A Large Model’s Ability to Identify 3D Objects as
a Function of Viewing Angle

Jacob Rubinstein, Francis Ferraro, Cynthia Matuszek, Don Engel
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County (UMBC), Baltimore, Maryland, USA
{jrubinsl, ferraro, cmat, donengel } @umbc.edu

Abstract—Virtual reality is progressively more widely used to
support embodied AI agents, such as robots, which frequently
engage in ‘sim-to-real’ based learning approaches. At the same
time, tools such as large vision-and-language models offer new
capabilities that tie into a wide variety of tasks and capabilities.
In order to understand how such agents can learn from simulated
environments, we explore a language model’s ability to recover
the type of object represented by a photorealistic 3D model as a
function of the 3D perspective from which the model is viewed.
We used photogrammetry to create 3D models of commonplace
objects and rendered 2D images of these models from an fixed
set of 420 virtual camera perspectives. A well-studied image
and language model (CLIP) was used to generate text (i.e.,
prompts) corresponding to these images. Using multiple instances
of various object classes, we studied which camera perspectives
were most likely to return accurate text categorizations for each
class of object.

Index Terms—Multimodal interaction, Virtual Reality, CLIP,
3D Models

I. INTRODUCTION

The ability to accurately identify and describe 3D objects
is an important task with various practical applications, par-
ticularly in the field of robotics. Embodied agents in human-
centric environments need to be able to handle dynamic set-
tings in which objects and tasks may change quickly, and will
need to be able to respond to human instructions pertaining to
those settings. In this work, we focus on learning to identify
objects that occur in such environments, in order to ultimately
be responsive to commands such as, e.g., “pack the apple in the
lunch basket.” Identifying how language is tied to the physical,
perceptual world in which agents operate is a component of
the widely studied symbol grounding problem [1].

There is work on using virtual reality (VR) to support such
grounded language learning [2]-[4], with a focus on sim-
to-real learning approaches, in which an agent is trained in
VR and then learned behaviors are transferred to the physical
world. Such machine learning approaches are powerful, but
data-hungry, frequently requiring hundreds or thousands of
language descriptions of the world to support learning. How-
ever, manually generating descriptions for large collections of
3D models can be prohibitively time-consuming and resource-
intensive. The motivation for this project is therefore to explore
the use of a large language model in automating this process,
with a particular focus on whether the viewing angle used to
generate an image has a significant impact on the accuracy of a
derived image description. In this way, we use models derived

from natural language processing and vision-and-language
models to support data collection for world understanding on
the part of embodied agents, with virtual reality providing the
testbed in which agents can be trained.

To understand how large models can support such learning,
we first created 3D models of the everyday objects represented
in the Grounded Language Dataset (GoLD) [5], which is
designed to support exactly the kind of grounded language
learning under consideration [6]. The objects in the original
GoLD dataset are represented by a combination of RGB and
depth images, but not at a resolution that is sufficient to support
VR-based learning. Accordingly, we built suitable models of
the objects from that dataset using Direct Dimensions’ Part
Automated Scanning System (PASS), which uses photogram-
metry to create photorealistic models. Each object type (e.g.,
apple) was represented by multiple physical objects, providing
a 3D model of each instance of each object type. We then used
a custom Unity script to render 2D images of each 3D model
from a fixed set of 420 virtual camera perspectives.

The primary contribution of this work is to investigate
whether a large vision-and-language model can be used ‘in
reverse’ to generate language describing objects in the en-
vironment. We focused on OpenAl’s Contrastive Language-
Image Pre-Training (CLIP) language model [7] due to its
widespread adoption, and generated prompts from images of
objects in the environment. In order to generate CLIP prompts
corresponding to each 2D image, we use CLIP Interrogator
(aka InterrogateCLIP) [8], due to its integration into the
popular web-based user interface by AUTOMATICI1111 [9]
for Stable Diffusion [10]. We then searched each perspective’s
generated prompt for the text label corresponding to the object
type (e.g., “apple”) and rendered a heat map, summed across
all objects of that type, to show where the label was (or was
not) included in the prompt text.

II. RELATED WORK

The GoLD dataset [5] has previously been used primarily
in settings where vision (screen displays) has been used for
human interaction, but not virtual reality. We take objects
from GoLD, move them from a 2D to a 3D context, and use
a large language model instead of direct human annotation
to find class labels for objects. In the creation of GoLD,
207 commonplace objects of 47 object types (e.g. apples)
were captured as 2D images (825 per object) using a rotating



platform. Mechanical Turk was used to collect 16,500 text and
16,500 audio descriptions of the dataset. While GoLD’s 2D
images were generated by rotation around a vertical axis, the
work described herein is instead framed around the question of
arbitrary 3D perspectives, with photogrammetrically-derived
3D models used to generate 2D images from viewpoints
outside a single horizontal plane. We were able to acquire
only a subset of the original GoLD objects, as detailed further
below. We also differ from the GoLD paper’s approach by
exploring how accurately these images can be annotated by
a large language model (rather than by humans) and differ in
exploring the labeling accuracy as a function of viewing angle.
Other prior work has been done in the spaces of comparing 3D
models from multiple views using a bag-of-features approach,
but in that previous work, the features were visual rather than
text-based [11].

Recent research has explored other uses of CLIP Inter-
rogator, such as its application to curating works of art [12]
and detection of harmful memes [13]. The potential for
“prompt stealing” (i.e., reverse engineering the prompts used
to generate an image) has been explored by Shen er al. [14].
The aforementioned papers focused on applications of CLIP
Interrogator, whereas we are interested in studying the func-
tionality of CLIP Interrogator itself. The most closely related
work to ours is that of Udo and Koshinaka [15], who explored
the relative accuracy of CLIP Interrogator and other prompt
generation tools. Our work is similar in that it studies the
accuracy of prompt generation, but does so within a single
tool, as a function of viewing angle.

Our work is also distinct in that we are interested in gener-
ating models that can be used in virtual reality environments
to support robotic interaction. There exists extensive work
in the intersection of robotics and virtual reality/augmented
reality [16]-[18], including in the human-robot interaction
space [19], [20], but comparatively few works focus on natural
language in such a setting; the work that does exist tends to
be focused on specific problem spaces (e.g., teleoperation [21]
or swarm robotics [22]), despite interest in the subject [23].

III. EXPERIMENTAL METHODOLOGY
A. 3D Model Capture

The initial stage of our work consisted of creating 3D
models of a sampling of objects from the Grounded Language
Dataset (GoLD) [5] dataset. For reproducibility of our method,
we chose to use photogrammetry for 3D model capture
rather than using a less accessible 3D capture methodology
(structured light, LiDAR, etc.). In principle, photogrammetry
allows for models of stationary objects to be captured using
any digital camera (e.g., phone camera) by collecting images
representing a sufficient number of perspectives and running
them through 3D reconstruction software. Many versions of
such photogrammetric software exist, with varying degrees
of usability and performance. We initially experimented with
several cloud and desktop-based services for reconstructing 3D
models of photosets captured by our mobile phones. For the
sake of repeatability and speed, we instead ended up capturing

the models for this paper using the Part Automated Scanning
System (PASS) invented by Direct Dimensions. PASS enabled
us to capture content more quickly than a piecemeal solution
thanks to its use of multiple cameras, a staging platform,
lighting, and reconstruction software.

The original GoLD dataset includes five high-level object
categories (food, home, medical, office, tool). 47 object classes
(e.g., “apple”) are spread across these five categories, and each
class is represented by four or five instances (e.g., five distinct
apples). Whereas the GoL.D project used a turntable and then
selected about four representative 2D images for each of their
207 object instances, we are particularly interested in having
many more images per object, and are more limited by the
complications of 3D object capture.

We chose 10 of GoLD’s object classes for 3D capture:
apple, banana, can opener, gauze, lemon, lime, onion, potato,
shampoo, and toothpaste. For most of these, we included five
instances per class (e.g., five distinct apples), with a total of
36 object instances across the 10 classes.

B. 2D Image Generation

To generate the images of the 3D models from various
perspectives, we used the Unity Game Engine. We first created
a sphere object at the origin of the scene, made the sphere
invisible, and attached the camera object to that sphere. We
then moved the camera a distance of 300 units away from
the sphere and pointed it towards the origin. With this setup,
we were able to change the rotation the sphere to cause the
camera to travel around a sphere of radius 300 while pointing
at the origin, allowing us to render images of an object at the
origin from many perspectives.

The next step was to add each of the 36 3D models to
the scene, making sure to align their centers at the origin
and aligning their front to the initial camera view. We created
prefabs of each of these object placements, thereby allowing
us script their appearances.

Our algorithm used to capture images of the objects is
further detailed in algorithm 1. The z angle ranges from -90
degrees to 90 degrees which captures view of the objects from
bottom to top; this is equivalent to the camera’s latitude on the
sphere. The y angle ranges from -180 degrees to 180 degrees
which captures views of the object in a horizontal loop; this
is equivalent to the camera’s longitude on the sphere.

We then created a script to capture the images and attached
it to the sphere object. In this script, we created an array
of GameObjects and added all of the prefab objects. Other
initialization steps included making the prefabs invisible and
resetting the sphere’s rotation.

The images are saved in a folder with the object’s name
and are named after the x, y, and z coordinates of the sphere’s
rotation.

C. Description Generation

To generate descriptions of the object, we used the “Inter-
rogate CLIP” feature of Stable Diffusion. For this task, we
used the stable-diffusion-webui GitHub repository. We used



Algorithm 1 Image Capturing

for object in objectArray do
object.visible = true
for zAng = —90; zAng <= 90; zAng+ = 9 do
for yAng = —180; yAng < 180;yAng+ = 18 do
sphere.rotation = (0, yAng, zAng)
Capture Screenshot
end for
end for
sphere.rotation = (0,0, 0)
object.visible = false
end for

an extension which allowed for batch clip interrogation and
exported these results to a comma-separated values (CSV) file
for each image.

For each input image, “Interrogate CLIP” provides the string
it determines is the most likely text prompt to have resulted
in that image being generated by Stable Diffusion. The tool
is open source, but lacks technical documentation and no
research papers have been published on it by its authors.
This lack of technical documentation is noted by Udo and
Koshinaka [15], whose paper includes their own analysis-
based explanation of Interrogate CLIP’s methodology. For the
purposes of our own research question, we seek to know only
if the name of the GoLD object class (e.g. “apple”) appears
anywhere within the relatively lengthy output prompt. For
example, the image of our first apple instance, taken from
an inward-facing camera at (0°,0°) on the surface of the
surrounding sphere (Figure 1), generates the prompt:

a close up of an apple in the dark, cycles4d, phobos,
floating planets and moons, octave render, cycles4d
render, visiting saturn, rendered in corona, octsne
render, inspired by Ma Yuan, charon, spring on
saturn, outer wilds, with small object details, pluto,
golden apple, a raytraced image, saturn

Fig. 1. apple_1, viewed from (0°,0°)

Because the word “apple” occurs at least once in this
prompt, we consider this to include the name of the object
class.

IV. RESULTS
A. Derived 2D Images

Qualitatively, most of the 36 object instances provided
photorealistic views from each of their 420 perspectives, as
demonstrated in Figures 2, 3, and 4.

Fig. 2. Example of onion_1 from 3 perspectives.

Fig. 4. Example of banana_2 from 3 perspectives.

In general, photogrammetry has performance issues with
surfaces that are specular or semitransparent, as reflections
interfere with feature detection algorithms’ ability to identify
a consistent set of points of interest across multiple perspec-
tives [24]. Our collection of scanned objects included several
glossy items. We attempted to mitigate this challenge through
the application of Krylon Dulling Spray, a transparent coating
which reduces the specularity of the surfaces to which it is
applied. This pretreatment proved effective for some of our
objects, such as metallic can openers (Figure 5), but was an
incomplete solution for a few of our objects, most notably
our fourth shampoo bottle (Figure 6). Models broken in this
way are often fixed by 3D graphics artists before being used
in other contexts (e.g., 3D assets for game development). We
did not apply such touch-ups to our 3D models and left their
imperfections intact, thereby preserving the automaticity and
consistency in our dataset’s production.

B. Overall Retrieval of Each Object Class

Let us define “image classification” in the context of this
paper to mean the inclusion of an object class’s name in the
prompt generated for that image. That is, an image of an apple



Fig. 6. The shampoo_4 model was particularly malformed.

which includes the word “apple” anywhere in its prompt is
considered correctly classified. Notably, this definition does
not preclude an image from being classified into multiple
classes at once (i.e., a prompt might say both “lemon” and
“lime”); we address multi-classification in the next section.

Before exploring multiple classifications or the dependence
of generated prompts on viewing angle, we ask a simpler
question: to what extent are the names of object classes
included in the images of each instance of that object class,
across all viewing angles? This question is motivated by the
fact that some objects classes pose challenges with generating
quality models using photogrammetry, as discussed in Section
IV-A. Another overarching issue is that the CLIP neural
network may include more accurate representations of some
object classes than others.

As shown in Table I, there is variation both by class and by
instance. Bananas are the most consistently classified correctly
(98.6% of images for the worst banana to 99.5% of images for
the best banana), with apples close behind (89.3% to 92.1%,
except for the only yellow apple, apple_1, at 73.6%). Although
images of toothpaste proved harder to classify, there is limited
variation as a function of which toothpaste instance (i.e., 3D
model) is being considered.

Some other classes have significant differences within that
class. The potato class is the most significant example of this,
with 88% of the images of potato_2 correctly classified, while
potato_4 is correctly classified only 3% of the time. This is
perhaps explained by the relatively spherical, less oblong shape
of potato_4, and a human would perhaps have similar difficulty
distinguishing a nearly-round potato on a black background,
without context, from being a rock or a moon.

All object instances of shampoos and can openers are quite
low in their image classification scores, which is perhaps
explained by relatively poor model quality due to these object
classes being more specular than the other object classes.

OBJECT NAME PERCENT OBIJECT NAME  PERCENT
APPLE_1 73.6% ONION_3 42.6%
APPLE_2 89.8% ONION_4 56.0%
APPLE_3 80.2%  ONION_5S 43.3%
DAPPLE_4 92.9%  POTATO_1 65.0%
APPLE_S 92.1% POTATO_2 87.9%
BANANA_1 99.0% POTATO_3 9.8%
BANANA_2 99.5% POTATO_4 3.1%
BANANA_3 98.6% POTATO_S 44.3%
CAN_OPENER_2 5.7% SHAMPOO_1 0.2%
CAN_OPENER_2_BOX 31.0% SHAMPOO_2 11.7%
CAN_OPENER_3 6.2% SHAMPOO_3 0.0%
CAN_OPENER_4 1.2% SHAMPOO_4 1.2%
CAN_OPENER_5 3.1% SHAMPOO_S 10.0%
GAUZE_1 40.0% TOOTHPASTE_1 71.4%
LEMON 74.8%  TOOTHPASTE_2 78.3%
LIME 18.6% TOOTHPASTE_3 64.3%
ONION_1 54.5% TOOTHPASTE_4 79.5%
ONION_2 45.0% TOOTHPASTE_5S 78.6%
TABLE I

PERCENT OF IMAGES FOR EACH OBJECT INSTANCE WHERE THE OBJECT
CLASS NAME APPEARS IN THE GENERATED PROMPT.

C. Incorrect Classifications and Multiple Classifications

As discussed in Section IV-B, an image will be classified
into multiple classes of object if the names of multiple object
classes occur within its generated prompt. Of the 15,120
images generated from the 36 object instances, 41% images
gave CLIP Interrogator output with no class names; 51%
included exactly one class name; 7% included exactly two
class names; and 1% included exactly three class names. No
labels included more than three class names.
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apple 86% 0% 0% 0% 6% 19% 2% 0% 0% 0%
banana 0% 99% 0% 0% 2% 0% 0% 0% 0% 0%

can opener 1% 2% 2% 0% 0% 0% 0% 0% 0% 2%
gauze 0% 0% 0% 40% 0% 0% 0% 0% 0% 30%

lemon 21% 10% 0% 0% 75% 5% 0% 0% 0% 0%

lime 70% 0% 0% 0% 16% 19% 2% 0% 0% 0%
onion 21% 0% 0% 0% 0% 2% 48% 1% 0% 0%
potato 9% 0% 0% 0% 0% 1% 0% 42% 0% 0%
shampoo 0% 0% 0% 0% 0% 1% 0% 0% 5% 37%
toothpaste 0% 0% 0% 0% 0% 0% 0% 0% 0% 74%

TABLE 11
PERCENT OF IMAGES (PER OBJECT CLASS) THAT HAVE EACH CLASS
LABEL. BECAUSE IMAGES CAN BE CLASSIFIED AS ZERO, ONE, OR
MULTIPLE OBJECT CLASSES, ROWS CAN SUM TO LESS THAN 100% OR
MORE THAN 100%.

As shown in Table II, some classes are more likely to be
confused with each other. 70% of the rendered images of lime
object instances included the word “apple” in their generated
prompt; only 19% of the lime images were categorized as
“lime,” followed by 16% of the lime images being categorized
as “lemon.”



At the other end of the spectrum, banana objects proved
easier to categorize correctly, with 99% of rendered banana
images categorized as “banana,” followed distantly by 2%
being categorized as “lemon.” This label makes sense when
viewing a banana along its axis, with the bottom tip of the
banana occluding most of the rest of the banana from view.

D. Effect of Viewing Angle on Object Classification

Having considered the likelihood of categorizing an image
correctly, as well as the possibility of how it may be cate-
gorized incorrectly, we can now turn to the major research
question posed herein: how does the viewing angle affect an
image and language model’s ability to correctly identify an
object?

In this section, we will explore those object classes for
which we have at least three instances (i.e., distinct 3D models)
of that class. As discussed in earlier sections, apples and
bananas proved easiest to classify. Interestingly, there is a clear
angular dependence on the ease of classification.

180 -162 -144 126 -108 -90 -72 -54 -36 -18 0 18 90 108 126 144 162
o/ 5/ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
¢ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
721 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
63 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
54 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
% 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
27 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
i¢ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
9. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5
9 4 5 5 4 4 4 4 4 5 5 5 5 5 5 5 5 5 4 4 4 4
18 4 5 5 4 4 4 4 3 4 5 4 5 5 5 5 5 5 4 4 4 4
27 4 3 4 4 4 4 2 3 4 4 4 4 5 5 5 5 5 3 3 4 4
36 2 3 4 4 4 4 2 2 3 3 4 4 4 4 4 4 4 3 2 3 2
45 3 3 4 4 4 4 2 2 3 3 4 4 5 5 5 4 4 3 2 1 3
54 4 4 3 4 4 4 3 2 3 4 5 5 5 5 4 4 4 4 3 3 4
63 3 4 4 3 4 4 4 2 4 5 5 5 5 5 4 4 4 5 3 3 3
72 2 2 2 2 3 3 2 1 1 3 4 5 5 4 4 5 4 4 3 4 2
s108 1 1] 2 1|3 1 1 1| 2004pNa Nalnaiead 3| 34 3|3
9 1 1 2 o 1 2 1 1 2 1 2 2 3 3 3 3 2 2 3 1 1

Fig. 7. Top: The five apple instances as viewed from (0°,0°); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word “apple”

All five apple instances (Figure 7) are correctly categorized
100% of the time when viewed from the northern hemisphere
of the viewing sphere. When viewed from even slightly below
the equator, accuracy begins to suffer. It is likely that a visual
cue, embedded in the CLIP model, is lost as the top of the
apple begins to become occluded. As the stem and the indented
area around the stem are removed from view, the word “apple”
is much less likely to appear in the generated text prompt. It
seems likely that a human would face similar difficulty. As
discussed earlier, this is particularly true for the yellow apple,
likely due to its atypical coloration.

In Section IV-C, we noted that images of instances of
the banana class are the most easily classified. As shown in
Figure 8, the orientation at which bananas become the most
difficult for CLIP to recognize is when they are laying flat
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Fig. 8.
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word “banana”
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Top: The three banana instances as viewed from (0°,0°); Bottom:

(so their signature curved shape is hidden) and pointed along
the line of sight - i.e., (0°,4+90°). At this orientation, the
observer sees only a yellow roundish shape, which is likely
why Interrogate CLIP includes “lemon” in banana images
under such circumstances.

Fig. 9. banana_l viewed from (—9°,90°) and (—9°, 108°)

For example, when banana_l is viewed from (—9°,90°)
(Figure 9, left), it is classified as both “banana” and “lemon”:

a close up of a banana on a black background,
lemon wearing sunglasses, anorld render, a bot in the
game super mario 64, spherical body, 3d game ob-
ject, videogame asset, slimy unreal engine, hatched
ear, seperated game asset, game asset, pear, povray,
yellow beak, low quality 3d model

From (—9°, 108°) (Figure 9, right), banana_1 is only classified
as “lemon”:

a close up of a lemon on a black background,
anorld render, modeled in 3 d, 3 d render of jerma
9 8 5, lemon wearing sunglasses, an angry lemon,
masterpiece. rendered in blender, moonray render,



low quality 3d model, 3d rendered, 3 d raytraced
masterpiece, 3 d rendered, 3 d model rip
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Fig. 10. Top: The five can opener instances as viewed from (0°, 0°); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the phrase “can opener”

Can openers (Figure 10) were second only to shampoo
bottles in being the least likely to be correctly classified. As the
heatmap shows, there appears to be a very strong dependence
on perspective, with images classified correctly only when
oriented around (0°,0°), which is the orientation depicted in
the figure. However, some of this may be attributed to the
inclusion of the can opener box in this image set, as it has
the words “Can Opener” on its packaging and is a significant
contributor to the non-zero values in the heatmap, as shown
in Table I.

The onion heatmap (Figure 11) shows a viewing angle
dependency similar in nature to that of the apple, discussed
above. When the onions are rotated such that their stems are
occluded - which happens around (0°, —90°) - they become
much more difficult to identify as onions (i.e., Interrogate
CLIP is much less likely to include the word ‘“onion” in
the generated prompt). There is significantly more sensitivity
to orientation than we saw with the apples, perhaps because
apples (other than the yellow one) are more easily identified
by their round shapes and distinctive coloring, while the onion
instances have more varied colors and shapes.

The potato heatmap (Figure 12) shows a hotspot around
(0°,0°), with all five potatoes correctly classified across six
contiguous rotation steps. This is the orientation depicted in
the figure, which is a viewpoint perpendicular to the major
axis of the potatoes. As discussed in Section IV-B, potato_4
performs worst with classification and is also the most spher-
ical. The second most spherical potato, potato_3, fares nearly
as badly. This tells the same story as the heatmap; a potato
image is most likely to be missing the word “potato” in the
CLIP Interrogator output when the potato appears round, rather
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Fig. 11. Top: The five onion instances as viewed from (0°,0°); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word “onion”
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Fig. 12. Top: The five potato instances as viewed from (0°,0°); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word “potato”

than oblong. This is true regardless of whether the apparent
roundness is due to a particular viewing perspective or due to
the potato being nearly spherical in 3D.

While in Section III-A it was noted that shampoo bottles
may be difficult to classify in part due to relatively poor
model quality, we nonetheless see a very strong dependence
on viewing angle in Figure 13. All five bottle instances have
cross-sections that are quite oblong, with labels printed on
the wide surfaces of the bottles. It is when the viewpoint
is perpendicular to these wide surfaces, around (0°,0°) and
(0°,180°), that the rendered images are most likely to include
the correct “shampoo” categorization.
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Fig. 13. Top: The five shampoo instances as viewed from (0°,0°); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word “shampoo”
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Fig. 14. Top: The five toothpaste instances as viewed from (0°, 0°); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word “toothpaste”

The toothpaste instances (Figure 14) have a strong de-
pendency on viewpoint that is related to both the shampoo
bottles and the bananas. When the flatter, larger faces are
perpendicular to the line of sight, they are more likely to be
correctly classified. This is particularly clear from the cold
spots in the heatmap, at (0°,£90°), where the viewpoint is
directly along the length of the toothpaste object, resulting
in an image which would only show the tip or end of the
toothpaste tube (or box), occluding the signature shape, as
well as the labelling.

E. Conclusions

Despite significant differences between object classes in
how easily they can be classified, there is nonetheless a
consistently strong dependence on viewing perspective in
determining the likelihood of correctly classifying a given
object instance. In some ways, it is hardly surprising that
objects are harder or easier to identify depending on viewpoint,
regardless of whether that viewpoint is held by a human or by
a vision-and-language neural network model. However, in the
context of models, this dependency could be driven in part
by biases in training data. Images of a banana or a tube of
toothpaste pulled from the Internet may consistently frame
those objects in particular ways as an unconscious design
choice of a human photographer. One would rarely think to
take a picture of a banana with its length oriented along the line
of sight, or of the bottom of an apple. For certain applications
of multimodal large models, such as robots embedded in a real
3D environment, objects may be less likely to be oriented in
those “photogenic” perspectives, from the robot’s perspective,
as it navigates the world.

On the other hand, our study shows that the weakest
viewpoints for CLIP with each object mirror the weakest view-
points of humans for those same objects. To some degree, it is
plausible that objects become fundamentally harder to identify
when oriented in ways which mask their most distinctive traits
(e.g., curvature of a banana or stem of an apple).

In either case, these results show that large models do
have viewpoint dependencies, which can be taken into account
in the future, either by anticipating these dependencies and
planning accordingly, or by building models which are trained
on images captured from a wider range of visual perspectives.

V. FUTURE WORK

This work is a component of a longer-term project aimed at
using virtual reality to study grounded language acquisition.
The GoLD dataset which inspired this project was a set of
object descriptions (text and audio) collected using 2D images
and Mechanical Turk, with the aim of providing a dataset
for grounded language acquisition research that will advance
human-robot interaction. The GoLD images were captured
from viewpoints at a fixed height around a turntable, yet robots
are immersed in 3D world. We intend to use the 3D models
and knowledge described herein to conduct a study similar
to GoLD, but which would instead record humans describing
objects they are seeing in virtual reality. We are interested
in seeing how these descriptions compare to those from the
original GoLD dataset and perhaps to those which could be
gathered by in-person viewing of the real physical objects.
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