directed graphs

Topological hypergraph and digraph (directed graph) are relatively new mathematical models for study-

ing the complex systems in applications. From a combinatorial perspective, hypergraphs are an extension
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of graphs where edges can be of higher dimension. From a geometric standpoint, hypergraphs are a gen-

eralization of abstract simplicial complexes, relaxing the condition of face operator closure that is inherent

in simplicial complexes. In [BLRW19], the authors introduced the embedded homology hypergraphs, which

are exactly a generalization of the simplicial homology of simplicial complexes. In this section, the topology

invariants for hypergraphs is based on the embedded homology. The GLMY theory was introduced to study

the topology of directed graphs [GLMY12, GLMY14, GLMY15]. Specifically, simplicial complexes are essen-

tial path complexes on digraphs, and the path homology can also be viewed as a generalization of simplicial

homology. The embedded homology and GLMY theory provide us with a broader perspective and general

tools to address practical problems.

3.1 Betti numbers for hypergraphs

Let us recall the embedded homology of hypergraphs. Let V be a finite and ordered nonempty set. Let

P(V ) be the power set of V . A hypergraph on V is a pair (V,H) such that H is a nonempty subset of P(V ).

The simplicial closure is defined by ∆H = {Ã|Ã ¦ Ä ∈ H}, which can be viewed as the minimal simplicial

complex contain H.

Let K be the ground field. Let C∗(∆H;K) be the chain complex of the simplicial complex ∆H. Let

D∗(H;K) be the graded subspace of C∗(∆H;K) generated by the hyperedges in H. Then one has the

infimum chain complex

Inf ∗(H;K) =
∑

{C ′
∗ ¦ D∗(H;K)|C ′

∗ is a subchain complex of C∗(∆H;K)}

and the supremum chain complex

Sup∗(H;K) =
⋂

{C ′
∗ § D∗(H;K)|C ′

∗ is a subchain complex of C∗(∆H;K)}

of H. It is proved that the homology of the infimum chain complex is isomorphic to the supremum chain

complex of H. The embedded homology is defined to be

Hp(H;K) := Hp(Inf ∗(H;K)), p g 0.

Now, we will sketch the algorithm for computing the Betti numbers for hypergraphs. By [BLRW19,

Proposition 2.1], one has that Inf ∗(H;K) = D∗(H;K) ∩ d−1D∗(H;K). Here, d is the differential on

C∗(∆H;K). In this work, the calculation of embedded homology is based on the chain complex D∗(H;K) ∩
d−1D∗(H;K). By [LCLW22, Theorem 2.3], we have

´p(H) = dimDp(H;K) ∪ dDp+1(H;K)− dim dDp+1(H;K)− dim dDp(H;K).

Let Bp be the representation matrix of the differential dp : Dp(H;K) → Cp−1(∆H;K). Then the Betti

numbers can be computed by

´p(H) = rank

(

Ep

Bp

)

− rankBp+1 − rankBp. (2)

Here, Ep is the matrix of p-hyperedges. We need to compute the boundary matrix Bp and the hyperedge

matrix Ep. The algorithm for computing the boundary matrix of a hypergraph is almost identical to the

algorithm for computing the boundary matrix of a simplicial complex. The key difference lies in the induces

of hyperedges within the simplicial closure of the hypergraph. More precisely, we should find the index of

each hyperedge in the list of the simplices of the simplicial complex ∆H. Besides, we also need the index of

the boundary of each hyperedge. Based on the reasons mentioned above, we posed the question to ChatGPT

in Fig. 10.
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Q: Find the indices of each element in a subset within another ordered set’s subset and provide Python

code for it.

To find the indices of each element in a subset within another ordered set’s subset in Python, you

can use list comprehensions and the ‘enumerate()’ function. Here’s a Python code example to achieve

this:

def find indices of subset(main set, subset):

indices = [i for i, x in enumerate(main set) if x in subset]

return indices

# Example usage:

main set = [1, 2, 3, 4, 5, 6, 7, 8, 9]

subset = [3, 5, 7]

indices = find indices of subset(main set, subset)

print("Indices of subset elements in the main set:", indices)

In this code:

1. We define a function ‘find indices of subset’ that takes two lists as input, ‘main set’ and ‘subset’.

2. We use a list comprehension to iterate over the elements in the ‘main set’ along with their indices

using the ‘enumerate()’ function.

3. For each element ‘x’ in ‘main set’, we check if it exists in the ‘subset’. If it does, we append its

index ‘i’ to the ‘indices’ list.

4. Finally, we return the ‘indices’ list, which contains the indices of elements in the ‘subset’ that

appear in the ‘main set’.

Figure 10: ChatGPT helps us find the index of a subset within an ordered set.

As shown Fig. 8 and Fig. 9, we can obtain the code for computing the Betti numbers for hypergraphs

based on Eq. (2). In the progress, we need to validate whether the examples computed by the algorithm are

correct. We examined the computed results at various locations in the code and determined which step of

the calculation went wrong. We also tried to understand what caused these errors. While ChatGPT plays

a significant role in writing and explaining code, our primary expertise lies in comprehending mathematical

principles, and our responsibility is to oversee ChatGPT rather than engage in coding.

3.2 Betti numbers for directed graphs

Directed graphs (digraphs) naturally possess a 1-complex structure but lack higher-dimensional struc-

ture. However, the GLMY theory can detect the higher-dimensional structure of digraphs and compute their

higher-order homology, referred to as path homology. Persistent path homology has been applied in various

field [CLW+23, CHY22, CM18].

From now on, the Betti numbers for digraphs always refer to the Betti numbers based on the path

homology. The algorithm for computing the Betti numbers for digraphs is quite similar. Recall that a

digraph G = (V,E) consists of a finite nonempty set V , called the vertex set, and the edge set E ¦ V × V .

From now on, all the digraphs considered are assumed to be simple, that is, there is no loop or multi-edge

in the same direction. An elementary p-path on V is a sequence i0i1 · · · ip of vertex in V . Let Λp(V ;K)

be the K-linear space generated by all the elementary p-paths on V . With special attention, the basis for

Λ(V ;K) is denoted by {ei0i1···ip}, where i0i1 · · · ip runs across all the elementary p-paths on V . It follows
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that Λ∗(V ;K) is a chain complex with the differential dp : Λp(V ;K) → Λp−1(V ;K) given by

dpei0i1···ip =

p
∑

t=0

(−1)tei0···ît···ip , p g 1

and d0ei0 = 0. Here, ît means omission of the index it. An allowed p-path on a digraph G is an elementary

path i0i1 · · · ip such that (it−1, it) ∈ E for t = 1, . . . , p. Let Ap(G;K) be the K-linear space generated by all

the allowed p-paths on G. Then Ap(G;K) is a subspace of Λ(V ;K). Let

Ωp(G;K) = {x ∈ Ap(G;K)|dpx ∈ Ap−1(G;K)}.

Then Ω∗(G;K) is a chain complex. The path homology of G is defined by

Hp(G;K) := Hp(Ω∗(G;K)), p g 0.

It is worth noting that the chain complex Ω∗(G;K) is exactly the infimum chain complex of A∗(G;K)

in Λ∗(V ;K). The construction of Ω∗(G;K) for digraphs is quite similar as the construction of Inf ∗(H;K)

for hypergraphs. This similarity determines that we can use algorithms for calculating Betti numbers of

hypergraphs to compute the Betti numbers of directed graphs in GLMY theory. The main difference in

computing the Betti numbers of a directed graph is that we need to find all paths and represent these paths

as lists, which is consistent with the representation of simplices in simplicial complexes or hyperedges in

hypergraphs. It is worth noting that there may be simplified algorithms for applying the boundary operator

to paths in view of the specific characteristics of paths.

Here, let us briefly outline the logic of how we will approach by asking ChatGPT to demonstrate how

it can gradually help us write the code we need: Given a directed graph, provide a list of paths.

(1) Question: Can you give me a Python code for finding all the directed path on a digraph?

ChatGPT gives us the all the paths for a given starting node and ending node.

(2) Question: I need to obtain all paths, regardless of the starting and ending nodes.

When we run the code, it does not show the 0-dimensional paths.

(3) Question: Please add vertices as path of length 0 into the ’paths’.

Then ChatGPT provides the satisfactory code.

Besides, we also request a code for finding the path with the length not larger than 2 or an integer number.

Indeed, a finite digraph, for example, V = {0, 1}, E = {(0, 1), (1, 0)}, there are infinite many paths which

behave as the binary numbers.

3.3 Computing hypergraph Laplacian

In this section, we will study the algorithms for computing the Dirac and Laplacian matrices of on

hypergraphs and digraphs. We will present the mathematical progress for hypergraphs first. The algorithm

for digraphs is much similar.

Let H be a hypergraph. Recall that we have the chain complex C∗(∆H;K) and its subspace D∗(H;K).

Let e1p, . . . , e
lp
p and ε1p, . . . , ε

kp

p be the basis of C∗(∆H;K) andD∗(H;K), respectively. We write the differential

dp : Dp(H;K) → Cp−1(∆H;K) by

dp







ε1p
...

ε
kp

p






= Bp







e1p
...

e
lp
p






.
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Let Ãp : Cp(∆H;K) → Cp(∆H;K)/Dp(H;K) and Äp : Cp(∆H;K) → Dp(H;K) be projections of K-linear

spaces. Then we have Inf p(H;K) = ker(Ã ◦ dp). Let B̄p be the representation matrix of Ã ◦ dp. Let

Ap







ε1p
...

ε
kp

p






be an orthogonal basis of Inf p(H;K). The we have

Ã ◦ dp






Ap







ε1p
...

ε
kp

p












= Ap






Ã ◦ dp







ε1p
...

ε
kp

p












= ApB̄p







e1p
...

e
lp
p






.

Note that Ap is an rp × kp matrix. Here, kp is the dimension of Inf p(H;K). The algorithm to obtain the

matrix Ap is to calculate the left zero matrix of B̄p. Let B̃p be the representation matrix of Ä ◦ dp. Based

on the discussion above, we have

dp






Ap







ε1p
...

ε
kp

p












= Ä ◦ dp






Ap







ε1p
...

ε
kp

p












= Ap






B̃p







ε1p
...

ε
kp

p












= ApB̃pA

−1

p−1






Ap−1







ε1p
...

ε
kp

p












.

Here, A−1
p is the generalized inverse or Moore-Penrose matrix of Ap, i.e., A

−1
p Ap = Irp . Then ApB̃pA

−1

p−1 is

the desired boundary matrix of the infimum complex. Furthermore, the Laplacian matrix can be computed

by

Lp = ApB̃pA
−1

p−1(ApB̃pA
−1

p−1)
T + (Ap+1B̃p+1A

−1
p )TAp+1B̃p+1A

−1
p , p g 1.

In particular, L0 = (A1B̃1A
−1

0 )TA1B̃1A
−1

0 . The eigenvalues of Laplacian matrices are independent of the

choices of the orthogonal for the infimum chain complex.

Next, we guide ChatGPT to generate the code for computing the boundary matrix for the infimum

chain complex Inf p(H;K). The algorithm is based on the code for computing Betti numbers. Recall that

we have obtained the code for computing the boundary matrix Bp in Section 3.1.

Let I be the list of the index of the hyperedges of H in the set of simplicies of ∆H. The matrix B̄ is

obtained by removing the columns indexed by I, while the matrix B̃ consists of the columns indexed by I.
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Q: With a given a matrix and index list, please give me a Python code to obtain two new matrices by

removing the columns indexed by the list and not indexed by the list.

To obtain two new matrices from an input matrix by removing columns based on an index list, you

can use Python and NumPy. Here’s a Python code snippet to achieve this:

import numpy as np

def split matrix(matrix, index list):

# Create an array of boolean values indicating which columns to keep

keep columns = np.zeros(matrix.shape[1], dtype=bool)

keep columns[index list] = True

# Use boolean indexing to split the matrix

matrix with indexed columns = matrix[:, keep columns]

matrix without indexed columns = matrix[:, ∼keep columns]

return matrix with indexed columns, matrix without indexed columns

# Example usage:

# Create a sample matrix and index list for testing

sample matrix = np.array([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])

index list = [0, 2] # Specify the indices of columns to keep

# Call the function to split the matrix

result with indexed, result without indexed = split matrix(sample matrix,

index list)

# Print the results

print("Matrix with indexed columns:")

print(result with indexed)

print("\nMatrix without indexed columns:")

print(result without indexed)

In this code, ‘split matrix’ takes an input matrix and an index list as arguments and returns two new

matrices: one with columns indexed by the list and another with columns not indexed by the list. It

uses NumPy to perform the column selection efficiently.

Figure 11: ChatGPT helps us split a matrix into two matrices.

Then there are three tasks left for us:

(1) Compute the orthogonal left zero matrix Ap of B̄p;

(2) Compute the generalized inverse matrix A−1
p of Ap;

(3) Compute the Laplacian matrices for hypergraphs.
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Fig. 12 gives the code for computing orthogonal left zero matrix, while the generalized inverse matrix is

provided in Fig. 13. We combine all the functions together and obtain the final code for computing the

Laplacians for hypergraphs.
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Q: Given a matrix B, please find a matrix A such that AB = 0 and the rows of A are orthogonal to

each other. Please give me a Python code.

· · · · · · (Not desired content is omitted here.)

Q: Suppose B is an m × n matrix, where m f n. Please find a r × m matrix A as above. Here,

r = m− rank(B).

If you want to find a matrix A with r rows (where r = m− rank(B)) such that AB = 0 and the rows

of A are orthogonal to each other, you can use the concept of the left null space of matrix B. The left

null space contains vectors that are orthogonal to the rows of B. Here’s a Python code to do that:

import numpy as np

# Define matrix B

B = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])

# Calculate the rank of matrix B

rank B = np.linalg.matrix rank(B)

# Calculate r (number of rows in A)

r = B.shape[0] - rank B

# Perform SVD on B to get the left singular vectors (V matrix in SVD)

U, S, VT = np.linalg.svd(B)

# Extract the left null space vectors from VT

left null space vectors = VT[rank B:].T

# Create matrix A with orthogonal rows from the left null space vectors

A = left null space vectors[:r]

# Verify that A is orthogonal and AB = 0

result = np.dot(A, B)

print("Matrix A:")

print(A)

print("\nMatrix AB:")

print(result)

In this code:

1. We define matrix B as given.

2. We calculate the rank of matrix B using ‘numpy.linalg.matrix rank’.

3. We calculate r, which is m− rank(B).

4. We perform Singular Value Decomposition (SVD) on B to get the left singular vectors (V matrix in

SVD).

5. We extract the left null space vectors from VT (transpose of V).

6. We create matrix A with r rows from the left null space vectors.

7. We verify that A is orthogonal by calculating ‘A * A.T’, which should be the identity matrix if A

is orthogonal.

8. We also calculate AB to ensure that AB = 0.

Make sure you have NumPy installed (‘pip install numpy’) to run this code.

Figure 12: ChatGPT helps us find the orthogonal left zero matrix of a given matrix. Note that the code cannot run smoothly

before debugging.
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Q: Please give me a Python code for computing the right generalized inverse matrix of a given matrix.

To compute the right generalized inverse (also known as the Moore-Penrose inverse) of a given matrix

in Python, you can use the numpy library, which provides a convenient function for this purpose. Here’s

how you can do it:

import numpy as np

# Define your matrix

A = np.array([[1, 2, 3],[4, 5, 6]])

# Compute the right generalized inverse (Moore-Penrose inverse)

A inv = np.linalg.pinv(A)

# Print the result

print("Right Generalized Inverse:")

print(A inv)

In this code:

1. We import the numpy library as ‘np’.

2. We define your matrix ‘A’. You can replace this matrix with the one you want to compute the right

generalized inverse for.

3. We use the ‘np.linalg.pinv()’ function to compute the right generalized inverse of ‘A’. This function

automatically calculates the Moore-Penrose inverse.

4. We print the result, which is the right generalized inverse of the input matrix ‘A’.

Make sure to have numpy installed in your Python environment. You can install it using pip if it’s not

already installed:

pip install numpy

Replace the ‘A’ matrix with your desired matrix to compute its right generalized inverse.

Figure 13: ChatGPT can provide codes for computing the generalized inverse matrix.

3.4 Computing path Laplacian

Path Laplacian and persistent path Laplacian have also been introduced to reveal crucial structured

characteristic that cannot be detected by (persistent) path homology [WW23]. Like in Section 3.2, the code

for computing the hypergraph Laplacian is equally applicable for calculating the path Laplacian of a digraph.

Let G = (V,E) be a digraph. We have a chain complex Ω∗(G;K) with the differential dp : Ωp(G;K) →
Ωp−1(G;K). The path Laplacian ∆p : Ωp(G;K) → Ωp(G;K) is defined by

∆p = d∗p ◦ dp + dp+1 ◦ d∗p+1, p g 1.

In particular, ∆0 = d1 ◦ d∗1. The number of zero eigenvalues of ∆p, known as the harmonic information, is

equal to the Betti number ´p from the path homology. The non-harmonic information is expressed as the

positive eigenvalues of ∆p. Note that the smallest positive eigenvalue of ∆p is one of the most used feature

in illustrating the difference between path homology and path Laplacian.

To compute the representation matrix of Laplacian operator ∆p, it suffices to find the representation

matrix of the boundary dp. This can be done similar as in Section 3.3. We have also obtained a functional
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code for computing path Laplacians.

3.5 Computing hyperdigraph Laplacian

Topological hypergraphs are highly versatile models capable of characterizing high-dimensional data

structures. Topological hyperdigraphs can be viewed as assigning additional directions to each hyperedge,

thereby encompassing more information and considered a more generalized mathematical model. Recently,

the persistent hyperdigraph Laplacians have been introduced to characterize the topological information of

complex systems [CLWW23].

Let V be a finite and ordered nonempty set. Let S(V ) be the set of all sequence of distinct elements in

V . A hyperdigraph on V is a pair (V, H⃗) such that H⃗ is a nonempty subset of S(V ). A sequence in H⃗ is called

directed hyperedge. Hyperdigraph can be viewed as a kind of generalization of hypergraphs or digraphs.

Let Sp(V ;K) be the K-linear space generated by the (p+ 1)-element sets in S(V ). Then S∗(V ;K) is a

chain complex with the boundary operator dp : Sp(V ;K) → Sp−1(V ;K) given by

dp(v0, . . . , vp) =

p
∑

i=1

(−1)i(v0, . . . , v̂i, . . . , vp), p g 0.

Here, v̂i means the omission of the term vi. In particular, d0 = 0 on S0(V ;K). Let Fp(H⃗;K) be the K-linear

space generated all the directed hyperedges in H⃗. Let

Ωp(H⃗;K) = {x ∈ Fp(H⃗;K)|dpx ∈ Fp−1(H⃗;K)}.

Then Ω∗(H⃗;K) is a chain complex. The homology of H⃗ is defined by

Hp(H⃗;K) := Hp(Ωp(H⃗;K)), p g 0.

We endow the directed hyperedges with the standard inner product structure. The Laplacian ∆p : Ωp(H⃗;K) →
Ωp(H⃗;K) is given by

∆p = d∗p ◦ dp + dp+1 ◦ d∗p+1.

The representation of a hyperdigraph in the code is provided as a collection of lists, with each list representing

a directed hyperedge. The Betti numbers and Laplacian matrices for hyperdigraphs can be computed in a

similar manner as for hypergraphs. The ChatGPT code obtained with our supervision can also be used to

compute the hyperdigraph Betti numbers and hyperdigraph Laplacians.

4 ChatGPT for topological persistence

The development of applied topology is profoundly benefited by topological persistence. Topological

persistence can characterize multi-scale topological information in data sets. Without persistence, homology

theory by itself would have little application value. Nowadays, persistent homology and persistent Laplacian

are some of the most popular TDA tools. The data set considered is always a family of discrete points in a

metric space. Given a data set, one can compute the distance between any two of the points with a specific

mertic, and the persistence is based on the distance. The Vietoris-Rips complex or Rips complex is the

standard construction of the persistence from a data set. There have been numerous studies on persistent

homology [CZCG04, ELZ02, EH+08, ZC04], persistent Laplacians [CZTW19, LLW23, MWW22, WNW20],

and persistent Dirac operators [AMS22, WBX23].

4.1 ChatGPT for persistent homology and persistent Laplacians

Consider the simplicial complex Kε parametrized by a real number ε such that Kε ↪→ Kε′ for any ε f ϵ′.

For a f b, we have a morphism of chain complexes ja,b∗ : C∗(Ka) ↪→ C∗(Kb), which induces a morphism of
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homology groups H∗(Ka) → H∗(Kb). The (a, b)-persistent homology is defined by

Ha,b
p := Im(Hp(Ka) → Hp(Kb)), p g 0.

The rank of the persistent homology ´a,b
p = rankHa,b

p is the (a, b)-persistent Betti number, which is always

represented by barcode or persistence diagram in application. In particular, we have ´a,a
p = ´a

p .

The (a, b)-persistent Laplacian ∆a,b
p : C∗(Ka) → C∗(Ka) is defined by

∆a,b
p = (dap)

∗ ◦ dap + (da,bp+1)
∗ ◦ da,bp+1, p g 0.

Here, dap is the boundary operator of C∗(Ka), and da,bp+1 is the composition of

{x ∈ Cp+1(Kb)|dbp+1x ∈ Cp+1(Ka)} ↪→ Cp+1(Kb)
db
p+1→ Cp(Ka).

In particular, when a = b, the persistent Laplacian ∆a,a
p is exactly the Laplacian ∆a

p on chain complex

C∗(Ka).

Persistent homology and persistent Laplacians can also be defined for hypergraphs, digraphs, and hy-

perdigraphs [CLWW23]. This allows for the characterization of multiscale topological information in these

structures.

In applications, one often focuses on the 0th and 1st Betti numbers because they are more computa-

tionally tractable. Sometimes, researchers only compute the Betti numbers at each parameter and get the

Betti curves ´a
0 and ´a

1 . If the barcode obtained from the data set has a large number of bars, then using

the persistent Betti number is often a reasonable choice.

When it comes to persistent Laplacians, researchers seldom find it necessary to compute the persistent

Laplacian ∆a,b
p for all a f b since it would make the calculation overly complex. In most cases, people only

compute the Laplacians ∆a
0 and ∆a

1 . It is yet to demonstrate that computationally sophisticated persistence

offers any real benefit for data analysis. Therefore, we might misuse the term “persistence”, which is

largely due to computational considerations and does not affect the theoretical notion of persistence. In

our examples, we have not provided the ChatGPT code obtained with our supervision for computing the

barcodes and (a, b)-persistent Laplacians for a < b. We only calculate the Betti numbers and Laplacians at

various filtration parameters.

4.2 ChatGPT for persistent harmonic space

It is proved that the persistent harmonic space for a filtration of simplicial complexes is naturally

isomorphic to the persistent homology for the filtration [LLW23, Theorem 3.6]. It is worth noting that

the basis for the persistent homology is a family of equivalent classes, which give rise to an obstruction for

computing the generators in the persistent homology. However, the persistent harmonic space has a good

property that the basis of the space is unique under linear isomorphisms, which provides us with a chance

to find the basis of the persistent harmonic space and to track the generators as the persistence parameter

varies.

Although there are many existing algorithms for computing persistent homology, there is not algorithm

for computing the persistent harmonic space, to the best of our knowledge. It is interesting and important

to demonstrate that ChatGPT can develop unseen codes in computational topology.

Consider the simplicial complex Kε parametrized by a real number ε such that Kε ↪→ Kε′ for any ε f ϵ′.

Recall that the (a, b)-persistent Laplacian ∆a,b
p : C∗(Ka) → C∗(Ka) is ∆a,b

p = (dap)
∗ ◦ dap + (da,bp+1)

∗ ◦ da,bp+1.

The (a, b)-persistent harmonic space is defined by

Ha,b
p = ker∆a,b

p , p g 0.

Note that there is a decomposition of C∗(Ka) = Ha
∗ · Imda · Im(da)∗, where Ha

∗ = ker∆a
∗. Let pa :

C∗(Ka) → Ha
∗ be the projection of C∗(Ka) to the harmonic part. By [LLW23, Proposition 3.8], one has an
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isomorphism

Ha,b
p

∼= pbja,b∗ (Ha
p) (3)

for any a f b. This implies the persistence on the persistent harmonic space. There is a natural isomorphism

between the persistent harmonic space and the persistent homology

Ha,b
p

∼= Ha,b
p , p g 0.

To compute the persistent homology, it suffices to give the code for the persistent harmonic space.

Let Ba
p be the representation matrix of the boundary operator dap : Cp(Ka) → Cp−1(Ka). The repre-

sentation matrix of the adjoint operator (dap)
∗ : Cp−1(Ka) → Cp(Ka) of d

a
p is given by the transpose matrix

(Ba
p )

T of Ba
p with respect to the standard orthogonal basis given by the simplices. Thus, the harmonic space

Ha
p can be represented by the solution space W a of the equation

W a
(

Ba
p (Ba

p+1)
T

)

= O.

All the generators in W a have the index a as the birth time. When the time comes to b g a, we will determine

if there are generators that die at b. Note that ja,b∗ is an inclusion, by Eq. (3), we have that the (a, b)-persistent

harmonic space Ha,b
p is the projection of Ha

p to Hb
p. Note that Ha

p ¦ ker dbp and Hb
p = ker dbp ∩ ker(dbp+1)

∗.

Let U be the orthogonal complement space of Ha,b
p in Ha

p. It follows that

(dbp+1)
∗Ha

p
∼= U.

Thus, if W a(Bb
p+1)

T = O, there is no generator dead at b. Moreover, dimW a(Bb
p+1)

T is the number of

generators dead at b. The subspace of W a corresponding to W a(Bb
p+1)

T are the space generated by the dead

generators. The left generators contribute to the persistent harmonic space Ha,b, represented by the matrix

W a,b.

Let Ea
p be the basis of Cp(Ka). Let E

b
p =

(

Ea
p

F b
p

)

be the basis of Cp(Kb). Then we assume

dbp

(

Ea
p

F b
p

)

=

(

Ba
p O

³b
p ´b

p

)(

Ea
p−1

F b
p−1

)

.

LetWb =

(

W a,b O

W b
1 W b

2

)

. It follows that the the harmonic space at b is given byW b
(

Bb
p (Bb

p+1)
T

)

= O.

Thus one has
(

W b
1 W b

2

)

(

Ba
p O (Ba

p+1)
T (³b

p+1)
T

³b
p ´b

p O (´b
p+1)

T

)

= O. (4)

Note that if (x,0) is a solution vector, then xBa
p = 0 and x(³b

p+1)
T = 0. It follows that x is a generator

representation in Ha
p. Thus, all the generators represented in the form (x,y) consist the solution space

of Eq. (4), where y ̸= 0. Therefore, one can obtain the desired generators and mark them with the

birth time b. By continuing this iteration, we can obtain the persistent harmonic space. In particular, the

corresponding dimensions for the persistent harmonic space lead to the persistence diagram or barcode for

the persistent harmonic space, which is the consistent with the persistence diagram of the corresponding

persistent homology. In the example code of ChatGPT, we show the basic calculations for computing the

1-dimensional persistent harmonic space.

import vr complex

import numpy as np

import boundary matrix
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def generate complex(A, B, d):

result = [A[i] for i, distance in enumerate(B) if distance < d]

return result

def rips complex generate(vr,a):

rips complex 1 = generate complex(vr[1],vr[2],a)

rips complex 2 = generate complex(vr[3],vr[4],a)

rips complex = vr[0] + rips complex 1 + rips complex 2

return rips complex

def dim index(hypergraph):

num hyperedges = len(hypergraph)

m=len(hypergraph[num hyperedges-1])+1

m=max(m,4)

b = [0] * m

for i in range(num hyperedges):

b[len(hypergraph[i])]+=1;

c = [0] * m

for i in range(m-1):

c[i+1]=c[i]+b[i+1]

return c

def left null space(matrix):

# Calculate the rank of the input matrix

rank matrix = np.linalg.matrix rank(matrix)

# Perform SVD to get the left singular vectors

U, S, VT = np.linalg.svd(matrix)

# Extract the left null space vectors from U

left null space vectors = U[:, rank matrix:].T

return left null space vectors

def triangular matrix(Ar):

# Initialize the left multiplication matrix as the identity matrix

La = np.identity(Ar.shape[0])

# Iterate through each column and perform Gaussian elimination for j in

range(Ar.shape[1]):

for i in range(j + 1, Ar.shape[0]):

# Calculate the steps of Gaussian elimination to obtain elements of L

factor = Ar[i, j] / Ar[j, j]

# Update elements of L

La[i, j] = factor

# Update rows of A to achieve elimination

Ar[i, :] -= factor * Ar[j, :]

return La, Ar
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# Calculate the inverse transformation of the matrix row operations for L

def lower triangular inverse(A):

n = A.shape[0]

B = np.eye(n)

if np.linalg.matrix rank(A) < n:

print("The matrix is singular. Try another one!")

return B

for k in range(n):

B[0, k] = B[0, k] / A[0, 0]

for i in range(1, n):

B[i, k] = (B[i, k] - np.dot(A[i, :i], B[:i, k])) / A[i, i]

return B

#for a harmonic matrix, print the generators for the harmonic spaces

def print harmonic generators(rips complex,harmonic matrix):

# Get the number of rows in the matrix

num rows = harmonic matrix.shape[0]

num cols = harmonic matrix.shape[1]

#print the generators

for i in range(num rows):

for j in range(num cols):

if j > 0 and harmonic matrix[i][j]>0 and j<num cols-1:

print("+",round(harmonic matrix[i][j],7),rips complex[j],end="")

elif harmonic matrix[i][j] ==0 and j<num cols-1:

continue

elif j<num cols-1:

print(round(harmonic matrix[i][j],7),rips complex[j],end="")

elif i<num rows-1:

print(" and")

elif harmonic matrix[i][j]>0;

print("+",round(harmonic matrix[i][j],7),rips complex[j])

else:

print(round(harmonic matrix[i][j],7),rips complex[j]))

return

# since not each matrix can be trangulated, we use the gaussian elimination

def gaussian elimination partial pivoting(matrix):

m, n = matrix.shape

for i in range(min(m, n)):

# Use partial pivoting to select the main element

max row = np.argmax(np.abs(matrix[i:, i])) + i

if matrix[max row, i] == 0:

continue # If a non-zero main element cannot be found, move to the

next column

matrix[[i, max row]] = matrix[[max row, i]]

for j in range(i + 1, m):

factor = matrix[j, i] / matrix[i, i]

matrix[j, i:] -= factor * matrix[i, i:]

return matrix
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discrete points = np.array([[0,0,0],[0,1,0],

[1,0,0],[1,1,0],

[0,0,2],[0,1,2],

[1,0,2],[1,1,1.5]

])

a = 1.1

b = 1.3

#Give the maximal VR complex with all 0,1,2-dimensional simplices

vr list=vr complex.vr compute(discrete points)

#generate the rips complexes at some parameters

RipsC a = rips complex generate(vr list,a)

RipsC b = rips complex generate(vr list,b)

print("The Rips complex at parameter a is:",RipsC a)

print("The Rips complex at parameter b is:",RipsC b)

#generate the boundary matrices for rips complexes

boundary a=boundary matrix.compute boundary matrix(RipsC a)

boundary b=boundary matrix.compute boundary matrix(RipsC b)

index a = dim index(RipsC a)

index b = dim index(RipsC b)

rips a = RipsC a[index a[1]:index a[2]]

rips b = RipsC b[index b[1]:index b[2]]

#compute W a, which is the harmonic matrix at a,

#where dirac 1 is the union of boundary and coboundy matrices

dirac 1 = np.hstack((boundary a[0], boundary a[1].T))

W a = left null space(dirac 1)

#if W a is emtpyset, the persistent harmonic space is none, or we compute the matrix

U in our paper

if W a.size == 0:

print("The harmonic space at a is none.")

print("Then the harmonic space from a to b is also none.")

else:

print("The harmonic space at a is generated by:")

print harmonic generators(rips a,W a)

#U matrix is the space of dead elements at b

#The number of one-dimensional simplices added in Rips complex at time b compared

to time a.

rank 2 = index b[2]-index b[1]-index a[2]+index a[1]
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#The number of points

rank 1 = W a.shape[0]

zero add = np.zeros((rank 1, rank 2))

W a add = np.hstack((W a,zero add))

U matrix = W a add@(boundary b[1].T)

if U matrix.size == 0:

print("The harmonic space from a to b is generated by:")

W ab = W a add

print harmonic generators(rips b,W ab)

else:

rank U = np.linalg.matrix rank(U matrix)

if rank U == rank 1:

print("The harmonic space from a to b is none.")

else:

# compute the persistent harmonic space matrix W ab from a to b

Left triangle,trangle matrix = triangular matrix(U matrix)

copy triangle= Left triangle[:].copy()

L inv = lower triangular inverse(copy triangle)

W temp = L inv @ W a

W ab = W temp[:rank U, :]

#W b is the harmonic matrix at b

dirac 2 = np.hstack((boundary b[0], boundary b[1].T))

W b = left null space(dirac 2)

if W b.size == 0:

print("The harmonic space at b is none.")

else:

print("The harmonic space at b is generated by:")

print harmonic generators(rips b,W b)

, birth b = triangular matrix(W b)

reflect matrix = np.fliplr(birth b)

upper triangular matrix = gaussian elimination partial pivoting (reflect matrix)

rr matrix = np.fliplr(upper triangular matrix)

if W a.size == 0:

print("The harmonic generators birth at b is generated by:")

print harmonic generators(rips b,W b)

else :

number of generators = W b.shape[0] - W ab.shape[0]

print("The harmonic generators born at b is generated by:")

print harmonic generators(rips b,W b[:number of generators, :])

Figure 14: There are ten functions appeared in the ChatGPT code. The functions compute boundary matrix and

vr compute are imported from the previous files boundary matrix and vr complex, respectively. Apart from the

function print harmonic generators, the functions rips complex generate and dim index were designed by Chat-

GPT with our guidance. All the other functions, including generate complex, left null space, triangular matrix,

lower triangular inverse, and gaussian elimination partial pivoting, were provided in responses by ChatGPT. Specifi-

cally, the main idea for the function gaussian elimination partial pivoting was also provided by ChatGPT.
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Example 4.1. Consider the point set X embedded into the Euclidean space R
3 as follows.

X = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (0, 0, 2), (0, 1, 2), (1, 0, 2), (1, 1, 1.5)}.

We guided ChatGPT to complete the code for computing the 1-dimensional persistent harmonic space. We

take the persistent parameter a = 1.2 and b = 1.3. Then the result window displays as follows.

The Rips complex at parameter a is: [[0], [1], [2], [3], [4], [5], [6], [7], [0, 1], [0, 2], [1, 3], [2, 3], [4, 5], [4, 6]]

The Rips complex at parameter b is: [[0], [1], [2], [3], [4], [5], [6], [7], [0, 1], [0, 2], [1, 3], [2, 3], [4, 5], [4, 6], [5,

7], [6, 7]]

The harmonic space at a is generated by: 0.5 [0, 1]-0.5 [0, 2]+ 0.5 [1, 3]-0.5 [2, 3]

The harmonic space from a to b is generated by: 0.5 [0, 1]-0.5 [0, 2]+ 0.5 [1, 3]-0.5 [2, 3]

The harmonic space at b is generated by: -0.5 [0, 1]+ 0.5 [0, 2]-0.5 [1, 3]+ 0.5 [2, 3] and -0.5 [4, 5]+ 0.5 [4,

6]-0.5 [5, 7]+ 0.5 [6,7]

The harmonic generators born at b is generated by: -0.5 [4, 5]+ 0.5 [4, 6]-0.5 [5, 7]+0.5 [6,7]

Figure 15: Shown results on persistent harmonic spaces (I).

Besides, for another example, X is the point set with the points (0.5,
√
3/2, 0), (0.5,

√
3/2, 0), (−1, 0, 0)

,(1, 0, 0), (0.5,−
√
3/2, 0) ,(−0.5,−

√
3/2, 0.3). We take a = 1 and b = 1.2. The result is shown in Fig. 16.

The Rips complex at parameter a is: [[0], [1], [2], [3], [4], [5], [0, 3], [1, 2], [3, 4]]

The Rips complex at parameter b is: [[0], [1], [2], [3], [4], [5], [0, 3], [1, 2], [3, 4], [0, 1], [2, 5], [4, 5]]

The harmonic space at a is none.

Then the harmonic space from a to b is also none.

The harmonic space at b is generated by:

-0.4082483 [0, 3]+ 0.4082483 [1, 2]-0.4082483 [3, 4]+ 0.4082483 [0, 1]+ 0.4082483 [2, 5]

The harmonic generators birth at b is generated by:

-0.4082483 [0, 3]+ 0.4082483 [1, 2]-0.4082483 [3, 4]+ 0.4082483 [0, 1]+ 0.4082483 [2, 5]

Figure 16: Shown results on the persistent harmonic space (II).

In the example, one see that we can indeed obtain the persistent harmonic space, the corresponding

harmonic generators, and the generators of birth and death. If we only consider the dimensions of harmonic

spaces, the code can be developed into a code for computing the barcode for persistent dimensions of harmonic

spaces.

Through our interactions with ChatGPT, we have discussed various aspects of matrix transformations,

operations, and calculations. We have gained knowledge about matrix coding, and ChatGPT has improved

its understanding of the questions we have posed during our Q&A sessions.

As demonstrated above, we can guide ChatGPT step by step to implement the required code. What

we want to emphasize is that ChatGPT can not only help us find existing codes but also create new codes

that are unknown to researchers. This highlights the creative potential of ChatGPT for computations.

5 Applications

In this section, the ChatGPT codes obtained with our supervision are used to calculate data sets as

examples. We will present two examples: one involving a point set of six points arranged as nodes of a

hexagon, and the other involving three molecules.
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Figure 17: Comparison of persistent Laplacians generated by Rips complexes and hypergraphs. a The filtration of Rips

complex. b The filtration of hypergraphs. The source code for generating virtualization of hypergraphs is from [CLWW23]. c

Comparison of 0-dimensional Betti numbers for filtrations of Rips complexes and hypergraphs. d Comparison of spectral gaps

of 0-dimensional Laplacians for filtrations of Rips complexes and hypergraphs. e Comparison of 1-dimensional Betti numbers

for filtrations of Rips complexes and hypergraphs. f Comparison of spectral gaps of 1-dimensional Laplacians for filtrations of

Rips complexes and hypergraphs.

In Fig. 17, we consider a point set composed of six vertices forming a regular hexagon with side lengths

equal to 2. The six points are alternately colored in red and blue. For simplicial complex model, we use the

Rips complex. For hypergraph model, the hyperedges are constructed from the corresponding Rips complex

by requiring that each hyperedge has two colors. Specifically, the vertices are considered as 0-dimensional hy-

peredges. When the filtration parameter reaches r1 = 1, the Rips complex forms a regular hexagon. The cor-

responding hypergraphs is given byH = {{0}, {1}, {2}, {3}, {4}, {5}, {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {0, 5}}.
Here, 0, . . . , 5 denotes the six points for convenience. When the filtration parameter r2 =

√
3, the points 0

and 2 are connected by an edge. But {0, 2} is not a hyperedge since 0 and 2 have the same color. Similarly,

{1, 3}, {2, 4}, {3, 5}, {0, 4}, {1, 5} are not hyperedges. However, sets as {0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5},
{0, 4, 5}, {0, 1, 5} are 2-dimensional hyperedges. When r3 = 2, all the six points are connected. The cor-

responding hypergraph have more 2-dimensional hyperedges, such as {0, 1, 3}, {0, 1, 4} and so on. In 17c,

the 0-th Betti numbers for the Rips complex model and the hypergraph model coincides. Fig. 17e shows

difference of the 1-th Betti numbers between the two models. Fig. 17d and Fig. 17f show the spectral

gaps of 0 and 1-dimensional Laplacians for the Rips complex model and the hypergraph model. When the
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spectral gap equals 0, it means that all the eigenvalues are zero. While the Rips complex model and the

hypergraph give different information for the given set of point cloud, the Rips complex model apparently

offers rich information than a simple hypergraph does. However, hypergraph can be tailored to reveal specific

structural features.

β β λ λ

β β λ λ

Figure 18: Illustration of persistent homology and persistent Laplacians for three molecules. a The structure of fullerene C20.

b The structure of fullerene C60. c The structure of cucurbit[7]uril CB7. d Comparison of 0-dimensional Betti numbers for

C20 and C60. e Comparison of 1-dimensional Betti numbers for C20 and C60. f Comparison of spectral gaps of 0-dimensional

Laplacians for C20 and C60. g Comparison of spectral gaps of 1-dimensional Laplacians for C20 and C60. h The 0-dimensional

Betti numbers for CB7. i The 1-dimensional Betti numbers for CB7. j The spectral gaps of 0-dimensional Laplacians for CB7.

k The spectral gaps of 1-dimensional Laplacians for CB7.

Additionally, we consider examples of three molecules, including C20, C60, and BC7, and calculate the

corresponding Betti numbers and Laplacian spectra over filtration. Note that C20 and C60 were studied in

the literature using persistent Laplacians [WNW20], and BC7 was examined in the literature using persistent

path Laplacians [WW23]. The topological features are computed from the Rips complexes of these small

molecules. The atoms are regarded as points in Euclidean space and filtration lengths are determined by the

distance between points.

In Fig. 18, subfigures d, e, f, and g show the comparison of Betti numbers and the smallest positive

eigenvalues for the corresponding Laplacians of dimension 0,1 for C20 and C60. Clearly, information obtained

from persistent homology is limited. In contrast, persistent Laplacians not only return all the topological

invariants as given by persistent homology in their harmonic spectra, but also reveal additional structural

changes during the filtration in their nonharmonic spectra. Subfigures h, i, j, and k give the Betti numbers

and the smallest positive eigenvalues for the corresponding Laplacians of dimension 0 and 1 of BC7. The

curves of Betti numbers and the smallest positive eigenvalues based on persistent Laplacians are quite similar

with those obtained with persistent path Laplacians [WW23].
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6 Concluding remarks

In this study, we delve into the application of ChatGPT in computational topology from the perspective

of a topologist who possesses limited knowledge of computational algorithms and lacks coding experience.

To enable ChatGPT to generate accurate codes for computational topology tasks, we took several strategic

steps. These steps involved training ChatGPT to understand fundamental mathematical concepts, guiding

its responses in the right direction, leveraging ChatGPT to enhance our comprehension of the resulting

algorithms, and designing test examples to validate the code provided by ChatGPT. This approach essentially

involves a form of expert-supervised ChatGPT debugging.

One of the central mathematical models we focused on is the Vietoris-Rips complex, a widely used

tool in applied topology that excels at characterizing the high-dimensional structure of data. Initially, we

concentrated on algorithms for computing Betti numbers, Laplacians, and Dirac operators for simplicial

complexes. Notably, the recently developed persistent Laplacians have greatly improved the effectiveness of

applying topology in the field of molecular biology.

While simplicial complex models suit most applications, there are scenarios where they may not fully

capture the data due to their constraints. This is where hypergraph and directed graph models come into play.

Both hypergraphs and directed graphs exhibit high-dimensional structures, with hypergraphs characterized

by embedded homology and directed graphs characterized by path homology. In our study, we harnessed

the capabilities of ChatGPT to implement codes for computing Betti numbers and Laplacians specifically

tailored for hypergraphs and directed graphs. We also demonstrate ChatGPT’s ability to compute the

persistent harmonics space, which has been computed to the best of our knowledge.

By combining the expertise of a topologist with the capabilities of ChatGPT, we aim to advance the

field of computational topology and make these powerful mathematical tools more accessible and applicable

in various domains.

In our applications, we examined a point set comprising six vertices arranged in a regular hexagon.

We carried out computations for the Vietoris-Rips complexes and determined the 0th and 1st-dimensional

Betti numbers, as well as the smallest positive eigenvalue of Laplacians for hypergraphs. Subsequently, we

generated plots illustrating the Betti curves and curves depicting the smallest positive eigenvalues. The

ChatGPT-generated code yielded accurate results in these calculations. Additionally, we extended our

analysis to include three molecules C20, C60, and CB7. For these molecules, we computed their 0-dimensional

and 1-dimensional Betti numbers, along with the smallest positive eigenvalue of their Laplacians. We then

visualized the corresponding Betti curves and smallest positive eigenvalue curves. The efficiency of the code

was reasonable, with the calculations taking approximately several tens of minutes to run on a standard

laptop.

In the future, there remain several unexplored avenues for further work and research. Firstly, one

critical aspect we have not addressed in this work is algorithm optimization. On one hand, ChatGPT could

directly aid us in optimizing algorithms if desired. On the other hand, we could leverage ChatGPT to explore

mathematical optimizations of algorithms, ultimately achieving more efficient computations.

Secondly, while the algorithms presented in this paper can calculate persistent Betti numbers and

persistent Laplacians, they do not encompass the computation of barcodes. We believe that ChatGPT can

play a pivotal role in helping us complete this task.

Lastly, it is worth noting that commonly used topological invariants include (co)homology, Laplacian,

and Dirac. However, there are other algorithms for topological invariants, such as cup-product, Steenrod

algebra, K-theory, and others, which warrant further investigation and study.

This work signifies merely the initial stride in the utilization of chatbots for computational topology.

We are confident that this step marks the commencement of a new era in mathematical research, forging

connections between pure mathematical theories and computational tools in applied sciences. We envisage

a promising future for this approach, as generative AI becomes increasingly potent and its capacity to

comprehend mathematical concepts continuously enhances rapidly.
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//github.com/JoybearLiu/ChatGPT-for-computational-topology.
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