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Abstract

In this work A-learning is used to map orbital-free density functional theory (OF-DFT) ionic forces
to the corresponding Kohn-Sham (KS) DFT ionic forces. The development of the approximate
force difference in terms of the ion positions is constructed and serves as a stand in for the ground
truth force difference. Descriptor vectors for ion configurations are constructed using all distance
between ions in conjunction with an indexing based on a nearest neighbor ranking. It is
demonstrated that such a scheme of descriptors can uniquely describe an ionic configuration up to
a rotation and reflection when no ambiguity in the nearest neighbor ranking exists. How to handle
the case when an ambiguity exists in the nearest neighbor ranking is discussed. As a proof of
principle, the model is trained and tested on warm dense hydrogen at temperatures between 1 and
15 eV. Once tested, the model was used to perform molecular dynamic simulations of warm dense
hydrogen. The resulting energies and pressures are within 1% and 2% of their respective target KS
values.

I. Introduction

In the warm-dense-matter (WDM) regime, ab initio molecular-dynamic (MD)
simulations have become an important tool in the investigation of material properties. These

simulations often rely upon density functional theory (DFT) [1-3] calculations of the electronic



ground state. This is due to DFT's ability to balance accuracy with computational cost. However,
the standard approach of finite-temperature Kohn—Sham (KS) DFT [2,4] has a computational
cost that scales cubically with the number of thermally occupied orbitals [5,6]. This limits KS-
DFT based MD (KSMD) runs to only a few thousand steps or less for temperatures approaching
(and above) the Fermi Temperature (TF) of the system. As an alternative approach, finite
temperature orbital-free (OF) DFT [7, 8, 9] is orders of magnitude faster than KS-DFT at
temperatures consistent with the WDM regime [5,6]. Unfortunately, OF-DFT requires an
approximate functional for the non-interacting free energy in terms of electron density [5,6].
Even with the best approximate non-interacting free energy functionals today [10, 11], reliable
accuracy of OF-DFT is only achieved for temperatures above ~STF. For WDM simulations with
temperatures between ~0.5TF and ~5TF, it would be advantageous to have a method that

captures the best of both KS and OF DFT.

Over the past decade, approaches in machine learning (ML) have provided such schemes
capable of delivering KS-level accuracy at an OF cost, or faster, for the calculation of ionic
forces needed to drive MD simulations [12—18]. These schemes fall into two categories, the first
being the direct interpolation of the Born—Oppenheimer potential energy surface (PES) from
which analytical derivatives of the model can be taken with respect to the ion positions to
generate ionic forces [12,15,19]. The second is a direct construction of force fields [13,14]. The
standard approach of both methods is to create a description of the neighboring ions within a
predetermined cutoff radius about a given reference ion for which the prediction of the model is
being made. The choice of how this description of the local configuration of the reference ion is
constructed has important implications for the model’s success and has been an active area of

research [12-15,20-22, 23,24]. Furthermore, these ML approaches have been applied to a



variety of systems and problems including the simulation of bulk [25,26] and amorphous solids
[27], calculations of melting points [28], investigation of solid—liquid interfaces [29], and the
prediction of liquid-liquid transitions [30,31], to name a few. For a more-comprehensive list, see

the references within the following review articles of Refs. [16—18].

While the direct prediction of energies and forces is prominent throughout the literature, a
newly developed ML scheme referred to as A-learning [32-35] has emerged in recent years.
Within A-learning, a cheaper, less-accurate method is corrected with a ML model in order to
produce a more-accurate and expensive target quantity. Recent success of 4-learning models can
be seen in the context of references [34,35] that correct DFT energies and forces to produce

corresponding coupled cluster quantities.

The goal of this work is to utilize A-learning to develop a ML. model that can correct OF-
DFT ionic forces to produce ionic forces that have a KS level accuracy with a near-OF cost. The
model will be applied to WDM simulations at temperatures where KS-DFT limits a typical MD
simulation to only a few thousand steps and where OF-DFT has not achieved the required
accuracy. Moving forward, the paper is laid out as follows: Section II contains the development
of the approximate force correction, details of the neural network used in this work and the
development of the set of descriptor vectors. Section III contains the description of the reference
data. Sections IV provides the results of the model’s accuracy. This includes the performance on
the test set after training and the resulting performance of the model in the context of MD

simulations. Finally, section V provides a summary and outlook on future work with the model.

I1. Model development



The base assumption of 4 learning is a correction to an estimator of a quantity of interest
is easier to learn than the direct prediction of that quantity [32]. Here, the base estimator will be
the OF-DFT ionic force with the quantity of interest being the corresponding KS-DFT ionic
force. The force correction model will be tasked with predicting force differences such that
during MD simulations an OF calculation of the ionic forces can be corrected to provide an

equivalent KS-DFT ionic force as illustrated in Eq. (1):
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A two-step approach is taken to construct the force correction. First, the true analytical
expression for the target ground truth force difference (see Eq. (2) in the next subsection) will be
replaced by an approximate target force difference that is dependent only on the ion positions.
Second, a ML framework will be introduced and used to learn a scalar quantity of the new
approximate target force difference. This procedure is discussed below beginning with a

discussion of the true reference force difference.
A. Approximating the target force difference

All calculations throughout this work are performed with a classical treatment of the ions
within the Born-Oppenheimer approximation [36]. Within this context, the KS forces are
calculated by first determining the ground state electron density nX> and then applying the
Hellman-Feynman theorem [37] to the total free energy functional [5]. In the OF-DFT branch,
the ionic forces are determined by taking the gradients with respect to the ion positions of the
total free energy evaluated at the ground state density n$F [38] (see Eq. (7) in Ref. [38] and
discussion within Ref. [5]). Together, the ion-ion contribution to the ionic forces cancel and the

resulting analytical expression for reference force difference will have the form,
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Here, R; is the position of the /™ ion with nuclear charge Z;: & and ¢ are the electrostatic constant
i p 2 q

and electronic charge, respectively. Moving forward, the ion for which the forces are
calculated/predicted will be referred to as the reference ion and will be strictly indexed by the

letter 1.

From the target ground truth force difference of Eq. (2) an approximate target force
difference is constructed. The first step in this construction is to assume that the long range
interactions between the reference ion and the electron density difference are negligibly small
beyond a predetermined cutoff radius R.. Mathematically this amounts to limiting the integration
in Eq. (2) to a spherical volume defined by a cutoff radius. Such an approximation has become
common place throughout the literature for both force [13,14] and energy [12,15] based models
and is needed to help control the computational cost of the model. However, in this work, long
range interactions still contribute to the final predicted KS force through the underlying OF
force, see Eq. (1); a potential advantage of using a correction model as opposed to directly

predicting the KS forces.



The second step towards constructing an approximate target force difference is to divide
the volume within the cutoff radius into a set of sub-volumes. The set of sub-volumes is
constructed such that it is in a 1-to-1 correspondence with the set of neighboring ions within the
cutoff radius. An example is shown in Fig. 1 (a). The purpose of thel-to-1 correspondence is to
allow the ion positions to act as grid points for resolving the electron charge difference around
the reference ion. Next, the approximation is made to treat the total electronic charge difference
within a given sub-volume as if it were located at the position of the corresponding grid point,
i.e. neighboring ion position. The resulting approximate force difference for the reference ion has
the form,
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where

Moving forward, when an ionic position is used to reference a particular sub-volume the

corresponding ion will be referred to as a first neighbor (FN).

The final step in the development of an approximate force difference is to eliminate the
need to work with the electron densities in Eq. (5). This is done by assuming that the total
electronic charge difference within a given sub-volume can be determined by the local ions
surrounding that sub-volume. This is illustrated in Fig. 1 (b) where the assumption amounts to
replacing an integral over the electron density difference of the blue shaded region with
information about the surrounding configuration of ions in green and FN in blue. Moving

forward, ions used to describe the electron charge difference of a sub volume will be referred to



as second neighbors (SN). During the prediction of a reference ion’s force difference all
neighboring ions within the cutoff radius will play the role of both a FN and SN (the reference
ion will also play the role of a SN for its nearest FNs, and ions just beyond the cutoff radius may

play the role of a SN).

The final form of the approximate force difference is
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where wy; is the magnitude of the contribution of the density difference in the sub-volume

S 2
referenced by the j*" FN to the force difference of the reference ion. Note, that a |Ri j| term has

also been lumped into the definition of the weights, comparison of Eq. (5) and (7). As such, to
determine the weight of a particular FN both information about the surrounding SNs and
information about how far the FN is from the reference ion must be provided. This was done to

add additional flexibility to the model when the ML framework is introduced.
B. Introducing ML into the correction model

Within the context of the force difference of Eq. (7) ML will be introduced. This is done

by using a neural network (NN) to predict the FN weights;

wy = NN(dy) (8)

Here, cii ; 18 a vector containing relevant information needed to predict the weight associated with

the j*" FN as discussed at the end of the previous subsection. The details of how cii j1s

construction can be found in the next subsection. In the case of a NN with a single hidden layer,

the FN weights can be written as



where matrices WA(1) and WA2) and vector [ consist of adjustable free parameters. The function f

is the activation function that acts in an elementwise manner and is set to the rectified linear unit

(ReLu) activation function [39] throughout this work.

The resulting predicted ML force difference has the form,

AFME = > NN(JU-)% . (10)
ﬁij(<Rc !

It is important to note that an identical NN is used to predict all FN weights. The resulting force
correction model will then be analogous to the energy model of Behler and Parinello [12].
Furthermore, the free parameters and correspondingly the force differences of Eq. (10) are

optimized by minimizing the cost function

N
C:ﬁi{|A}7}ref—AFiML|2+AeXp(—a|AFiML|2j}. (11)

Here, Ng is the number of reference ions in the training set. The reference force difference AE™

will be calculated according to Eq. (3). That is, both the KS and OF reference forces are
calculated in their entirety and then the difference is taken. By using reference values for the
exact force differences and not the approximate force differences the NN will be tasked with

implicitly learning the boundaries for the sub-volumes associated with the FNs.

When the standard squared loss was used for the reference data set described in the next
section, instabilities in the training process would often result in a NN that would predict all

force differences as zero. To prevent this, the exponential regularization, second term of Eq.



(11), was added to the cost. The hyperparameters 4 and « in the regularization term are set such
that only force differences smaller than those observed in the training set are penalized. This will

leave the global minimum of the square loss based cost unaffected.

For the force correction model to be useful in MD simulations, an uncertainty for each
predicted force difference is necessary to ensure that the reliability of the prediction holds
[14,16,19,40,41]. To estimate the uncertainty an ensemble approach, similar to the work of Ref.
[40], 1s used. In this work, 15 different NN’s will be trained to produce 15 different
force-correction models. Each member of this ensemble will be trained according to Eq. (11)

with its own training data. Once assembled, the average predicted force difference of the

ensemble will replace AFME of Eq. (1) for a given reference ion. The standard deviation

associated with this average will then be used to gauge the level of uncertainty in the prediction.
C. The input descriptor vector

In the construction of the descriptor vectors it is important that the same force difference
be predicted for configurations of FNs which differ by a translation or exchange of labels of ions
of the same species [12—15,21,23,25]. In the case of rotations about the reference ion, the force
difference and FN position vectors, Eq. (6), must transform in the same manner. Through
inspection of Eq. (10) it is clear that these properties will be satisfied as long as the descriptor
vector for each FN is invariant under translations, rotations and label exchanges. As such, these

invariances will be directly incorporated into the following construction of the descriptor vectors.

As discussed at the end of subsection A, the weight of each FN is determined by
information about its surrounding configuration of SNs as well as information about how far the

particular FN is from the reference ion. To incorporate both pieces of information the descriptor



vector will be constructed in two parts. First, a vector d ST () containing only information about
NV,

the FIN’s SNs will be assembled. Second, the distance R,-j from the FN to the reference ion will

be used as an element. The full input vector to the NN will then take the form

T
— _ —»T —
dy = (dSN(J_)J |R,.j|j . (12)

To construct d ST () the first n nearest SNs around a given FN will be considered. Each
NV

of the SNs will be indexed by their nearest neighbor rank with respect to the corresponding FN.
By using the nearest neighbor ranking for the SN’s index the indices of the SNs become
independent from the label given to the FN and any change in the labels of the SNs must be
accompanied by a change in the configuration of SNs. In effect, the nearest neighbor ranking in
conjunction with the use of the FN distance in the construction of the full descriptor vector, Eq.
(12), automatically builds in the invariance under label exchange. The downside however is the
number of SNs n must be set. This can be achieved by performing a series of convergence test

similar to how R, would be set.

The next step in the construction of the descriptor vector is to build in rotational and
translational invariance. This will be done simultaneously by using all distances between the ions
of the SN configuration. It is of note that using a distribution of these distances will not provide a
unique description of the configuration of SNs [11,23]. In an attempt to avoid this issue, the
distances themselves will be directly used as the elements of the SN descriptor vector. This
requires that the distances be strictly ordered so that the same input vector is formed each time a

given SN configuration is encountered. The ordering of the distances can be achieved with the



use of the nearest SN ranking. More specifically, any distance which has reference to the FN will
come first in the SN descriptor; then distances which reference the 1*' SN come next and so on.
In the case where two distances reference the same ion, it is the index of the second ion
referenced by the distance that determines the ordering. For example, in the case of three SNs the

SN descriptor vector takes the form

2T = e — = - —
denei, I (|Rrw.sw1| [Renswz| |Rrnsna| [Rsnisnz| |Rswisna| |Rswz,swal)- (13)
In the case where only one or two SN are needed, it is clear the SN descriptor uniquely
describes the SN configuration. For three or more SNs, with no ambiguity in the nearest SN

ranking, uniqueness can also be confirmed as follows.

Due to the translational and rotational invariances of the distances, the SN configuration
can be oriented such that the FN is at the origin and the 1% SN is along the z-axis. The 2™ SN can
then be rotated into the xz-plane such that it has a positive x value. Note, here it is assumed the
2" SN does not lie along the z-axis after the initial rotation. In such a case where this assumption
is not true, the next SN in the nearest neighbor ranking that does not lie on the z-axis will take
the role of the 2" SN in the following discussion (discussion holds because all distances between
ions are used). When the distance between the k™ SN, with 3 <k <n, and FN is given, the k™ SN
must lie on the surface of a sphere that is centered on the FN and has a radius corresponding to
the given distance. The same situation occurs when the distance is given between the k™ and 1
SN. Now when both the k™ SN-FN and k™ SN-1° SN distances are used together, the k™ SN
must live at the intersection of the two spherical surfaces which is a circle about the z-axis. Both

the z location and radius of this circle can be determined by the known distances, see [42].



When the distance k™ SN-2" SN is added to the two previous distances, the circle of
possible positions for the k™ SN is reduced to two possible points. This is because a point in the
xz-plane (not on the z-axis) is equidistant from at most two possible points on a circle about the
z-axis [42]. Moreover, these two points will be reflections of one another about the xz-plane.
More generally, the two points on the circle that are equidistant to an arbitrary point in space (not
at the circle’s center) will be reflections of one another about the plane with a normal vector in
the direction 7x7,; where 7 is the position of the arbitrary point and 71, is the normal vector of
the plane containing the circle. Since two points cannot be reflections of one another about two
different planes in three dimensions, when the distance k™ SN-m™ SN is added to the six
distances that reduce the k™ and m™ SN to two possible locations each (m™ SN is assumed to not
be in the xz-plane), the four possible configurations of the k™ and m™ SN are reduced to two

unique configurations and their corresponding reflections about the xz-plane.

By the symmetry argument used above, if the distances between all SNs located outside
of the xz-plane are used in conjunction with the distances to the FN, 1% SN and 2™ SN for each
of these SN, then the configuration of these SN is defined uniquely up to a reflection about the
xz-plane. For any SN that lives in the xz-plane the distances to the FN, 1% SN and 2" SN are
sufficient to determine that SN’s position. Therefore, when all distances between SNs and SNs-
FNs are used, the full configuration of SNs will be uniquely defined up to a rotation and
reflection. It is however likely that using all distances between ions to form the input vector leads
to redundant information being passed to the NN. This might be alleviated by using the distance
to the FN and 1% SN in conjunction with the distances to two predetermined points, one in and

one out of the xz-plane, for each remaining SN. This will be a focus of future work.



As discussed in Refs. [23,24], descriptors based on distances between arbitrarily indexed
ions as well as angles between pairs of ions will not be able to uniquely define the configuration
of ions if multiple ions are equidistant to the target ion for which the prediction is being made.
With the descriptors developed here, there is a similar inability to properly handle SN
configurations if two or more SNs are equidistant to the FN as there is an ambiguity in the
nearest SN ranking. In this case, the SN configuration lives on the boundary of the domain of all
physically achievable SN descriptor vectors. During a MD simulation, as the configuration of
SNs passes through an instance where there is an ambiguity in the nearest SN ranking, the SN
descriptor vector will leave the domain of possible SN descriptor vectors and simultaneously re-
enter the domain at a new location. Over the course of this sudden change in the nearest SN
ranking, both the ion positions, in Cartesian coordinates, and the underlying total electron density
around the FN will change continuously. This means the two points on the boundary of the
domain of possible SN descriptors connected by the sudden change in the nearest SN ranking
have the same target FN weight. Therefore, any perturbation of the equidistant SNs can be
performed allowing for the configuration of SN with an ambiguity in the nearest SN ranking to
be approximate by a new configuration of SN that is uniquely defined. A numerical check of

this will be presented in the results section.
I11. Reference data

As proof of principle, the force-correction model will be trained and tested for warm

dense hydrogen at various temperatures along the 1.0-g/cm?3 isochore. The range of temperatures
for which the force correction model is applicable is bounded at both ends. The upper bound on
this temperature range will be determined by the convergence of the free energies of OF-DFT

and KS-DFT. Reference [43] showed that for deuterium this convergence will have occurred by



200 kK. Above this temperature, the upfront cost of the force correction model is not worth the
minimal gain in accuracy over OF-DFT. In the case of the lower-temperature bound, it is
expected that the base assumption of a correction being easier to learn will begin to break down.
An estimate of this temperature will be determined by constructing models at various

temperatures between 10 and 150 kK.

For each of the temperatures considered, a single reference data set will be constructed
such that the ionic configurations and corresponding forces are consistent to that particular
temperature. No mixing of ionic configurations and forces generated at other temperatures will
be allowed. To generate the reference ionic configurations for a given temperature, OF-DFT
based MD (OFMD) is performed. This is done under the assumption that due to the lack of ionic
structure at the given temperatures, OFMD will sample the domain of local configurations
consistent with KS-DFT-based MD (KSMD). This assumption will begin to break down at
temperatures below 3 kK when molecular hydrogen begins to form [44] (this is the motivation
for limiting the lowest temperature considered to 10 kK). Furthermore, by using OFMD to
generate the local configurations the upfront cost of collecting reference data for the model will

be significantly reduced.

All OFMD simulations are performed in a canonical ensemble using an Andersen
thermostat with a time step of between 0.05 and 0.24 fs. To further reduce the upfront cost of the
model, a system of 20 hydrogen atoms in a periodic cubic supercell is used. In total, each
OFMD trajectory will consist of 18k steps. From an OFMD trajectory, a snapshot will be
extracted every 30 steps to form a reference data set consisting of 600 snapshots. Once extracted,
a single point calculation will be performed to generate the reference force differences for each

snapshot. Of the 600 snapshots sampled the first 500 snapshots are taken as the master training



set. The remaining 100 are set aside as the testing set and will be used only once all training
processes are completed. It should be noted that all 20 local configurations will be used from
each snapshot, giving the master training and test sets 10k (90 and 150 kK have 5k) and 2k local

configurations, respectively.

All DFT calculations were performed with PROFESS(@Q-ESPRESSO [5], a coupling of
the OF-DFT based PROFLSS package [45,46] with the KS-DFT based QUANTUM ESPRESSO
package [47,48]. KS calculations use a 6 x 6 x 6 automatically generated Monkhorst—Pack k
mesh with a plane wave energy cutoff between 600 to 800 Ry and 40 to 150 bands, depending on
the system temperature. OF-DFT calculations are carried out with a 64 x 64 x 64 real space grid.
The noninteracting free energy is treated with the LKTFyTF functional [49]. This is a convex
combination of the finite temperature LKTF [11] and finite temperature Thomas—Fermi (TF)

[50] noninteracting free-energy functionals. The convex parameter y was arbitrarily chosen to be
0.5. Moreover, both OF and KS calculations employ the ground state SCAN-L [51,52] exchange

correlation functional and utilize an equivalent local pseudopotential [53].

The force correction model has been written in Python using NumPy [54] and parallelized
with mpi4py [55-58]. The Python code was then interfaced with Quantum Espresso [47,48]. At
present, the interfacing of the force correction model requires the reference data collection,
training process and use in MD to be done in three separate steps. Work is ongoing to

implemental the model in a way that enables on-the-fly learning and predictions.

IV. Results

A. Training the model



Each force correction model is constructed using a single layer fully connected feed-
forward NN with a the hidden layer consisting of 40 to 100 nodes. The training run for an
individual model begins with a random initialization of the free parameters on the range [-0.1,
0.1]. The cost of Eq. (11) is then minimized using a gradient descent with a learning rate on the
order of 1073, Details concerning the backpropagation used to minimize Eq. (11) can be found in

the supplemental material [42]. Typical training runs require 50 k to 100 k epochs to optimize

the NN. The hyperparameters A and a of the regularization term are set to 300 and 108,

respectively for all training sets.

In order to produce a reliable model both the cutoff radius and the number of SNs in the
construction of the descriptor vector must be optimized. The cutoff radius was chosen by
examining how the predicted FN weights behave as a function of the FN distance to the
reference ion. As can be seen in Fig. 2 (a) for the 90 kK data set with the use of 3 SNs, when the
cutoff radius is set to 3.78 bohr the FNs near the cutoff radius will have a weight that is three
orders of magnitude smaller than the weights of the FNs closest to the reference ion. In effect,
new ions passing into the volume defined by the cutoff radius will cause a negligible jump in the
predicted force difference. Moreover, the decay of the FNs weight shown in Fig. 2 (a) confirms
the assumption that the force difference, in the case of hydrogen, only depends on the local

configuration of neighboring ions.

To determine the number of SNs needed in the construction of the descriptor vectors, a
series of convergence test of the model’s accuracy were performed. When 1 or 2 SNs are used
for the 90 kK data set, the average relative error in the predicted KS force magnitude is around
10%, Table I. When 3 SN are used the average relative error in the predicted KS force

magnitude drops to around 7%. Increasing the number of SNs to 6 SNs can reduce the average



relative error in the predicted KS force magnitude to around 6%. This additional gain in accuracy
going from 3 to 6 SNs primarily comes from improvement in the smallest predicted KS forces
which experience the largest relative errors. The results of this convergence test were consistent
for other temperatures considered. Moving forward, 3 SNs will be used to construct the force
correction model at 60, 90 and 150 kK. In the case of 10 and 30 kK 5 SNs are used in an attempt

to improve the predictions of the smallest KS forces.

Table I: Result from the convergence tests used to determine the number of SNs needed in the
construction of the descriptor vectors. Column 1 indicates the number of SNs used. Column 2 is
the average relative error in the predicted KS force magnitude. Columns 3 through 5 provide the
values of three different percentiles of the relative error distribution. Column 6 is the average
angular deviation of the predicted KS force with respect to the target KS force. Columns 7
through 9 provides three different percentiles of the distribution of angular errors.

# SNs Rel. 25t 50t 75t Ang. 25t 50t 75t
Err. (%) (%) (%) Err. (degrees) (degrees) (degrees)
(%) (degrees)
1 9.25 5.21 8.26 12.10 2.81 1.05 2.02 3.45
2 10.75 5.64 9.03 13.38 3.72 1.33 2.51 4.60
3 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38
4 7.35 411 5.84 8.48 2.56 0.98 1.80 3.16
5 6.27 3.08 4.71 7.26 2.62 1.00 1.82 3.11
6 6.00 2.93 4.41 7.27 2.43 0.95 1.70 2.95
7 6.90 3.76 5.45 8.09 2.51 1.00 1.77 3.19

With the cutoff radius and number of SNs set, the next step is to produce the ensemble of
models needed to obtain an uncertainty measure for MD simulations. To train each individual
force-correction model in the ensemble, a random sampling of the master training set is
performed such that 58% of all of the data forms the training set, 25% forms the validation set,
and the remaining 17% forms the pseudo-test set. The training set is used to determine the
optimal free parameters. The validation set is used to monitor and terminate the training process

in an attempt to avoid overfitting. The pseudo-test set is used at the end of the training process to



obtain an estimate of the generalization error of the individual model in the ensemble. Once all
15 force-correction models of the ensemble have been trained, the test set described in Sec. 111 is

used to determine the generalization error of the ensemble.

At 90 kK, the predictions with the ensemble of models are in good agreement with the
target KS values and are a significant improvement over the predictions of OF-DFT, Fig. 3 row
two column 1. In terms of the relative errors, 60% of the predicted KS force magnitudes are
within 5.2% of the target KS value (a level of error that is consistent with previous works
[26,59,60]). Comparatively, only 5% of the pre-corrected OF forces in the test set have
magnitudes within 14% of their respective target KS values. When the relative errors are
examined further, the smallest relative errors of the model occur for the largest target force
magnitudes. As the target force magnitude decreases, the accuracy of the model worsens, leading
to the smallest target forces being predicted with a relative error of 20% or more. In terms of the
angular error, 60% of the pre-corrected OF forces in the test set deviate from their corresponding
reference KS force by less than 4.4°. While the OF force provides a good starting direction for
the predicted KS force, the force correction model is able to further reduce the angular error to 2°
error or less for 60% for the predicted KS forces. For further discussion of other temperatures see

the supplemental material [42].

The last step before using the model in the context of MD is to confirm that an ambiguity
in the SN rankings can be handled perturbatively so that a unique SN ranking can be produced.
To test this, SN configurations from the test set at 90 kK were taken and the ion positions were
modified so that the configuration of SNs just before and just after an ambiguity in the nearest

SN ranking could be obtained. For all configurations considered the nearly equidistant SNs are



offset by 0.002 bohr. The resulting predicted FN weights before and after the change in the SN

ranking are shown in Fig. 2 (b).

As can be seen in Fig. 2 (b), the largest FN weights are nearly consistent with one another
before and after the change in the SN ranking. More specifically, the difference in the largest FN
weights before and after the ambiguity in the nearest SN ranking is around 1% of the FN weight
just before the ambiguity. For the smaller FN weights the consistency between the FN weight
before and after is significantly worse and in many cases the difference can exceed 100% of the
before weight. This is likely the result of the FN weights being learned implicitly through the
force differences causing the largest FN weights to dominate the cost. While the consistency of
the FN weights before and after does not hold for all predicted weights, the impact of the
inconsistency of the smallest FN weights during a perturbation to define a unique nearest SN
ranking will be inconsequential for the total predicted force difference as the largest FN weights
correlate well with FNs closest to the reference ion and the reference force differences are well

correlated to the nearest FN, Fig. 2 (c).

B. Model comparisons

Before moving on to MD simulations, the newly developed force correction model is
benchmarked against the Behler and Parrinello (BP) model [12]. For this benchmarking the BP
model will be used to predict both force differences and KS forces directly. The BP model was
directly implemented into our current code with all descriptor derivatives being taken
analytically. For each of the following comparisons the same training and testing set at 90 kK
describe above in section IV subsection A is used. Further details about the parameters of the BP

models can be found in [42].



Comparison 1: The SN descriptors based on inter-ionic distances forming JST () . are
NV

swapped out for the BP descriptors (Eqgs. (4) and (5) of [12]) within the force correction model
developed here. After varying the number of descriptors and cutoff radius for the SN description,
the optimal version of the model used 6 radial and 4 angular descriptors and had a 3.78 bohr SN
cutoff radius. The resulting median relative error in the predicted KS force magnitudes is 6.82%
and the median angular error of the predicted KS force is 2.34 degrees, table II row 2. With
respect to the force correction model developed within this work (row one of table II), the use of

the BP descriptors results in comparable error distributions.

Comparison 2: The full BP model of [12] is used to predict force differences. To maintain
as fair of a comparison as possible, only force data is used to train the model (inclusion of energy
data in the cost function diminished the accuracy of the final predicted KS forces [42]). After
testing multiple sets of descriptors and cutoff radii [42] the optimal predicted KS forces were
found to be given by a model with a 3.78 bohr cutoff radius that used 2 radial and 4 angular
descriptors. The resulting predicted KS forces, table Il row 3, has a median relative error in the
magnitude of 9.5% and a median angular error of 2.9 degree. Both errors are slightly higher then

the force correction model based on the developed framework.

Comparison 3: The full BP model of [12] is used to directly predict the KS forces.
Similar to comparison 2, only force data is used in the training process. During the optimization
of the hyperparameters it was found that the accuracy of the predicted KS forces did not change
significantly for cutoff radii between 5.6 and 17 bohr and for 55 to 65 descriptors [42]. For the
comparison a BP model with a cutoff radius of 9.45 bohr with 30 radial and 24 angular

descriptors was used. Compared to the previous 3 models based on force differences, the



accuracy in the directly predicted KS forces is significantly worse with errors in the KS force

magnitude of 70% or more and angular errors in excess of 70 degrees, table Il row 4.

Overall, comparisons 1 and 2 demonstrate that within the framework of force differences
the model developed in this work is capable of delivering the same level of accuracy as existing
schemes. In comparison 3, the large errors are likely a result of insufficient data as the number of
local configurations in the training set is significantly smaller than the typical hundreds of
thousands or even millions of local configurations needed to train a model for the direct
prediction of KS forces. This result highlights the benefit of the delta-learning approach as less

data is needed to achieve reasonable errors.

Comparing the BP model to the model developed in this work further, there are other
clear tradeoffs. First, the BP scheme requires a significant number of hyperparameters in the
construction of the descriptors. The number of which increases as the number of descriptors
increases. In the model developed here, the number of hyperparameters is always 2. This has the
potential of speeding up the training process by reducing the size of the domain of
hyperparameters that needs to be searched for the optimal model. Second, the BP model has the
advantage that the forces are defined as the gradient of a scalar quantity meaning the resulting
force field is conservative. Examination of the curl of the KS forces predicted by the mode
developed here indicates that the resulting force field is in fact not conservative [42]. However,
examining the change in energy during a MD simulation [42] indicates the non-conservative
nature of the resulting force-field will be inconsequential when a thermostat is used.
Nevertheless, the impact of the non-conservative nature of the forces needs to be investigated to

ensure the a reasonable distribution of energies is predicted during MD simulations resulting in



both an accurate mean energy and an accurate standard deviation needed for the calculation of

specific heat.

Table II: Resulting errors in the predicted KS forces at 90 kK for the comparison with various
Behler and Parinello [12] models. Column 1 indicates the direct output of each model. Column 2
is the average relative error in the predicted KS force magnitude. Columns 3 through 5 provide
the values of three different percentiles of the relative error distribution. Column 6 is the average
angular deviation of the predicted KS force with respect to the target KS force. Columns 7
through 9 provide three different percentiles of the distribution of angular deviations.

Model Rel. 250 5o 75t Ang. 25t 50t 75t
Err. (%) (%) (%) Err. (degrees) (degrees) (degrees)
(%) (degrees)
AF (thiswork) 720 3.54 586 9.10 2.74 1.10 1.94 3.38
AF (BPdes) 819 480 682 9.9 3.08 1.26 234 3.83
AF (flll BP) 1223 575 952 1588  4.07 1.48 2.90 5.04

ﬁKS(quBP) 154.52 8252 120.73 187.98 75.46 4278 70.85 110.08

C. Molecular dynamics

For the force-correction model to be a useful tool in the context of MD simulations, both
the energy and pressure must be obtainable. In the case of pressure, the standard approach is to
use the virial expression which utilizes the forces and positions of the ions [61]. However, Ref.
[61] showed in the case of periodic systems an additional correction associated with the change
in energy with respect to the change in simulation cell side length must be added to the standard
virial expression. This additional correction term was later shown to involve partial forces
associated with interactions between an ion and image ions [62]. Since the force-correction
model provides only the total force on an ion, an alternative approach to obtaining the pressures
is needed. [Note: initial attempts to use the individual terms of Eq. (9) within the context of [61]

were unsuccessful; this is still an ongoing area of work where the model can be improved. ]



To determine equivalent KS pressures from the model the corresponding OF pressures
will be used. This can be done as shown in Fig. 4. Here, the reference KS pressures are plotted
against the corresponding OF pressure for each snapshot that comprises the full reference data
set of the 90-kK system. As can be seen there is a strong linear correlation between the KS and
OF pressures. This is also true of the corresponding energies [Fig. 4 (b)]. Note, neither the
energy nor pressure contains the ideal gas contribution from the ions. These correlations between
OF and KS quantities weaken as the temperature of the system is decreased but exist even at 10
kK [Figs. 4 (c) and (d)]. As such, these linear correlations will be used to generate the
corresponding distribution of KS energies and pressures when the force-correction model is used
to drive MD simulations. Moreover, the spread in the reference data in the plots of Fig. 4 will be
used to define an uncertainty in energy and pressure. This is done by shifting the best fit line

symmetrically up and down until the region containing 95% of the reference data is found.

Shown in Fig. 3 are the resulting distributions of energies and pressure at each
temperature considered for MD simulations driven by the force-correction model, KS-DFT and
OF-DFT. Between 60 and 150 kK, the energy and pressure distributions from the force-
correction model are in excellent agreement with the corresponding distributions from KS-DFT.
As the temperature of the system decreases further to 30 and 10 kK, the distributions from the
force-correction model begin to shift away from the target KS distribution and develop longer
tails. However, overall the distributions of the model’s predicted pressure and energies are still in
good agreement to those of KS-DFT below 60 kK and are significant improvements over the

distribution obtained with OF-DFT.

To further quantify the resulting energies and pressures from the MD simulations, the

average of each distribution is compared to the corresponding average value obtained from the



KS distribution (Fig. 5). In the case of the energies [Fig. 5 (a)], the average from the force-
correction model is consistently within 1% of the target KS energy for all temperatures. Even
when the uncertainty associated with the fitting procedure of Fig. 4 is accounted for, the relative
error in the energies from the model do not exceed 1.2%. This is an improvement over OF-DFT,
which has relative errors above 3% for temperatures below 90 kK. For the pressures [Fig. 5 (b)],
the relative errors from the force-correction model are higher than for the energies, but the
relative error in pressure is typically within 2% of the target KS values. Again this is an

improvement over OF-DFT, which has relative errors up to 7% at 10 kK.

Table III: Computational time needed to perform one MD step with KS and OF DFT. Note the

cost of OF-DFT at 30 and 90 kK are the same. Also provided is the cost per training cycle

for the NN.
Calculation Time (s)
KS-DFT (at 90 kK) 632.32
KS-DFT (at 30 kK) 263.10
OF-DFT 7.89
Training NN (per epoch of training) 1.34

Finally, the total computational cost of MD simulations performed with the force-
correction model is determined and compared to the cost of standard KS and OF DFT based MD.
To provide a fair comparison, the computational cost of each method is estimated using 64 cpus.
The resulting cost per MD step for OF and KS DFT is shown in Table III. For the calculation of
the total cost of the force correction model the upfront cost associated with training the ensemble

of models needs to be estimated. This upfront cost will be strongly dependent on the size of the



training set needed to maintain a similar level of accuracy on each member of the ensemble. To

optimize the training set size a series of convergence tests were performed using a single force

correction model. The resulting errors, Table IV, at 90 kK indicate that the training set size can

be reduced from current size of 4500 reference ions down to 1800 reference ions without

significant loss in model accuracy. A similar test for 30 kK also indicated the current training set

could be reduced by a factor of 2.

Table I'V: Errors in the predict KS force at 90 kK as a function of the training set size. Column 1
indicates the number of local configurations in the training set. Column 2 is the average relative
error in the predicted KS force magnitude. Columns 3 through 5 provide the values of three
difference percentiles of the relative error distribution. Column 6 is the average angular deviation
the predicted KS force has with respect to the target KS force. Columns 7 through 9 provide
three different percentiles of the angular error distribution.

Training  Rel. 25t 50t 75t Ang. 25t 5o 75t
set size Err. (%) (%) (%) Err. (degrees) (degrees) (degrees)
(%) (degrees)
125 19.41 7.22 13.17 23.01 8.01 2.71 5.50 10.01
375 10.43 472 8.55 13.04 423 1.66 2.88 5.22
625 10.23 533 9.37 13.23 3.48 1.35 2.44 421
1875 8.35 4.53 6.81 10.03 2.83 1.04 1.99 3.51
4500 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38

When the total cost of performing KS single point calculations, generating the reference

ion configuration with OFMD and the training of all 15 members of the ensemble are accounted

for, the total up front cost for the force correction models at 30 and 90 kK are 1.16 and 1.18

million seconds respectively. The breakeven points associated with the upfront cost are

equivalent to 4600 KSMD steps at 30 kK and 1900 KSMD steps at 90 kK. If the number of

members in the ensemble is cut from 15 to 7 the breakeven points shift to 2200 steps and 1100

KS MD steps for 30 and 90 kK respectively. While the total upfront cost of the force correction

model is still a significant portion of the cost of feasible KSMDs, once this upfront cost is paid



the remaining cost will be equal to that of OFMD, making the force correction model a useful

tool for simulations of WDM systems.

V. Summary

A ML based model has been constructed to correct OF-DFT calculated ionic forces to
produce corresponding KS ionic forces. This was done by first constructing an approximate force
difference in terms of the ionic positions. Here the ionic positions were used in two ways, First, as
a set of grid points used to resolve the underlying electron density difference. Second, the distances
between all ions of the SN configuration were used to form the input vector to a NN. It was
discussed that by using all distances in the SN configuration in conjunction with an indexing
scheme based on the nearest SN ranking, the SN configuration could be uniquely determined up
to a rotation and reflection when no ambiguity in the ranking exist. In the case of an ambiguity in
the nearest SN ranking, tests indicated that a perturbative approach can be taken to provide an
approximate SN configuration that can be uniquely defined.

The resulting model was trained and applied to warm dense hydrogen between 10 and
150 kK at 1.0 g/cm3. An analysis of the errors demonstrated the KS force magnitudes can be
learned within 5% and the direction can be learned within 5°. Once trained and tested, MD
simulations were performed at various temperatures for warm dense hydrogen with the force
correction model. The resulting energies and pressure are consistently within 1% and 2%,
respectively, of their target KS values down to 10 kK. Finally, once the number of training samples
were optimized the computational cost of the model was estimated, suggesting the current
breakeven point with KSMD is around 1100 steps at 90 kK and 2200 steps at 30 kK.

As the main results of this work are a proof of principle, the goal of future works will be

to explore avenues for further improvements. This will include using the uncertainties as an on-



off switch for the model allowing for a controlled extrapolation to bring a system back within the
domain of the descriptor vector space associated with the training set as well as extending the
descriptor to multicomponent systems. Furthermore, while it was not shown here, the off diagonal
components of the stress tensor show similar correlations between the KS and OF calculations. As
such, it is expect that the force correction model will be a useful tool for the calculation of
viscosities which are at present time not possible to obtain with standard ab-initio MD simulations
at the temperatures considered.

All reference data used to train the models in this work along with the final parameters of
the  trained neural networks have been made  publicly available at,

https://github.com/jhinz2/ML._force correction_model development.git. All of the code

developed in this work is available upon request with the corresponding author.
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Fig. 1. (a), left: the neighboring ions shown as blue circles are used to divide the volume around
the red reference ion into sub-volumes. Each sub-volume is constructed such that it contains
exactly one neighboring ion. When a ion is used to indicate a sub-volume it will be referred to as
a first neighbor (FN). The choice ofthe sub-volume boundaries, thin block line, was chosen
arbitrarily for this example, (b), right: during the construction ofthe force correction model is
assumed that the electronic density difference within a given sub-volume can be determined by
the neighboring ions. Therefore, the contribution to the force difference ofthe ion in red from the
shaded blue sub-volume, black arrow, will be determined by describing the configuration of
green ions (referred to as second neighbors) in conjunction with the corresponding FN, blue
circle. All other ions within the cutoffradius, gray circles, do not contribute to the weight ofthe

sub-volume being considered.
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Fig. 2. (a), predicted FN weights as a function ofthe distance between the FN and reference ion
for the 90 kK training. These predictions were performed with a force correction model that used
3 SNs and a cutoffradius of 3.78 bohr. (b), the predicted FN weights after a sudden change in the
nearest SN ranking as a function ofthe predicted weights just before a sudden change in the SN

ranking. The colors ofthe points indicate the distance ofthe FN to the reference ion. The black



dotted line represents the target line if the FN weights are continuous at an ambiguity in the
nearest SN ranking. All predictions are also with a model using 3 SNs and a cutoff radius of 3.78

bohr. (¢), reference force difference as a function of the nearest FN.



(1qoq/£y) 2910 S

(K9) AS10ugy

01T -

(Ieqy) aInssarg

0l

Ll

001

0T -

e

00¥T 00TT 0002

009T

Approx, force (Ry/bohr)

Normalized distribution

Normalized distribution

Normalized distribution

Normalized distribution

Normalized distribution

[eXeXeTeXoTXeToTXoXeo)

Normalized distribution

I uwnfo)

7 uwnjo)

€ uungo)



Fig. 3. Column 1 is the magnitude of an approximate force versus the magnitude of the target KS
forces on the test set at each temperature. The points indicate the values of the underlying OF
forces and the blue points are the predicted KS forces. The black line is again the target that the
force-correction model aims to achieve. Column 2 is the distribution of energies (without ideal gas
contribution from ions) for molecular dynamics performed with KS (red) and OF (green) DFT and
the force-correction model (blue). Column 3 is the corresponding distributions for the pressures
from MD simulations with the three methods (again with no contribution from ions). Each row
corresponds to a different temperature. The first row begins at 150 kK and each subsequent row
descends in temperature starting from 90 to 60 to 30 and to 10 kK, respectively. Note, all

distributions in a given plot are binned on the same range with the same number of bins.
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Fig. 4. (a) KS pressure and (b) KS energy plotted as functions of the corresponding OF quantity

for each snapshot in the reference data set at 90 kK. (c) KS pressure and (d) KS energy plotted as

functions ofthe corresponding OF quantity for each snapshot in the reference data set at 10 kK.

The red dashed line in each plot is the best fit line ofthe reference data marked by the blue circles.

The light red region indicates the area where 95% of the reference data falls around the best fit

line.
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Fig. 5. (a) Relative error in the average pressure obtained from MD simulations. The blue circles
are those from MD driven with the force-correction model and the green circles are from MD
driven with OF-DFT. The dotted line connecting the points is a guide to the eye. (b) Corresponding
relative errors in the average pressures. Note, all relative errors are calculated with respect to the
KS average quantities. Furthermore, the blue region in each plot shows the effect the uncertainty
from the fitting procedure shown in Fig. 4 has on the average energies and pressure in the case of

the force-correction model.
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I. Qutline

The supplemental material is ordered as follows. Section II discusses the uniqueness of
the descriptor vectors constructed in this work. In section I1I details about the parameters of the
Kohn-Sham (KS) and orbital-free (OF) density functional theory (DFT) calculations can be
found. Section IV provides a brief overview of the implementation of the force correction model
into the existing software packages used for KS and OF calculations. In section V the details for
the gradient descent used to optimize the neural network (NN) are discussed. This is then
followed by the technical details and results of the training process in section V1. Section VII
provides the uncertainty distribution from the molecular dynamic (MD) trajectories calculated
with the force correction model. Section VIII contains the parameters for the Behler and
Parrinello models used in the benchmarking. And finally, section IX contains the test to access

the non-conservative nature of the force field predicted by the force correction model.
II. Uniqueness of descriptor vectors

The uniqueness of the descriptors used to describe a configuration of second neighbors

(SN) with a unique nearest neighbor ranking to the first neighbor (FN) can be seen as follows. To



begin, the FN associated with the SN configuration will be set at the origin. Since the
configuration of SNs only needs to be uniquely defined up to a rotation, the configuration of SNs

can be rotated such that the 1% SN (nearest to the FN) is positioned on the z-axis.

When the distance from the FN to the k™ SN, with k > 1, is given, the k™ SN must lie on
the surface of a sphere centered on the FN with a radius |I_€ FN SNk | Similarly, when the distance
between the 1°' SN and k™ SN is given the k™ SN must lie on the surface of a sphere centered on
the 1% SN with a radius |I_?)5N1, SNk | Together, the k™ SN’s position must simultaneously satisfy

— 2 1
xp+ Y+ zi = |RFN,SNk| M)

and

. 2 S 2
Xp + v+ (Zk - |RFN,SN1|) = |RSN1,SNk| . @)

By eliminating the x and y component of the k™ SN between Eqs. (1) and (2) the z position of

the possible locations of the k™ SN can be determined;

1 - 2 - 2 - 2 3
2 = == (1Rewwa|” + Bowsnal” = [Rowromel ) ®)
2|RFN,SN1|
Substituting the result of Eq. (3) back into Eq. (1) gives
1 . 2 - 2 S 2 4
xl% + J’l% = RI%"N,SNk - ﬁ(lRFN.SNll + |RFN,SNk| - |RSN1,SNk| ) @
4|RFN,5N1|

which describes a circle of possible positions of the k™ SN.

For the k™ SN with k > 2, the set of possible positions can be reduced further by adding

the distance between the 2" SN and k™ SN to the aforementioned distances. Here the SN



configuration will be rotated again such that the 2°¢ SN lies in the xz-plane and has a positive x
value. The z value of the 2™ SN will still be given by Eq. (3) and the resulting x value will be
given by Eq. (4) with v, set to zero. In the case where the 2"¢ SN lies on the z axis after the
initial rotation aligning the 1" SN with the z-axis, this additional rotation cannot be performed. In
this case the next SN which does not lie on the z-axis will take the place of the 2" SN in the
following discussion. The result of the discussion will still hold due to the fact that all distances

between ions will ultimately be used in the descriptor vector.

When the distance |I_?)5N2,5Nk| is added to the two previous distances, |I_?)FN,5Nk| and

ﬁsm, SNk |, the position of the k™ SN now must simultaneously satisfy Eq. (4) and

R 2
(e — %)% +yig + (2 — 22)* = |RSN2,SNk| . ®)

Here, both z values have already been determined in terms of distances between ions. By

eliminating y, between Eqs. (4) and (5), the resulting x;, value is given as

1 . 2 - 2 6
Xg = 2_((Zk —7)% + x5 + |RFN,SNk| - |RSN2,SNk| - ZI%) ©)
X2
Substituting this value back into Eq. (1) gives two possible y; values;
(7)

2
Yk = i\/lﬁFN,SNkl — X — 7.

In effect, by using the distances |I_3)FN,5Nk |, |I_?)5N1,5Nk| and |I_?)5N2,5Nk| for all SNs with the

. = = = . .. .
distances |R R and (R each SN’s possible position is reduced to two
FN,SN1|> |IXFN,SN2 SN1,5N2

possible locations.



More generally, any point R not along the z-axis will be equidistant to at most two points

on a circle about the z-axis. These two points will be reflections of one another about the plane

with normal in the direction Rx2. This reflection symmetry has important consequences when

the distance between the k™ and m™ SN is used with the previous given distances.

As discussed, the set of distances {lﬁFN,SNkll |I_?)5N1,5Nk|, |I_3)5N2,5Nk| } and

{lﬁFN,Slel |§5N1'5Nm|, |§5N2'5Nm| } reduces the k™ and m™ SN location down to two points
each. This is illustrated in Fig. 1 (a) with the solid filled red and blue points representing the
possible locations of the k™ and m™ SN respectively. For the moment the k™ and m™ are both
assumed to not live in the xz-plane. If the k™ SN is located at the point shown with a thick black
boarder in Fig. 1 (a), the set of distances {lﬁFN,Slel |I_?)5N1,5Nm|, |I_?)5Nk,5Nm| } will also pick out
at most two possible points for the m™ SN indicated by the gray circles. However, the blue points
are reflections of one another about the plane with normal in the direction ﬁSNzxé and the gray
points are reflections of one another about the plane with normal in the direction ﬁSkaé. Asa
set of points cannot be reflections of one another about two different planes in three dimensions,
the gray and blue points cannot coincide perfectly. Therefore, when the k™ SN is at the position
indicated in Fig. 1 (a), the set of distances {|I_3)FN'SN,{|, |§5N1'5Nk|, |§5N2'5Nk|, |1_3)FN,SNm|,
|§5N1'5Nm|, |§5N2'5Nm|, |ﬁSNk,SNm| } picks out a unique position for the m™ SN. This means the
four possible configurations of the k™ and m™ SN are reduced to two uniquely determined

configurations and their respective reflections about the xz-plane.

Continuing in the same manner as discussed above. If the distances between adjacent SNs
in the nearest SN ranking are included with the distances {lﬁFN,SNkll |ﬁszv1,szvk |, |§5N2'5Nk| } for

each of the k SNs 3 through n (where n is the total number of SNs) and the distances



{|I"FN,SNI T \RFN,SN2T' |[Nswi,sW2l } and none ofthe SNs 3 through n live in the xz-plane, the

configuration of SNs would be uniquely described. This can be seen graphically in Fig. 1 (b). By
moving any SN from one of’its possible locations to the other the distances between the adjacent
SN will change. Similarly, if multiple SNs are moved between their respective possible positions
at least one distance must change. Therefore, as long as all SNs do not live in the xz-plane the

configuration of SN will be uniquely described up to a reflection about the xz-plane.

However, there are situations such as the one shown in Fig. | (c) where multiple SNs live
in the xz-plane. In this case, a SN not in the xz-plane that is adjacent to two SNs that do live in
the xz-plane, can be moved between its two possible locations without a change in the distances
between SNs. This means different SN configurations would have the same descriptor vector. To
restore uniqueness the most straightforward way is to ensure all SNs which do not live in the xz-
plane are connected to all other SNs that do not live in the xz-plane. This can be achieved by

using the distances between all pairs ofiions.

N

<) h%



Figure 1: (a), The red filled circles indicate the two possible positions the k™ SN can be found
after the distances {lﬁFN,SNk |, |I_?)5N1,5Nk|, |I_?)5N2,5Nk| } are given. Correspondingly, the blue
filled points are the two possible locations for the m™ SN resulting from the distance

{lﬁFN,Slel |§5N1'5Nm|, |1_3)5N2'5Nm| } When the k™ SN is found at the red circle with the thick

black boarder the set of distances {lﬁFN,SNkmll |I_?)5N1,5Nm|, |I_?)5Nk,5Nm| } picks out the gray
filled circles as the two possible locations for the m™ SN. (b), Graphical representation of
connecting adjacent SNs in the nearest SNs ranking. The red points on the labeled black lines
indicate the two possible positions of each SN and the solid blue lines represent he distances
between SNs. The dotted blue lines connected to SN 6 represent a change in the respective
distances if the 6™ SN is shifted from its up to lower position. (c), Graphical representation of
connecting adjacent SN in the nearest SN ranking when more that one SN lives in the xz-plane
(i.e. has only one red point where it can live). In this case moving the 6™ SN from the top red
point to the bottom red point leaves the distances between its adjacent SNs unchanged.

For any SN configuration which does not have an ambiguity in the nearest SN ranking, a
descriptor vector with a set of ordered distances will uniquely describe the SN configuration up
to a rotation and reflection. Before moving on there are two important notes about the descriptor
which only uses distances. First, the descriptor constructed in this work using only distances
works because the strict ordering of distances keeps the reference to which pair of ions a given
distance belongs. In a case when the distances are binned into histograms this additional
information is lost. As such even with all distances given, reconstructing a single configuration
of ions may not be possible. Second, by including all distance between ions in the descriptor
vector, it is clear for SN configurations such as the one shown in Fig. 1 (b) the descriptor vector

will contain a large amount of redundant information. Work is ongoing to improve this.



III. DFT computational details

T N P ##bands E k-points Real space grid At (fs)
(kK) (g/cm3) cutoff (KS) (OF)
(Ry)

10 20 1.0 36 600 6x6Xx6 64x72x72 0.24
30 20 1.0 64 700 6x6x6 64x72x72 0.24
60 20 1.0 80 750 6x6x6 64x64x64 0.12
90 20 1.0 80 750 6x6x6 64x64x64 0.12
90 20 5.0 100 750 6x6X6 32x64x64 0.12
90 540 1.0 1200 500 IxIx1 256x256x256 0.12
150 20 1.0 128 800 6x6x6 128x128x128 0.048

Table 1: Parameters ofthe DFT calculations for quick reference.

All DFT calculations were performed with the PROFESS@Q-ESPRESSO package [1-5].
Found in table | columns 4-6 are the values ofthe technical parameters used in the KS
calculations at the various thermodynamic conditions considered. Column 7 indicates the real
space grid for the OF calculations. The last column oftable | indicates the time step for all MD

simulations (OF, KS or ML) performed at the given set of thermodynamic conditions.

To determine the technical parameters found in table | a series of convergence tests were
performed. For the convergence tests, at given set ofthermodynamic conditions, a series of
single point calculations with varying technical parameters was performed on a single fixed
snapshot of hydrogen atoms. The average change in both the force magnitudes and direction

obtained from the distribution of ]V ions was used to determine the best choice of'the technical



parameters. In all cases, on average the force magnitude and direction were converged within

1%.

IV. ML implementation in QE

At the current time, the force correction model is comprised of two separate sets of code
written in python 3.6. The first set, is the code written for the training procedure; the second is
the code that is interfaced with Quantum Espresso (QE) for MD simulations. In both cases the
python code requires the following two input files, ML input and ML _path. The ML _input file
contains all of the parameters needed to set up the creation of the descriptors as well as set up the
neural network (NN). ML path contains the path to the directory where the ML input file can be

found.

A. Training procedure code

To generate the reference data, the existing version of the PROFESS@Q-ESPRESSO
package has been modified to allow for both a KS and OF calculation to be performed during a
single point calculation. To perform such a calculation one must set up the standard QF.in file
for QE with the new keyword mlforce set to TRUE (the input for Profess must also be provided
here). QE will then write out the file ML reference data which contains the ion positions and

both forces.

Once the reference data has been generated the python code Force correction.py can be
run. This code, for the training procedure, takes in the ML reference data file along with the
ML input file to set up and generate the input descriptor vectors and corresponding reference

force differences. Note, throughout this work the M1 reference data file for the train/validation



sets and the test set were constructed separately and all test data was put in a separate directory to

ensure it is never touched by the training process.

With the reference inputs and outputs constructed the python code begins to train the NN.
Here, the NN has been written from scratch using just standard linear algebra operations found in
the NumPy library [6]. The gradient descent algorithm used to determine the optimal free
parameters is also written from scratch, the details of which are provided in section IV. Once the
training procedure is finished, the python code writes the optimal parameters of the NN to the

tiles Weights and Bias.

The primary motivation for this stand-alone code for the training process was to provide
the user with flexibility to experiment with the training of the model. The goal of future work
will be to have an additional code for the training process that is directly interfaced with QE to

enable on-the-fly MD simulations.

B. Molecular dynamics code interface

Schematically, the flow of the PROFESS@Q-ESPRESSO package interfaced with the
python code for MD simulations is shown in Fig. 2. Starting with the initialization, QE requires
all usual input files needed for KS MD to be set up. However, instead of using the keyword
useofdft to signal that OF calculations will be performed the keywords mlforce and mifready
must be used in the QF.in file, both of which must be set to 7TRUFE. Additionally, the standard
input files for PROFESS must also be provided. Once QE is initialized it will automatically
initialize Profess; this is not the case for the python code. Here an additional job must be

submitted to run the python code. The reason for this is QE and the python code are, at the



moment, are interfaced in such a way that all data transferred between them is written and then

read from a set of temporary files in the working directory.

Initialize QE, ion
positions (/?]

Initialize fe KS-DFT
mha l ze force OF-DFT Initialize Profess
correction model
or ML?
Create input Solve KS Egs. Solve Euler Eq.
descriptors {d} orbitals, forces density, forces {f0F}
Predict force Collect total
correction force {F}

ion positions {7f}

Quantum Espresso
Profess

Stop .
Force correction

Properties

Figure 2: Schematic diagram ofhow the ML based code has been interfaced with the

PROFESS@Q-ESPRESSO package.

With all initializations complete, QE passes the ion positions to both Profess and to the

python code. Since the python code is run as a separate job, the construction ofthe descriptors



and prediction of the force difference occurs simultaneously with the calculation of the OF
forces. Note, in Fig. 2 this corresponds to simultaneously moving from the upper diamond into
the red and blue branches; the code for calculating KS forces is not activated. Once the OF forces
and corrections have been calculated, QE combines them to produce the equivalent KS forces.
These equivalent KS forces are then used to move the ions. This process is continued until the
required number of MD steps is reached. The calculation of the energies and pressure for the

resulting MD trajectory is carried out as part of post processing.

The above interfacing is done in such a way as to preserve the standard functionality of
the PROFESS@Q-ESPRESSO package. That is, with mlforce, mlfready and useofdft set to
FALSE, standard KS MD will be performed. This is indicated by the purely orange loop of Fig.
1. If both ML keywords are set to FALSE and useofdft is set to TRUE, OF based MD is

performed (blue-orange loop Fig. 1).

It is also of note that all python codes for the force correction model have been

parallelized using the mpi4pi library [7-10].
V. Gradient descent

The ML force correction for a given reference ion has the form
Jj

Here, a NN is used to map the description, cii j» of the j th first neighbor (FN) to its contribution to

the force difference for the i*" reference ion. Moving forward the ML force difference will be

written in the form



AﬁiML - (ﬁ(l)Cl) o Riﬁi' (9)
The length of the vectors PMand ﬁi are 3 and the number of FNs respectively. In both cases all

the elements of the vector are 1.0. The matrix R; is formed out of the unit vectors pointing to the

FNs

2

Ri = (R\i,l R\i,Z R\i,3 ) (10)
The symbol o indicates a Hadamard product (elementwise multiplication). Note, the Hadamard
product in our notation is given higher priority in the order of operations than standard matrix

multiplication but will have a lower priority than parenthesis.
The matrix C; (which is actually a row vector) is formed out of the predicted FN weights,

C; = WRF(WDD; + B)). (11)
Here, W and W@ are the weights of the NN and f is the activation function. The bias vector,
ﬁ , added at the hidden layer is constrained to be exactly the same for all predictions. This leads
to the B; matrix which has the form
B; = BPT. (12)
The matrix D; in Eq. (11) 1s the input matrix and is constructed out of the individual descriptor

vectors for each FN,

Di - (C_ii,l d)i,z C_i)i'g ) (13)

To determine the optimal weights and bias of the NN a gradient descent is performed on

a cost surface. For this work the cost is defined as



Ns

C = %Z {|617"i|2 + Aexp (—a|AI3iML|2)},
s

i (14)
where
§F; = AFME — AFTT, (15)
The gradients of the cost function in terms of the weights and bias are
Ns T (16)
aC 1 S N L2
= EZ <6Fi — 2AaAFM exp (—a|AFiML| )) RifT,
i
Js (17)
aC 1 1 T = = = 2 T
s = Ez fl o <W<2> {6F; — 24a8FM exp (—a|aFM ")) Ri> hH
i
and
Js (18)
aC 1 - - - 2 T -
a_ﬁ = EZ fl o <W(2)T {6Fi — 2AaAFM exp (—a|AFiML| )} Ri> P
i

Note, the use of matrix notation in the derivative should be interpreted as taking the derivative of
the cost with respect to each individual element of the corresponding matrix or vector. As short
hand notation, the argument of f and f' (derivative of the activation function) has been

suppressed as they are consistent with the argument of f in Eq. (11).

With the gradient determined the weights and bias are updated as

oc (19)
ow @y

2 2
WE =3

hew



Y& = v @ O — (20)

and

- dC 1)
Pnew — Pold ~R- ~
g8

with fi being the learning rate. For this work fi is a random variable which will be sample from a

uniform distribution defined on a certain range ofvalues.
VI. Training the model

A. ML technical parameters

T(kK) #nodes #SN Rc (bohr) Initialization
10 40 5 6.08 0.001 [-0.1, 0.1]
30 100 5 5.70 0.0008 [-0.1, 0.1]
60 60 3 4.75 0.01 [-0.1, 0.1]
90 40 3 3.78 0.001 [-0.1, 0.1]
150 40 3 3.78 0.005 [-0.1,0.1]

Table 2: Technical parameters ofthe training process for quick reference.

Found in table 2 are the technical parameters associated with the creation ofthe
descriptors and the setup ofthe NN. In all calculations a single layer NN consisting of40 to 100
nodes is used. The number ofnodes along with the cutoffradius, Rc, and the number SNs was

determined through a series of convergence tests ofthe model accuracy.



The parameter /r listed in table 2 is the average value ofthe learning rate. For all training
processes the learning rate is allowed to vary by £25% ofthe mean value. The final column of
table 2 labeled “initialization” indicates the range that each element ofthe weight matrices and
bias vector are initialized on. Note, for this initialization the elements ofthe weights and bias are

drawn randomly form a uniform distribution defined on the given range.

B. Learning curves:

----- training set ----- training set

------ validationset validation set
A)T = 10 kK B)T =30 kK

----- training set

-——- validation set

. D)T = 90 kK

to-: C) T=60kK 0 trai'ninf'; set
B -—- validation set



‘E)T= 150 kK

————— training see

—————— validation set

Figure 3: Learning curves for one member ofthe ensemble of force correction models

constructed at each temperature considered.

For each set of thermodynamic conditions considered an ensemble of 15 force correction
models was constructed. Shown in Fig. 3 are the learning curves for one randomly chosen
member ofthe ensemble at each temperature. The blue and red curves represent the cost defined
in Eq. (14) calculated on the training and validation sets respectively. As can be seen, there is
often a period ofrapid improvement in the model followed by a plateau. Pushing the training run
to 2 million epochs did not show any change in these plateaus. The overlap ofthe validation and
training curves indicates that the level of accuracy achieved on the training set is likely to
generalize well to unseen data (whether that level of accuracy is “good” will be measured by the
test set in the next subsection). However, it should be noted that the cost plateaus at a value of
0.1 at the lowest temperatures whereas it plateaus at 0.001 for the highest temperatures. This
signals that additional complexity in the model is likely needed at the lowest temperatures

considered in order to further improve the model predictions.

C. Performance on the test set
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Figure 4: Results on the test set for the force correction model at each temperature considered.

Column 1, predicted KS forces as a function ofthe target KS forces. The black dotted line



represents the target the model aims to achieve. Column 2, the relative errors in the predicted
KS force (blue) and OF force (red) magnitudes as a function ofthe target KS force magnitude.
Column 3, Angular deviation ofthe predicted KS force (blue) and OF force (red) from the

target KS force as a function of the magnitude ofthe target KS force.

Once the ensemble of force correction models are trained at a given temperature, the
accuracy ofthe average force predicted by the ensemble is determined by making predictions on

a previously set aside test set. The resulting predictions on the test sets are shown in Fig. 4.

It is clear from Fig. 4 that the overall accuracy ofthe model improves as the temperature
ofthe system is increased. This is expected as both KS and OF DFT begin to tend towards the
same high temperature limit ofthe uniform electron gas making the correction easier to learn.
This leads to a majority of predicted KS forces at 30 kK and above having a magnitude within
10% of'the target values and a directional deviation with respect to the target KS force ofless
than 10 degrees. At all temperatures considered the force correction model is capable of

producing a force that is more accurate than the underlying OF force.
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Figure 5: Column 1, relative error distributions for the force components for the predicted KS
forces (blue) and OF force (red) for the ions in the test sets at the respective temperature.
Column 2, distribution ofuncertainties in the predicted KS forces for predictions made on the

test set.

The resulting errors on the test sets are further analyzed in column | of Fig. 5. Here, it
can be seen that the error distribution on the components ofthe predicted KS forces is symmetric
around 0%. This is not the case for the underlying OF forces which show a consistent over
estimation in all ofthe force components. Note, the numerator ofthe relative error is defined as
target KS force component minus approximation force component. Furthermore, as the
temperature of interest is decreased, the relative error distribution for the predicted KS force
components remains symmetric. This ultimately leads to the symmetric spread in the predicted

KS force magnitudes about the target KS force magnitudes observed in Fig. 4.

Also shown in Fig. 5 are the distributions of uncertainties on the predicted KS forces in
the test set. Similar to the relative errors, the uncertainties tend to increase as the temperature of
the system is decreased. Despite this overall the force correction model tends to make a predicted

KS force with a 10% or less uncertainty.



VII. ML based MD
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Figure 6: Distribution ofuncertainties from the MD dynamic simulation (blue) with the force

correction model compared to the distribution ofuncertainties from the test set (red).



During the course of MD simulations it is important to confirm that the force correction
model stays within the domain of the input vector space associated with the training set to ensure
the accuracy of the predictions is maintained. Within this work, this is done by examining the
uncertainties resulting from the ensemble of trained models used to predict the force differences.

Here, the uncertainty is defined as

|51 (22)
Opp = ———X 100%,
AR
where ¢ is the vector formed out of the standard deviations in each component of the predicted

force difference.

The uncertainty defined by Eq. (22) is different than those in the main text used during
the testing of the model. This is because the OF forces were discarded during the MD simulation
(an oversight that has been corrected). However, it is expected that the sensitivity of the
uncertainty in the force difference to unseen local configurations should lie between that of the
predict KS force and the predicted FN weights. Since both of those uncertainties where in
agreement during the testing of the model, the uncertainty in the force difference should provide

reasonable assessment as to whether unseen local configurations are encountered.

Shown in Fig. 6 are the distributions of the uncertainties in the force differences for the
MD trajectory and the test sets for all temperatures considered. As can be seen, the uncertainty
distribution from the test set falls directly in the middle of the distribution from the MD
simulations for all temperatures. The presence of blue points around the red points can be
attributed to higher sampling of the tails of the uncertainty distribution during the MD
simulations as the blue distribution contains around 30000 points whereas the red distribution

contains no more than 2000 points. This suggests that the MD simulation likely samples regions



of the input vector space for which data is presents but the data density is relatively low.
However, given that the uncertainty distribution from the MD simulation appears to grow
symmetrically around the distribution from the test set (as opposed to the shift in the distribution
observed during the transferability tests) it is unlikely that a significant number of new local
configurations are encounter during the MD runs. As such the results of the MD simulation

should be trusted as was confirmed with the distributions of energies and pressures.

VIII. Behler and Parrinello comparison

The developed force correction model is benchmarked to the Behler and Parrinello (BP)
scheme [11] in three different ways. In the first benchmarking the descriptors based on inter-
ionic distances describing the SN configuration is swapped out for the BP descriptors (Eqs. (4)
and (5) of [11]). The results of the hyperparameter search at 90 kK are shown in table 3 with the
corresponding hyperparameters listed in table 4. In comparison two the full BP model is used to
predict force difference at 90 kK. See table 5 for the results on the test set and table 6 for the
hyperparameters. For the third and final comparison the full BP model is used to directly predict
the KS forces. The results on the test set at 90 kK are shown in table 7 with the corresponding

hyperparameters listed in table 8.

For each BP based model in the three benchmarkings a single layer fully connect feed-
forward NN with 40 nodes in the hidden layer was trained according the corresponding form of
the cost in Eq. (14). For comparison three 4 and « in the exponential regularization were set to
400 and 1700 respectively. For a single model in the hyperparameter search for comparison 2 the
mean squared error (MSE) with respect to the energy was added into the cost with equal weight

to the MSE in the forces. This addition was shown to decrease the accuracy in the resulting force



predictions, table 5 row 1. As such, only force data is used in the training ofall other BP models

to help ensure the highest level of accuracy in the predicted forces.

For all BP models in the comparison, the activation function, master training set and test
set are the same as those used in the training ofthe force correction model developed here. For
each ofthe BP models the learning rate was on the order of 10"4 with typical training runs taking
50 to 100 k epochs to optimize the NN. The learning curves for the models in table 3 row 4, table

5 row 2 and table 7 row 2 are shown in Fig. 7.

Des. SN cutoff Rel. Err. 25th 50th 75th Ang. Err. 25th 50th 75th
(bohr) (%) (degrees)

1 rad. 2 ang. 1.89 19.77 8.76  13.33  22.07 7.81 2.65 4.95 8.90

2 rad. 4 ang. 2.83 1079 543 772 1274 3.72 1.16 222 4.23

4 rad. 4 ang. 2.83 1032 376 650 10.94  4.34 120 239 4.39

6 rad. 4 ang. 378 8 19 480 682 992 308 126 2.34 3.83

12 rad. 8 ang. 378 975 547 829 11.85  3.49 139 256 443

Table 3: KS predictions on the 90 kK test setlor the force correction model that utilizes the

Behler and Parrinello descriptors to describe t IC SN configurations.

Des. SN cutoff Radial descriptor parameters Angular descriptor parameters
(bohr) 0FC'O

1 rad. 2 ang. 1.89 (0.28, 0.378) (0.56, 1.0, £1)

2 rad. 4 ang. 2.83 (0.28,0.0), (5.61,1.51) (0.28, 14, £1), (0.28,4.5, +1)

4 rad. 4 ang. 2.83 (0.28, 0.0), (1.40, 0.47), (0.28, 14, £1), (0.28,4.5, +1)

(4.20,0.94), (8.2, 1.89)



6 rad. 4 ang. 178 (0.28, 0.0), (1.40,0.57), (4.20,1.13), (028, 14, +1), (0.284.5, +1)
(8.2,1.70), (12.61,2.27), (16.82,2.83)

12 rad. § ang. 178 (0.28,0.0), (1.12,0.38), (1.68,0.76), (028, 14, +1), (0.28,2.5, +1),
(4.2,0.94), (5.61, 1.13), (841, 1.42), (0.28, 4.0, £1), (0.28,7.0, +1)
(8.41,1.7), (8.41,1.98), (8.41,2.27),
(8.41,2.55), (8.41,2.83), (8.41, 3.31)

Table 4: Hyperparameters of the descriptors used in the calculations oftable 3. Note: the units

ofthe hyperparameters are 7] (1/bohr2), Rs (bohr), (, and 4 unitless.

Des. Rel. Err.  25th 50th 75th  Ang. Err.  25th  50th 75th
(%) (degrees)
2 rad. 4 ang. 22.01 1320 1935  27.18 5.16 192 3.65 629
(0.5, 0.5)
2 rad. 4 ang. 12.23 575 952 1588 4.07 148 290 5.04
10 rad. 10 ang. 16.23 8.07  13.10  20.29 5.54 206 187 6 83
20 rad. 22 ang. 23.90 1252 2048  30.29 619 235 437 7.54

Table 5: KS predictions on the 90 kK test set for the fill BP model trained on force
differences. The (0.5, 0.5) in row | column | indicate:s the mean squared error in
energies and forces have the same weight in the cost function. All other runs use solely

force data for training.

Des. Radial descriptor parameters Angular descriptor parameters

0i.C'O



2 rad. 4 ang.

(0.5, 0.5)

2 rad. 4 ang.

10 rad. 10 ang.

20 rad. 22 ang.

(20, 0.0, (20, 0.38), (20, 0.76),
(20,1.13), (20,1.51), (20, 1.89),
(20,2.27), (20,2.65), (20, 3.02),
(20, 3.40)

(0.0,1.0), (1.0,1.89)

(0.0,1.0), (1.0,1.89)

(80.0, 0.0), (80.0, 0.19), (80.0, 0.38),
(80.0, 0.57), (80.0,0.76), (80.0, 0.94),
(80.0, 1.13), (80.0,1.32), (80.0, 1.51),
(80.0, 1.7), (80.0, 1.89), (80.0, 2.08),
(80.0, 2.27), (80.0,2.46), (80.0, 2.65),
(80.0, 2.83), (80.0, 3.02), (80.0, 3.21),

(80.0, 3.4), (80.0, 3.59)

(02, 15, £1), (0.2, 6.0, +1)

(02, 15, £1), (0.2, 6.0, +1)

(0.2, 1.0, £1), (0.2, 2.5, 1),

(0.2, 4.0, £1), (02, 5.5, £1),
0.2, 9.0, £1)

(02, 1.0, 1), (0.2, 1.5, +1),
(0.2,2.0, £1), (0.2, 3.5, +1),
0.2,5.0, £1), (0.2,6.5, £1),
(0.2, 8.0, 1), (0.2, 10.0, =1),
(0.2, 18.0, £1), (0.2, 25.0, +1),
(0.2, 36.0, +1)

Table 6. Hyperparameters ofthe descriptors used in the calculations oftable 5.

Note: the units ofthe hyperparameters are 17 (1/bohr2), rs (bohr), £ and 4 unitless.

Des.

29 rad. 24 ang.

30 rad. 24 ang.

40 rad. 24 ang.

40 rad. 24 ang.

40 rad. 24 ang.

Rc (bohr)  Rel. Err.
(7o)
5.67 149.41
9.45 154.52
9.45 157.87
14.18 158.17
17.00 151.19

25th

74.17
82.52
87.62
85.78
87.14

50th

112.34
120.73
121.74
120.54
117.89

Table 7: KS predictions on the 90 kK test set with the

75th  Ang. Err.  25th
(degrees)

177.11  67.13 34.57

18798 7546  42.78

185.42 80.47 46.93

183.60 7846  44.46

174.25 7861 4741

50th

6200
70.85
79.28
75.62
76.27

75th

94.43

110.08
112.50
111.60
108.03

‘ull BP model trained on KS forces.



Des.

29 rad. 24 ang.

30 rad. 24 ang.

40 rad. 24 ang.

40 rad. 24 ang.

40 rad. 24 ang.

Rc (bohr)

5.67

9.45

9.45

14.18

17.00

Rad. rj
(bohr?)

800

40.0

80

40

35

Rs

(bohr)

iRe - 03)129

=0, 1,2, ...,28
ific/30
=0, 1,2, ...,29
ific/40
=0, 1,2, ...,39
ific/40
=0, 1,2, -,39
ific/40
i=0,LZ .39

Ang. 7j

(bohr2)

3A 0.7,0.2,0.05,

1.0, 0.2,0.05, 0.01

1.0, 0.2,0.05, 0.01

1.0, 0.2,0.05, 0.01

0.8, 0.1, 0.02, 0.003

1.0, 3.0, 10.0

1.0, 3.0, 10.0

1.0, 3.0, 10.0

0.5,2.0,10.0

0.5,2.0,10.0

Table 8: Hyperparameters ofthe descriptors used in the calculations oftable 7. Note: unlike

previous tables all combinations of hyperparameters are used to construct the descriptor

vectors. In the case ofthe angular descriptors 4 takes the values +1.

Figure 7: Learning curves for three separate BP based models, (left) 6 rad. 4 ang. model from

table 3 row 4, (middle) 2 rad. 4 ang. model from table 5 row 2 and (right) 30 rad. 24 ang.

model from table 7 row 2.



Section IV. Assessing the non-conservative nature

As the force correction model predicts forces directly, errors in the predictions will result
in a force field that is non-conservative. To assess the non-conservative nature ofthe force
correction model, the first step was to calculate the curl ofthe predicted KS forces. As the
underlying OF forces are conservative the curl ofthe predicted KS forces will be equal to the

curl ofthe predicted force differences.

The curl ofthe predicted force was calculated numerically as follows. For a given local
configuration the reference ion is perturbed in a specific direction while keeping the surrounding
FNs fixed. The new descriptor vector is calculated for the perturbed reference ion and the
corresponding force difference is predicted. In an attempt to avoid noise in the derivatives, the
reference ion is perturbed four times with a maximum perturbation of + 0.01 bohr in a given
direction. Each force component, as a function ofthe change in the reference ion position, is fit
with a line using a least squares fit and the corresponding slope is taken as the derivative ofthat
force component with respect to the direction ofthe perturbation. The resulting calculated curl of

the predicted KS forces on the 90 kK test set are shown in Fig. 8.

Right derivative (Ry/tiohF)



Figure §: Calculated curl ofthe predicted KS forces on the 90 kK test set. Right and left

derivative indicate the derivative in a given set of brackets in the plot key.

To determine how the non-conservative nature ofthe predicted forces effects a MD
simulation a separate MD simulation was performed to monitor the change in the potential
energy ofthe system from one MD step to the next. Here, the change in potential energy can be

calculated as

" (23)
£04+!) _ EU) = -At2” P[)1v[}),

i
where F/[j" is the force on the ith ion at MD step j, is the corresponding ionic velocity and At
is the time step ofthe simulation. During the course ofthe MD where the change of energy is
observed the thermostat is turned offand the time step is reduce by two orders of magnitude. The
latter is done to minimize the non-conservative nature ofthe Verlet algorithm. This test was then
repeated in the same manner for a MD simulation driven by only the OF ionic forces. The results

at 90 kK can be seen in Fig. 9. Note, this test is analogous to that performed in [12].
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Figure 9: Change in potential energy from one MD step to the next for the force correction
model trained at 90 kK (blue) and for uncorrected OF forces (red). The time step for these

simulations was 0.00097 fs and both simulation are initialized with the same ionic positions.
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