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Abstract—Electric vehicle (EV) adoption is accelerating
across the automotive industry. The first generation of electri-
fied vehicles with driver assistance features like adaptive cruise
control (ACC) are now commercially available. While studies
have highlighted the sustainability benefits of EVs, recent
research suggests these EVs may impact traffic flow differently
than traditional internal combustion engine (ICE) vehicles
since they have distinct driving dynamics. Understanding the
differences between EV-ACC and ICE-ACC vehicle driving
behaviors and their effects on traffic flow remains an important
research gap.

To address this gap, we leverage a recently published EV-
ACC dataset and develop a new microscopic car-following
model, namely the electric vehicle model (EVM), to understand
EV-ACC driving behavior. The proposed model is calibrated
using batch optimization and outperforms other commonly
used car-following models in capturing EV-ACC car-following
patterns. Moreover, we use a simulation of a string of EV-ACC
vehicles behaving based on the parameter values of the EVM
model to demonstrate their ability to reduce traffic oscillations
compared to the commonly used car-following models.

I. INTRODUCTION

The transportation industry has undergone a rapid revo-
Iution with the emergence of autonomous vehicles (AVs).
As several researches have demonstrated, the behavior of
AVs can significantly impact traffic flow patterns. Even a low
penetration rate of AVs can significantly improve highway
traffic flow stability [1]. Moreover, the existence of AVs in
the traffic flow can notably reduce the velocity standard de-
viation, excessive braking, and fuel consumption [2]. We are
still far from a fully AV environment on roads. However, the
automotive industry is increasingly shifting towards selling
vehicles equipped with advanced driver assistance systems
and greater levels of automation. For example, over the past
few decades, advanced driver assistance systems (ADAS)
such as adaptive cruise control (ACC) (e.g., SAE Level 1-
2) [3], have become popular in the market and the majority
of vehicles are now equipped with this technology. String-
stable traffic flow [4], increased highway throughput [5], and
decreased fuel consumption and emissions [6] are outcomes
of a network with fully AVs. However, recent studies suggest
these benefits may not exhibit commercially available ACC
vehicles. For example, Shang and Stern [7] find commer-
cially available ACC vehicles can reduce highway through-
put. Through simulation, Vander Werf et al. [8] show that
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ACC systems can reduce highway capacity by up to 25%
when ACC vehicles constitute 15-30% of the traffic stream.

In parallel with vehicle automation advancements, the de-
mand for cleaner and more efficient transportation continues
to grow. Electric vehicles (EVs) are becoming increasingly
popular and gradually taking over the market from the tra-
ditional internal combustion engine (ICE) vehicles. Current
EVs are equipped with a wide range of advanced features,
including ACC.

Though many aspects of EVs and ICE vehicles are sim-
ilar, there are major mechanical differences. ICE vehicles
gradually increase torque and require high engine speeds for
maximum power output, while EVs can produce high torque
instantly from low speeds. This allows EVs to accelerate
faster at typical low speeds. Additionally, EVs utilize re-
generative braking for stronger deceleration capabilities. As
a result, EV-ACC vehicles are more reactive in oscillatory
traffic conditions, with the potential to drive at shorter
following distances and accelerate more quickly than ICE-
ACC vehicles.

Dating back to the 1950s [9], numerous microscopic car-
following models have been developed using differential
equations to accurately describe individual vehicle driv-
ing behavior and examine the traffic flow through simula-
tions [10]. These models have captured different realistic
traffic phenomena like stop-and-go waves [11] and collision
avoidance [12]. Calibrated car-following models have proven
to be a valuable tool for assessing impacts of ICE-ACC
vehicles via microscopic traffic simulations [4], [5], [7],
[13]-[15]. Similar calibration approaches could be applied
to the EV-ACC vehicles using experimental data. Although
research has validated car-following models for ICE-ACC
dynamics [15]-[17], it remains unclear whether these models
can accurately represent real-world EV-ACC vehicles behav-
ior. It is important to have car-following models that are
customized to accurately reflect the car-following dynamics
of EV-ACC vehicles. With this change in mind, the contri-
butions of this study are three-fold:

o Proposing a new car-following model, namely EVM,
demonstrating that it can capture the car-following be-
havior of EV-ACC vehicles better than commonly used
ACC car-following models designed for ICE vehicles.

o Calibration of the EVM model parameter values that
may contribute to the transportation community for
future use in simulation-based studies.

« Examination and comparison of the performance of
car-following models in traffic wave amplification in a
string of EV-ACC vehicle simulation.
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The remainder of this article is outlined as follows. First,
we review the background on car-following models. Next,
we propose a novel car-following model for EV-ACC ve-
hicles that can capture the unique behavior of EVs in car-
following. To obtain the parameter values, we introduce the
experimental data used for this study. Then, the simulation
process and the calibration approach are presented, and the
calibration results for different car-following models are
compared. Moreover, we show that the EVM model shows
a more string-stable velocity than the commonly used car-
following models. In the end, we conclude that the EVM
model can simulate the behavior of EV-ACC vehicles better
than commonly used car-following models, and future study
opportunities are presented.

II. CAR-FOLLOWING DYNAMICS

In this section, we review the general function that is
utilized to simulate the car-following behavior of the EV
ACC. We will then review two commonly used car-following
models in the transportation community, which are used as
a reference for model comparison.

A. General function

Concepts of general microscopic car-following models
were introduced in the 1950s [18] to understand the driving
dynamics of individual vehicles. While numerous forms of
car-following models have been developed, the underlying
idea of car-following models remains that the acceleration
or speed of a vehicle is a function of the following vehicle
and its surroundings.

The general car-following model is given by Equation (1),
which is an ordinary differential equation that describes the
acceleration a(t) of a following vehicle is modeled with
the inter-vehicle spacing s(t), the speed of the following
vehicle v(t), and the relative speed between the vehicles
Awv(t) at time t. Specifically, s(t) is the distance between
the front bumper of the following vehicle and the rear
bumper of the lead vehicle. The relative speed, Av(t) =
ve(t) — v(t), measures the difference in speed between the
lead vehicle and the following vehicle. For brevity, we refer
to the variables without explicit time index in the following
sections.

a(t) = f(s(t),v(t), Av(t)).
B. Intelligent driver model (IDM)

The intelligent driver model [12] is designed to describe
human-driven behavior, which can fully capture both the
acceleration process and deceleration process. While the
IDM has been extensively utilized in previous studies such
as [19], [20] to model human-driven dynamics, it is also
capable of accurately capturing the vehicle dynamics of
the ICE-ACC vehicles [5], [7], [15], [21]. The IDM is
mathematically represented as follows:

)

5 . 2
a:a<1_ (2) - (2o ) o
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5(v, Av) = 5o+ Tv 2% 3
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This model contains diverse parameter values Oppy =
[vo, T, d, 50,0, B] T to represent different car-following be-
havior. Each model parameter in Opy holds a distinct
physical interpretation: v is the desired speed; T represents
time headway; § is an acceleration exponent; sg denotes the
stopping distance indicating the minimum spacing to the lead
vehicle when stopping; « and 3 are upper limits for vehicle
acceleration and deceleration for a comfortable deceleration
rate, respectively. The IDM can accurately simulate vehicle
driving behavior by identifying model parameter values.

C. Optimal velocity, relative velocity (OVRV)

The optimal velocity, relative velocity car-following model
has been widely used for modeling the dynamics of ICE-
ACC vehicles [22], [23], displaying precision in characteriz-
ing their car-following behaviors [14], [24], [25]. The OVRV
model is given by:

a=k (s—n—1v)+ k(v —v), 4

The model parameters are Ogyry = [k:l,kg,n,T]T. Of
note, k; represents the velocity gain, and k, represents
the velocity difference gain. Parameters 7 and 7 represent
the time headway and stopping distance, respectively. The
OVRV model can accurately reproduce ICE-ACC vehicle
driving behavior by identifying ki, ko, 7, and 7.

III. ELECTRIC VEHICLE MODEL (EVM)

In this section, we initially introduce the experimental data
used in this study. Then, we explain the difference between
EV-ACC and ICE-ACC vehicles in car-following behavior by
showing the spacing and speed trajectories of these vehicles
in car-following. Then, the procedure for developing the new
car-following model (EVM) and its formulation is presented.

A. Data

The EV-ACC vehicle trajectory data are adopted from [26]
that Dr. X. D. Kan and his team collected from a series of car-
following field experiments with a commercially available
EV-ACC vehicle. More details about data collection can be
found in [26].

The EV-ACC car following datasets consist of vehicle
trajectories at different time gap settings, namely short,
medium, long, and ex-long settings. The short setting means
the EV-ACC vehicle follows the lead vehicle at the closest
following gap, while the ex-long (i.e., extra-long) setting
keeps the furthest following gap from the preceding vehicle.
The medium setting and long setting represent the following
gap of an EV-ACC vehicle that is operated between the
shortest setting and the ex-long setting.

B. Exploration of EV-ACC car-following behavior

The sample speed trajectory data of an EV following a lead
car is presented in Figure la. In the example shown, the EV
accelerates to a slightly higher speed than the lead vehicle.
The EV maintains this speed for an extended period, slowly
catching up to the lead vehicle and resulting in a decrease
in the gap between them (Av < 0) (between seconds 35 to
60). The main reason for this distinct behavior is that EVs
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Fig. 1: Sample velocity trajectory profiles for EV-ACC
vehicles and ICE-ACC vehicles. A unique driving behavior
is observed that the EV-ACC vehicles accelerate or decel-
erate more rapidly than the ICE-ACC vehicles, resulting in
different spacing gaps between vehicles.

accelerate more rapidly at the beginning due to their instant
torque, and the spacing between the leader and follower
is not as large as ICE vehicles (i.e., EVs catch up with
the lead vehicle much faster). As seen in Figure 1b, the
initial acceleration is more gradual for ICE vehicles than
EVs, leading to a much larger spacing gap. As a result,
ICE vehicles attempt to increase speed to catch up with
the lead vehicle. This unique behavior in EVs motivates
the development of a new car-following model that can
specifically describe the unique car-following behavior of
EVs.

C. Formulation of EVM

Mechanically, accelerating and braking involve distinct
processes for a car. To enhance the accuracy of the car-
following model, we can consider separate phases based on
the relative speed, and specify distinct following dynamics
within each phase. In contrast to earlier symmetric models
discussed in section II that rely on a single function, asym-
metric car-following models [27]-[29] differentiate between
acceleration and deceleration phases and specify distinct car-
following dynamics for each. Accounting for the asymmetry
between accelerating and braking allows a more realistic
characterization of vehicle dynamics.

Specifically, inspired by the asymmetric OVRV (AOVRV)
model [17], we split the acceleration into three phases in
order to build an accurate model for the EVs. The EV model
is given by:

ap =ki(s—n—7v)+ kapAv, Av<p
p<Av<gq
Av > q.

&)

ar = d,
aas = ki(s —n—Tv) + k2aAv,
In the EVM, parameters 7 and 7 are as defined in Equa-

tion (4). Parameters k24 and kop denote relative velocity
gain for EV acceleration and deceleration, respectively. It

3
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Fig. 2: Acceleration of the following vehicle versus the
relative speed of the vehicles. During the transition mode,
when the acceleration oscillates around zero, the relative
speed of the vehicles also oscillates within a range of -0.2
to 0.1.

should be noted that the parameter k; signifies optimal
velocity gain for both acceleration and deceleration driving
modes. We assume a single parameter for the optimal veloc-
ity gain for both acceleration and deceleration to minimize
the disturbance in the acceleration value when it is moving
between the criteria around zero, which is based on the
assumption that the acceleration (a4) and deceleration (ap)
terms are equal when Av ~ 0 (m/s).

As shown in Figure 2 when the relative speed Av < —0.2
(m/s) and Av > 0.1 (m/s), the EV is operated with a
deceleration mode and acceleration mode, which are denoted
with ap and ay, respectively. When —0.2 < Av < 0.1
(m/s), the acceleration of the following vehicle is oscillating
around zero. We define a transition mode a7 with a constant
acceleration d to capture this unique feature of EV behavior.
The introduction of ar is motivated by the observation of
EV trajectories that have roughly constant velocity (i.e., very
small constant acceleration close to zero) during the car
following process as discussed in Section III-B.

The criteria for the transition mode (p and ¢ values) in
Equation (5) is obtained by evaluating the spacing root mean
square error (RMSE) with different p, g values between -0.2
m/s and 0.1 m/s. We determine the criteria with the lowest
spacing RMSE when p = —0.1 m/s and ¢ = —0.05 m/s.

IV. MODEL CALIBRATION

In this section, we initially present the simulation proce-
dure. Then, the calibration approach used to acquire vehicle
dynamics is discussed, and the calibrated parameter values
for the EVM model are presented.

A. Model simulation

The vehicle dynamics are simulated using a forward
Euler’s method in this paper. This process involves breaking
down the continuous time model into discrete time steps At:

H R R

where s, v, a, and Av are defined above.

(6)
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B. Calibration approach

Various techniques for determining the best-fit parameter
values are discussed in [30]. However, the transportation
community typically prefers batch optimization as their
preferred approach [15], [17], [21]. To obtain the optimal
parameters 6, we use a calibration method that involves
minimizing the RMSE between simulated trajectories and
experimental data.

Parameter values are initially guessed in the batch calibra-
tion process. Next, we generate simulated trajectories using
the current candidate parameter values. Then, we compare
these simulated trajectories to the experimental data and
calculate the spacing RMSE. Finally, we use the gradient
descent optimization approach to update the parameter val-
ues until the simulated trajectories are comparable to the
observed experimental trajectory data, resulting in the best-
fit model parameter values.

To find the best-fit model parameter values for EV-ACC
vehicles, we slice the dataset into three subsets that are 100 s
long and use these sliced datasets for training purposes. Then,
we test the model performance on the entire dataset. This is
done to avoid data over-fitting.

C. Calibration results

We present The EVM model’s parameter values in Table I.
The presented model parameters in Table I are the best-fit
models with the lowest RMSE under different gap settings.
The RMSE value of these models are presented in the next
section in Table II along with the RMSE value for the IDM
and OVRV models fitted on the EV-ACC data.

. k1 kop koa d T n
Gapseting | (;=2) (1) (s°1) (m/s?) () (m)
Short 0.244 0.339 0.286 0.319 1.000 10.287
Medium 0.092 0.662 0.283 0.074 1.118 12.177
Long 0.124 0.457 0.272 0.116 1.501 11.012
Ex-long 0.175 0.279 0.150 0.269 2.093 8.399

TABLE I: Parameter values for different gap settings in the
EVM.

V. MODEL COMPARISON RESULTS

To showcase the performance of the EVM model, we
reproduce the speed and spacing of the following vehicle
using the parameter values of the best-fit model for the EVM,
IDM, and OVRV. Figures 3 and 4 represent the simulated
trajectories alongside the speed and spacing trajectories in
the experimental data for the medium and long gap settings.

Figures 3a and 4a display the simulated speed trajectories.
A closer inspection reveals minor inconsistencies in OVRV
and IDM when the deceleration is finished and the lead
vehicle starts to accelerate. However, all models are able to
accurately capture the EV-ACC following speed. It should
be noted that EVM reproduces the EV-ACC inter-vehicle
spacing more accurately than IDM and OVRV as it is shown
in Figures 3b and 4b. In particular, in transition mode, the
EVM reproduces spacing more accurately when following
and leading vehicles travel at a steady speed, as a result of
the linear phase in the EVM acceleration (ar in Equation 5).

—EVM SIM
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OVRV SIM

—IDM SIM
—— Leader speed

I
20 40 60 80 100 120
Time (s)

(a) The IDM, OVRYV, and EVM simulation on the speed of
the following vehicle for medium gap setting.
45
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(b) The IDM, OVRYV, and EVM simulation on the spacing of

the following vehicle for medium gap setting.

Fig. 3: Performance comparison of IDM, OVRV, and EVM
on the data of the medium gap setting.
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(a) The IDM, OVRYV, and EVM simulation on the speed of
the following vehicle for long gap setting.
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(b) The IDM, OVRYV, and EVM simulation on the spacing of
the following vehicle for long gap setting.

Fig. 4: Performance comparison of IDM, OVRV, and EVM
on the data of the long gap setting.

This occurs when the relative speed of vehicles (Av) is
close to zero. The acceleration value in the transition mode
(d) in Table I represents the calibrated value for the linear
acceleration part. A small positive value for d indicates
that the following vehicle is smoothly approaching the lead
vehicle.

To numerically compare the performance of the EVM
model with IDM and OVRYV, we calculate the spacing
RMSE using the experimental data and the simulated spacing
trajectories. Table II presents the RMSE values for the best-
fit models under different gap settings. It is clear from the
numerical comparison of RMSE that the EVM outperforms
both the IDM and OVRV models in all gap settings.

Comparing the RMSE value obtained from simulating the
medium gap setting’s spacing trajectory, we can observe that
the EVM model outperforms the IDM and the OVRV model
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S Spacing RMSE (m) EVM RMSE change (%)
Gap setling —puy DM OVRV | IDM OVRV
Short 1771 2758 2211 | -56% 24%
Medium | 1265 1897 1756 | -50% 39%
Long 1190 1316 1319 | -11% 1%
Exlong | 1354 1423 1575 | -5% -16%

TABLE II: RMSE values for different gap settings in EVM,
IDM, and OVRW.

by reducing spacing RMSE by 50% and 39%, respectively.
The benefits of the EVM can be observed in Figure 3b,
where the EVM simulated spacing more closely follows the
spacing data than the OVRV model and IDM between 10-
40 seconds and 80-120 seconds, when the following vehicle
is smoothly approaching the lead vehicle. Similarly, based
on the comparison of RMSE values of different models
for the long gap setting, the EVM outperforms IDM and
OVRV by 11%. The slightly better performance of the EVM
can be observed in Figure 4b between 10-60 seconds. We
find that that the EVM outperforms commonly used car-
following models in describing the linear acceleration of EV-
ACC vehicles. As mentioned earlier, this particular behavior
is uniquely observed in EV-ACC vehicles.

VI. SIMULATION OF A PLATOON OF EV-ACC VEHICLES

String stability refers to whether a disturbance from an
equilibrium state will amplify or attenuate along a string of
vehicles. Small fluctuations in velocity can propagate up-
stream through vehicle interactions [31]. Specifically, string
instability occurs if disturbances grow along the string.
Conversely, if all disturbances decrease along the string, the
system is considered to be string stable. There are several
methods to analyze the string stability of a flow numeri-
cally [32]-[34]. However, analyzing the string stability of
the EVM model is a complex mathematical problem, and
we leave it for future work. Instead, we simulate a string
of 5 vehicles following their front vehicle as shown in
Figure 5 based on the parameter value of the best-fit model
of EVM, IDM, and OVRV model. The lead vehicle and
the first following vehicle’s driving behavior are taken from
experimental data, while the other five EVs’ car-following
behavior is simulated using calibrated parameter values in the
models. This platoon simulation is based on the assumption
that all the EVs have similar braking and acceleration limits.
Through this simulation, we gain a better understanding
of how traffic flow may be affected by EV-ACC vehicles
behaving based on the EVM model in comparison to IDM
and OVRV.

Figure 6 shows the string of EV-ACC vehicles behaving
based on the parameter values of the OVRV, IDM and EVM
model, respectively. Notably, when comparing Figure 6b to
Figure 6¢, we find the amplification of the speed disturbances
with the IDM model is much more significant than the
EVM in acceleration. While Figures 6a and 6¢ show the
amplification is slightly less for the EVM model, both models
show a string stability in acceleration.

)

Leader

Simulated platoon of EVs Follower

Fig. 5: Platoon of vehicles in string stability simulation
showing a human-driven vehicle being followed by an EV
(data) and a simulated platoon of 5 EVs with similar braking
and acceleration limits.
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(a) Simulation of a string of EV-ACC vehicles using the OVRV
model.
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(c) Simulation of a string of EV-ACC vehicles using the EVM
model.

Fig. 6: Simulation of a string of vehicles with the calibrated
parameter values in Table I for EV-ACC vehicles. (a), (b),
and (c) are simulations with the OVRV, IDM, and EVM
models, respectively.

Comparing Figures 6a, 6b, and 6¢ highlights that the
OVRYV and EVM models exhibit a more stable string behav-
ior. However, the EVM model shows less amplification than
the OVRV model, particularly during seconds 50-60. To this
end, the EVM model shows a more realistic amplification
in simulating a string of EV-ACC vehicles compared to the
OVRYV model and the IDM.

VII. CONCLUSION AND FUTURE WORK

This study introduces the Electric Vehicle Model (EVM),
a novel microscopic car-following model to explain the
dynamics of EV-ACC car-following behavior. During the EV-
ACC car-following, the EV accelerates to a slightly higher
speed than the lead vehicle once the acceleration is complete.
It then maintains this speed for an extended period, slowly
closing the gap between the vehicles in a linear manner.
This phenomenon is not observed in ICE vehicles under

5
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the same circumstances. Compared to commonly used car-
following models, IDM and OVRV, EVM performs better in
simulating the linear drop in spacing when the lead vehicle
maintains a constant speed. The parameters of the model
are calibrated using data of an experiment carried out on
commercially available EV-ACC vehicles. In addition, the
simulated spacing and speed in the EVM are compared to
IDM and OVRV. The results show that the EVM outperforms
IDM and OVRV in all of the gap settings, specifically in
tracking the spacing linear drop when the relative speed (Av)
of vehicles is almost zero.

Moreover, results of simulating a platoon of EV-ACC
vehicles show that EV-ACC vehicles behaving based on
parameter values of the EVM model have the potential to
minimize the amplification of traffic waves in comparison to
the IDM and OVRV models. For future works, the impacts of
EV-ACC vehicles using the EVM model on traffic flow and
fundamental diagram can be explored. Moreover, it would
be interesting to investigate the potential impact of a mixed
powertrain environment where ICE vehicles and EVs coexist.
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