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AbstractÐVirtual reality is progressively more widely used to
support embodied AI agents, such as robots, which frequently
engage in ‘sim-to-real’ based learning approaches. At the same
time, tools such as large vision-and-language models offer new
capabilities that tie into a wide variety of tasks and capabilities.
In order to understand how such agents can learn from simulated
environments, we explore a language model’s ability to recover
the type of object represented by a photorealistic 3D model as a
function of the 3D perspective from which the model is viewed.
We used photogrammetry to create 3D models of commonplace
objects and rendered 2D images of these models from an fixed
set of 420 virtual camera perspectives. A well-studied image
and language model (CLIP) was used to generate text (i.e.,
prompts) corresponding to these images. Using multiple instances
of various object classes, we studied which camera perspectives
were most likely to return accurate text categorizations for each
class of object.

Index TermsÐMultimodal interaction, Virtual Reality, CLIP,
3D Models

I. INTRODUCTION

The ability to accurately identify and describe 3D objects

is an important task with various practical applications, par-

ticularly in the field of robotics. Embodied agents in human-

centric environments need to be able to handle dynamic set-

tings in which objects and tasks may change quickly, and will

need to be able to respond to human instructions pertaining to

those settings. In this work, we focus on learning to identify

objects that occur in such environments, in order to ultimately

be responsive to commands such as, e.g., ªpack the apple in the

lunch basket.º Identifying how language is tied to the physical,

perceptual world in which agents operate is a component of

the widely studied symbol grounding problem [1].

There is work on using virtual reality (VR) to support such

grounded language learning [2]±[4], with a focus on sim-

to-real learning approaches, in which an agent is trained in

VR and then learned behaviors are transferred to the physical

world. Such machine learning approaches are powerful, but

data-hungry, frequently requiring hundreds or thousands of

language descriptions of the world to support learning. How-

ever, manually generating descriptions for large collections of

3D models can be prohibitively time-consuming and resource-

intensive. The motivation for this project is therefore to explore

the use of a large language model in automating this process,

with a particular focus on whether the viewing angle used to

generate an image has a significant impact on the accuracy of a

derived image description. In this way, we use models derived

from natural language processing and vision-and-language

models to support data collection for world understanding on

the part of embodied agents, with virtual reality providing the

testbed in which agents can be trained.

To understand how large models can support such learning,

we first created 3D models of the everyday objects represented

in the Grounded Language Dataset (GoLD) [5], which is

designed to support exactly the kind of grounded language

learning under consideration [6]. The objects in the original

GoLD dataset are represented by a combination of RGB and

depth images, but not at a resolution that is sufficient to support

VR-based learning. Accordingly, we built suitable models of

the objects from that dataset using Direct Dimensions’ Part

Automated Scanning System (PASS), which uses photogram-

metry to create photorealistic models. Each object type (e.g.,

apple) was represented by multiple physical objects, providing

a 3D model of each instance of each object type. We then used

a custom Unity script to render 2D images of each 3D model

from a fixed set of 420 virtual camera perspectives.

The primary contribution of this work is to investigate

whether a large vision-and-language model can be used ‘in

reverse’ to generate language describing objects in the en-

vironment. We focused on OpenAI’s Contrastive Language-

Image Pre-Training (CLIP) language model [7] due to its

widespread adoption, and generated prompts from images of

objects in the environment. In order to generate CLIP prompts

corresponding to each 2D image, we use CLIP Interrogator

(aka InterrogateCLIP) [8], due to its integration into the

popular web-based user interface by AUTOMATIC1111 [9]

for Stable Diffusion [10]. We then searched each perspective’s

generated prompt for the text label corresponding to the object

type (e.g., ªappleº) and rendered a heat map, summed across

all objects of that type, to show where the label was (or was

not) included in the prompt text.

II. RELATED WORK

The GoLD dataset [5] has previously been used primarily

in settings where vision (screen displays) has been used for

human interaction, but not virtual reality. We take objects

from GoLD, move them from a 2D to a 3D context, and use

a large language model instead of direct human annotation

to find class labels for objects. In the creation of GoLD,

207 commonplace objects of 47 object types (e.g. apples)

were captured as 2D images (825 per object) using a rotating



platform. Mechanical Turk was used to collect 16,500 text and

16,500 audio descriptions of the dataset. While GoLD’s 2D

images were generated by rotation around a vertical axis, the

work described herein is instead framed around the question of

arbitrary 3D perspectives, with photogrammetrically-derived

3D models used to generate 2D images from viewpoints

outside a single horizontal plane. We were able to acquire

only a subset of the original GoLD objects, as detailed further

below. We also differ from the GoLD paper’s approach by

exploring how accurately these images can be annotated by

a large language model (rather than by humans) and differ in

exploring the labeling accuracy as a function of viewing angle.

Other prior work has been done in the spaces of comparing 3D

models from multiple views using a bag-of-features approach,

but in that previous work, the features were visual rather than

text-based [11].

Recent research has explored other uses of CLIP Inter-

rogator, such as its application to curating works of art [12]

and detection of harmful memes [13]. The potential for

ªprompt stealingº (i.e., reverse engineering the prompts used

to generate an image) has been explored by Shen et al. [14].

The aforementioned papers focused on applications of CLIP

Interrogator, whereas we are interested in studying the func-

tionality of CLIP Interrogator itself. The most closely related

work to ours is that of Udo and Koshinaka [15], who explored

the relative accuracy of CLIP Interrogator and other prompt

generation tools. Our work is similar in that it studies the

accuracy of prompt generation, but does so within a single

tool, as a function of viewing angle.

Our work is also distinct in that we are interested in gener-

ating models that can be used in virtual reality environments

to support robotic interaction. There exists extensive work

in the intersection of robotics and virtual reality/augmented

reality [16]±[18], including in the human-robot interaction

space [19], [20], but comparatively few works focus on natural

language in such a setting; the work that does exist tends to

be focused on specific problem spaces (e.g., teleoperation [21]

or swarm robotics [22]), despite interest in the subject [23].

III. EXPERIMENTAL METHODOLOGY

A. 3D Model Capture

The initial stage of our work consisted of creating 3D

models of a sampling of objects from the Grounded Language

Dataset (GoLD) [5] dataset. For reproducibility of our method,

we chose to use photogrammetry for 3D model capture

rather than using a less accessible 3D capture methodology

(structured light, LiDAR, etc.). In principle, photogrammetry

allows for models of stationary objects to be captured using

any digital camera (e.g., phone camera) by collecting images

representing a sufficient number of perspectives and running

them through 3D reconstruction software. Many versions of

such photogrammetric software exist, with varying degrees

of usability and performance. We initially experimented with

several cloud and desktop-based services for reconstructing 3D

models of photosets captured by our mobile phones. For the

sake of repeatability and speed, we instead ended up capturing

the models for this paper using the Part Automated Scanning

System (PASS) invented by Direct Dimensions. PASS enabled

us to capture content more quickly than a piecemeal solution

thanks to its use of multiple cameras, a staging platform,

lighting, and reconstruction software.

The original GoLD dataset includes five high-level object

categories (food, home, medical, office, tool). 47 object classes

(e.g., ªappleº) are spread across these five categories, and each

class is represented by four or five instances (e.g., five distinct

apples). Whereas the GoLD project used a turntable and then

selected about four representative 2D images for each of their

207 object instances, we are particularly interested in having

many more images per object, and are more limited by the

complications of 3D object capture.

We chose 10 of GoLD’s object classes for 3D capture:

apple, banana, can opener, gauze, lemon, lime, onion, potato,

shampoo, and toothpaste. For most of these, we included five

instances per class (e.g., five distinct apples), with a total of

36 object instances across the 10 classes.

B. 2D Image Generation

To generate the images of the 3D models from various

perspectives, we used the Unity Game Engine. We first created

a sphere object at the origin of the scene, made the sphere

invisible, and attached the camera object to that sphere. We

then moved the camera a distance of 300 units away from

the sphere and pointed it towards the origin. With this setup,

we were able to change the rotation the sphere to cause the

camera to travel around a sphere of radius 300 while pointing

at the origin, allowing us to render images of an object at the

origin from many perspectives.

The next step was to add each of the 36 3D models to

the scene, making sure to align their centers at the origin

and aligning their front to the initial camera view. We created

prefabs of each of these object placements, thereby allowing

us script their appearances.

Our algorithm used to capture images of the objects is

further detailed in algorithm 1. The z angle ranges from -90

degrees to 90 degrees which captures view of the objects from

bottom to top; this is equivalent to the camera’s latitude on the

sphere. The y angle ranges from -180 degrees to 180 degrees

which captures views of the object in a horizontal loop; this

is equivalent to the camera’s longitude on the sphere.

We then created a script to capture the images and attached

it to the sphere object. In this script, we created an array

of GameObjects and added all of the prefab objects. Other

initialization steps included making the prefabs invisible and

resetting the sphere’s rotation.

The images are saved in a folder with the object’s name

and are named after the x, y, and z coordinates of the sphere’s

rotation.

C. Description Generation

To generate descriptions of the object, we used the ªInter-

rogate CLIPº feature of Stable Diffusion. For this task, we

used the stable-diffusion-webui GitHub repository. We used



Algorithm 1 Image Capturing

for object in objectArray do

object.visible = true

for zAng = −90; zAng <= 90; zAng+ = 9 do

for yAng = −180; yAng < 180; yAng+ = 18 do

sphere.rotation = (0, yAng, zAng)
Capture Screenshot

end for

end for

sphere.rotation = (0, 0, 0)
object.visible = false

end for

an extension which allowed for batch clip interrogation and

exported these results to a comma-separated values (CSV) file

for each image.

For each input image, ªInterrogate CLIPº provides the string

it determines is the most likely text prompt to have resulted

in that image being generated by Stable Diffusion. The tool

is open source, but lacks technical documentation and no

research papers have been published on it by its authors.

This lack of technical documentation is noted by Udo and

Koshinaka [15], whose paper includes their own analysis-

based explanation of Interrogate CLIP’s methodology. For the

purposes of our own research question, we seek to know only

if the name of the GoLD object class (e.g. ªappleº) appears

anywhere within the relatively lengthy output prompt. For

example, the image of our first apple instance, taken from

an inward-facing camera at (0◦, 0◦) on the surface of the

surrounding sphere (Figure 1), generates the prompt:

a close up of an apple in the dark, cycles4d, phobos,

floating planets and moons, octave render, cycles4d

render, visiting saturn, rendered in corona, octsne

render, inspired by Ma Yuan, charon, spring on

saturn, outer wilds, with small object details, pluto,

golden apple, a raytraced image, saturn

Fig. 1. apple 1, viewed from (0◦, 0◦)

Because the word ªappleº occurs at least once in this

prompt, we consider this to include the name of the object

class.

IV. RESULTS

A. Derived 2D Images

Qualitatively, most of the 36 object instances provided

photorealistic views from each of their 420 perspectives, as

demonstrated in Figures 2, 3, and 4.

Fig. 2. Example of onion 1 from 3 perspectives.

Fig. 3. Example of shampoo 2 from 3 perspectives.

Fig. 4. Example of banana 2 from 3 perspectives.

In general, photogrammetry has performance issues with

surfaces that are specular or semitransparent, as reflections

interfere with feature detection algorithms’ ability to identify

a consistent set of points of interest across multiple perspec-

tives [24]. Our collection of scanned objects included several

glossy items. We attempted to mitigate this challenge through

the application of Krylon Dulling Spray, a transparent coating

which reduces the specularity of the surfaces to which it is

applied. This pretreatment proved effective for some of our

objects, such as metallic can openers (Figure 5), but was an

incomplete solution for a few of our objects, most notably

our fourth shampoo bottle (Figure 6). Models broken in this

way are often fixed by 3D graphics artists before being used

in other contexts (e.g., 3D assets for game development). We

did not apply such touch-ups to our 3D models and left their

imperfections intact, thereby preserving the automaticity and

consistency in our dataset’s production.

B. Overall Retrieval of Each Object Class

Let us define ªimage classificationº in the context of this

paper to mean the inclusion of an object class’s name in the

prompt generated for that image. That is, an image of an apple



Fig. 5. Example of can opener 3 from 3 perspectives.

Fig. 6. The shampoo 4 model was particularly malformed.

which includes the word ªappleº anywhere in its prompt is

considered correctly classified. Notably, this definition does

not preclude an image from being classified into multiple

classes at once (i.e., a prompt might say both ªlemonº and

ªlimeº); we address multi-classification in the next section.

Before exploring multiple classifications or the dependence

of generated prompts on viewing angle, we ask a simpler

question: to what extent are the names of object classes

included in the images of each instance of that object class,

across all viewing angles? This question is motivated by the

fact that some objects classes pose challenges with generating

quality models using photogrammetry, as discussed in Section

IV-A. Another overarching issue is that the CLIP neural

network may include more accurate representations of some

object classes than others.

As shown in Table I, there is variation both by class and by

instance. Bananas are the most consistently classified correctly

(98.6% of images for the worst banana to 99.5% of images for

the best banana), with apples close behind (89.3% to 92.1%,

except for the only yellow apple, apple 1, at 73.6%). Although

images of toothpaste proved harder to classify, there is limited

variation as a function of which toothpaste instance (i.e., 3D

model) is being considered.

Some other classes have significant differences within that

class. The potato class is the most significant example of this,

with 88% of the images of potato 2 correctly classified, while

potato 4 is correctly classified only 3% of the time. This is

perhaps explained by the relatively spherical, less oblong shape

of potato 4, and a human would perhaps have similar difficulty

distinguishing a nearly-round potato on a black background,

without context, from being a rock or a moon.

All object instances of shampoos and can openers are quite

low in their image classification scores, which is perhaps

explained by relatively poor model quality due to these object

classes being more specular than the other object classes.

OBJECT NAME PERCENT OBJECT NAME PERCENT

APPLE 1 73.6% ONION 3 42.6%
APPLE 2 89.8% ONION 4 56.0%
APPLE 3 80.2% ONION 5 43.3%
DAPPLE 4 92.9% POTATO 1 65.0%
APPLE 5 92.1% POTATO 2 87.9%
BANANA 1 99.0% POTATO 3 9.8%
BANANA 2 99.5% POTATO 4 3.1%
BANANA 3 98.6% POTATO 5 44.3%
CAN OPENER 2 5.7% SHAMPOO 1 0.2%
CAN OPENER 2 BOX 31.0% SHAMPOO 2 11.7%
CAN OPENER 3 6.2% SHAMPOO 3 0.0%
CAN OPENER 4 1.2% SHAMPOO 4 1.2%
CAN OPENER 5 3.1% SHAMPOO 5 10.0%
GAUZE 1 40.0% TOOTHPASTE 1 71.4%
LEMON 74.8% TOOTHPASTE 2 78.3%
LIME 18.6% TOOTHPASTE 3 64.3%
ONION 1 54.5% TOOTHPASTE 4 79.5%
ONION 2 45.0% TOOTHPASTE 5 78.6%

TABLE I
PERCENT OF IMAGES FOR EACH OBJECT INSTANCE WHERE THE OBJECT

CLASS NAME APPEARS IN THE GENERATED PROMPT.

C. Incorrect Classifications and Multiple Classifications

As discussed in Section IV-B, an image will be classified

into multiple classes of object if the names of multiple object

classes occur within its generated prompt. Of the 15,120

images generated from the 36 object instances, 41% images

gave CLIP Interrogator output with no class names; 51%

included exactly one class name; 7% included exactly two

class names; and 1% included exactly three class names. No

labels included more than three class names.

TABLE II
PERCENT OF IMAGES (PER OBJECT CLASS) THAT HAVE EACH CLASS

LABEL. BECAUSE IMAGES CAN BE CLASSIFIED AS ZERO, ONE, OR

MULTIPLE OBJECT CLASSES, ROWS CAN SUM TO LESS THAN 100% OR

MORE THAN 100%.

As shown in Table II, some classes are more likely to be

confused with each other. 70% of the rendered images of lime

object instances included the word ªappleº in their generated

prompt; only 19% of the lime images were categorized as

ªlime,º followed by 16% of the lime images being categorized

as ªlemon.º



At the other end of the spectrum, banana objects proved

easier to categorize correctly, with 99% of rendered banana

images categorized as ªbanana,º followed distantly by 2%

being categorized as ªlemon.º This label makes sense when

viewing a banana along its axis, with the bottom tip of the

banana occluding most of the rest of the banana from view.

D. Effect of Viewing Angle on Object Classification

Having considered the likelihood of categorizing an image

correctly, as well as the possibility of how it may be cate-

gorized incorrectly, we can now turn to the major research

question posed herein: how does the viewing angle affect an

image and language model’s ability to correctly identify an

object?

In this section, we will explore those object classes for

which we have at least three instances (i.e., distinct 3D models)

of that class. As discussed in earlier sections, apples and

bananas proved easiest to classify. Interestingly, there is a clear

angular dependence on the ease of classification.

Fig. 7. Top: The five apple instances as viewed from (0◦, 0◦); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word ªappleº

All five apple instances (Figure 7) are correctly categorized

100% of the time when viewed from the northern hemisphere

of the viewing sphere. When viewed from even slightly below

the equator, accuracy begins to suffer. It is likely that a visual

cue, embedded in the CLIP model, is lost as the top of the

apple begins to become occluded. As the stem and the indented

area around the stem are removed from view, the word ªappleº

is much less likely to appear in the generated text prompt. It

seems likely that a human would face similar difficulty. As

discussed earlier, this is particularly true for the yellow apple,

likely due to its atypical coloration.

In Section IV-C, we noted that images of instances of

the banana class are the most easily classified. As shown in

Figure 8, the orientation at which bananas become the most

difficult for CLIP to recognize is when they are laying flat

Fig. 8. Top: The three banana instances as viewed from (0◦, 0◦); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word ªbananaº

(so their signature curved shape is hidden) and pointed along

the line of sight - i.e., (0◦,±90◦). At this orientation, the

observer sees only a yellow roundish shape, which is likely

why Interrogate CLIP includes ªlemonº in banana images

under such circumstances.

Fig. 9. banana 1 viewed from (−9
◦
, 90

◦) and (−9
◦
, 108

◦)

For example, when banana 1 is viewed from (−9◦, 90◦)

(Figure 9, left), it is classified as both ªbananaº and ªlemonº:

a close up of a banana on a black background,

lemon wearing sunglasses, anorld render, a bot in the

game super mario 64, spherical body, 3d game ob-

ject, videogame asset, slimy unreal engine, hatched

ear, seperated game asset, game asset, pear, povray,

yellow beak, low quality 3d model

From (−9◦, 108◦) (Figure 9, right), banana 1 is only classified

as ªlemonº:

a close up of a lemon on a black background,

anorld render, modeled in 3 d, 3 d render of jerma

9 8 5, lemon wearing sunglasses, an angry lemon,

masterpiece. rendered in blender, moonray render,



low quality 3d model, 3d rendered, 3 d raytraced

masterpiece, 3 d rendered, 3 d model rip

Fig. 10. Top: The five can opener instances as viewed from (0◦, 0◦); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the phrase ªcan openerº

Can openers (Figure 10) were second only to shampoo

bottles in being the least likely to be correctly classified. As the

heatmap shows, there appears to be a very strong dependence

on perspective, with images classified correctly only when

oriented around (0◦, 0◦), which is the orientation depicted in

the figure. However, some of this may be attributed to the

inclusion of the can opener box in this image set, as it has

the words ªCan Openerº on its packaging and is a significant

contributor to the non-zero values in the heatmap, as shown

in Table I.

The onion heatmap (Figure 11) shows a viewing angle

dependency similar in nature to that of the apple, discussed

above. When the onions are rotated such that their stems are

occluded - which happens around (0◦,−90◦) - they become

much more difficult to identify as onions (i.e., Interrogate

CLIP is much less likely to include the word ªonionº in

the generated prompt). There is significantly more sensitivity

to orientation than we saw with the apples, perhaps because

apples (other than the yellow one) are more easily identified

by their round shapes and distinctive coloring, while the onion

instances have more varied colors and shapes.

The potato heatmap (Figure 12) shows a hotspot around

(0◦, 0◦), with all five potatoes correctly classified across six

contiguous rotation steps. This is the orientation depicted in

the figure, which is a viewpoint perpendicular to the major

axis of the potatoes. As discussed in Section IV-B, potato 4

performs worst with classification and is also the most spher-

ical. The second most spherical potato, potato 3, fares nearly

as badly. This tells the same story as the heatmap; a potato

image is most likely to be missing the word ªpotatoº in the

CLIP Interrogator output when the potato appears round, rather

Fig. 11. Top: The five onion instances as viewed from (0◦, 0◦); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word ªonionº

Fig. 12. Top: The five potato instances as viewed from (0◦, 0◦); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word ªpotatoº

than oblong. This is true regardless of whether the apparent

roundness is due to a particular viewing perspective or due to

the potato being nearly spherical in 3D.

While in Section III-A it was noted that shampoo bottles

may be difficult to classify in part due to relatively poor

model quality, we nonetheless see a very strong dependence

on viewing angle in Figure 13. All five bottle instances have

cross-sections that are quite oblong, with labels printed on

the wide surfaces of the bottles. It is when the viewpoint

is perpendicular to these wide surfaces, around (0◦, 0◦) and

(0◦, 180◦), that the rendered images are most likely to include

the correct ªshampooº categorization.



Fig. 13. Top: The five shampoo instances as viewed from (0◦, 0◦); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word ªshampooº

Fig. 14. Top: The five toothpaste instances as viewed from (0◦, 0◦); Bottom:
Heatmap showing the number of prompts generated by Interrogate CLIP
which included the word ªtoothpasteº

The toothpaste instances (Figure 14) have a strong de-

pendency on viewpoint that is related to both the shampoo

bottles and the bananas. When the flatter, larger faces are

perpendicular to the line of sight, they are more likely to be

correctly classified. This is particularly clear from the cold

spots in the heatmap, at (0◦,±90◦), where the viewpoint is

directly along the length of the toothpaste object, resulting

in an image which would only show the tip or end of the

toothpaste tube (or box), occluding the signature shape, as

well as the labelling.

E. Conclusions

Despite significant differences between object classes in

how easily they can be classified, there is nonetheless a

consistently strong dependence on viewing perspective in

determining the likelihood of correctly classifying a given

object instance. In some ways, it is hardly surprising that

objects are harder or easier to identify depending on viewpoint,

regardless of whether that viewpoint is held by a human or by

a vision-and-language neural network model. However, in the

context of models, this dependency could be driven in part

by biases in training data. Images of a banana or a tube of

toothpaste pulled from the Internet may consistently frame

those objects in particular ways as an unconscious design

choice of a human photographer. One would rarely think to

take a picture of a banana with its length oriented along the line

of sight, or of the bottom of an apple. For certain applications

of multimodal large models, such as robots embedded in a real

3D environment, objects may be less likely to be oriented in

those ªphotogenicº perspectives, from the robot’s perspective,

as it navigates the world.

On the other hand, our study shows that the weakest

viewpoints for CLIP with each object mirror the weakest view-

points of humans for those same objects. To some degree, it is

plausible that objects become fundamentally harder to identify

when oriented in ways which mask their most distinctive traits

(e.g., curvature of a banana or stem of an apple).

In either case, these results show that large models do

have viewpoint dependencies, which can be taken into account

in the future, either by anticipating these dependencies and

planning accordingly, or by building models which are trained

on images captured from a wider range of visual perspectives.

V. FUTURE WORK

This work is a component of a longer-term project aimed at

using virtual reality to study grounded language acquisition.

The GoLD dataset which inspired this project was a set of

object descriptions (text and audio) collected using 2D images

and Mechanical Turk, with the aim of providing a dataset

for grounded language acquisition research that will advance

human-robot interaction. The GoLD images were captured

from viewpoints at a fixed height around a turntable, yet robots

are immersed in 3D world. We intend to use the 3D models

and knowledge described herein to conduct a study similar

to GoLD, but which would instead record humans describing

objects they are seeing in virtual reality. We are interested

in seeing how these descriptions compare to those from the

original GoLD dataset and perhaps to those which could be

gathered by in-person viewing of the real physical objects.
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