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THE CARTER TENSOR AND THE PHYSICAL-SPACE
ANALYSIS IN PERTURBATIONS OF KERR-NEWMAN
SPACETIME

ELENA GIORGI

Abstract

The Carter tensor is a Killing tensor of the Kerr-Newman space-
time, and its existence implies the separability of the wave equa-
tion. Nevertheless, the Carter operator is known to commute with
the D’Alembertian only in the case of a Ricci-flat metric. We
show that, even though the Kerr-Newman spacetime satisfies the
non-vacuum Einstein-Maxwell equations, its curvature and elec-
tromagnetic tensors satisfy peculiar properties which imply that
the Carter operator still commutes with the wave equation. This
feature allows to adapt to Kerr-Newman the physical-space anal-
ysis of the wave equation in Kerr by Andersson-Blue [4], which
avoids frequency decomposition of the solution by precisely mak-
ing use of the commutation with the Carter operator.

We also extend the mathematical framework of physical-space
analysis to the case of the Einstein-Maxwell equations on Kerr-
Newman spacetime, representing coupled electromagnetic-gravita-
tional perturbations of the rotating charged black hole. The physi-
cal-space analysis is crucial in this setting as the coupling of spin-
1 and spin-2 fields in the axially symmetric background prevents
the separation in modes as observed by Chandrasekhar [19], and
therefore represents an important step towards an analytical proof
of the stability of the Kerr-Newman black hole.
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Introduction

The Kerr-Newman spacetimes (Mg, .. 8m,a,Q) [56] are a three-
parameter family of solutions to the Einstein-Maxwell equations. They
are the most general explicit black hole solutions to the Einstein equa-
tion, representing rotating and charged black holes, where M is the mass
of the black hole, a its angular momentum and @ its charge, in the (sub-
extremal and extremal) range a®+Q* < M2. The Kerr-Newman metric
in Boyer-Lindquist coordinates (t, 7,6, @) takes the form

A . 2 | gl?
EMa,Q = —W (dt — asin® 0d<p) + ’A|dr2
> o Sin*0 2, 2 2
+|q|*d6” + PE (adt— (r'+a )dgp) ,

where A = r2 — 2Mr + a? + Q? and |q]* = 7? + a®cos? 0. The Kerr-
Newman spacetimes generalize the Kerr solution (for vanishing charge),
the Reissner-Nordstrom solution (for vanishing angular momentum) and
the Schwarzschild solution (for both a = @ = 0), and are expected to
be the final state of gravitational collapse [55].
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The problem of stability of the domain of outer communication of
the Kerr-Newman spacetime as solution to the Einstein-Maxwell equa-
tions is an important open problem in General Relativity and has im-
plications for the physical relevance of the Kerr-Newman solution as a
realistic black hole. Tremendous progress towards the proof of stability
of the black hole solutions has been made in the past fifteen years, with
works which encompass scalar, electromagnetic, gravitational pertur-
bations of Schwarzschild, Reissner-Nordstrom, Kerr and Kerr-Newman
spacetimes, from mode stability, to linear and fully non-linear stability,
see for example [28][23][46][3][40][61][24][47] and references therein.

In [37] we started a program aimed to prove the linear stability of
the Kerr-Newman family to coupled electromagnetic-gravitational per-
turbations. Numerical works strongly support stability for the Kerr-
Newman family [32][57][51][67], but nevertheless an analytical proof
of even its weakest version, the mode stability, has not been obtained.
Mode solutions to the wave equation are solutions of the separated form

(1) U(r,t,0,9) = e R(r)S(0),

where w € C is the time frequency, and m € Z is the azimuthal mode.
Mode stability consists in showing that there are no solutions of the
form (1) with bounded initial energy which are exponentially growing
in time.

The above separated form for w € R and m € Z is related to the
Fourier transform of the solution with respect to the symmetries of the
spacetime (the stationary vectorfield d; and the axially symmetric 0,),
and therefore corresponds to its frequency decomposition. In addition to
the two Killing vectorfields, the Kerr-Newman metric admits a Killing
tensor, called the Carter tensor [16], which represents a hidden sym-
metry of the spacetime and which provides a third constant of motion
which allows the full integrability of the geodesic flow [17]. Because of
such integrability, functions of the form (1) are solutions to the wave
equation as long as R(r) and S(€) respectively satisfy a radial and an
angular ODE. The Carter separation introduces, in addition to the fre-
quency w and m, a real frequency parameter \,,s(aw) parametrized by
¢ € Np, which are the eigenvalues of an associated elliptic operator,
whose eigenfunctions are the oblate spheroidal harmonics S me [66].

As observed by Chandrasekhar [19] in the 80s, the methods devel-
oped in black hole perturbation theory for the other black hole solu-
tions, such as Kerr or Reissner-Nordstrom, involving the separation in
modes as in (1) and the proof of their mode stability, did not seem
to be applicable for treating the coupled electromagnetic-gravitational
perturbations of Kerr-Newman spacetime. In fact, in decomposing the
system of equations in separated forms (1), the electromagnetic field (of
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spin +1) and the gravitational field (of spin +2) get separated in spher-

oidal harmonics Su[;]n[ of different spins s, which do not easily interact
with the coupling operators appearing as consequence of the Einstein-
Maxwell equations. On the other hand, for gravitational perturbations
of Kerr there is no interaction between spheroidal harmonics of different
spins, as only the spin +2 gravitational field is considered. In the case of
the spherically symmetric Reissner-Nordstrom, the spheroidal harmon-
ics reduce to the standard spherical harmonics, which commute with the
coupling operators thanks to the Hodge theory on the sphere. Instead,
in the most general case of electromagnetic-gravitational perturbations
of Kerr-Newman, the interaction between spin-1 and spin-2 fields in the
axially symmetric background prevents the separability in modes, and
their frequency decomposition is not possible due to the coupling of the
equations of different spins, see Section 3.1.1. For more details, see also
[19][37].

As a consequence of the non separability in modes, we expect that the
proof of the linear stability of the Kerr-Newman family necessitates a
physical-space analysis of the coupled system of equations describing
the interaction between gravitational and electromagnetic radiations,
which in particular does not rely on decomposition in spheroidal har-
monics.

The goal of this paper is to derive the mathematical framework to
obtain estimates for the scalar wave equation on the exterior region
of Kerr-Newman black hole exclusively involving physical-space analy-
sis, i.e. no frequency decomposition of the solution, which is robust
enough to be adapted to the system of coupled Teukolsky and general-
ized Regge-Wheeler equations obtained in our [37], in the framework of
the proof of linear stability. A physical-space analysis has also the ad-
vantage of being potentially more adaptable to the non-linear stability
problem, see [47], [39].

The results of this paper are obtained in two parts. The first result
concerns the scalar wave equation

(2) Uenra? =0
in the exterior region of a Kerr-Newman black hole.

Summary of Theorem 2.1. Boundedness of the energy flux through
a global foliation on the exterior of Kerr-Newman spacetime with |a| <
M, and a suitable version of local integrated energy decay can be ob-
tained exclusively through a physical-space analysis for solutions
to the wave equation (2) arising from bounded initial energy on a suit-
able Cauchy surface.

More precisely, we obtain estimates through a physical-space analysis
for axially symmetric solutions in the sub-extremal range a’+Q? < M?,
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and for general solutions in the slowly rotating range |a| < M, see
Theorem 2.1.

The second result concerns the generalized Regge-Wheeler (gRW)
system obtained in [37], which fully describes the coupled electromagnet-
ic-gravitational perturbations of the Kerr-Newman black hole.

Summary of Theorem 3.2. The gRW system on the exterior of
Kerr-Newman spacetime admits a combined energy current whose di-
vergence can be controlled by a Morawetz bulk for |a| < M. Moreover,
the Morawetz bulk can be shown to contain a positive trapped terms ex-
clusively through a physical-space analysis.

The physical-space analysis obtained for the wave equation in The-
orem 2.1 can then be extended to the Einstein-Maxwell equations for
la| < M, therefore representing a crucial step in the proof of linear
stability of Kerr-Newman black hole.

We now recall previous results for the wave equation in black hole
backgrounds, and then give an overview of the proof of Theorem 2.1
and Theorem 3.2.

Previous results on the wave equation in black hole back-
grounds. Boundedness and decay properties for scalar wave equations
in Kerr and Kerr-Newman have been obtained in [27][29][30][64][4] in
the slowly rotating case, and in [31][21] in the full sub-extremal range.
Nevertheless, the only proof obtained exclusively through a physical-
space analysis is the proof of Andersson-Blue [4] in slowly rotating Kerr
spacetimes. We now give a summary of previous results on the wave
equation on black hole backgrounds.

In the spherically symmetric Schwarzschild and Reissner-Nordstrom
spacetimes, the Killing vectorfield 9; is timelike everywhere in the exte-
rior region, and the orbital null geodesics, i.e. null geodesics that neither
fall into the black hole nor escape to infinity and which are then an ob-
struction to decay, all asymptote to a physical-space timelike cylinder,
called the photon sphere. The first property implies that superradiance
is not present, as the vectorfield 0; defines a positive definite conserved
energy. The second property implies that the trapping region of the
spacetime does not depend on the frequency of the solution. As the
orbital null geodesics are restricted to a physical-space hypersurface,
given by {r = 14y} for some ry.qp outside the black hole (r4qp = 3M
in Schwarzschild), spacetime energy estimates can be obtained through
a vectorfield of the form F(r)0,, with F vanishing at r = 744p, and
the analysis of the wave equation can be performed in physical-space.
Physical-space analysis of the wave equation in spherically symmetric
backgrounds have been obtained in [45][14][25][26]. See also [63][6][7],
and [9][10][8] in the case of extremal Reissner-Nordstrom. Similarly,
the study of the Maxwell equations has been obtained in [13][62][58].
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In the case of gravitational perturbations of Schwarzschild space-
time, the analysis of the separated mode solutions was obtained by
the physics community in the 70s, see [59][12][19]. The first quanti-
tative result for the linear gravitational perturbations of Schwarzschild
through a physical-space analysis of the Teukolsky equation was ob-
tained by Dafermos-Holzegel-Rodnianski in [22], see also [43][44]. The
physical-space analysis of the linearized gravity exploited, in addition to
the conserved energy and the spacetime estimates which degenerate at
the photon sphere, a hierarchy of wave-like equations, from the Teukol-
sky to the Regge-Wheeler equation [22]. For non-linear gravitational
perturbations of Schwarzschild, see the work by Klainerman-Szeftel [46]
under the class of axially symmetric polarized perturbations, and the
recent work by Dafermos-Holzegel-Rodnianski-Taylor [24] for the full
non-linear stability.

In the case of electromagnetic-gravitational perturbations of sub-
extremal Reissner-Nordstrom spacetime, the analysis of the separated
mode solutions was also obtained by the physics community, see for
instance [52][53][19]. The quantitative results for the linear electro
magnetic gravitational perturbations through the physical-space anal-
ysis of the Teukolsky system, and its derived Regge-Wheeler system,
were obtained in our series of works [33][34][35][36].

In the axially symmetric Kerr and Kerr-Newman spacetimes, the
analysis of the wave equation is complicated by two factors: the pres-
ence of an ergoregion, and therefore superradiance of the solution, and
the dependence of the trapping region on the frequency of the solu-
tion. The Killing vectorfield 0; becomes spacelike in a region outside
the event horizon known as the ergoregion, hence its conserved energy is
not positive definite everywhere. Moreover, the trapped null geodesics
are not confined to a hypersurface in physical-space, but rather cover an
open region of the spacetime which depends on the energy and angular
momentum of the geodesics, and therefore the trapping degeneracy for
the wave equation depends on the frequency of the solution. For this
reason the high frequency obstruction to decay given by the trapping
region cannot be described by the classical vectorfield method [1].

These problems have been first overcome in the case of small an-
gular momentum, |a| < M, in which case both the superradiance
and the trapping simplify. In [29], Dafermos-Rodnianski showed that
the superradiance can be controlled by analyzing the solution in its
separated form (1) and decomposing it into its superradiant and non-
superradiant parts. Crucially the superradiant part is not trapped, and
it satisfies a local energy decay identity obtained by perturbing the
one in Schwarzschild. In [27][30], Dafermos-Rodnianski also overcame
the problem of capturing the trapping region using frequency-localized
generalizations of the Morawetz multipliers obtained in Schwarzschild.



THE CARTER TENSOR AND THE PHYSICAL-SPACE ANALYSIS 283

Even though the null geodesics are not localized on a physical-space
hypersurface, they are localized in frequency-space, as the potential of
the radial ODE has a unique simple maximum in the trapped frequency
range, whose value 7pqp(aw, m, ) depends on the frequency param-
eters. This allows for the construction of a frequency-space analogue
of the current F(r)0, which vanishes at 7,4 for each triple of trapped
frequencies. See also the independent approach by Tataru-Tohaneanu
in [64].

In [4], Andersson-Blue obtained the first analysis of solutions exclu-
sively in physical space in slowly rotating Kerr spacetime. This ap-
proach, as the ones in frequency-decomposition [27][30][64], makes use
of the Carter hidden symmetry in Kerr, but not through the separation
of the solution as in (1), but rather as a physical-space commutator
to the wave equation. In particular, as Killing tensors commute with
the D’Alembertian operator in Ricci-flat spacetimes, the second order
differential operator associated to the Carter tensor can be used as a
symmetry operator in addition to the Killing vectorfields 0; and 0.
This allows to obtain a local energy decay identity at the level of three
derivatives of the solution which degenerate near r = 3M, as trapped
null geodesics lie within O(|a|) of the photon sphere r = 3M.

In passing from the slowly rotating case |a|] < M to the full sub-
extremal range in Kerr or Kerr-Newman, there is an intermediate step
which present many simplifications, which is the case of axially sym-
metric solutions to the wave equation, i.e. 9,1 = 0, for a® + Q* < M>.
For those solutions, superradiance is effectively absent and the trap-
ping region collapses to a physical-space hypersurface. Although 9; still
fails to be everywhere timelike, its associated energy through the hori-
zon is non-negative as the Hawking vectorfield T' := Jy + 5530, is
the null generator of the horizon and timelike everywhere outside it.
In particular, for axially symmetric solutions, the Hawking vectorfield
T behaves like the Killing vectorfield 0;. As the dependence on the az-
imuthal frequency m becomes trivial, the axially symmetric trapped null
geodesics all asymptote towards a hypersurface {r = r4q,} in physical-
space, where 74,4y is defined as the largest root of the polynomial (see
Section 2.5)

(3) T =13 = 3Mr* 4 (a® +2Q%)r + Md?,

and therefore the construction of the current F(r)d, simplifies, see [27]
for the frequency-space construction, and see [63] for a construction en-
tirely in physical space. The analysis of the axially symmetric solutions
to the wave equation in frequency space has also been extended to the
extremal Kerr |a| = M by Aretakis in [11].

The only result at this day which extends the local energy decay es-
timates to the full sub-extremal range |a| < M for the wave equation in
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Kerr is the work by Dafermos-Rodnianski-Shlapentokh-Rothman [31]
in frequency-space. See also [21] for the sub-extremal a? + Q% < M?
Kerr-Newman. In [31], Dafermos-Rodnianski-Shlapentokh-Rothman
perform a careful construction of frequency-dependent multiplier cur-
rents for the separated solutions, and crucially make use of the structure
of trapping, i.e. the existence of a simple maximum 7¢.qp(aw, M, Ape)
for the radial potential, and the fact that superradiant frequencies are
not trapped, which they show it holds in the full sub-extremal range
la] < M. They then make use of a continuity argument in a to justify
the future integrability necessary to perform the Fourier transform in
time.

In the case of electromagnetic or gravitational perturbations of Kerr
spacetime, the analysis of the mode stability was obtained by the physics
community in the 70s, see [66][68][19]. For a quantitative mode stabil-
ity in sub-extremal Kerr see [60], and in extremal Kerr see [65].

For quantitative results for the linearized electromagnetic and grav-
itational perturbations of slowly rotating Kerr spacetime, see for in-
stance [5][23][49][50], where a hierarchy of wave-like equations from
Teukolsky to a generalized Regge-Wheeler equation is exploited. See
also [3][40]. For the analysis of the linearized gravity and electromag-
netic perturbations in the sub-extremal range Kerr |a| < M see the work
by Shlapentokh-Rothman-Teixeira da Costa [61]. For coupled linear-
gravitational perturbations of Kerr-Newman spacetime, see our [37] for
the derivation of the Teukolsky and Regge-Wheeler system of equations
governing the perturbations.

For non-linear gravitational perturbations of Kerr, see the formalism
developed in [38], and the recent work by Klainerman-Szeftel [47]. In
the presence of positive cosmological constant, the non-linear stability
of slowly rotating Kerr-de Sitter and Kerr-Newman-de Sitter spacetimes
have been obtained in [42][41].

Finally, electromagnetic-gravitational perturbations of Kerr-Newman
spacetime have been considered in [19] and asymptotic solutions were
obtained in [48]. In [51], the Teukolsky equations were derived in the
phantom gauge. In [37] we derived the coupled system of equations for
gauge-invariant perturbations of Kerr-Newman. See also the recent [54]
for the construction of an energy functional for axisymmetric perturba-
tions of Kerr-Newman.

The physical-space analysis of the wave equation in Kerr New-
man. As mentioned above, most of the results for scalar, electromag-
netic and gravitational perturbations of Kerr or Kerr-Newman space-
times rely on the separability in modes and the frequency-decomposition
of the solution. Even though these methods are very effective, and they
are at the present moment the only ones which allow for the analy-
sis in the sub-extremal range for general solutions [31][61], they are
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nevertheless not well suited for the analysis of coupled electromagnetic-
gravitational perturbations of Kerr-Newman spacetime, as separability
in modes cannot be obtained in that case (see the introduction of [37]
for more details). The notable exception among the above-mentioned
methods is the physical-space analysis for the wave equation in slowly
rotating Kerr by Andersson-Blue [4], which makes crucial use of the
Carter tensor in Kerr and the fact that the differential operator as-
sociated to the Carter tensor commutes with the D’Alembertian
operator in Ricci-flat spacetimes [17][18].

The Carter tensor [16] is a symmetric 2-tensor K on Kerr and Kerr-

Newman spacetimes which satisfies the Killing equation, i.e.

(4) D,K,,) =0

where D is the covariant derivative of the metric. In virtue of the Killing
equation (4), the associated differential operator K(v) := D, (K*'D,1)
commutes with the D’Alembertian operator g = D,D* in the case
of Ricci-flat metric. We say that K is a symmetry operator for the
wave equation. In [4], Andersson-Blue develop a generalized vectorfield
method which allows for commutations with second order differential
operators, and then apply it to the Carter differential operator X and
its elliptic counterpart, together with the Killing vectorfields of the Kerr
metric, to derive energy and Morawetz estimates for the solution.

The main obstruction to the application of Andersson-Blue’s method
[4] to the case of Kerr-Newman spacetime is that, even though the
metric admits a Killing tensor, its associated differential operator does
not in general commute with the wave equation. If the Killing tensor is
assumed to commute with the electromagnetic tensor, then the source-
free Einstein-Maxwell imply the commutation [18].

The first result of this paper is to show that, even though the Kerr-
Newman spacetime is not Ricci-flat, the Carter differential operator K
associated to the Carter tensor still commutes with the D’Alembertian
operator of Kerr-Newman. Interestingly enough, the commutation prop-
erty is not a direct consequence of the Einstein-Maxwell equations,
but rather of peculiar properties of the curvature and electromagnetic
components in Kerr-Newman. We prove that, even though the Kerr-
Newman metric is not Ricci-flat, the Carter differential operator K still
commutes with the wave equation, see Theorem 1.11.

Such property then allows to extend the physical-space analysis of
Andersson-Blue [4] to Kerr-Newman spacetime. More precisely, we
show that the Carter differential operator K is given by, see Propo-
sition 1.12,

(5) K = —a%cos’6 Ugrreo T O,
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where O is a modified Laplacian for the Kerr-Newman metric, given in
Boyer-Lindquist coordinates by

0O = ﬁag(sin 939) + ﬁaﬁ + 2a3t8¢ + a? sin? 68?.
In order to obtain a physical-space analysis of the wave equation in Kerr-
Newman spacetime necessary to tackle the electromagnetic-gravitational
perturbations of Kerr-Newman, we prove and make crucial use of the
fact that the modified Laplacian O obtained from the Carter differential
operator is a conformal symmetry operator for the wave equation, see
Proposition 1.12:

(6) [0, (7’2 + a2 cos? 0)0g110.0) = 0.

This allows to apply Andersson-Blue’s generalized vectorfield method [4]
to the case of Kerr-Newman. We now briefly recall how the physical-
space analysis is obtained in [4].

The wvectorfield method is a robust geometrical approach to obtain
energy estimates for solutions to the wave equation. The energy-momen-
tum tensor associated to the wave equation is given by

Q[w]uu = 3u¢3u¢—%guuax¢3kwa

and the wave equation is satisfied if and only if the divergence of the
energy-momentum tensor Q[¢] vanishes. For a vectorfield X, called
multiplier, the current associated to X is defined by

POW = QluX,

and its divergence is then given by
1
DR = 5ol - O,

where (X )7@“, = D, X,) is the deformation tensor of the vectorfield X.
Recall that if X is a Killing vectorfield, then (X)7 = 0.

The main idea to derive estimates through the vectorfield method is
to use the divergence identity for the current PLX)[QM for appropriate
vectorfields X, and obtain

| DW= [ PO o
M OM
for some causal domain M.

To obtain local integrated energy decay, one wants to use a radial vec-
torfield X = F(r)0,, for a well chosen function F, such that the diver-
gence of the current D“Pl(LX) [1)] above is positive definite. Nevertheless,
for general solutions to the wave equation, because of the complicated
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structure of trapping described above, this cannot be obtained. In fact,
for X = F(r)0, the above current gives

DEPIT O] = Ad? + U (0a)(950),

for some positive coefficient A, and where U (0, (9p10) contains only
derivatives in ¢, 60, ¢ which are degenerate at trapping. More precisely,
one obtains, see (86),

UP @t (05) = 5 [T — g

(r2 4+ a?)3 (r2 4+ az)QT(waww
where u is an increasing function of r which changes sign at ry.qp, the
root of the polynomial 7 defined in (3). Therefore the coefficient of
the angular derivatives |V)|2, given by %, is strictly positive and
presents a degeneracy of multiplicity 2 at r = r¢qp. On the other
hand, the term “(r‘i%)?f (1)0,1) does not have a definite sign, and for
this reason one fails to obtain a positive definite current by using the
vectorfield X = F(r)0,.

Observe that in the case of axially symmetric solutions, the term
without definite sign vanishes, as 0,1 = 0, and Morawetz and energy
estimates can be obtained in physical space, see Section 2.7, without
recurring to the commutation with the Carter operator. In this case,
the difficulty is in defining the function w for which all the terms of
the divergence, together with a zero-th order term, are positive in the
sub-extremal range a® + Q% < M?, as obtained in Kerr by Stogin [63].

In the case of general solutions, Andersson-Blue [4] introduced a gen-
eralized vectorfield method which allows for higher-order symmetry op-
erators as multipliers. In virtue of the commutation property (6), the
set of the second order operators S,, for a = 1,2, 3,4, given by

S, =97, Sy = 0,0, Sy =02, Si=0

are conformal symmetry operators for the wave equation in Kerr-
Newman spacetime, and the commuted-solutions

w& = SQ(¢)7 a = 17 27 37 47

are also solutions to the wave equation. The generalized energy-momen-
tum tensor is then defined as

1
Q[d’]@uy = 8u¢gauwb - §g,uu8)\¢ga>\¢b, for a,b=1,2,3,4.

Let X be a double-indexed collection of vector fields X = {X4}, the
generalized current associated to X is defined by

P;SX) [1/’] = QW]@#VX@V,

and its divergence is given by

DR = LOla - D X2
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As for the standard vectorfield method, the goal is to apply the diver-
gence identity to the above generalized currents for appropriate double-
indexed collection of vector fields X, where one sums over the underlined
indices a. Just like in the standard vectorfield method, when applied to
X = F(r)d,, the generalized current gives

DFPF Y] = A 9,400,y + UL (Do) (D)

for some positive coefficients A%, and where U2 (9y10,) (9510p) con-
tains only derivatives in ¢, 0, ¢ of the 1), which are degenerate at trap-
ping.

The main advantage in going to the higher-order multipliers in the
generalized vectorfield method is the fact that now one has the flexi-
bility of interchanging the derivatives applied to ¢ through an integra-
tion by parts, and the trapped term UP2 (9,1h4) (95¢p) can in fact be
rewritten as a positive definite term. More precisely, one can write (see
Lemma 2.11)

1
ua5@6a¢g3ﬁ¢9 — §h(\3t‘11\2 + \V\IJ\Q) + boundary terms,

for a positive function A and where ¥ is a trapped linear combinations
of second order derivatives of 1, schematically given by, see (104),
2T 2T dar -~
v = ———— - ——— 0O ———=T(¥)0,.
(r2 +a2)3 " (r2 +a?)3 W)+ (12 + a?)? (¥)3pv

One can then use the above positivity to express the generalized cur-
rent as a positive definite current for the original ¢ for small angular
momentum |a| < M as in [4].

Application to the Einstein-Maxwell equations. In order to ap-
ply the previous techniques for the wave equation to the more inter-
esting case of coupled electromagnetic-gravitational perturbations of
Kerr-Newman, we need to extend the above physical-space analysis to
the case of coupled generalized Regge-Wheeler equations describing the
perturbations.

As a consequence of the Einstein-Maxwell equations, in [37] we showed
that there exists a pair of gauge-invariant tensorial quantities, denoted
p and qF, which satisfy the following schematic system of equations, see
Theorem 3.1 for the precise formulation,

. 2 i @
Chp — z%wp Vip= 4@2‘(% (D-q) + lodt.
(7
. 4 0 1¢3 ~ 3 .

where ¢ = r +iacosf, g =1 —iacosf, |q|* = r? +a? cos® §, and D- and
D& are horizontal operators responsible for the coupling between the
two quantities. In Section 3.1.1, we explain why those angular operators
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on the right hand side of the above equations prevent the separability
in modes in Kerr-Newman.

Even though the system cannot be separated in modes, the precise
structure of the right hand side has good properties when interpreted
in physical-space, in terms of the energy-momentum tensor of the equa-
tions. Indeed, the combined energy-momentum tensor defined as

Q[paqF],uV = Q[p]uu+8Q2Q[qF}um

has good divergence properties. More precisely, the highest-order cou-
pling terms at the level of divergence of the energy-momentum tensor
cancel out in physical-space, as the right hand sides of the gRW sys-
tem (7) are adjoint operators with respect to the spacetime divergence,
thanks to the identity, see Lemma 1.8,

(DRF)-U = —F-(D-U)—((H+ H)®F) -U+Dy(F-U)°,

where F' and U are respectively a 1- and 2-tensor. As a consequence,
we show that the divergence of the energy current associated to d; only
involves terms which can be absorbed by the Morawetz bulk for small
angular momentum, see Part 1 of Theorem 3.2.

There is still one problem in extending the Andersson-Blue method
described above to the case of the generalized Regge-Wheeler equations
as in (7). The Carter differential operator and the modified Lapla-
cian O, which is a conformal symmetry for the D’Alembertian g, is
not a conformal symmetry for the gRW system of equations, because
of the presence of the horizontal operators on the right hand sides.
Those angular operators do not commute with the modified Laplacian
O, but rather their commutator involves a modified Gauss curvature
term, denoted ™K. The scalar WK is defined as a curvature com-
ponent of the (non-integrable) horizontal structure associated to the
principal null frame in Kerr or Kerr-Newman, see [38], and it reduces
to the Gauss curvature of the spheres in the case of spherically symmet-
ric background.

Even though the modified Laplacian O does not commute with the
right hand side of the generalized Regge-Wheeler equations, their sym-
metric structure allows to define modified Laplacian operators involving
Gauss curvature which do commute with the gRW system (7). They
are given by

pi= (04 (c+3)g?PK)p,  qF = (O +c g PK)q

for any real number ¢, see Proposition 3.7, and they can be combined
to the other symmetry operators to apply Andersson-Blue’s method to
the system of perturbations of Kerr-Newman.

We finally show that with the above definition of modified symmetry
operators the integration by parts which allows to create positive definite
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terms in uaﬁa—baa% Oy can still be performed in this more general
setting, see Part 2 of Theorem 3.2.

Structure of the paper. This paper is organized as follows.

In Section 1, we define Kiling tensors and their associated differen-
tial operators in a general manifold, and we compute the commutator
with the D’Alembertian operator in terms of the Ricci curvature of the
metric. We then show that the Carter operator is a symmetry operator
in Kerr-Newman.

In Section 2 we collect the main properties of the wave equation in
Kerr-Newman and the vectorfield method. We also derive the equations
of trapped null geodesics in Kerr-Newman, and obtain energy and local
decay estimates in physical space for axially symmetric solutions to the
wave equation in the sub-extremal range a? + Q> < M? and for general
solutions for slowly rotating |a| < M in Kerr-Newman spacetime.

In Section 3, we show how to apply the above physical-space anal-
ysis to the generalized Regge-Wheeler system describing the coupled
electromagnetic-gravitational perturbations of Kerr-Newman black hole.
We define a combined energy-momentum tensor for the system, and we
show that the divergence of the energy current satisfies favorable can-
cellation and can be controlled by Morawetz bulk. We also define new
symmetry operators for the gRW system and show how to use them in
order to obtain positivity of the principal trapped terms in the Morawetz
estimates exclusively through a physical space analysis.

Acknowledgments. The author is grateful to Sergiu Klainerman for
useful discussions. The author acknowledges the support of NSF grant
DMS-2128386. This work was supported by a grant from the Simons
Foundation (825870, EG).

1. The Carter tensor in Kerr-Newman spacetime

In this section, we recall the definitions of Killing tensors and as-
sociated Killing differential operators for a general Lorentzian mani-
fold (M, g), without any assumption on the curvature of g. We then
collect the commutator of the Killing differential operator with the
D’Alembertian [g of the metric g.

We then recall the main properties of the Kerr-Newman spacetime,
and explicitly define its Killing tensor, known as Carter tensor. We will
show that, because of the special structure of the Carter tensor and the
electromagnetic and curvature components, the associated Carter oper-
ator is a symmetry of the wave equation. Using a convenient expression
for the Carter operator, we then define a conformal symmetry operator
which can be interpreted as a modified Laplacian for the Kerr-Newman
metric.
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1.1. Killing tensors and differential operators. Let (M,g) be a
Lorentzian' manifold and let D denote the covariant derivative of g.
Recall that a vectorfield X on M is called Killing if the Lie derivative of
the metric with respect to X vanishes, i.e. X7 = Lxgu =DX,) =
0, where (X )ﬂ'w, is called the deformation tensor of the vectorfield X.

The notion of Killing vectorfield can be extended to 2-tensors. For a
spinorial version of the symmetry operators see [2].

Definition 1.1. A Killing tensor for (M, g) is a symmetric 2-tensor
K which satisfies the Killing equation:

(8) DK, =0.

In the case of a Killing vectorfield X, the flow of X represents a local
isometry of (M, g), and similarly a hidden symmetry is associated to a
Killing tensor K.

Let (M, g) be a Lorentzian manifold possessing a Killing tensor K.
We define a second order differential operator associated to K.

Definition 1.2. Given a Killing tensor K, its associated second order
differential operator K applied to any tensor ¥ in M is defined by

9) K(¥) =D, (K"D,(¥)).

As a consequence of K being Killing, the above operator K enjoys
favorable properties of commutation with the D’Alembertian operator
Ug = D#D,, which are also related to the Ricci curvature of the metric

g.

Proposition 1.3. Let (M, g) be a Lorentzian manifold with a Killing
tensor K. Then the commutator between the differential operator IC and
the D’Alembertian operator Og for a scalar function ¢ is given by

4
K, Oglp = [(DQR—gD“Rua)Kw

2
+5 (R,D'Koy — R, DK - D°R‘, Ko.) | D9

where R denotes the Ricci curvature or the scalar curvature depending
if it appears a 2-tensor or a scalar respectively.

Proof. See Appendix A. q.e.d.

1.2. The case of vacuum and electrovacuum spacetimes. We
specialize the above commutator to the case of metrics satisfying the
Einstein vacuum equation or the Einstein-Maxwell equation.

!The computations in this section are valid in any pseudo-Riemannian manifold

(M, g).
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Definition 1.4. A Lorentzian manifold (M, g) is a solution to the
Finstein vacuum equation if its Ricci curvature vanishes identically, i.e.

(10) R,, = 0.

A Lorentzian manifold (M,g) is a solution to the Einstein-Maxwell
equation if

1
(11) R,, = 2F ,\F, — §gWF°‘ﬁFa5,

where F is a 2-form on M, denoted electromagnetic tensor, satisfying
the Maxwell equations:

(12) D,F,y =0, D'F,, =0.

We will refer to the above as vacuum and electrovacuum spacetime
respectively.

As a consequence of Proposition 1.3, if a vacuum spacetime possesses
a Killing tensor K, then the differential operator X commutes with the
D’Alembertian of g:

[, Ogléb = 0.

For this reason, K is referred to as a symmetry operator, as it sends
solution to the wave equation to solutions: if g¢ = 0 then Og(K(¢)) =
0.

As a consequence of the Einstein-Maxwell equations (11) and (12),
the curvature of an electrovacuum spacetime satisfies

D'R,, =0, R=0.

Then if an electrovacuum spacetime possesses a Killing tensor K, the
commutator between K and Ug according to Proposition 1.3 becomes

2
(13) [K,0glp = g(leD“Kﬂ, - R,D*K . — DO‘RE,,Kae)D”gb.

Moreover, the Maxwell equations (12) do not imply the vanishing of the
right hand side of (13). Therefore in this case I cannot be interpreted
as a symmetry operator, as the commutator depends on the form of the
Killing tensor K. If the Killing tensor is assumed to commute with the
electromagnetic tensor, i.e. if K%gF,), = 0, then one can show that
the right hand side of (13) vanishes, see [18].

Famous examples of vacuum and an electrovacuum spacetimes which
possess a Killing tensor are the Kerr and Kerr-Newman solutions re-
spectively. The Killing tensor in Kerr was discovered by Carter [16],
and it is then referred to as Carter tensor.
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1.3. The Kerr-Newman spacetime. We review here the Kerr-
Newman metric and associated properties, see also [21]. The Kerr-
Newman metric depends on three physical parameters: the mass M, the
angular momentum a and the charge ). We consider here the subex-
tremal family of Kerr-Newman spacetimes which represent a charged
rotating black hole.

1.3.1. The manifold and the metric. For a® + Q? < M?, the Kerr-
Newman metric in Boyer-Lindquist coordinates (¢, r, 6, ¢) takes the form

8M,a,Q = —AQ (dt — a sin® Hdcp)Q + ‘QA|2dT2
(14) 5 sin? 0
+ |q2d6? + e (adt — (2 + a®)dy)?,
where?
(15) g = r-+iacosb, lq)? = r? + a®cos? 0,
and

A = rP—2Mr+ad*+Q*=(r—ry)(r—r_),
r+ = M+ MQ—(L2—Q2

We recall the ambient manifold with boundary M, diffeomorphic
to RT x R x S2, and coordinates (t*,7,0, ") with relations t(t*,r) =
t* —t(r), p(e*,r) = ¢* — P(r) modulo 27. For the explicit form see
[21]. When expressed in Kerr star coordinates, the metric (14) extends
smoothly to the event horizon H* defined as the boundary OM = {r =
’I”+}.

The metric gas,q,¢ is a solution to the Einstein-Maxwell equations (11)
and (12)., with electromagnetic tensor F = dA, and vector potential A
given by

r
= —’Q‘Q (dt — asin® Hdcp) .
q
Observe that the Kerr-Newman family reduces to the Kerr metric when
@@ = 0, to the Reissner-Nordstrom metric when a = 0, and to the

Schwarzschild metric for a = @ = 0.

1.3.2. The Killing vectorfields. The coordinate vectorfields T' = Oy«
and Z = O,+ coincide with the coordinate vectorfields J; and 9, in
Boyer-Lindquist coordinates, which are Killing for the metric (14). The
stationary Killing vectorfield T' = 0, is asymptotically timelike as r —
oo, and spacelike close to the horizon, in the ergoregion {A — a? sin? 0 <

0}.

2Observe that what we denote by |q|2 =72 + % cos? 0 is normally denoted in the
literature as p>. We avoid using the letter p for this metric component as it is also
used as a curvature component later.
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Since T' = 0 is not timelike in the ergoregion, we recall instead the
definition of Hawking vectorfield, which is timelike in the whole exterior
and null on the horizon.

Proposition 1.5. The Hawking vectorfield T

~ a

(16) T: = at + m&p
is timelike for {r > ri} and null on the horizon {r = ry}. More
precisely

S |l
17 TT) = -A——-.
(17) gM,a,Q( ) (r2 + a2)2
Proof. Denoting g = g4, and using that
A —a?sin? 0 A—(r?+ad%) .,
8it = _Ta 8ty = Tasm 9,
(r? 4+ a?)? — a®sin? A |
8oy = PE sin? @
we obtain
~ 2a a?
T,7) = - ——5v5
g( ’ ) 8t + r2 + a2gt¢ + (7“2 + a2)2g9090
B _A—a251n29+ 2a2 A — (r? +a?) 20
B e g
N a? (r? +a?)? — a®sin? AA 2
sin
(r2 + a2)2 PE
A a? 2A a? a?sin? A
= ——— 4+ —— " sin“ 60— sin? 6
lql* 7%+ a?|qf? (r?+a?)?  q?
A
= im0+ @) = 20207 + a?)sin? 0 + o' sin'6)
At AP
1g2(r2 + a2)2 (r2 + a2)?’
as stated. q.e.d.

As a consequence of the above, we also deduce that the Killing vector-
field
a a

18Ty =T Z, ith = = :

(18) Ty + wy wi Wi r3r+a2 M — Q2

where wy is the angular velocity of the horizon, is null on the horizon
and timelike in a small neighborhood of it in the exterior. Note that
along H™', we have

T —T—

D~ Ty =rTy, hrh=-—o "
Ty M H 2(ri+a2)
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where k is the surface gravity, which is positive in the sub-extremal
range and vanishes in the extremal case.

1.3.3. The principal null frames and horizontal structures. The
Kerr-Newman metric is a spacetime of Petrov Type D, i.e. its Weyl
curvature can be diagonalized with two double eigenbivectors, the so-
called principal null directions.

The vectorfields

2, 2
L=€4= rta 8754-871-1-28@,
A A
(19) r? + a? A a
L=es=""%5 - S0+ 20
|l gl " a2
define principal null directions, with the normalization g(es,es) = —2.
The vectorfield 7.24»%64 extends smoothly to H™ to be parallel to the
r2+a?

null generator, while “% e3 extends smoothly to H™ to be transversal
to it.
We complete the above null frame with the following vectorfields

1 asin @ 1
(20) e1 =10y, ey = o +
lq| lq]

which represent an orthonormal frame on the orthogonal space spanned
by es and ey4 for § € {0, 7} (outside the singularity at the poles of the
spherical coordinates).

The frame {eq, €3, €4} for a = 1,2 as defined in (19) and (20) describes
a null frame which satisfies

lg|sin ~*’

gles,e3) = gles,eq) =0, gles,eq) = =2,

g(ea7 63) = g(ea7 64) = 07 g(eaa €b) = 6&67 a = 1) 2.
We remark here that the following formulas below hold for any local
frame {eq, €3, €4}, including but not limited to the one defined in (19)
and (20).

We say that a vectorfield X is horizontal if g(X,eq) = g(X,e3) = 0.
Observe that the commutator of two horizontal vectorfields may fail to
be horizontal. We say that (L, L) is integrable if the commutator of two
horizontal vectorfield is horizontal.

In the case of Kerr-Newman spacetime, the principal null frame (19)
is not integrable, and its horizontal vector space does not span a sphere,
but rather a 2-plane distribution. We refer to it as a horizontal structure.
On it, we can define the horizontal covariant derivative by the projection
of the covariant derivative to the horizontal structure: for X in the
tangent space of M and Y horizontal

DxY =" (DxY)

(21) 1 1
=DxY + ;g(DxY, L)L + ;g(DxY. L) L,
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where () (D xY) is the projection to the horizontal structure. We denote
ViY =W(DLY), VY ="(DLY), VoY ="(D,,Y).

Similarly, we can extend the above definition to horizontal covariant
k-tensors. We denote by sg the set of pairs of real functions on M, and
for kK > 1 we denote by s; the set of horizontal tensors on M. We define
the duals of f € 51 and u € 52 by

*fa = eabfln ( *u)ab - eacucb;
where €,,= % €ab34 is the induced volume form on the horizontal struc-
ture. For f € s1 and u € so we define the frame dependent operators,

divf = 6Vufs,  curl f =€® V,f,

~ 1 )
(V&f)ba = §(bea + Vafp — dap(div f))
(divu)y = 0"Vt

Definition 1.6. Given an orthonormal basis of horizontal vectors
e1, ea we define the Hodge type operators, see [20]:

e 7 takes 51 into® sq:

DE = (divg, curl§),
o T takes s9 into s;:

(@Zg)a = vbgaba
o D takes sp into 61:
zpl*<f7 f*) = _vaf+ Cab be*7
e D3 takes s1 into so:
P = —VRC.

See [38] or [37] for more details.

1.3.4. The Ricci, electromagnetic and curvature components.
As in [20], we use standard notations to define the Ricci coefficients of
the null pair frame as

X = g(DlZ L, eb): Xab = g(DaLa 6b)7

1 1
= =8 Li76a7 a= 38 LL,€q),

§, = ;8DiLe), &= 8Dilc)
1 1

w = Zg(DLL)L)a w:Zg(DLLv L)a
1 1

ﬂa = §g(DL L7 ea)7 Na = ig(DLLJ ea)a
1

G = 58(DuL, L).
2

using the short hand notation D, = D¢,,a =1, 2.

3Recall that so refers to pairs of scalar functions (a, b).
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Observe that in the case of Kerr and Kerr-Newman spacetime, the
2-tensors qp and Xop associated to the principal null frame are not sym-
metric, as a consequence of the fact that the space which is orthogonal
to the principal null frame is not integrable, see [38]. Following [38],
we introduce the notations

trx := 0%Xap, trx = (5“1’&1(),

(a)trX ::eab Xab, (a)t}I'X ::eab Yab-
In particular we can write
. 1 1
Xab = Xab T iéab trx + 5 Cab (a)trXa

= X +15 tr +1€ (@) gy
X{lb - Xab 2 ab X 2 ab X?

where X and x is the symmetric traceless part of x and x respectively.
We define the electromagnetic components relative to the null frame
as

(F)ﬁa = F(eaa 64)7 (F)éa = F(eaa 63)

1
p = F(es eq), * ()
where F is the electromagnetic tensor in the Einstein-Maxwell equa-
tions (11) and (12) and *F denotes the Hodge dual on (M,g) of F,
defined by *Fop = % €008 FH.
We define the curvature components relative to the null frame as

1
= 5 *F(eg, 64)

aab - W(e4,€a,€4,€b), Qab == W(e37ea7637eb)7
1
fa = 5Wlea eses,ea), B, =Wieq,e3,e3 €4)
1 PN
p = ZW(€3764763764)7 P = Z W(€3,€4,€3,€4)

where W is the Weyl curvature, and *W denotes the Hodge dual on
(M, g) of F, defined by *Wgu = 1€, W o550

Lemma 1.7. The Kerr-Newman metric has the following values of
the Ricci, electromagnetic and curvature components.

o The following quantities vanish:*

(22) Y=x=¢=£=0, a=f=f=a=0, Fp=Fg=q.

The non-vanishing electromagnetic and curvature components take
the following values:

2
(23)  E)2 4 +®)2 ﬁ]?|4

4The vanishing of the quantities corresponds to the fact that the Kerr-Newman
spacetime is of Petrov Type D.
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1
(24) p = —=(—2Mr>+2Q** + 6Ma® cos® Or — 2Q%a* cos? 0),

l]®
0
(25) p= %(GMTQ —4Q% — 2Ma® cos? 6).
q
e The Ricci coefficients defined with respect to the principal null
frame (19) take the following values:

trxzﬁ, () _ 2@0080’
lq/? lq/?
2rA () 2aA cos 0
tTX = - 40 tTX = 1 ’
= = lq]
a?cos®0(r — M) + Mr? — a*r — Q*r
w = |q‘4 ) w:o7 ﬁ:_g

e In the orthonormal frame e, for a = 1,2 defined in (20), the Ricci
coefficients have the following components:

B a®sinf cos 0 __asinfr
L PR
. _ asinfr . _aQSin90080
7 R

B a’sinf cos _asinfr
o= - FE g == g3
. B a sin Or . _a2sin90050
o= - g3 Ny = FE

e The derivatives of the coordinates r and 6 with respect to the frame
defined in (19) and (20) satisfy the following relations:

|l |l
(26) es(r) = T’FtrX’ eq(r) = 5” X ea(r) =0,
ea(a? cos® 0) = |q|*(n + M)as e3(a® cos? 0) = eq(a® cos? 0) = 0.

e Finally, the orthonormal frame e, for a = 1,2 defined in (20)
satisfy the following:

(27) Vg1 = Ve, e2 =0, Ve,e1 = Aea, Ve,e2 = —Aey,
where
r? + a?
lq]3

Proof. See [37] and [38]. q.e.d.

A= cot 0
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1.3.5. Complex notations. We denote by s;(C) the set of complex
anti-self dual k-tensors on M. More precisely, a+ib € s¢(C) is a complex
scalar function on M with (a,b) € 5o, F' = f+i *f € §1(C) is a complex
anti-self dual 1-tensor on M with f € 51, and U = u+1i *u € 52(C) is a
complex anti-self dual symmetric traceless 2-tensor on M with u € s5.

We extend the definitions for the Ricci, electromagnetic and curvature
components to the complex case by using the anti-self dual tensors, by
defining

X=x+i"x, X=x+i"x, H=n+i"n, H=n+i"n,

Fp= FRy;*Fg Fp_ Fg 5 F)p = (F)y 4 *(F);
A=a+i*a, A=a+1i"q, B=p+i*3, B=p+i"p,
P=p+i’p

We also define the complexified version of the V, horizontal derivative
as

Do =Va+1i*Va, Dy =V4—1i*Vg, a=1,2.

More precisely,
e For a +ib € 50(C)

D(a+ib) = (V+i*V)(a+ib), D(a+ib) := (V —i *V)(a + ib)
o For F=f+i*fes(C),

D-(f+i*f) == (V=i*V)-(f+i"f)=2(div f +icurl f),
DR(f+i*f) = (V+i*V)R(f+i*f) =2(VRf +i*(VRS)).
e For U = u+1i *u € s5(C),
D(u+i*u) = (V—i*V)(u+i*u) =2(divu+i *(divu))

For F € 51(C), the operator —D& is formally adjoint to the operator
D - U applied to U € s5(C), as shown in [37].

Lemma 1.8 (Lemma 2.11 in [37]). For F' = f+i*f € 51(C) and
U=u+1i"*u e sy(C), we have

(28{DRF)-U = —F-(D-U)—((H+ H)®F)-U+Dy(F-U)~

1.4. The Carter tensor and differential operator in Kerr New-
man. We define the Carter tensor of Kerr-Newman spacetime and show
that it is a Killing tensor for its metric. We then also define the Carter
differential operator associated to it and show that, even though Kerr-
Newman is not Ricci-flat, the Carter operator is a symmetry operator
in Kerr-Newman.
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Definition 1.9. The Carter tensor associated to (M, gnr,4,q) is the
following symmetric 2-tensor K defined by
(29) K = —(a®cos®0)grra + |a* (e1 @ e1 + ea ® e2)

where e; and e are defined in (20).

By defining the symmetric tensor

(30) 0% = |q](efel + ee))
we can write from (29),
(31) K = —(a*cos’0)gnrag +O.
Since gap = b, a3 = as = 0 for a = 1,2, and gz4 = —2, we obtain

from (29) that the tensor K has the following components:
Kay = 1204,  Kzg =2(a%cos?0),  Ku3 =K = K33 =Ky =0.
In particular
trK = 2(r? — a®cos? ).
Proposition 1.10. The Carter tensor K defined by (29) satisfies
DKy =0
and therefore it is a Killing tensor for (M, g ,a.Q)-

Proof. We decompose the symmetric 3-tensor II,,, = D, K,, =
%(DMK,,p +D,K,, + D,K,,) in the null frame by making use of the
Riccei formulae [20],

Dgeey = Vaey + %Xabe?) + %Xabe%
Dges = Xaves — Gals,
Dees = x,eb+ Caes,
D3eq = Vzeq +1ae3+ & €4,
(32) Dges = —2wes+ 2§ ep,
Dges = 2weq + 2mpey,
Dyeq = Vieq+1n €4+ Eaes,
Dyes = —2weyq+ 26y,
Dyes = 2wes+ 2n, ep.

We compute
3Habc = DaKbc + Dcha + DcKab
= Val(bc - KDabc - KbDac + vaca - KDbca - KcDba
+VeKap — Kpoab — KaD.b
= VaKbc + Vcha + Vcl(ab
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= Va(r’0he) + Vi(r*0ca) + Ve(r*ap)
= 21 (Varope + Viprodeq + Verdgy) =0
= ey(r) = 0. We compute
D K3 + Dy K34 + D3 Ky
VK3 — Kp,b3 — Kip,3 + Vo K3a — KDy3a — K3Dya
+V3Kap — Kpgab — KaDsb
1

3 JJK34 + V3K

1
3 XapT13 = X, Koo = Xy Fea = 51X,

301

<Xab + Xb >(a CoS 0) - T X 5bc TQXbC(sca + V3(7“25ab)

—(X, —i—Xba)(r + a® cos? 0) + V3(r*)Sa
(2res(r) — lg|*tr x)éab — 2%, lal* =

where we used (26), and symmetrically for 1,54 = 0. We compute

3Ha34

D,K34 + D3Kyy + DyKy3

= V3K4q — Kpjaq — Kapsa + VaKe3 — Kpyaz — Kabpy3

+V.K34 — Kp,34 — K3p,4

= —2mKap — Nal34 — 0 Kzq — 20, Kop + VK34

= V.2(a*cos® ) — 2(my + ﬂb)r25ab (0 + 1, )2(a? cos® 0)

VK34 —2(np +1,) Kab — (o + 1, ) K34

= Qea(a2 C052 9) — 2(770, +ﬂa)’q‘2 -

where we used (26). We compute

311433

= D,K33+2D3K3,

= VK33 —2Kp,33 +2V3K3, — 2Kp,3, — 2K3D3a
= -4 Kpg — 2§ K3q = —4;r 2 6ba —4¢, (a? cos® 6)
= —4g*, =0,

and similarly for II,44 = 0. We compute

311343

= 2D3K43 +DyK33
= 2V3Ky3 —2Kp,43 — 2K4p,3 + V4 K33 — 2Kp,33
= 2V3Ky3 — 4wKy3 + 4wKy3 = 4dez(a® cos 0) = 0,

and similarly for II434 = 0. Finally we compute

and similarly for II444 = 0.

II333 = D3K33=V3K33 —2Kp,33 =0

q.e.d.

Following Definition 1.2, we define the Carter differential operator in
Kerr-Newman as the second order differential operator K associated to
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K in (29) for a scalar function v as

K(¥) = Du(K*Dy (1))

We now prove that because of special considerations of the metric and
curvature of Kerr-Newman, the commutator between X and [
vanishes.

8M,a,Q

Theorem 1.11. In Kerr-Newman spacetime, the Carter differential

operator commutes with Ug,, . , i.e. for a scalar function ¥ we have

(33) K, DgM,a,Q]w = 0.

In particular, the Carter differential operator IC is a symmetry operator
for Kerr-Newman spacetime.

Proof. Since the Kerr-Newman metric is an electrovacuum spacetime,

the commutator between K and O, , , satisfies (13), i.e.

2
K,Ogly = g(RueD“Kﬂ, —R,D*K, — D°R, Ko ) D"y
2

I — I, — I3).
3(1 o — I3)

From the Einstein-Maxwell equation (11), we compute the Ricci curva-
ture of the Kerr-Newman metric, which is given by

Ry = 2*F)p* @ _2(),Fs _o
Ry = 2°* (F)p *(F)g. 42 (F)p F)3, =0,
Ry = 2. Fg=q, Ry =2F3. Fg =g
and
2
Ry — 2 ((F)pQ 4o (F)p2) _2Q

RN
2

_ (2, «@2) s _ @
R(Lb ( p + P )51117 |q|45ab7

where we used the values in Lemma 1.7. Using the Ricci formulae (32),
we deduce

1 1 1 1

D.Rype = VaoRpe — §XabR3c - §XabR4c - §XacRb3 - ilacRM
= V(i) = 2049 (1) Q%
= a |q|4 bec | — q a\l4 be
Q2
= _2(77a + Qa)wéba
DsR3. = ViR3c—2wR3c — 27, Ric —n Ray
Q2 2@2 _ 4@2

=20y Obe =N, =
I |q|* =<
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1 1
DaRys = VaRus — SxarRss — 5x, Ras — X, Ree — GaRus
2
= —trx—7 0,
gt
20)? 4Q*
D3sRy3 = V3Ry3 —2mRp3 = V3 <|qC’24> =— rx|qc|247

DsR3; = V4R35 —4wR33 — 4ﬂbRb3 =0.
Similarly, as computed in Proposition 1.10, we recall
D, Kpe = DyK33 = D3Ky3 = 0, DKy = —%trzlq!%ab,
D, K3 = —2n |q|>.
Also, from (149) and using (26), we have
DMK, = —%Dc(trK) = —%60(2(7‘2 —a?cos?0)) = (1. —i—ﬂc)\q]z,
(34) D"K,3 = —%Dg(trK) = —%63(2(7’2 —a*cos?0)) = —tr x|q/?,
D'K,y = —%D4(trK) = —%64(2(7‘2 —a%cos? 0)) = —tr x|q|?.
We compute [; = R,“D* K., D"¢.

I, = R,D'EK,D"3)
— R,“D"K,, D"+ R,*D"K3,D"¢ + R, D" K,,D"1)

1 1
= Ry"D’K,, D"y — §R34D3K3VD% — 51?»43D41r<4yD”w
= R®D,K,.D% + R*¥D,K,3D>) + R®D, K 4D
1 1 1
+ZR34D4K3aDa1/1 + 1R34D4K33D31/) + ZR34D4K34D4¢

1 1 1
+RasD3K4a D" + T Ri3Dy K13D*) + T RazD3KuD'y
which gives, using the above values,
1 1
L = —R“bgtr X|ql25abD31,Z) - Rabitr x|q|?6a D4

1 1
—5Raun,[q]"D") — S Ragina|g| "Dy

1Q? Q?
= 3 g ’2 (tr XDy + tr xD3y) — q |2 (Mo + Q@)D“z/;.
We compute I = R,“D* K, [D".
I, = R,D'K, D"y
= R,‘D"K,.D"¢ + R,*D'K 3Dy + R,*D*K,, D"
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R“(ne + 1 )|q/*Dap
1 1
+*R34(—trleI2)D4¢ + ZR“?’(_W x|q|*) D3y

1Q° Q*
2 | ’2 (tl“ XD4¢ +tr XD?ﬂp) ‘ |2 (77a + Qa)Daw =-I

Finally, we compute I5.

Iy =

D“R¢, K,.D"¢

DR, K..D"9) + D°R3,K 3D + DR*, K 4D
DR, KDV + 1DsRa, KisD¥t + 1DiRy, KDV
D.R, KD + DR K*“D3)) + DR KD
+%D3R4aK43Da¢ + 3D3R43K43D3¢ + iD3R44K43D4¢

1 1 1
+ZD4R3QK34D“¢ + ZD4R33K34D31/) + 1D4R34K34D4¢

which gives, using the above values,

I =

5 2
2L 20, 4 D“w—trfo 22D — tr x 222Dy

gl lal* lal*

q —Qa

14Q? o 1, 4Q% 5 3
—gwmﬂ(a cos® 6)D Y-t X |42(a cos™ 0)D”y

1402 1 4Q?

7 |C’2477 2(a? cos? 0)D%) — ft X‘Q|4 2(a? cos® §)D*y

2 2

S,Z(trwa + tr xDsy)) — 2‘32(77“ +n*)Doy = 2.

We therefore obtain

as stated.

2
2L —I,—I3) =0,

[’QDgW = 3

q.e.d.

1.5. The modified Laplacian in Kerr-Newman. Even though the
Carter differential operator K is a symmetry operator for the Kerr-
Newman metric, it is convenient to extract from it an elliptic operator
which we identify as a modified Laplacian in Kerr-Newman, see also [38].
Such modified Laplacian is then proved to be a conformal symmetry
operator, as it is a symmetry operator for the conformal rescaling of the
Kerr-Newman metric |q|*gas,q,0-

Proposition 1.12. The Carter differential operator K in Kerr New-
man is given by

(35)

K = —(a2 cos? 0) Dg]\/[,a,Q + O,
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where O denotes a second order differential operator given by
(36) OW) = laf* (A + (n+n)-Vy),
where A = 6V, Vpip, for a,b=1,2. We call O the modified Lapla-

cian of the Kerr-Newman metric.
Moreover, the modified Laplacian O is a conformal symmetry opera-
tor, i.e. for a scalar function v we have

(37) [07 |q|2|:|gM,a,QW} =0.
Proof. We compute
K(y) = Du(K*'Dyy) = KD, Dyt + Dy KDyt
Using (34) and the definition of K (29), we obtain
K(y) = (—(a*cos’0)gh + IQI2(€1 ®er+er® 62)“”)13 D,y

(1 +n)al*Vav + 5 \QI trxVat + 5 I(J\Qtrwi
= —(a®cos®0) Werrao? + q[26%° D, Dytp

(" + 1)Vt + 5 \q|2tr XVt + o rthrwi
= —(a%cos?0)0 grrao¥

1 1
+|q|2(5ab(vaa¢ - §Xbav?)¢ — ixbavzlw)

_l’_

+

1 1
+(n" + 1)l Var + 5|€1|2t7“ XV + §I(J|2trgv4w,
which gives

K(d}) = _(a2 COSQ H)Dglu,a,Qw + |Q‘2 (5abvbvaw + (77a + ﬂa)VadJ) 3

where the last two terms define the operator O(¢). This proves the first
part of the Proposition.

Using (35) to write O = K + (a? cos? §)g, we deduce using Theo-
rem 1.11,

0,0g]y = [K,0glt + [(a cos? ) Og, gl = [(a2 cos? 6) Og, Oglt.

Recall, see for example [38], for a scalar function f we have

Dgf = —%(V3V4 + V4V3)f + (w — ;trx> Vauf
(38)

+ <w—;trx> Vif+Af+(n+n)-Vf.

Consequently, we have

Og(fh) = Og(f)h + fOg(h)

(39) —V3fV4h —V4fVsh+2Vf-Vh.



306 E. GIORGI

We then obtain,

(@ Dgw = (a® cos®0) O g(Ug?) — Dg((a2 cos” 0)Ug?)
(40) 9 9
~Og(a? cos? 0)Ogtp — 2V (a? cos? 0) - V(Ogt))

where we used that ez(a? cos? §) = e4q(a®cos? ) = 0. Also, using (38)
we compute

Og(a®cos®@) = A(a*cos®0) + (n+1) - V(a®cos®0)
= |q|720(a®cos? 6).
This gives
(0,0 = —|q|?O(a® cos? 0)Tgth — 2V (a? cos? §) - V(Ogrh).

We can finally deduce from (40):
[0,1aTgle = O(|lal*Og¥) — |4l Og(O())

= O(lq*)Ogv + |qI*[0. Oglv + 21aI*V (|a]*) - V(Ogy))

= O(’Q|2)Dg¢ — O(a® cos? 0)Ug¥)

—2|¢]*V (a® cos® 0) - V(Ogp) + 2|q*V(|g|*) - V(Ogep)

= 0
where we used that V(|g|?) = V(r? + a?cos?6) = V(a?cos?6) and
O(|q|?) = O(a? cos? §). This proves the Proposition. q.e.d.

We finally express the modified Laplacian O explicitly in Boyer-
Lindquist coordinates in Kerr-Newman.

Lemma 1.13. The modified Laplacian O in Boyer-Lindquist coordi-
nates reads

1 .
(41) o= ﬁﬁg(sm&%)

= Ag2 + 2a0,0, + a* sin? 007

= 963, + 20,0, + a® sin” 007

where Agz = =50p(sin 09p) + 2983 is the (unit) spherical Laplacian
on S?.

Proof. We recall that the Laplacian A of a scalar function is given
by, see [38]
A = 5V Ve = ViViy + VaVath
= e1e1(¥) = Vv, ¥ + e2e2(¥) — Vv,e, ¥
= eaei(V) +ezex(y) + Aer(¥).
where we used (27). Using the values (20) of e; and ey, we compute

1 1

1
6’161(1/)) ‘q’ (’ ‘ 917&) |q‘2 9¢+| ‘ (‘ |)09ﬂ)
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a? cosfsin

1 2
= Rt T o

sin26 ¢

= 0j1 + cot 00yt + 82w + a?sin” 071 + 2a0; Ot}

asin 6 1 asin@ 1
€2€2(¢) - ( |q’ t |q‘ sin @ 90)( |q| 8t¢+ ‘ |s1n08901/})
a®sin? 6 1
= ———0; ) 02
lq|? ¢+‘ 2 ' pr+| 2sin? 6 4
which gives
1 a® cosfsin a’sin? 6
I T T
2, 2
+| |2 N 29 920 ! ‘(;JL COtH@gw
q|? sin
1 2 L 021 a2sin26 2 9
_ 7233¢+T +a +f sin cot 00yt + a SII; 821/}
lq| lq| |4l
2 1
+ﬁata¢¢ + g S0%0.
We also compute
m+mn) VY = (m+n)e()+ (n2+n,)e2(t))
a®cosfsinf 1 a’sin? 6
= 22— () = —2——7— cot 69y ()
g ldl lql*
which gives
O@W) = gDy +(n+n) V)
2., 2 24in2 9
= Ry O ;’f S ot 001 + a2 sin® 002 + 200,041
1 2 2
824 — 2“5?19 cot 091

= ,gag(sinﬁag)—i-

sSin

as stated.
q.e.d.
2. The physical-space analysis of the wave equation

In this section we prove energy and local decay estimates for solutions
to the scalar wave equation

(42> DgM,a,Qw = O
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in Kerr-Newman spacetime for |a| < M entirely in physical space,
i.e. without recurring into frequency space or decomposition in modes.
In order to do that, we will make use the approach first developed in [4]
in Kerr to commute the wave equation with the Carter tensor and the
modified Laplacian O. From the fundamental commutation property
obtained in Theorem 1.11, we can extend the procedure of [4] to the
case of Kerr-Newman, where a resolution in physical space is crucial
to tackle the problem of stability of the solution to electromagnetic-
gravitational perturbations for the Einstein-Maxwell equation, as we
will see in Section 3.
As in [4], define

4
(43) 0[% = [ + [0 * + 10,01 + ) |Sat|?,

a=1

where S,, for a = 1,2, 3,4, denote the set of the second order operators
given by, see Definition 2.2,

S1 =07, Sy = 0,0,, Ss =02, Sy=0.
We obtain the following.

Theorem 2.1. Let v be a sufficiently regqular solution to the wave
equation in the slowly rotating Kerr-Newman spacetime g q,q with
la] < M, with initial data on X which decays sufficiently fast.

Then the following energy-Morawetz estimates, for = > 0, can be
obtained through a physical-space analysis:

(44) Er 5[]+ Morg - s[¥] S Eos[Y]
where
sl = /Z Ol + 18,12 + [V
M? M
Mor(n,m)[q/)] = /M(T ) [rig‘arw‘?s + ﬁ‘zﬂ?s

~ _ M
L ey 3 (7 HVelS + ﬁmﬂ/”?s)}
RN __ 3M++/9M?-8Q?
2

where riyq, =

is the photon sphere of Reissner-Nordstrom
gm.Q and i{r;érﬁ{)’p} is a function that is identically 1 for {|T‘—Tthé\;‘ >0}

for some § > 0 and zero otherwise, and |Vy|> = |[V1|* + |[Vaup|?> with
respect to the orthonormal basis in (20).

Observe that the above estimates is not optimal in terms of decay
in r, and those weights can be improved by applying the P hierarchy
of estimates introduced by Dafermos-Rodnianski in [25] in a standard
fashion.
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2.1. Preliminaries. From now on, we denote g = gy 4, for a?+Q? <
M?. From the form of the Kerr-Newman metric in Boyer-Lindquist
coordinates (t,r,0, ¢) as given by (14), one can deduce, see [4], that its
conformal inverse |g|?g~! can be written as

1
(45) ld’g®” = A0+ LR
where

R = (4 PO 20s? + )00 — 20008
(46) +AO,

1
70503 +200{"0) + a® sin® 007 0]
Observe that O is the same tensor as defined in (30), but written here
in Boyer-Lindquist coordinates using the orthonormal frame in (20).

The scalar wave equation on a Lorentzian manifold can be written in
coordinates as

1
Ogth = ————04((y/— det g)g*? 1)) = 0,
and one can deduce from (45) that the wave operator for the Kerr-
Newman metric in Boyer-Lindquist coordinates is given by

(48)

47 o0 = ogop +

1
g]*0g = 0,(AD,) + Z( — (r* + a®)?0? — 2a(r* + a*)0,0, — a28g)
1 . I 2 2 pa2
-+ Siﬂﬁg(sm 00p) + maw + 2a0;0, + a” sin” 00;

1
= 0,(A9,) + Z< — (r? + a®)?0? — 2a(r* + a*)0,0,, — a2ag) + 0,

where O is the modified Laplacian defined in (41).

We now briefly formulate the initial value problem for the wave equa-
tion. We prescribe initial data on the (axisymmetric) hypersurface
Yo = {t* = 0} where t* is the coordinate described in Section 1.3.1,
as in [21]. We are interested in the behavior of the solution in the fu-
ture Cauchy development of ¥ which is given by {t* > 0}. Denote ¢,
the 1-parameter family of diffeomorphisms generated by the vector field
T, and define the spacelike hypersurfaces ¥, = ¢,(Xo) = {t = t*}. Each
leaf of this foliation terminates at the horizon and at spatial infinity %
(for more details see [28], [31]). For 7o > 71, the leaf ¥,, lies in the
future of ¥, , and we denote the region bounded by %, ¥,, and H' by
M(11,72) = Up <7<, Xr. We also denote HT (11, 72) = HT N M(71,72).

The wave equation is well posed in M (0, 7) with initial data (g, 11)
defined on ¥o in Hj (5) x HIJOZI(EO), j > 1, see for example [27].
Furthermore, the solutions depends smoothly on the parameters a and
@, see [31][21]. By symmetry we can always assume the positivity of a.
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2.2. The vectorfield method. We recall the main definitions in ap-
plying the vectorfield method to derive energy estimates for the wave
equation. The vectorfield method is based on applying the divergence
theorem in a causal domain, like M(71,72), to certain energy currents,
which are constructed from the energy momentum tensor.

e The energy-momentum tensor associated to the wave equation (42)
is given by

(49) Q[’QU]W/ = Md’aﬂp guua)\wa ¢

The wave equation (42) is satisfied if and only if the divergence of
the energy-momentum tensor Q)| vanishes.

e Let X be a vectorfield and w be a function. The current associated
o (X, w) is defined as

1 1
(50) P = QX+ Jwiduy — 1 (Duw)y’.
e The energy associated to (X, w) on the hypersurface ¥, is
p(Xw) / PEXIy

where ny_ denotes the future directed timelike unit normal to ;.

A standard computation, see for example [46], then implies for the
divergence of P:

(51) DR = S Q1] - P — {Tgulu + Ju(@svd o),

where (X )7'(’“,, =D, X,) is the deformation tensor of the vectorfield X.

Recall that if X is a Killing vectorfield, then ()7 = 0.
For convenience we introduce the notation,

X,w o X,w
(52) Xy = DRIy
By applying the divergence theorem to P;(LX’w) within a region such as

M(71,12) for carefully chosen (X, w) one obtains the associated energy
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identity:

B0 ](ry) + /

H(11,72)

PED[lnt., + / gy,
M(11,72)

E(X7w) [w] (Tl ) )

where the induced volume forms are to be understood. By convention,
along the event horizon H we choose ny+ = T -

For two positive quantities F' and G, in what follows we write F' < G
to signify that there exists a universal constant C, depending only on
M, a, @, such that F' < CG.

2.3. Symmetry operators and generalized vectorfield method.
Since the Kerr-Newman metric possesses only two Killing vectorfields,
T = 0y and Z = O, which commute with the D’Alembertian operator
associated to the metric, the control on those first derivatives is not
sufficient to control all the first derivatives of a solution to the wave
equation.

In order to control all the derivatives, one needs to make use of the
Carter tensor, through the form of the modified Laplacian O as defined
in Section 1.5. Since such operator is second order, we will make use
of second order differential operators as obtained from the two Killing
vectorfields and the modified Laplacian.

Following [4] and making crucial use of our extension of the com-
mutation in the case of the non-Ricci flat Kerr-Newman spacetime in
Theorem 1.11 and (37), we define the following second order symmetry
operators.

Definition 2.2. The set of the second order operators S,, for a =
1,2,3,4, given by
S) = 02, Sy = 0,0, Ss =2, Si=0

are denoted conformal symmetry operator® , as for a scalar function 1
we have

(53) [ng ’q|2|:|g1\4,a,Q]¢ =0, a=1,2,3,4.

Observe that the conformal symmetry operators commute with each
other, i.e.

(54) [Sa:Sp) =0,  a,b=1,2,3,4.

The modified Laplacian O in (41) differs from the spherical Laplacian
by terms depending on 9? and 0;0,, so the second order operators S,
for a = 1,2, 3,4 together provide the spherical Laplacian, which has the
elliptic properties necessary to control the angular derivatives. More

®Observe that S, for a = 1,2,3 are symmetry operators as they commute with
Og, while S4 = O is only a conformal symmetry operator.
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precisely, the following estimates allow us to obtain pointwise bounded-
ness and decay bounds for :

4
65 [P<C [ Wwk+lasv<c [ ke 3 ISP
a=1

which follows from the spherical Sobolev inequality and (41).
In addition to the conformal symmetry operators, we also define their
tensorial versions.

Definition 2.3. We define the following symmetric tensors

P =qerh 9P =mlegh 59 = zezB 8P = 0F
With the above definition, from (46), one can write as in [4]

6 R = —(r? +a?)?8Y — 2a(r? + a?)S5” — a®55° + AOP

(56) =: RQS(?’B,

with

R = —(r* + d?)?, R? = —2a(r® + d?), R3 = —d?, RY = A.

Observe that the symmetric tensors S, are easily related to the con-
formal symmetry operators S,.

Lemma 2.4. The symmetric tensors defined in Definition 2.3 and
the conformal symmetry operators defined in Definition 2.2 are related
by the following:

(57) S = |al’Da(lal252°Dp),  a=1,2,3,4.

Proof. Observe that for a = 1,2,3, we have \q|2Da(|q\_2SgBD5) =
D, (55°Dj), and for example for @ = 1 we have
Do (577 D) = Do (1°T°Dj) = (DoT*)T°Dj + (1°Da)(T°Dy) = 0}
since DT = trM 7 = 0. Similarly for @ = 2,3. Using (31) and (35),
we obtain
[4*Da(lg| 20" Dy)
= Do (0*"Dg) + [¢|? 0" Da(lg| *)Dyg
= D.(K*Dpg) + Dy((a® cos® 0)g*’Dy)
+lal*(efey + ) Da(lal~*)Dp
= K+ (a®cos?0) Og + Dy (a? cos® 9)D* — D, (|g|*)Da
= K+ (a®cos?0) Og = O
as stated. q.e.d.
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Define
(58) Vo = Sa(1), a=1,234.
Then if 9 is a solution to the wave equation, by (53) v, is also a solution,
(59) Ograo¥a =0, a=123.4.

Following [4], we recall here a generalized vectorfield method which
incorporates the commutation of the wave equation by the conformal
Symmetry operators.

e The generalized energy-momentum tensor for ¢ solutions to (42)
is defined as

Q[¢]@uu = /ﬂpa Iﬂ/)b g/wa)\waa ¢b
fora=1,2,3,4.

Remark 2.5. Since from (59) each 1, is a solution to the wave
equation, the above energy-momentum tensor can be interpreted
as a symmetrization with respect to v, and 1 of their respective
energy-momentum tensors. The underlined indices of Q@ denote
the conformal symmetry operators applied to 1 while the Greek
indices denote the spacetime indices as in the standard energy-
momentum tensor.

e Let X be a symmetric double-indexed collection of vector fields
X = {X%} and w be a symmetric double-indexed collection
of functions w = {w2}. The generalized current associated to
(X, w) is defined as

1
,PIsX,w) W’] _ Q[¢]@qu&by + §w&b¢g . 8;ﬂ/}b

- i(auwib)qbg Py

fora=1,2,3,4.
e The energy associated to (X, w) on the hypersurface ¥ is

EXW)[y / PX

As in (51), we obtain for the divergence of the generalized P:

a 1 a
DHPI] = 5 QM lar - DXy — ;D

(60)

(61)
W (93 a0y,

and we denote

(62) EEWY] = DHPEW[y).
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By applying the divergence theorem to P(X *) within a region such as
M1, 72) for carefully chosen (X, w) one obtains the associated energy
identity:

EX)(m) + [

Pl + [ gXely)
Ht(T1,72) M(711,72)

= E(X7W) [¢] (Tl)a

where the induced volume forms are to be understood.

2.4. The relevant vectorfields and the spacetime current iden-
tities. In applying the vectorfield method to derive non-degenerate en-
ergy Morawetz estimates for the wave equation, we make use of the
following vectorfields:

e A radial vectorfield X = F(r)0,, for a well chosen function F, to
obtain Morawetz estimates,

e A timelike vectorfield fx =T+ xwyZ, where x =1 for {r <}
for some r1 > 74, and x = 0 for {r > ra}, with a smooth decrease
in [r1,r2]. In partlcular Tx = TH close to the horizon, and T =T
for r > ry. Also, T is not Killing only for r € [ri,72]. This is
used to obtain energy estimates.

We collect here some relevant computations involving the deformation
tensors of the above vectors which will be used in the next sections.

Lemma 2.6. Let v be a solution to the wave equation (42), then the
following relations hold true.

e For X = F(r)0,, we have

— ’F Q «
(ped —|g72 (22720, (Am)a of — Fo, ( R7))
+lg 72X (lgl*)g*
and therefore
1
2 (X)) _ 3/2 2 L 5aB
() la?Qly] - Mm = 2420, ( Al/2)|8rw| For (KR Oat Ot

+ (X (lal?) ~ lal(div X)) xv:0*e.
e For Tx =T + xwyZ, we have

(64) TO7eB = 2)q|72 Awy (9,x)0LD),
and therefore
(65) g?Q] - M1 = 28wy (0,x)0p1b0r).

Proof. Using the expression for the inverse metric (45), we compute

1
Lx(laPs®") = Lx(0P07) +Lx(R™)
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— X(A)3007 + A[X, 0,708 + AG[X,0,]°
1
+£X(ZR“5).
Consequently, for X = F0,, we obtain

Lx(lq)*g*?) = F(8,0)0%0% + A[Fd,,d,]07 + A [F0,,d,]°
1
+FLy, (*Raﬁ)

A
_ a 58 a 5B 1 ~ap
= F(8,0)0%07 — 2A(0,F)020f +]-'8T(KR )
F 1

- 3/2 a af af

= —2AY On(5173)070) + For(R7).
For fx =T + xwy Z we obtain
ﬁfx(\q!2g"5 ) = A[Ty,0,]°07 + ATy, 0,7 = —28wy (9,x)00)).

In particular observe that (1) Hv g = 0. By writing
Wm? = —Lx(lallaPe™)
= —lg|7*Lx (l9’8") — lal*Lx (gl *)g""

we obtain the stated expressions for the deformation tensors.
Finally, for any vectorfield X, we write

O]+ Mr = Qltas 7 = (a3 — 5Rasdr00*) K

= 789,095 — (div X)Oxpd b

(X) v — gWD(“X”) = 2div X. Using the above expressions

for (X)7 we obtain the stated identities.

since g,

q.e.d.

We make use of the above computations to derive the Morawetz cur-
rent for EXW[¢] with X = F9, and its generalized version X% =
Faby,.. We mostly follow notations in [4]. See also [39].

Proposition 2.7. Let z be a given function of r. The following
identities hold true.

1) Let u be a given function of r. Then for
(66) X = Fo,, F = zu, w = z0pu,
the current EX ] satisfies
(67)  laPEX] = AldI + U (9av) (D5¢) + VIWI?,

where

2
(68) A = 21/2A3/28r <21/ U) ’

AlL/2
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1 z
af  _  _ — afs
(69) U = —cud, (42 ) ,
(70) V = —lar (A@Tw) = —18,, (A@T (zaru)).

2) Let u® be a given double-indexed function of r. Then for
(71) X% = Feby,, Fb — 2y, w? = 20,u?
the generalized current EXW)[y] satisfies

(72) [aPEXMW] = A% 0,900, + UL Datog Dy + Vet

where
a Zl/2ua—b
(73) A% = 21/2A3/287‘< A2 >,
1
afab  _ ab af
(714 U = 2 6( R )
(75) V(Lb = _Zar (Aarwa*) - _EaT (A&n (zaTua—b)).

Proof. We prove the first part of the Proposition, as the second part in
the case of generalized current follows in the same way. Using (52), (51)
and (63) we compute for (X = Fo,, w),

gl2e oy,
1 1 1
= SlaPQlv]- Or — LlaPOgulvl + 5l uw(@svy)

1 1
= A%?9, (Al/z ZRaﬁ)aawaﬁl/’ - Z|Q\25gw|¢’2

45 (X (aP) ~ laP (i X) + lafw ) 50

By defining an intermediate function w;,; as

1 .
5 (X (1aP?) = laf*div X + lgw)
1 _ . 1
= SlaP(la 72X (1gP) — div X + w) =~ |alPwins,

and using (45) to write

a0y = |qPPgorpap = Aloyp* +
we simplify the above to
la*EF O [y)]

1, 1
A2, (5 O — SF0 (AR) 005 — o Tgull?
1

— Zws 24 —pap
swine (B0 + T RY0,0050)

)\37-1/1\2 7‘/_"87’(

1
ap
AR 0a0s,
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(A?’/Q&( a 1wmA) 16,12

A1/2) 2
1
(-Fa ( Raﬂ) + wzntERaﬁ> ad}aﬁd) - Z|Q|2Dgw|¢|2
To summarize, we write the above as

|qPEFO ] = A0 +UP (0a1)) (9p1)) + V]I,

where
A = A2y, (A];/?) —%wmtA
U = —é]-'& (AR“fB)—;wmtiR“ﬁ
= —%|q|2Dgw.

with w = |g|?div (|g| 72X ) — wins. Observe that for a function z we can
write

1 1 1 1
af . _ aB ) _ .. apf
Uu = 2?8,, < R ) 2wmt R
g (2as) L 1y R
= 2./—-,2 Oy ( R ) + 5 (fz Oz wmt)

Setting F = zu for a function w, and choosing win; = F2~ 10,2 = ud, 2,
the coefficient of RTQB cancels out, and we deduce the stated expression
for U*# in (69).

With these choices for F and w;,:, we compute the function w:
w = |g*Da(lg| > FO) — wine = |al*0,(la| > F) + F(Dady') — udyz
Observe that

1
DO} = —=0a(V/8l0;) =
Vgl ( )

and therefore
w = a0, (Ja|"2u) + zulg| 20, (laf*) — udy=
= 0O (zu) — u0pz = z0pu.
We also compute

A = 8T<A1/2)A/ — 5 AW = 0, (

1 1 9
\/@ (\/@) HQ (‘Q‘ )7

<) AV - fA(a 2)u

zla

A1/2

S1/2
_ 1/2A3/28 ( u)
Al/2

212y
A32 4 129, <A1/2>A3/2 5 A@r2)u
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Finally, as for a function H = H(r),
1

1
OgH = ——0.(V/Iglg™?0s)H = —=0.(\/|glg™0,)H
¢ Vgl ( ) V19l ( )
1
— 0. (AOH

we compute
]q\QDgw =0, (A&«w) =0, (A@T (z@ru)),
as stated. q.e.d.

2.5. Trapped null geodesics. We now dedicate this section to the
derivation of the equation satisfied by the trapped null geodesics in
Kerr-Newman spacetime, see also [39]. Trapped null geodesics are rel-
evant for the analysis of the wave equation, as in the high frequency
limit waves behave like null geodesics and the integrated local energy
estimates necessarily have to degenerate at the trapping region of the
black hole.

Let v(\) be a null geodesic in Kerr-Newman spacetime. Using the
expression for the inverse of the metric given by (45), along v(\), since
g(%v) = 0 we have, with 4, = 3%, Y= @f‘ﬁa, 7(;5 = 53%

. 1 . .. 1 .
0= a8 ats = (A07O7 + T R™)Fats = Mpde + LR ats
with
R0 = —(r? + a®)* 44 — 2a(r® + a®Virde — a*Hsie

+ A0 05

Since 0y = T and 0, = Z are Killing vectorfields we deduce that
Y¢ = g(¥,T) and ¥4 = g(7, Z) are constants of the motion i.e. constants
along v, and respectively called the energy and the azimuthal angular
momentum. We write,

e = _g(’%T)a fZ:—g(’.y,Z).

(76)

We also define®
kK> = K%,
for the Carter tensor K in Kerr-Newman. Since K is Killing, k? is also

a constant of motion.
With these constants from (76) we have

R(rie, by, k%) = R,95
= —(r*+a*%® —2a(r* + a®)e - £, — a*l,% + AK?
= —((r*+ade+ aﬁz)2 + AK?

S0Observe that k? is a positive constant of motion by definition of K.
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which is only a function of r along any fixed null geodesic. Going back
to the equation for null geodesics we infer that
dr\2
A(—) — _R(rie, l,,k?),
d (rie, ba, k)
which is the equation for a null geodesic with constant of motions e, ¢,
k2.

There exist null geodesics along which R(r;e, f;,k?) = 0 ie. r re-
mains constant. These are called orbital null geodesics, or trapped null
geodesics. The r values for which such solutions are possible must then
verify the equations

R(r;e, by, k%) = 0,R(r;e, b, k*) = 0.
Lemma 2.8. All orbital null geodesics in Kerr-Newman spacetime
are given by the equation
Te,t, == (1"3 — 3M7? + (a® 4 2Q%)r + Ma2)e
—(r—M)al, = 0.
Proof. We solve for
R(r;e, by, k?) = —((r2 + a?)e + aﬁz)2 + Ak? =0
O R(rie by, k) = —dre- ((r* + a®)e + al,) + 2(r — M)k* =0

(77)

Writing from the second equation k? = &fiTM)e' ((r2 +a?)e+ aﬂz), and

substituting in the first equation, we obtain
2
0 = ((r*+a*)e+al,)- ( — ((r* + a®)e + al,) + Air)e)

r2 + a?)e + al,
B JET_)MJ)F E).[(_(HMQ)(T—M)Hm)e

—(r — M)aéz]

_ J(rrai);)r . (7 = 3Mr? 4 (0 4+ 2Q%)r + Ma?)e

—(r— M)aﬁz] .

Observe that the case of (r? + a?)e + af, = 0 implies k? = 0, and
it yields the vanishing of all the constants of motion. For non-trivial
trapped null geodesics, we then obtain the vanishing of the factor on
the right, denoted by e g, - q.e.d.

For a = 0, the above orbital null geodesic equation gives
e =71(r* —3Mr +2Q%)e =0,

and therefore the trapped null geodesics lie on the hypersurface, called
photon sphere, defined by the polynomial 2 — 3Mr + 2Q? = 0, which
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RN __ 3M+4+/9M2—-8Q?
2

in Reissner-Nordstrém spacetime is at {r;,, =
Schwarzschild for @ = 0 is at {rf;ap =3M}.

For a # 0, as a consequence of Lemma 2.8 the values of r for which
trapped null geodesics exist depends on the ratio ¢,/e. More precisely,
at the trapped null geodesics we have

r3 —3Mr? + (a® +2Q*)r + Ma®>  al,
r—M e’
In particular, unlike Schwarzschild and Reissner-Nordstréom, which have
a single radius where all trapped geodesics occur, Kerr or Kerr-Newman
spacetimes have an entire radial interval where trapped geodesics can
occur. However, for a fixed geodesic angular momentum /¢,, there is
again only a single trapping radius for null geodesics with that angular
momentum. If ¢, = 0 the trapped region defined by (77) reduces to a
unique hypersurface defined by

(78) T := 1% = 3Mr* 4 (a® 4+ 2Q*)r + Ma* = 0.

Geometrically, this reflects the fact that trapped null geodesics orthogo-
nal to the axial Killing vectorfield Z must necessarily approach the root
of 7. Observe that the polynomial 7 has a unique root in the exterior
of the black hole region, and we denote that root by r¢.qp. Moreover
2M < 7irqp < 3M, where the lower bound is reached in the extremal
Reissner-Nordstrom case and the upper bound in the Schwarzschild
case. At the extremal Kerr-Newman, for a? + Q%> = M?, the trapping
hypersurface becomes

T =713 —3Mr? + (2M? — a®)r + Ma® = (r — M)(r® — 2Mr — a?)
which vanishes at r = M + v M? + a?.

} and in

Remark 2.9. From the computations in Lemma 2.8, one can see
that the polynomial T can be obtained as
A _2(r = M)(r* 4+ a*) —4rA 2T
" <(7"2—|—a2)2> N (r2 4+ a?)3 T (P +a?)¥
In particular, the trapping radius 74y in axial symmetry maximizes the
geodesic potential ﬁ, which coincides with the familiar potential

r_2(1 — %) in Schwarzschild.

A crucial property of the trapped null geodesics in Kerr-Newman
spacetime is that they are unstable, i.e. one can show [39] that at T¢ ¢, =
0, we have 2R (r; e, 5, k?) < 0 in the subextremal range a?+Q? < M?2.

2.6. The choice of the function z in the Morawetz estimates.
Here we motivate the choice of the function z done in [4], which we use
here. Recall the expression for the Morawetz current in (67)

|qPEX Y] = Al + U (0atp) (9p1) + VY,
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where the principal term U (0,1))(9p1)) is given by

R ]
We denote
7o (), e ()

and thus write from (56), i.e. R = RQSQ’B,
R7 =0, (TRY) =0, (R2827) = 0, (LR sa” = R'es5”.

Explicitly, from (46), we deduce

~ z o z @
R — _p, (K( 2+a2)2) 8298 — 240, (Z(r2+a2)> (0%
z
—a?, (%) 0202+ (9,2)0°7,
and
S5 Z 2 2\2 512 _ Z 2 2
R = 8T(A(T +a)>, R 2a8r(A(r +a)),
513 2 z 54 _
R = a0, (%), Ri=0-=
The principal term Y = —%uf\’:’ @B contains the angular and time

derivatives of the solution ¢, and therefore we expect it to be degenerate
at the trapping region. The choice of z has to reflect this property. From
Remark 2.9, following [4] we notice that if

A
(r2 4+ a?)?

we simultaneously obtain a degenerate coefficient at trapping for the

(79) 20 =

term O%? and the vanishing of the term in 8?8? , ie.

Rz = 0, (TR

1 ( 2 1 fe%
= =200, | ——— ) 9,08 — a®0, | 5 ) 9207
(r? + a?) (r? 4+ a?)

2T of
(2 + a2)30
B dar (a48) 4a’r . 27T af
- (r2 + a2)2at aso + (7"2 + az)saso ® (,r2 + a2)30 ’
or also
~ ~ dar ~ 4a?r
/1 12 13
= = R —
R [ZO] 0, R [ZO] (7‘2 + a2)2’ [ZO] (7'2 + a2)37
~ 2
(L —
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Recalling the definition (16) of T' = 8, + s74a20,, for the choice of

20 = . we obtain

A
(r?+4a?
2T

(80) Rl = -5 550"+

4ar ~
T 78,
(r2 +a?) 2

Observe that if 2z = (W)Q, then the coefficient of 828 in
Oy (iRaB ) will reduce to

_ F2 o 2n2) A _ _ 2T
ar(A(T +a)) N aT<(7“2—|—612)2>_ a7"20_(7“24—@2)3’

which is also trapped. To combine the above choice of 2y with one which
allows for a trapped coefficient in the time derivative as well, following
[4] we define for a sufficiently small e > 0,

(81) 21 =2 — €22
With this choice we obtain

R[] = 0, (TR)

_ 2T a 58 2T —2 afs
(82) = _€(r2 - a2)38t oy — Tt ) (1 + O(er ))O
dar —oWn Ao
T T (1+ O(er™2))T 2,
or also
(83)
2T 2T
1 _ 41,1 _ -2
Rz = RS R'4z] = CEYDE (14+0(er™))
~ 4dar
27,1 _ -2
R'?[2] T+ a2) (1+0(er™?)),
~ 4a’r
31,1 -2
R/ [2'1] = m(l + 0(67’ ))
2.7. The case of axial symmetry. From Proposition 2.7, for z =
20 = ﬁ as in (79) and u a function of r, with
(84) X = Fo,, F = zu, w = zp0ru,

the current £ [y)] satisfies

85) g2 ] = Al9p]? + U (0a1) (D) + V]2,
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where, recall (80),

(86)

1/2 9
_1/2 x3/2 g u) A U
A= A/8T<A1/2)_r2+a28r(r2+a2>7

1 Z ] 2ar ~
af _ 0paB) _ aB (a7B)
U 2u8r ( R ) u((r2+a2)30 (r2+a2)2T VA4 ),

V= f%@, (Aﬁrw).

For axially symmetric solutions, the term involving Z in *? vanishes,
and we can write

-
87) |aPEXWW] = A0 + s |aPIVE + VI,

where we used (30) to write
O (0a1) (D) = lal*(efe] + e5€5)(Dat)) (Ip))
= |aP(V1v)? + (V2v)?) = |a*| VoI

Here |Vy|? = ‘2|Y7§2d)|2 a’ f;lg aZsin") 94|, where |Vs21)|? is the norm of

the gradient of 1 on the unit round sphere.

In order to obtain a positive definite Morawetz current in (87), we
make use of the following construction first due to Stogin, see Lemma
5.2.6 in [63].

Lemma 2.10. [t is possible to choose functions u and w such that
in Kerr-Newman for the full sub-extremal a®> + Q* < M?, we have
(88) A >0, uT >0, Y >0,

and therefore the current £Xw) [¢] is positive definite and satisfies for
a uniform constant cy > 0,

A2 _ Ttra
o Sz | T+ (1 ey v
(89) o 2
+ Lpzn vl

where Tirqp denotes the root of T in the exterior region and ryv > Tirqp
is defined in the construction.

Proof. In order to obtain the positivity conditions in (88), from the
expressions of A and V in (86) we need to have

u
(90) O <2+2> =0,
(91) uT >0,

(92) 0, (Adyw) <0



324 E. GIORGI

with the compatibility condition
(93) w = 2pOru.

We start by imposing condition (91), i.e. u7 > 0. Recall that 7.4y is
the root of the polynomial 7 in the exterior region, with 2M < ry.qp <
3M. We define u by the following:

1 r2 + a?)?
(94) w(rtrap) =0, Oy = —w = gw, w > 0.

20 A
This automatically implies that u vanishes at 74.4p and is increasing,
therefore satisfying (91). Also, by definition, the compatibility condi-
tion (93) is satisfied.

We now rewrite condition (90) in terms of w, i.e.

U 1 2r
(95) O (7’Q+a2> T2y aQaTu S (r2+ a2)2u
r2 4+ a2 2r
w — U
A (r2 + a?)?

L . (r2+a2)?
To eliminate the dependence on w, we multiply (95) by *—-*, and

. . . . L (7'2+a2)2 u
take another derivative in r. By defining K := —— 0O (TQ +a2>, we
obtain
(P +a?)? u _ (r*+a?)?
k= r Or r2+a2) Al 2u
(r? + a?)3 (r? 4 a?)?
K= o () — o T
0K 0, ( A w) A w
_ (r? + a?)? 9 o (r? + a?)? (r? + a?)?
= 2T(Tw) +(r*+a )8T(Tw) — QTU}
2 2\2
22 (r*+a?) 2, ova L
= (r“"+a )&(7rA w) =(r*+a )&(mow)-

Since K has the same sign as O, (M#), condition (90) is satisfied if

and only if L > 0.

We now impose that 0, = 0 for sufficiently large r, which, together
with the condition that I > 0 up to that large r, implies positivity for
K. From the above we have

A
(96) w=rz) = (7“2:—7(12)2 for sufficiently large r
We then compute for such choice:

rA A 2rT

Orw = GT(<T2 + a2)2) - (7’2 + a2)2 - (TQ +a2)3

rd —AMr3 + 3Q%r% + 4Ma’r — a* — a?Q?
(r2 4+ a?)3 '
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The function w then has a maximum at the root of the above poly-
nomial. Denote r, the unique root in the exterior region. Observe
that in Schwarzschild r, = 4M, in Reissner-Nordstrom r, = 2M +
\/4M? — 3Q2, and in Kerr r, = 2M + v/4M? — a?. In the subextremal
Kerr-Newman we have 3M < r, < 4M, and therefore in the full sub-
extremal range we have 7. > r4.qp-

We then impose

(97) w=rz= (742:_Aa2)2 for r > r,.
Then for r > r, condition (92) reduces to
-0, (A&«w)
B ar( : A ! rt —4Mr3 4 3Q%*r% + 4Ma’r — a* — aQQQ) 0.
r’+a (r2 +a?)?

The above is a derivative of a product of two functions that are positive
for r > r, and increasing to 1, and therefore necessarily positive.

Consider the function Ad,w. This function vanishes at » = r; and
at r = r, with the above choice of w for r > r,. By the mean value
theorem, in order to have condition (92), satisfied for all » > r4, we
need to have the vanishing of the function in the interval [r,r,], and
therefore 0,w = 0 there. Define

(98) w(r) =w(ry) >0 for ry <r <,

At this stage, a non-negative w has been chosen for all r, and condi-
tion (92) has been proved to be satisfied everywhere.
We are now left with proving that with the above choice X > 0 for
r < ry. In this region, we have
1 1
oK = (r*+ a2)8r(—w) = w(r)(r? + a2)3r(—)

TZ20 r2o

1
= —U}(T'*)(Tz + a2>ﬁ87~ (7’20).
Tz

Recall that the function rzy had a maximum at r, and therefore IC
decreases to a minimum at r = r,. It is therefore enough to check that

K(r =rs) > 0, or equivalently that 0, (m#) ‘T:T > 0. We have
U 1 2r
O (r2+a2> - r2+a2aTu_ (7"2+a2)2u

1 w 2r / P
= _—mmm u
r2+a2zyg (1?2 +a?)? Firap "

1 w 2r / w
r24+a?z  (r?+a?)? rirap 20
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We evaluate the above for r with 74, < 7 < ry, where w(r) = w(ry)
is constant, and 8&%) = —%8,,20 = %% > 0. Since the function
% is increasing, we can bound its integral from above by the product
of the interval times the value of the function at the right end of the

interval. We therefore obtain

P U ‘ B 1 w(r.
"\r24a?) = r2 a2 zo(rs
(
(

Observe that
rf +a®— 2 (v — Tirap) = T(2Ttrap — 7) + a’ >0

as can be seen by comparing the range of 744, and 7.
To summarize, the choice for the functions v and w given by

{r*zo(r*) r <7,
w =
rzo(r) > Ty
and
1
U(Ttrap) = 0, Ort = —w
20

satisfy in the whole exterior region of the full subextremal Kerr-Newman
spacetime the conditions (88). From the analysis of the asymptotics of
the functions v and w we can easily deduce the bound (89). q.e.d.

As in [63][46], the above construction has to be corrected to fix some
remaining issue in the bound (89). We briefly describe them here, and
we remind to [63][46] for more details, as they do not depend on the
Kerr-Newman spacetime specifically.

The function u as defined above, and consequently the vectorfield X,
presents a logarithmic divergence near the horizon. This can be fixed by
tempering it in that region through a small deviation from the original
ones. More precisely one can define (X5, ws) which agree with (X, w)
outside a neighborhood of the horizon, and that are regular up to the
event horizon. This will create a negative contribution in the lower order
term |1)]2.

The coefficient of (9,1)? in (89) vanishes at the horizon. This can be
fixed by the standard procedure of making use of the redshift vectorfield,
which gives a positive contribution for any spacetime in the sub-extremal
range.

The coefficient of |)|? vanishes in the interval r, < r < r,. In
addition, because of the tempering of the vectorfield close to the horizon,
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we have created a negative term of size § in the lower order term. This
can be fixed by borrowing extra-positivity from the coefficient of (9,1)?
through a local Hardy inequality.

In (89), there is no control on the (9;3)? derivative. This can be fixed
through a standard procedure of making use of the Lagrangian of the
wave equation, i.e. applying the vectorfield method with X = 0 and
w = ew,. (Equivalently, one can use the function z; in (81) to insert a
degenerate term at trapping for (9;%)?2, as done in Section 2.)

After applying these standard arguments, one arrives to an improved
bound on the current £X%)[y)] given by

EXY] > ¢ [Aﬁ\w\?
(99)

ra; - M M
n (1 _ HTp)2<T 1‘v¢’2 + ﬁ(8t¢)2> + FWJIQ

Observe that the boundary term of the Morawetz current P(X:w)[q]
will be combined in the next subsection with the boundary terms from
the energy estimates multiplied by a large constant, so that the overall
boundary terms are positive definite.

2.8. The Morawetz estimate. We derive here the Morawetz esti-
mates for general solutions to the wave equation (42) for |a] < M.
Observe that the main issue is that the principal term in (80), i.e.

op _ _1 (orer) = _ T pes 20T ey
u 2u87~ AR (T2+a2)30 u(r2+a2)2T Z"
cannot be made to be positive definite, as the function u has to change
sign in the trapped region. On the other hand, if one considers the
generalized vectorfield method applied to v,, as obtained in [4], it is
possible to extract a positive definite contribution which is degenerate
at the trapped region.
In the following, we will show the main steps in the proof of the
physical-space analysis in [4], while referring to [4] for more details.

2.8.1. Choice of double-indexed function u. Following [4], see also
[39], we perform an integration by parts in the principal term given by
UPL G, 0py, which allows to create a positive definite term for a
trapped combination of 1),, which we denote ¥ here.

Lemma 2.11. Let u® the double-indexed function of r as described
in the second part of Proposition 2.7 be given by’

ab _ _pplaprd pla _ % 1a
(100) w = _RR'eLE, R 8T<AR>,

"No assumption on z is needed in this Lemma.
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where h is a positive function, and L% are the coefficient of a constant
symmetric tensor L*P := EQSEE. Then, defining

(101) U =R/,

the Morawetz identity (72) is given by

gD (P[] + Baly])

(102) 1
= ALL OOy + ShL 00T D50 + VL gy,

where

“ Z2pRe o 1 ~.
AL = =21 PA39, <A1/2> V= L0(80,(20,(hR'Y)),

and
1 ~

(103)  Baly] = lal *hLIR (S77 050 — 527 Ogv)
denotes a boundary term.

Proof. From Proposition 2.7, we write the principal term as

1 .~ 1 ., ~
UPLDa1)g Oty = — U™ R P Dathy Oty = — Su™ R4S Do Dty
Integrating by parts in 0,, we can write the above as
|q| 72U 1pg Dty
1 ~
= 5 lal PRS2 Datba Oy

1 -2 abp/c Qo 1 abp/c -2 Qo
= —5Dallal P utR S e Ogthy) + 500 (uR ) g 7252 0 Dty

1 o~ “2ca
+§ua—bR’9¢gﬁa(lq! 2502 0g1b).

Since u2 and R'< only depend on r, while the derivatives in S # do not
contain derivatives in 7, the second term on the right hand side above
vanishes. Using Lemma 2.4 and the commutation property (54), we
write the last term as

9a(la]72S2%05vn) = Oa(lal 2S2P05S)) = ScSpib = SpSet)
= allql 728y  0a1c).
We then obtain
1 = o
AU Oy = SuR W Dalla| 7S] D)

1

—iDa(!q\’zu@ﬁ’QSSﬂ Ya Dpihy)
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Repeating the integration by parts procedure to the first term as above,
we obtain

g ~2UPLY, 1), Dy
1 —2 abp/c « 1 abp/c —2 g«
= Da(lalPuR 4y S5 0atbe) — 500 (uR') i |a| >S5 O

1 - ab>ic « 1 -2, abp>/c Qo
_§IQ| 2u*bR/’aoﬂl}gsbﬁaﬁ¢g_§Da(|Q| 2u*bRLSgﬂ¢gaﬁ¢Q)

[ abgaB e
= 5 lal P ut S R e Ope

1 = e} «
+§Do¢ (|Q|72U@R/g¢g (Sb 68,81/’9 - Sgﬁ 851%))

Notice that in this way one creates the first term given by u“—ng‘ f In
order to separate such dependence and create a quadratic expression in
the above, we define u2 in the following way:

utt = —hR'eLl,

for some positive function h and some constant symmetric tensor L*? =
£a858.

Then the first term of the above relation becomes
1 ~ 1 ~ ~
—iua—bsg%’gaa%ag% = §h7e’@£bsgﬂ7e’£aawgaﬁ¢£
1 ~ ~
= §hR’@R’9L°‘56&%aﬁ%
1 - ~
= 3 Laﬂ (o /e a ‘e c
LhL 0, (R 2u) 95 (R0

where the terms in R’¢ and R’ can be inserted inside the derivatives as
they only depend on r, where the same indices means summation over
those. By denoting ¥ := R'%), we obtain

Al ULy oty = la| R0, 5
—%Da(IQFQhﬁQﬁ'Q‘I’ (S5 05tbe—S2" D).
which gives
U0 Dty = GHLP0W 0¥ — P Dabalyl,
for Ba[t] defined in (103). Finally, with the choice of u% = —hR/2LL,

the expression of A and U in (73) and (75) become

1/2hff\):/g
b _ gapd a._ _1/273/2 <
A£ == Aaﬁ 5 ./4 = —Z / A / ar (M)

veb = ypegh Ve = iar(ﬁar(zar(hﬁ'@)))-
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Recalling that |g|2€XW)[y] = \q!zD“P,SX’W) [¢], we obtain the rela-
tion (102), and prove the lemma. q.e.d.
We now put into effect the choice of function z; as given in (81), i.e.
Z1 — 20 — € Zg

From (82) and (83), we have

~ 2T 2T
af  _ anfB —2 af
R = e a1 OO
dar _o\\ Al
+m(1+0(er 2))T( AL
and therefore for ¥ = R/ b,
2T 2T

(1+O0(er™2))O()

Uy az)aat T2t a2)’

+ (7124:2”;2)2(1 + O(er—2))f(a¥,¢).

By considering as in [4] the constant symmetric tensor given by

(105) L = €020 + 0%

(104)

then for a positive function h, the principal term %hL‘m@a\II 0gV is
positive and given by

%hLaﬁaa\paﬁ\p = %h(e\atq/\%roaﬁaaqfaﬁqf)
1
= Sh(avl +1al*VE)
where we used (30) to write
O (Dat)(Dp) = lal*(efe] + e5e5)(0ath)(Dsv)
= qP((V19)? + (Va0)?) =: |a*| V.

We can summarize the above and write $h L9,V 05U = | DV|? where

we denote D = €'/29;, |¢|V. To express it in terms of the v, we use (104)
and we bound the above by (see Lemma 3.13 in [4])

1 1 =~
§hLa58a\Il 8ﬁ\I/ 2 §h1{r¢ngjp}|DqI’2

4
1 ~
> §h]l{r7éTRN [€2|D¢1’2 + Z |D¢g’2

trap
a=2

—elal+) > D DuuDiy)

a7#b=1 D=0y,|q|V
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4
1 ~
—a? S gmy Yl
a=1

where i{#rﬁsz} is a function that is identically 1 for {|r — r§%| >0}
for some § > 0 and zero otherwise. Observe that once the commutation
with the conformal symmetries allows to create a positive term with
respect to ¥, we can insert the trapped function 1 {rrBN ) to express it
in terms of the 9,.

Choosing a sufficiently small with respect to € and fixing e sufficiently
small with respect to 1, we obtain

4
1 1 ~
SHLY 000 050 >y Shly, sy (1000l + |af* [ VYal?)

a=1

(106)
1~ R
—a?Shlgney Y el

a=1

2.8.2. Choice of function h. We now look at the terms A@[,Q&nwg&wb
and Vﬁﬁbwgwb. For z1 = 29 — €28, we compute

1/2 S/a
a _ 1/2 A3/2 zy'"hR'¢
to Nar(w)
1/2 —3\\1D’a 1/2, 5ra
_ 12 324 [ (20" +O(er™))hR'® z! “hR'2
= -z A/ar< NG + O(€)d, L

A? hR'® hR'@
= 5230 | s | TOO0 | 5

™ +a r“+a r“+a
To obtain positivity of the those terms, we can for example make use
of the construction in Lemma 2.10. In particular, we denote here by w4,
and wg, the functions v and w = 290Uy, constructed in Lemma 2.10

in the axially symmetric case. We define®
2 2\3
r“+a

Observe that this function is positive and smooth everywhere, as both
Uqe and T vanish at r = 744, of order 1. With this choice we have

AR/ = —eugy and AR'4 = —ugy, and therefore obtain
A2 hrfé/ 1 hffé/ 1
1
= - Oy o), | ——
A r2 +a? <r2+a2> +0() <r2+a2>

8This choice differs from the one in [4] or [39], but the following procedure is
identical, as it only makes use of the positivity of A' and A%, and the fact that
A%, A? = O(a).
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A? Ugz 9
oy a28r (7“2 n a2> (1+0(er™)),
A? U
4 ax _9
A = 2 +a2& <r2 +a2) (1+O0(er™)),
which are positive definite for e sufficiently small by Lemma 2.10. We
also have

A? 2rugy _ -
A = —a5 +a2(97« < T (1+O(er 2))) + O(er™?)
Loy A _
= Ofar 2)7”2 e (1+O(er™?))
A? 2ru
3 _ 2 azx _92 _3
AL = r2+a26r <T(r2+a2) (1+0(er ))) +O0(er™)
2
= O(a®r™3) = (14 O(er™?)).

r? + a?
We can then bound the term A%L%0,),0,1, by (see Lemma 3.9 in [4])
Agﬁgarwgarwb = (Aga’f"wg)&” (£Q¢Q> = (AQ6T¢Q)8T(66152'¢ + O('[ﬂ))

= (A'0,0} + A0, 0(¢) + A*0,0:0,0 + A0, 020)0,(€071) + O (1))

v

A2 ) ) 4 ) 4
o (10 + 310wl =l +€) 3 2adri)

a#b=1

where the term 0,11 - 0,0 can be shown to be positive, up to boundary
terms, by integration by parts, and being comparable to |9,(9; V)9 |? (see
Lemma 2.4 in [4]). As above, choosing a sufficiently small with respect
to € and fixing € sufficiently small with respect to 1, we obtain positivity
for the above term.

We similarly compute

ye — iar(mr (210,(hR'2))) = iar(mr (200, (hR'9))) (14+0(er™2)).
With the given choice of h we then obtain
Vi = —er0:(280 (0dhuar)) (14 O(er™)
= 30 (Bdwe) (1 4 O(er)
V= 1080w (14 O(er),

which are non-negative for e sufficiently small by Lemma 2.10. We also
have
27U

V2 o= ia@r(A&n(zg@T(
= Ofar™")(1+ O(er™?))

) (1+ O(er_2))
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2rUgg

1 _
VS = Zazar (Aﬁr (Zoar(m)))(l -+ O(GT’ 2))
= O(a2r_5)(1 + O(er™?)).
We can then bound the term VL%, by (see Lemma 3.9 in [4])

V%Ql/@% = (ngg) (ﬁ%g)
= Vo +VOoW) + vzat Ot + V302 (edfrh + ow))

> CO%<1{TZT*} ’¢1’2+Z’¢a — lal(lal +€) Z %%)

a#b=1

Upon applying the Hardy inequality as in the axially symmetric case, we
can upgrade the bound of the first terms to be valid everywhere in the
exterior region. By combining the above bound with the one obtained
n (106), and choosing a sufficiently small with respect to € and fixing €
sufficiently small with respect to 1, we obtain positivity for the overall
zero-th order term in the Morawetz bulk, which finally gives

« (X,w) 23 %2 2 % 2
. (PEM] + Baly]) = co| =5 10,013 + |l

_ M
oy (V00 + 5 10013)]

where B, [1] incorporates the boundary term in (103), together with the
ones obtained in the above integration by parts.

2.9. The energy estimate. The energy estimates are obtained from
the current associated to the vectorfield T y = T + xwy Z as defined in
Section 2.4. Observe that for |a|/M sufficiently small, fx is timelike
everywhere in the exterior region and Killing outside the region [rq,r3].
Moreover, for |a|/M sufficiently small, the trapped null geodesics remain
close to the hypersurface {r = I} }. In particular for |a|/M < 1, the

region with r € [ry, 7], for r| = ghr and 79 = does not contain

8 .RN
grtrap’
any trapped null geodesics. In particular, Tx is Killing in the entire

region where trapped null geodesics appear. From (65), we obtain

E(Tx.0) [W)(7) + / g2 Aw (0rX) Dpth Oy

(109) . M)
< EDO[y(0),
where
_ A
EGO (1) ~ /2 2 ta ———(0:)% + (0)” + |V *.

The above energy can be made to be non-degenerate at the horizon by
making use of the red-shift vectorfield.
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By applying the energy estimates to each commuted equation (59),
we obtain the higher order version:

ETO[yg](r) + /Mm ) g2 Ay (0rx)Dtbady b < ETO[13,])(0)

Observe that the spacetime integral in (109) is different from zero in
the support of 0,x, i.e. in [r1, 73] outside the trapping region. Also, as
wy = O(|a|), we obtain

/ ‘q’_2AwH(aTX)6<p¢g8r¢g
M(0,7)

< 0(la) /M (10l + 10,0

)

S O(la[)Mor(g 7 [¢]

By combining the bound obtained in (108) with the energy estimates
multiplied by a large constant, one can choose a constant A large enough
in order to have the boundary terms of the Morawetz estimates ab-
sorbed by the positive ones from the non-degenerate energy estimates
(see Lemma 3.11 in [4]), and |a| small enough to absorb the above on
the right hand side. This concludes the proof of Theorem 2.1.

3. Applications to the Einstein-Maxwell equations

In this section we show how the physical-space analysis relying on the
commutation with the Carter differential operator can be adapted to
the system of coupled Regge-Wheeler equations describing the coupled
electromagnetic-gravitational perturbations of Kerr-Newman spacetime,
as obtained in [37].

3.1. The generalized Regge-Wheeler (gRW) system. We recall
the main theorem in [37].

Theorem 3.1 (Theorem 7.3. in [37]). Consider a linear electro
magnetic gravitational perturbation of Kerr-Newman spacetime gn,q.qQ-
Then we can define complex horizontal 1-tensor B,p € s1(C) and sym-
metric traceless 2-tensors’ §,q € s9(C), related by the Chandrasekhar
transformation

9
2

(110) p = q°q <(C)V3‘B+(2trxgi(a)trx)’3>,

(111) q = qu((C>v3§+(t@—3i(a>t@)g),

°In [37], the symmetric traceless 2-tensor q is denoted qF.
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that, as a consequence of the Finstein-Mazwell equations, satisfy the
following coupled system of wave equations:

. 2acosb a3
Lip — ZWVTP -Vip = 4Q2‘Zﬁ (D : CI)
(112) +L,[B, ]
. 4acos0 1 q3 ~ 3 ~
Uoq — ZWVTCI —Voq = e <D®P 3 (H—- H) ®P)
(113) +Lq[B, ]

where

° Dl = gaﬁDaDg and Ijg = g“ﬁDaDg denote the wave operators
for horizontal 1-tensors and 2-tensors respectively,

e the potentials V1 and Vo are real positive scalar functions, which
for a =0 coincide with the potentials of the Regge— Wheeler system
of equations in Reissner-Nordstrém [37], i.e

1
Vii= —qtrxtrx+ 5®)p? 4 0(’“‘)

Vy = —trxtrx—i-Q o +O(| |)

o Ly[B,F] and Lq[B,F] are linear first order operators in B and §,
which are lower order in terms of differentiability with respect to
p and q. More precisely,

LB.3] = ¢/~ 72 Ovm
+2®Ep®EP YS(OD-F) + 2FP®EP VP - Z3)B
o ®pEp (Yf Y 36) }
and

L83 = @ [WiOvig+ (W) - 25) - OvE+ Wi Opax
+WE DB + (W — Z5)T + WeEeB + WEax|,

where B, § and X are gauge-invariant quantities for the perturba-

tions and where

- Wf and WX are real functions,

— Z2 and (W3 — Z3) are real one-forms, with Z& = 0 and
(Wi —2zf) =0,

— Wa% and Yf are tmaginary functions given by Wa% = %z’ (@) trx
and Y3 = —3i () trx

and Yy°, 22, Y3, (Wg—Zg) are complex functions, and Yog, W,

ng are complex one-forms, all of which vanish for zero angular

momentum.
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We call the system of equations (112)-(113) a system of generalized
Regge- Wheeler (gRW) equations.

Observe that on the right hand side of the equations, the coupling
terms on the right hand side involving D - q and D®p are proper of the
Einstein-Maxwell case, while the left hand side of equation (113) has
the same structure as the generalized Regge-Wheeler equation in Kerr
as obtained in [38], where the coupling term in p does not appear.

3.1.1. Decomposition in spheroidal harmonics and non com-
mutativity with the system. We now recall why the decomposition
in modes fails for the gRW system in perturbations of Kerr-Newman
spacetime.

Following the physics literature and standard decomposition in modes
for scalar functions, we consider the scalar projection of equations (112)
and (113) to the first component of the tensors p and g, i.e. for ! =
p(e1) and Y12 = g(ey, e1), where ¥ is a complex scalar of spin s. Then
the projection of the above equations gives, see Appendix E of [38],

2 cos@ 2acos0
14 1] _ ot — vl = 4024 (2]
(114) + Lo.t.
-4 cosf 4acos€
O i g0t =i o =Vl = ol
(115) + lLot.

where the operators 05 and 0/, are respectively rising and lowering-spin
operators, given by

(116) Bl = (- o — iasin 09;) L
(117) 8;@51 = ( — Op + ﬁ&b — scotf + iasin eat)z/ﬂs}.

The mode decomposition of the scalar complex functions
VEl(t,r0,p) = e wleme Rl (T)Si]g(aw, cosf)

involves the spin s-weighted spheroidal harmonics Si}é(aw, cos #) which
are eigenfunctions of the spin s—weighted Laplacian

1 508 0
ABl = 9y(sind 2 4 2is——
sin 989(8111 %) + n? 98“’ 11(12 9890
+(s — s> cot? ) + a2w2 cos? 0 — 2aws cos 6

with parameter sAgp,(aw), i.e. A[S}(ST[Z}Z) = )\gm(aw)ST[Z]Z.
When a = 0, the above spin-weighted Laplacian reduce to the spheri-
cal spin-weighted Laplacian and the spheroidal harmonics reduce to the

standard spherical harmonics ST[Z}e(O,COS 0) = vl (cos@). Crucially, in

mil
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spherical symmetry the operators (116) and (117) precisely relate spher-
ical harmonics of different spin. In fact in this case one can check [15]
that the spherical Laplacian can be written as

o 10, =Ab 9,0 = Al 2.
As a consequence, the operators @ and @ simply relate spherical har-
monics of different spins. More precisely, [15]

0,V = (0= s)(t+ s+ 1))y,

mil

Y = (04 s)(0 — s+ 1)) Pyl

stmb

Consequently, the operators 0 and @' appearing on the right hand side
of (114) and (115) commute with the decomposition in spherical har-
monics, and in spherical symmetry (i.e. for electromagnetic-gravita-
tional perturbations of Reissner-Nordstrém) one is able to decompose
the equations in modes.

On the other hand, in the general axisymmetric case, as in Kerr or
Kerr-Newman, the spin-weighted spheroidal harmonics of different spins
are not simply related through the angular operators @ and @'. In fact
one can show that for separated solutions we have [15]

0,10, = AB 4 2aw(2s + 1) cos 0 — a*w? + 2awm
0,10, = A4 200(25 — 1) cos b — 25 — a’w? + 2awm,

. . . S
and as a consequence given a spheroidal harmonic ST[n] , the scalar func-

tions 5557[215 or 5;57[2]@ do not describe spheroidal harmonics of higher
or lower spins. In particular, in Kerr-Newman the operators 0 and &’
appearing on the right hand side of (114) and (115) do not commute
with the decomposition in spheroidal harmonics: the right hand side

of the first equation cannot be written in terms of S’E}e, and the right
]

hand side of the second equation cannot be written in terms of Sy[rzw.
In electromagnetic-gravitational perturbations of the axially symmetric
Kerr-Newman, the interaction between the spin-2 and spin-1 prevents
the separability in modes. For more details see Section 111 of [19] and
the introduction of [37].

To solve the issue of non-commutativity with the decomposition in
modes, we propose instead to perform a physical-space analysis of the
system by making use of a combined energy-momentum tensor for the
System.

3.1.2. Statement of the theorem. We define the energy-momentum
tensor for a complex horizontal tensor ¢ € s;(C) as

Ol = R(Dy DT) — e L1
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where 3 denotes the real part and the Lagrangian £ is given by!°
L[¢] == Dy - DY) + V) - 4.
Let X be a vectorfield and w a scalar. As in (50), one can define the
associated current as
1

P = QX"+ qui(y- D) — ol

Let p € 51(C) and q € s2(C) horizontal tensors satisfying the gRW
system in Theorem 3.1. We define the following combined energy-
momentum and current for the gRW system:

(118) Op, 4l = Q[p]uv+8Q2Q[q]uu
P p.a] = P ] +8QP P )

We also define the following commuted versions of p and ¢, given by
(119) Pa = Sa(p), da = Wa(9), a=1,2,3,4.
where
S1 = Wi =VrVrp, So =Ws =aVrVyg,
S3 = Ws=a’V,Vy,
S = O+ (c+3)g*MK, Wi=0+cl¢? MK
where (" K is the modified Gauss curvature as defined in (131).
From the combined energy-momentum tensor for the system given

in (118), we define, as for the scalar wave equation in Section 2.3, the
generalized energy-momentum tensor for the gRW system:

1
(120) Q@uu[py qF] = 1 (Q;w[pg + Db, Ga + )
—Quu[Pa — Pbr G — qé])

and the generalized current:

1 . .
png7w) [p,a"] = Qabyv [P, qr] X + iw@(pg -Dypp + 844 - Dydp)
1 .
(D) (pa - by + 804 - 1)

X,w 2p(X,w) [ F
= PEW[p] +8Q*PT[qF].

As in the scalar case, we define the following Morawetz bulk terms for
the commuted system:
1

a |
g(wi) [p] = §Q[P]@ . D(NXIT;) - §X*b(vl)pg *Pb

1 1
— 1 Dew™pa - py + SuLalpa. po),

10Recall that the potentials of the gRW system are real.
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X)) = Qlalay DX 3 XU (Va)ag
—iDgwaqug Sy + %w@ﬁl [9a, a2,
with
Lilpa,pe] = 2""Dapa - Dapy + Viba - by
Lolde a) = 8°°Dade-Dpgay + Vada - qp-

We state here the theorem that we prove.

Theorem 3.2. Let p € 51(C) and q € s2(C) horizontal tensors sat-
isfying the gRW system in Theorem 3.1. Then, the following holds.

1) (the energy current) The following modified divergence of the com-
bined current assoctated to X =T
S(T,0 . p(T0
PO, q] == PO, q]
(121) B Y
=+ §wﬂ%( p-Dup+8Q° *q- qu),
QZ

a7
following cancellation of the highest order terms:

(12]2))”75£T’°) p.a] = O(al) | (Va,p + 77" + ar®B + ardF) - r%0B

with W the real function given by w = <& (2(1—]\24 — 2—), satisfies the

+ (Vo,q+7r g+ ar’3) - 0&} + Bdr

where Bdr denotes boundary terms and 0 denotes any weighted
derivative rVy4, Vs, rV,.

2) (positivity of the Morawetz trapped term) With the same choice
of functions as in Lemma 2.11, the Morawetz bulk terms for the
commuted system satisfy

1 . .
gXw) [b] = Aab VopaVibp + §hLa5Da<I>D5<I>

“ 1 _

+ Vi pa Py — 5h® - O(|alr=*)0=%p + Bdr,
2

(123) 1 ) .

EXMGF] = A% V.00V, + 5 AL Do WD W

1
+V2q, g, — ShT- O(la|r—2)0=2q + Bdr,

where we denote ® := ﬁ'gpg and ¥ = ﬁ’gqg the trapped com-
muted terms, and where Bdr denotes boundary terms.

We collect here a few remarks concerning Theorem 3.2.

e Part 1 provides a statement for the combined energy current for
the generalized Regge-Wheeler system. We show that the diver-
gence of the energy current of the system, corrected with an extra



340 E. GIORGI

current of lower order as defined in (121), is given by O(|a|) terms
which can all be controlled by Morawetz estimates. In particu-
lar, the symmetry of the system is such that any term which is
trapped in the Morawetz estimates (such as Vrp, Vp, Vrq, Vq)
gets cancelled, and only terms of the form Vy p, p, Vy,q, q remain
in the divergence. The proof of Part 1 is obtained in Section 3.2.

e Part 2 provides a statement for the positivity of the Morawetz
trapped term. We show that, with the same choice of functions
as described for the scalar wave equation, the Morawetz bulk
terms contain a positive term of the form LO"BD(X(I)D5<I>, where
® is a trapped combination of p, and a positive term of the form
LO‘BDQ\PDg\I’, where W is a trapped combination of q. This part
requires the introduction of symmetry operators for the system,
which differ to the ones for the wave equation by the presence of
Gauss curvature due to the coupling terms in the gRW system.
The proof of Part 2 is obtained in Section 3.2.

e Observe that, even though the statement of Theorem 3.2 as writ-
ten does not require the smallness condition |a| < M, it will only
be used under such restriction. More precisely, for small angular
momentum one can obtain from (123) a positive Morawetz bulk
in terms of p, and g, as in Section 2.8, and can then absorb the
O(Ja]) terms in the divergence for the energy current in (122) by
such Morawetz bulk, finally deriving a complete spacetime esti-
mate for small angular momentum. For this reason, Theorem 3.2
is a crucial step in the derivation of final spacetime estimates for
the gRW system under the smallness condition |a| < M.

3.2. Proof of Theorem 3.2, Part 1. Here we prove Part 1 of Theo-
rem 3.2, i.e. equation (122). We first show that the energy current of
the system has a cancellation of the highest order terms of the coupling,
see (124), and then show that the lower order terms of the system also
present cancellations, see (127). Finally, we analyze the curvature terms
present due to the tensoriality of the equations. Those terms, written as
a one-form A, are expressed in terms of a real function in Lemma 3.4,
and their presence calls for the introduction of a correction, given by a
function w, to the energy current.

3.2.1. The cancellation of the highest order terms. For X a vec-
torfield and w a scalar function, the divergence of P is given by, see
Proposition 4.7.2 in [39],

DR = Xy + R((X@) + 5ud) - (Ons — Vo) )
+%(X“DV¢aRabuuab)7
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where the bulk quantity is given by

1 1 1 1
EXWy] = 59[1#] X — QX(V)WF + §w£[¢] - ZDwa}'Q’

and where, with connection coefficients (Aq)sy = g(Daey, €3),

. 1
Rab,ul/ = Rab;w + §Bab,u1/
Bab;w = (A,LL)Sa(AV)béL + (Au)4a(Au)b3 - (AI/)3a(A,u)b4 - (AV)4a(A,u)b3-

For p and g solutions to the gRW system, the combined current associ-
ated to T = 0; satisfies

DHP O p, q] = D*P0p] 4 8Q*DH PO [g]
= 0] +8Q% 0]
+§R(VT5' (O1p — Vip) +8Q°Vrq - (Daq — Vaq) )
+R(T*D"p Rabup” + 8Q°T*D” 9 Rabiu @)
2a cos 0
— (Vb (i afff Vi +4Q2|q‘5 (D-a) + L,[,5]))
da cos b
+R[3Q2V1F - (i %Vm

1q3

2]qf
—f—?R(T“Dl}paRaby#ﬁ + 8Q2T“quaRabyya )v

(D&p — (H H)®p) + Ly[B,3)) |

where we used that T is Killing. Because of the crucial cancellation

2a cos 0 4a cos

R(VrE- (= - Vrp)) =0, R(Vra- (i=) - Vra)) =0,
we obtain
DHPTOp, q]
2 q3 _ ~ 3 ~
QR (o 5V (g — |5qu (D& — S(H — H)Ep))
+R(Vrh - Ly[B, 3] + 8Q°Vrq - Ly[B,F])
+3%(TMDVPGRabVMEb + 8Q2THDanRabup,ab) :

We now look at the terms in the first line, i.e.

3 3
q — q

lql®

Using Lemma 1.8, we write

(D®p) - Vg = —p-(D-Vrd) — (H+ H)®p) - Vo + Da(p - Vd)*.

_ ~ 3 ~
Vi - (DRp — 5(H — H)®p).
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Using (26) to deduce that D(%) = %%(ﬂ — 5H), we obtain

¢~
—=(D®p) - Vrq

lal?
q3 q3 ~
= P (D - Vrg) — W((H + H)©p) - Vrg
1 ¢ = = ¢’ )
2W((E — SH)®p) - Vg + Da(WP - Vra)
¢* 3 ¢ 8 q
= —Wp (D-Vrq) + 5@((}[ — H)®p) - Vrq

We then have the cancellation of the term in (H — H) in I, and hence,
by integrating by parts in T', we obtain

3 3 3

q 4 a 4 q)°
I = WVTP-(D'qHWP'(D-VTq)—Da(WP'VTq)
¢ ¢ @
= VP P+ e Ve(D- )+ e (D Vald)
7 o
—Da(wp'vTa)
3 3 s

q — q — q o
= L (D VD) + Ve Lop - (D §)) — Du(-Lop - Vrg)™
We therefore finally obtain, using that [D-, V7] = O(ar~3),

DHPTOp, g = R(Vrb - Ly[B, 5] + 8Q*Vrd - Ly[B, F))

+ R(T"D"p*Rap,p” + 8Q*T"D" "R d")
3

+ O(ar_?’)?}%(;?p +q) + Bdr,

(124)

where Bdr := VTB%(Z—TE,]J . (D‘ﬁ)) —Da%(%p-vTﬁ)a denotes boundary

|
terms.

Remark 3.3. The cancellation of the highest order terms involving
the coupling terms in the above divergence is general, and holds for any
vectorfield X. In fact, by defining

X, Fr . Xw 2 X,w)[F
(125)  GEW[p, F] = D[] + 8Q*DH P[]
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we have

GXp, qF] = £Xw)[p] + 8Q* ) [qF]
2a cos 6 N

(126) - Wd[(X(ﬁ) + %wﬁ) -Vrp

1
+16Q* (X (qF) + §qu) . VTqF] + lo.t. + Bdr

where we collected the lower order terms (i.e. those involving up to one
derivatives of p of q¥) in l.o.t., which is given by

l.o.t. ; B P B

= Q= X (p)p (D a) 1 (D V)
3 — .1 _

b (P-aF) |+ R[(XF) + 5um) - Lp[3.§

-1 —
H8QX(X(a) + JudF) - Lye[,3]]
RTID P Ry 8GR 7).

3.2.2. The cancellation of the lower order terms. We now analyze
the first line on the right hand side of (124). We can write schematically

LIB.§] = %]~ Z8Vo% + 2 PP PP V(D §)

+0(ar™) (% +r 15+ 7“_1%)} ,

Lq[B, 3] q9q° [WEWS + (W§ — Z§) Vo + WEDEX

+WEDEB + O(ar) (B + 11§ + r—lae)} .
We prove that

R(Vrp - Lp[B,F] +8Q*Vrq - L[B,T))
(127 O(ar?) (0,9 - 9B) + O(a) (0,7 - 03)

+ 0(a®r%)B - 0B + 0(a*r?)F - 0F + O(ar®) DB - 0F + Bdr.
Each of the terms can be analyzed as follows.

1) We have, writing that ey = asinfp | i L7 and using that zy

lal sin@
is real,
= asinf _
R(Vrp- ¢ P2 ZEV,B) = |q’ ZER(VrF - 232V 7B)
+ ZyR(Vrp - q'°7"*V 2B).

lq| sin 6
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Writing from (110) that p = q%§%V3SB + O(r*)B, we can write
the above as a boundary term. In fact, the first term becomes
R(Vrp - q'/*7"*V 1)
= |qg/'""R(V2V3B - VB) + O ("B - VB)
= g|"es(|VrB*) + O(r°)B - V1B.

In the second term, by writing T' = T' ‘a2 e3+ T2+a28 +O0(ar=?)Z,
we similarly obtain

R(Vrp - q'/27°*V 2B)
= R(V_j2 P a7V B

Z1a? e3+ﬁar+0(f”72)

= 1q|"Vz(|V3B?) + O(ar®)es(|V2B|*) + O(°) (0,p - V2B)

Similarly for ®(V7q - gg2 (Wﬁ( - ZS) Va3).
2) Writing that T = T;‘fazeg + T2+a28 + O(ar~?)Z and ﬁ&; =

ﬁ&« + e3, and using that Wf is real, we have

R(Vrq - @@ Wi ViF)

_ 3 -2
B W43?(V 2@2263“‘ 3 .2 0r +O(a7“_2)2q 4 V4$)
= O(ar3)63(|V43| ) + O(ar_ )0rq - 0F

—i—O(ar_?)Wfﬂ?(Vza . qqzvﬁar—f—egg)
q

= O(ar®)es(|V4F|?) + ()(ar)vz(wgm)2 + O(ar—1)8,7 - 03,

where we used as above from (110) that q = ¢g>V3F + O(r?)3.
3) We have, considered together:

R(Vrp - ¢/2722 P Ep YI(D - F) + 8Q*Vrq - 7° W, DEB)
Writing that F)PEp = % and W2 = 3 (@try and Y§ =
-3t (“)trx, we obtain from the above

Q2

P 3i (“)trx(D'§)

_ %[VTP q1/2 9/29 %

993
+8Q*V7q - q3° 1 UtrxD@%]

—_ 2 (a) o q1/2q9/2 ~ — 93
= 6Q tTX\S(VTp gl (D-%)+Vrq-qq D®‘B).
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We then write, using that p = q%qgvg)% +O0(rH®B and q =
q3°*V33 + O(r?)F, we obtain

—~1/2

7240

q
lq|*
= [q/°VrV3B - (D-3) + |¢/°VrVss - DEB

+O(r°)Vr%B - (D-F) + O(r")Vrg - DRB.

(D-3) + V1 - q7° DB

Vrp -

Using Lemma 1.8, we write, upon integration by parts in 7" and
es:

(D&B) - VoV
= —VrV3B-(D-3)— ((H+ H)®B)  VrVs3 + Bdr,

which implies the cancellation of the highest order terms. We
therefore conclude that

R(Vrp - ¢/*g*2EP ®P V(D - §) + 8Q*V1q - q7° W,  DEB)
= O(ar®)dB - 0F + Bdr.
4) We have by integration by parts,
R(Vrp - *P20(ar™%) (B+r ' +r71%))
= O(ar)p- (0B + r g + r_lbif) + Bdr.
Similarly, we have
R(Vrq-q7?0(ar™?) (B +r 1§ +r7'X))
= O(a)g- (0B +r'oF +r'0X) + Bdr.
5) By using that, see Proposition 5.7 in [37],
V45 + <2trX + ;UX) 3
= f% ©DSx — % (3H + H)&x — FpA
we obtain,
R(Vrq - q7°W,; DRX)
= R(Vrg- qQQWf(Vz;S +O0(r HF+ 0> )X +0(r ?)A)).

The first term is analyzed as the one in point 2., where we recall
that W is real. The last three terms are treated by integration
by parts as in point 4.

By putting the above together, we proved (127).
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3.2.3. Thq curvature terms. We are now left to analyze the term
R(THDYp Rap,p” +8Q2THDY " Rpy,d°) in (124). Since Rypyy, is anti-
symmetric with respect to (a,b) we rewrite

2 Y% > —b 1 > *77 TV 1 *77 TV
T'D waRabuu¢ = iTH eab Rabuu ?l) -D 1;[) = §AV 1;[) -D @Z},

where A is the 1-form A, =gbe RbCWT”, as in [39]. Using that the
only non-vanishing Riemann curvature terms are
Rospa = —pdab+ "p Ean, Rapza =2 "p €ap,
Roped = —p €ab€ed +(0acOba — daadpe) (Fp* + F) *p?),
and the only non-vanishing B terms are
Babes = 2(— X, + Xl — Xea&, + Xab,)
Baper = 2(— Xeall, + X1, = X, + X4 6a)
Bapza = 4( =& & + &€, — nam, +1,7),
Babed = XbeX,; + XpoXad = XacXyy = X, Xbd>

we obtain

Ay = —4 *pT3 — 4(n A T3 + trx((h)T An) — (a)trx(ﬂ‘ M),
Ay = 4 *pT*+4(npAn)T? —f—trx((h)T/\n) - (“)trx(n : (h)T),
A, = ( —tryx "ne + (a)trxne)TS + ( —try *Qe + (“)trxge) T

1
—3 (4p — 42 g ) 2 gy xtrx + (@try (“)trx> (7).,
using the horizontal tensor M9, defined by (Md,), = (8;),. We infer
the following.

Lemma 3.4. We have

oM 2Q2>>
A, =-D, (3|5 -2 ).
! “< <q2 77

Proof. We have in Kerr-Newman
1 1A
o) T3 = 57 .2
2 2 ql?
where J is the complex horizontal 1-tensor in Kerr-Newman, given in
components relative to ej, es by

T = (T)y = (M) = —aR()s,

R isin 6 . sin 6

J1 = ) J2 = .
lq| lq]

Plugging in the identities of above, we infer

. A A N a ~
Ay = —2 pW_Q(Q/\H)W—atrx(%(‘j)/\ﬂ)ﬂ-a()tTX(ﬂ'%(d)),

Az = 2 p+2(mAn) - atrx(ﬂ?(ﬁ) AN) +a(a)trx(n‘§R(3)),
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| . A1 '
A = g(men ) g (S s P

2

+g (4p 42 4 2 vy 4 @y (@t%) “RI)e.

Next, we rewrite 24, as

24,

and hence

24,

Since

we infer

(= R X)S(H) - S(EX)OR(H,) v
+a [4%(13) —4R(®)p F)p)
FREX)R(ErX) + %(trX)%(trK)] “R(J)e
—%(trXHe)’qA‘Q (X H,)

+aR(4P — 4 FP FP 4 1 Xt X) *R(J).

i) 9 (G )
S (—205) S g (2 (=500
< q1al?™") |al? a \ la?lql*°

+aR (413 —4EpEp |A|42> TR()e
ql*q

(4 2)) 5(2) )

taR (4P _4®)p <F>P) *R(3)e

e (R () s00-» () we))

taR (4P _4®p (F)P> “R(Je)

IS
Q
=
VS
s
|
=
v
=
v
N—
*
=
o

= —2R(P - ®PEP)V,(acosh)
- _23%((}7— (F)PW)Ve(acow))
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= —2%((P — (F)PW)VE(MCOS 9))
= —23((P- "PTP)V.(q)).

Next, we rewrite A4 as
A A
Ay = =27p5 =200 ")
a7 2 g

—atr X(?R(S) - 'n)+a (“)trx(g- R())

=

- _27% _2(%(@-%(}1))@

|a?

—aR(trX)(RQ) - S(H)) — aS(trX) (R(H) - R(J))

_ 9 *p|A|2 —2R(H) - S(H))

~a(R(X)S(H) + S(X)R(H)) - R(Q)

~ *p@Q C2R(H)- %(H))@Z S (trX H) - R(3)

and hence, since 3(J) = *R(J),

A A
A4 = =2 pm+2a W%

o () o

/\
\_/
/-\
X

=
~—

A A A
= <2 *pr 44t SRR + 200 S @IRE)

lq|? | |6 lq |6
= -2 p|A|2+4a W%( S (Q)IREQ) P + 4a? W?R( 9)S([@)|RQ)1
. A
|q|?

Since e4(q) = ﬁ, this yields

Y *p@z — _93(P)es(q) = —23(Pes(q)),

and similarly,

Az = —23(Pes(q)).
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Using that

we have obtained

A = %((% 4Q2+2Q2)veq), A4=%<(4M 4Qz) 4(q)),

¢ lal* ¢ 4
AM 4Q2
o ()
3 (— PR q) e3(q)
Observe that using that \9(63( E)) = —%(%63(61) + qzq2€3(Q)) =

—\s(q%eg(q)) we can write

4y = %((4M 4@2)63(61)):_%(63(2M 2@2))

@ 4’7 q 4*q
Similarly,
oM 2Q? AM 4Q? 2@2
S(VCE - F) = (v v V)
AM  4Q%  2Q?
G((AM A 200G Vg,
( ¢ 7 g |4)
This proves the lemma. q.e.d.

3.2.4. The correction of the energy current. From (124), and the
above Corollary we deduce,

DHPTOp, q]
= Ofa) [(&p + 77+ ar®B + ardg) - r*0B

—}—(&q +r g+ arzfs’) - DS"}

oM 2Q?
-D, (% <q2 qu>>§R(2 p-D"p +4Q* *g- D"q) + Bdr.

Observe that the term on the second line is of the form O(ar~3)(p-Dp+
q-Dq), which contains trapped derivatives of p and q and therefore has
to be removed. We then modify the identity by considering

(128P O p,q) = POp,q) +w %(% “p-Dup +4Q% 7 Dyq),
for a real scalar function @ to be chosen below. Since
R(D¥ (@ % Dyw))
- 5)?(11; % - DID g+ @ *DFY - Dy + D) Duuj)
= WR( P -Ootp) + DH(@)R( *¢ - Dyyp)
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we infer
DR, q]
- a)[( P+ p + ar®B + ardg) -7

+(8rq +r g+ arzfs’) . D%’}

2M 2 2 1 . .
-D, (%( 5 @ >—w> R(= *p-DYp +4Q* *q- D"q)
q a*q 2

1, .
+1I)§R(§ P - Oop + 4Q *g - Uaq) + Bdr.

By choosing

g

2
23<W2Q>
@  ¢*q

we obtain the cancellation of the second line.
For the last line we have

R(*p - Oap)

_ 2acosf
= R(P-(i ‘ﬁf VTp+V1p+4Q2’q‘5 (D-q) + Ly[B, )

S(F-p) +R(4 Q2|q|5 B+ (D-q))
+0(ar?)p - (DB + DJ)

and similarly for q. Using Lemma 1.8, we obtain
1. . .
R(5 P Dap +4Q "9 Do)
3 3
— 20% D7) L s (Dep_ S (H- M &
= 2Q*R(j 5 P (D7) = 5 "0 (DBp — 5 (H — H) E))
+O0(ar®)p - (0B + %) + O(a)q - (0B + 0F) + Bdr
- 2 [13?( (D&p)-q - ((H + H)S "p) -7)
3

*— pa 3 pa
g e S )

+O0(ar?)p - (0B +03) + O(a)q - (0B 4 0F) + Bdr
= O(ar?)p- (0B +03) 4+ O(a)q - (p + 0B + 0F) + Bdr

This finally proves (122), concluding the proof of Part 1 of Theorem 3.2.
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3.3. Proof of Theorem 3.2, Part 2.

3.3.1. Symmetry operators for the gRW system. In Section 1.5,
we defined the modified Laplacian O for scalar functions on Kerr New-
man spacetime. Nevertheless, the definition of O as given in (36), i.e.

o) = g (A + (n+n)- V),

can be applied to any tensor @) € s, where Ay = 6%*V,V;,. When
proving the corresponding of Proposition 1.12 for tensors, i.e. the com-
mutator with the D’Alembertian operator [Ji, one obtains additional
lower order terms involving Riemann curvature. Omne can show, see
[38], that for ¥ € s,

1

(129) FE

(0,1gPOy = O(ar™) 2=2y.

The operator O, even though is a conformal symmetry (up to the
lower order terms above) for [J, it is not a symmetry for gRW system of
equations (112) and (113), because of the presence of the coupling terms
on the right hand side of the equations. We instead have to define a
corrected pair of symmetry operators, and show how the commutation
with such modified Carter differential operators allows to maintain the
same structure of the equations.

Following [38], we recall the following Gauss equation for horizontal
structures:

Proposition 3.5 (Proposition 2.52 in [38]). The following identity
holds true for ¥ € s for k=0,1,2:

1
130)[Var Vil = (5(“trxVs+ DtrxVa)y +k MK “v) €n

where

1 1 1 1
(131) WK = —Ztrxtry—=Dtry Doy + =% - ¥ — = Rasu.
4 = 4 = 20 = 4
The scalar quantity (" K is denoted the modified Gauss curvature'®
of the horizontal structure. As a consequence of the above, we obtain,
see [38], for & € 51, u € 59

PPl = *%Alﬁ + %[thﬂ ¢
(132) 2

1 1
= —5016 — 5 WEE+ L (WaxVs + Duxva) *¢

171 the integrable case, MWK = %2 is the Gauss curvature of the sphere orthogonal
to the principal null frame. As in the non-integrable picture there are no spheres in
the horizontal space to the null principal direction, this is not a real Gauss curvature.
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and

@2 ZDzu = —*AQU — *[vl,VQ] u
2 2
(133) 1 1
= —§A2U + WKy — Z( @try Vs + (“)trzvzl) “u.
These relations are used to compute the commutator between O and
the angular operators D- and D.

Lemma 3.6. The following commutators hold true for ¢ € s1 and
P € §y:

0.D&]¢ = 3lq]* WE(DE¢) + |a*D(|q| ) BO(¢)

(134) +ilg (@Dt Vs + @Dty Vi) (D) + O(ar™Ho<tg,
0. D]y = -3|g>PKD- )+ |g*D(|g|7?) - O(¥)
(135) —ilgP(Dtrx Vs + Dtry Vi) (D - 4) + O(ar~1)pS1ep.

Proof. Recall that D® = V@+i *V& = — Ps—i *Psand D- = T+
i * I, and therefore we can compute the real part of the commutators,
ie. [0, D3] and [O, Tb]. We have using (132) and (133),

O(P39) = la* (L2 + (n+1n) - V)(P59)

= |aP| -2 PRS0+ 2K Pio

1

A <a>trxv4> P+ (n + 1) VP59

— |q|2 —25( — fﬁlgb —= <h Ko+~ ( VirxVs + @trxVy) *¢)
+2 WK Psp— (Dirx Vs + ey Vi) “Pss + (n+n) - VP50
— P P3016+3 WK Psp— (Dtex Vs + @WtryVy) * Pso
ot VD6 +O(ar 1 o<g.
By writing A1¢ = |¢|72O(¢) — (n+ n) - Vo, we obtain
O(P36) = lal? | D5l 20(@) — (n+n) - V) +3 DK Pso
—(“trx Vs + ey Va) “Pio + (n+n) - VP + Oar™)ole

= D30(¢) +3lq]* WK D3p — ¢V (|g| )S(09)
—|q[2((“)trxv3+ <a>t@v4) 7?2¢+O(ar_l) <1y,

By complexifying the above we obtain (134). Similarly, we compute

O(Ps) = la2 (D1 + (14 m) - V) (Poy)
= 1P| 2P PPt — VK (Do)
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+%( (@ try Vg + (a)trxvzl) P+ (n+n)- V@ﬂ/}}

= P[22~ o+ WK — (@D Vs + DtyVa) )
~OR(Po) + 5 (OtrxTs + OtexVa) * P+ (n+m) - Voo
= lqP| PeLav -3 w K Potp+ (@trx Vs + DtrxVa) * Poy
+(m+n) -V zDzz/;} + O(ar oSy,
By writing Agtp = || 72O(¥) — (n+ 1) - Vi, we obtain
O(Pev) = lal? | Po(lal20() — (n+ ) - V) — 3K Py
+(Dtrx Vs + @Dtrx V) * Doy + (n+ 1) - V%d)} +O(ar o=ty
= POW) = 3a* MK Py + [aV(al ?) - Ow)
HalP(@Dtry Vs + @trxVa) * Py + O(ar~1)oS1ep.
By complexifing the above we obtain (135). q.e.d.

Observe the presence of the terms 3|q|? W KD® and —3|¢|? W KD.
in the above commutators. As they involve the modified Gauss cur-
vature, these terms are not small even in Schwarzschild. In order to
obtain symmetry operators for the gRW system, we combine the mod-
ified Laplacian O with lower order terms involving the modified Gauss
curvature (MK

Proposition 3.7. Let p and q be solutions to the generalized Regge-
Wheeler system in Theorem 3.1. Then for any real number ¢, the com-
plex tensors

(136)p := (O + (c+ ) M K)p,  q:= (O +c g WK)qg

satisfy the following system of wave equations:

- 2acosf_ ~ 7 -
Oip—i———Vrp—Vip = 4Q°— (D-qF
|ql? laf? < )
(137) +Ni[p, "]
4acos€ - = 1 ~~n 3 o~
ClogF PE Vgt —Vog¥ = _i\cq]? <D®P ~5 (H— H) ®P>
(138) +Na[p, q"]

where the terms Ni[p, q¥] and Nalp,q¥] are O(|a|) lower order in dif-
ferentiability with respect to p and q¥, explicitly given by

Nilpoo*] = Q[ ‘3< ViryVs + @ty V)(D - qF)
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7 = . F 7 -2 F
~29(5) ¥ (Bd) = 5 Plal ) - 0|
+i4aV (cos ) - V(Vrp) + lq|2O(|q|*Ly[B, F])
(et 3)la? MK L[B,§] + O(ar™) (25'p,0%!q")

1 3

q
Nofp,q¥] = —§[W

+2v(q3) -V (D&p) + q?)D(qr?)@(Op)}
lql? lal?
+i8aV (cos0) - V(Vra®) + |q| > O(|q|*Lyx [B, 7))
telg* M K Ly [%8,3] + O(ar™?) (2%'p,0%'q").
where 0 = V3,7Vy, 7V denotes first order derivatives.
In particular, the higher order structure of equations (137) and (138)

is the same as the gRW system of equations (112) and (113) for the
un-commuted p and qF .

i( (@) tryVs + (a) t@V4)(D®p)

Proof. We start by commuting the gRW system with the operator
O = |g|*(& + (n+n)-), where A denotes A; or Ay if it applies to p
or q¥ respectively. By multiplying equations (112) and (113) by |q|? we
obtain

. 73 S—
o Onp — 2acos0Vrp — (aPVip = 4Q% 5 (D)
(139) +lal*Ly[B, 3]

1 ¢ { ~
——L |pg

2[qff L7

3 ~
—5 (H — H)&p|
(140) +la* Lyr [B, F]-

We now apply the operator O and consider the left hand side of the two
equations. Using that

O(fp) = fOW)+O(f)y +2(qP*V [V
we obtain for the first equation
O(LHS of (139))
— |gPE(Op) + (O, [gPDhp — iO(2acos 07 rp) — O(([g2Vi)p)
= |g|’D1(Op) — i2a cos HO(Vrp) — i2aO(cos )V p
—2|q%iV(2a cos ) - V(Vrp)
—(lg*V1)O(p) = O(lgI*Vi)p — 2|g*V (|¢|*V1) - Vip + O(ar™) 2='p
= |g[*01(0p) — i2a cos OV O(p) — |¢|*V1O(p)
—4alq|*iV(cosb) - V(Vp) + O(ar™) 2=1p,

|a*D2q" — idacos 0V ra" — (|g[*Va)a" =
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where we used that [O, V] = O(ar=3)0S1, see [39]. Similarly for
the left hand side of (140).

We now consider the right hand side of the equations. We make use
of Lemma 3.6 to obtain for the first equation:

O(RHS of (139))

= 4Q2|q,3( LO(q%) = 3l¢? WK (D - qF))

7
—4Q* [mz( @ty Vs + (“)trKV4)(f -q")

7 =~ BT —2 F
=24V 5) ¥ (D7) = (D1l ) - O]

+0(ar™) 9=1q" + O(lg|*Ly[B, §]),
and for the second equation
O(RHS of (140))
1¢3

= —glqﬁ(D@O(P) - g (H— H)&(0p) + 3|q\2(h>K(p®p))

3

1rg? ~
f§[%¢(<a>nxv3+ @trx V) (DEp) + 2|q|” V<‘ |3> vV (Dep)

Ha ‘D<|qr 2)(0p)] + Olar™) 9='p + O(lg[*Lyr B, ).

By combining the above computations, we obtain for Op and OqF
spectively:
2a cos 0

=3
T1(0) — i~ 5 Vr(Op) = Vi(Op) = Q% 5[ D - (Oa")

~3lgP? W K(D - q")]

+N1[pqu]

—I-O(ar*g) (Dglp,Dgqu)

+|g| 2O (lq|* Ly B, F))
4acosb 1q

o Vo) —mol’) = 55 [PEop)

Dl(qu) - —
3 (H ~ H)3(0p)
+3[q|? " K(DEp)|

+N2[pqu]
—I-O(ar*g) (Dglp,Dgqu)
+lq| 2O(|q|*Lye [B,F))
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where
Nifp,q*] = —4622[, e i( @trx Vs + @ty V) (D - qF)
29 v (D)~ T ) - 0"
+4aiV (cos8) - V(Vrp),
Nofp,q¥] = —;[f];i((“)trXVﬁ @DtryV4)(DEp)

+2v(‘ Tg) Vv (D&p) +

pDlldE©n)]

+8aiV (cos b)) - V(Vrq).

Observe the terms involving W K on the right hand side of both equa-
tions. In order to absorb them, we combine the above with the gRW
equations commuted with |g[? WK = 1 + O(a?r—2), i.e.

2a cos O
Ch(Jgl* WEp) —i——5— P Vr(lg* WKp) — Vilg* MKy

=3
q [—
= 1Q% 5 (10 KD (@) + 1o KL (B3]
+0(ar™%) (051p,051qF),

) 4acosf
Oa(jql* WEqF) —i——5—

-1 ’q‘g VT(|(]|2 (h)KqF) _‘/2|Q|2 (h)KqF

1q° -~ 3 ~
= 5t (10P DR - 3 (1 - 8P ) )
+Hal? W K Lye[B, 5] + O(a*r~5) (2='p,0='q").

We therefore obtain, for ﬁ = ((’) + (c+ 3)]q\2 (h)K)p and q/I‘: — ((f) +
(c)lgl? (h)K) q¥, combining the above:

= 4@2“’|5( (OFF + ¢clg)* WEKqT)) + Ni[p, q]

+O0(ar™?) (0%1p,051q%) + [q| 2 O(|a[* Ly[B, §])
+(e+3)laf* WKLy [B, ],

4a cos

D2q ‘ |2 VTCIF - VYQqF

1@~
= —5;?[27@)(0]3—1—(c+3)|q\2<h)Kp)
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2 (H — H)B(0p+ (e +3)la W E)] + N, a"]

+O(ar_3) (Dglp,DSIqF)
+la|?O0(lq* e [B, 8]) + clg|” M K Ler [B, 3]
which proves the proposition. q.e.d.

The pairs of tensors obtained in Proposition 3.7, i.e.

(5,qF) = (Op + (¢ +3)|al> WKp, OGF + clg> WKqF)

represents the symmetry operators associated to the Carter operator O
for the system. In addition to them, one can define the second order
operator associated to T and Z.

To maintain clear the difference between the operators applied to the
I-tensor p and to the 2-tensor q¥, we define the following couples of
operators (S, W), = (Sa, Wa) for a =1,2,3,4:

S1=VrVr Wi =VrVrp
Sy =aVrVy Wy =aVrVy

M) s~ 2v,v, Wy = a?V V5
S1=0+(c+3)|g* MK Wi=0+clg MK

where ¢ is any number, the S operators are applied to the p and the W
operators are applied to qF.
We also define the corresponding symmetric tensors

SeP—Terh, 558 —arez?, S5 —a?z070, 557 = 0P

12

With the above definition, from (46), one can write

(142) R = —(1? 4+ a?)25 —2(+? 4+ a?)55F — 53° + AO™P
=: RQSEB,

with

R'=—(?+a)? R’=-20%+d%), RP=-1, R'=A

We can then relate the symmetry operators (Sg, W, ) to the symmetric
tensors S5,

Lemma 3.8. We have fora=1,2,3,4:
Sa = la’Dallal 5" Dp) + baa(c + 3)|gI> VK,

Wg = |Q‘2Da(|q,_253ﬁDB)+5g4c‘q|2(h)K
where 6qa =0 fora=1,2,3, and 644 = 1.

120bserve the difference in the presence of a and a? in the definition of Ss and S5
respectively. This is important in the case of tensors in order to obtain O(a) lower
order terms in the curvature, as in (143) for example.
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Proof. For S,, Z, with a = 1,2,3 it is proved as in Lemma 2.4. Using
that |¢|>Da(|g| 20’ Dg) = O, we obtain the expression for Sy and W,
from their definition. q.e.d.

As in the case of O in (129), in the case of tensors, the commuta-~
tion between the operators S, and Uy, gives rise to terms involving the
curvature, which are all O(a) lower order terms, more precisely, see [39]:

(143) [Sa, 0ol = O(ar2)0%%*),  a=1,2,3,4.
As in (58), we define
(144)  pa=38a(p),  da=Wa(d"), a=1234.

Then, from Proposition 3.7 and the above commutators, the couple of
tensors (Pg, qq) for a = 1,2, 3, 4 satisfies the gRW system, with possibly
corrections in O(a) lower order terms from the above commutators.

3.3.2. The positivity of the principal terms in the Morawetz
estimates for the commuted system. We now describe how to apply
the Andersson-Blue method to obtain the Morawetz estimates for the
gRW system of equations for tensors. For its application to the gRW
equation in Kerr see [39].

Through a similar derivation, we obtain the corresponding of Propo-
sition 2.7.

Proposition 3.9. Let z be a given function of r. Let u® be a given
double-indexed function of r. Then for

(145) X% = Faby, F — o2 w? = 20,u®
we obtain
EXMp] = ALV, p,Vepy + UL Dop, Dapy + Vi pa - P,
gxw) [qF] = A% ViqaVeap +uaﬁ@ Daqg Dgap + V%b da 9
where
1/2, ab
ab _ _1/2A3/2 £
A2 = z/A/8r< NI )
1 z
afab  _  __ —,ab ~ pap
u 2" 3”(AR )
a 1 a a
Vi = 0 (B0u) - (X L (1q2Vi2) + a2 Vi2)

1
= 10 (80, (20u)) — o (XL(JgPVio) + laPwZ Vi ).

ab ab
where w;,;, = u®0,z.
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Recall from Section 2.8 that the crucial step in deriving Morawetz
estimates for the commuted system was to perform an integration by
parts in the principal term U*#2 9,4), 0py, which allows to create a
positive definite term for a trapped combination of 1),, denoted ¥. We
now show how this property can be extended to the gRW system and
its combined energy-momentum tensor.

We write the principal terms above as

UPLDop Dapy = — % u*R'*"Dapa Dypy

- _%ua—bﬁ’gsgﬁ Dapa Djpy,
UL Do Doy = — % u*R’**Daga Dsap

_ _%ua—bﬁ’ﬁsgﬁ Dqq Dgdp-

By performing the integration by parts in Dy, we obtain
la| ~*U 2 D opy Dspy
1

—2_ abp>/c Qo - 1 ab3/c - —2 qafBT
- _iDa(M QU*bRLSgﬁpgDﬁpQ)+§u7bR/7p2Da(’q‘ QSgﬁDﬁpQ)'

Now consider Da(]q|_QSgﬁD5pQ). Recall Lemma 3.8, i.e.

Su = laPDallal 5" D) + du(c + 3)la* W K.

Therefore we can write

D, (1g| 725" Dgpy) = Dallq| 725> DsSyp)
= q|728:Spp — |a| 2 (Bealc + 3)|g* WK Spp)
= q|72S84Seh + la|2[Se, Splp — |a] 7% (Sealc + 3)|q|> W K Spp)

= Du(lg| 725> Dgpe) + || ~2[Se, Syl
+la| "2 (Spa(c + 3)|a|* WK Sep) — g] "2 (Sealc + 3)]q)* P K Syp).

Thus, repeating the integration by parts procedure, and for u® =

—hR'2Lt and recalling that L8, = L we obtain
U Dopy Dgpy
1 e s 1~
- 5hLaﬁDa(R’@;%)Dﬁ(n’ﬁpg) — ihR’QEQ(RQpQ) - [Se, Splp
. D c Sa aB 1 aBTt
D (o 2R LR (527 Do — 5 D)

+3 . -
D) 12 O K (R epg) LERE (Syape — Seabs),
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and similarly for q. By denoting & := ﬁ’ﬁpg and U := R'%q,, we
respectively obtain

: 1 L 1, =
UPLD,p, Dapy = ihLaﬁDofbDﬁfb—ihé-R’Qﬁb[Sg,Sjp

_|Q|2Da8a [p]
(c+3)

(146) —T(mq\z WE) @ - LER'S (Spape — Teabp),

) 1 } . 1 ~
U Do, Dgay = ShLDaWD¥ — “h - RLYV Wla"
~|q|*DaB[qF]
‘ _
(147) —5 (hla* W K) W LR (0p19e — Geaty)-

For the second line in each of the above expressions, we write

LER' (5b4pg - 594%) = £Q5b4(7:\;'/gpg) - ﬁ/£5g4(£bpb)
= L' —R'(Lhyy)

LR (Opade — Oeaty) = L20p(R'q) — R'%6a(Llqy)
= L' — R(Lqy).

Now observe that with the choice z = z; as in (81), we have, see (83),
R'4[z] = —% (1+0O(er=2)), and with the choice of £% as in (105),
we write, using (104):

LER'E (Spape — Ocapy) = L1 — R/ (L)
27T

= & m(l +O(er™?))(eSitp + OY)

= b (B (14O )V 2p)

— (74;%:”;12)2 (1+ O(er_Q))VfVZp,
LER'E (Spate — Geaqy) = (r?ﬁiﬂ)? (1+0(er™2)VzV2q¥,
Also, using that, see [39],
(148) [S1, Sa]tp = [S1, S3]vp = [S2, S3l¢p = 0

and

[S1,S1]v = O(mar=)V1Vrip + O(mar~*)oSly
[S1,S2]tr = O(ma)V1Vry + O(ma®r~)V1Vz¢ + O(mar~2)o=<ley
[S1,S3]v = O(ma?)ViV 2 + O(madr—2)o=ley.
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and similarly for W,, we can write for the commutator terms:

—%h@ - R'LYS., Slp

1 ~ ~ ~
— —5ho [(R’% — RIALY)[S), Sulp + R2LYS,, Sulp

+(7€13£4 N 75,/453)[83,84]]3}

1
= —§h<I> : <O(ar*3)V1VTp +O0(a*r3)V1Vzp + O(a2r75)0§1p>,

_ % h - R'CLY[S,, SlqF

1
= —5h¥ - |0(ar ™) ViVra® + 0(a* V1V 20"

+0(a?r~?) =g }

We conclude from (146) and (147), that the principal terms can be
written as

UPLD p, Dapy = %hLaﬁDQQDgé — |q*DaB%[p]
—%h@ : [O(ar*’)vazp + O(ar—3)V Virp
+0(a*r3)V1Vzp + O(a27’_5)0§1p} ,
UPLD,q,Dsqp = %hLaﬁDaq/Dqu — |q*DaB[q¥]
—%h\IJ : [O(W—?’)vazqF + O(ar 3V, VrqF

+0(a*r3)V1Vzq¥ + O(a2r_5)0§1qF] .

In both cases, the last line has the same structure as the one in Kerr,
and can easily be bounded by Cauchy-Schwarz by O(a)(|®|* + |p[% +
|¥|? + |g¥|%), where all the terms appear without degeneracy in the
trapping region in the Morawetz bulk. They therefore can be absorbed
by the Morawetz bulk for very small angular momentum.

The analysis of those lower order terms can be treated as in the case
of Kerr, see [39]. From the analysis of the coupled system in Reissner-
Nordstrém [36], where the quadratic form is shown to be positive for
a = 0, we deduce it to be positive for very small |a|/M. The full
derivation of the Morawetz-Energy estimates for the gRW system in
Kerr-Newman will follow the Morawetz-Energy estimates for the gRW
equation in Kerr in [39] and will appear in a future work.
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Appendix A. Proof of Proposition 1.3

First of all, observe that as a consequence of the definition (8), con-
tracting D, K,, + D,K,, + D,K,, = 0 with g"”, one immediately
derives

1
(149) D,K" = —§D”(trK),
where trK = gt K,,, is the trace of K. By applying another derivative
to the above and antisymmetrizing, one also obtains
D*D, K — DD, K
(150) 1 1,
= —QD“D (trK) + §D D#(trK) = 0.

To obtain the commutator [K, Ug], we first collect the following pre-
liminary computations.

Lemma A.1. The following commutation formulas hold for a scalar
¢, a 1-tensor X and a 2-tensor ¥ in M:

[Dua DgM) = 7R,uaDa¢a
D,,0g]X* = R, ,D*X“+ (D,R—-D'R,,) X,
Dy, Og|¥s = 2R,a5 DU 4+ RoeD*VUCs + DR W5
+(DER5,u - D(SR/“)\IINE’
where R denotes the Riemann curvature, the Ricci curvature or the

scalar curvature depending if it appears as a 4-tensor, a 2-tensor or a
scalar respectively.

Proof. For a scalar ¢, we have by definition of Riemann curvature
[Da,Dgl¢p = 0,  [Da,Dg]Dy¢ = Rap, Do
We therefore compute
[Du; Dg]d) = [Dua DaDa]¢ = [DI/a Da}Dcﬂﬁ + Da[Dw Da]¢
= g%Ry,u.’Dsp = —R,°Djs¢.
For a 1-tensor X we have
[Da,DglXy = RagyeXS,
[Dq,Dg|Ds X, = Ragsc DX, + Ry Ds X<
We then compute
Dy, Og] X3 = [Dy, D*Da | X
Dy, DD X + D([Dy, Da] Xp)
= gaC<RuCa€DeXﬁ + RuCﬁeDaXe) + Da(Ruaﬁ€Xe)
= —-R,D.X3+ RMO‘BGDO(X€ + DR 05 Xce + Ryag D Xe.
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Using the second Bianchi identity DRy, = D Ry, — DRy, we
obtain
D,,0eg]Xs = 2R DX — R, DX+ (DR, — DgR,) X..
By contracting with g"? we finally obtain
Dy, Og|X* = 2R,D*X. - R,D X"+ (DR, — D'R,, ) Xc
R, ‘D'X. + (DR - D'R,°) X..
For a 2-tensor ¥ we have
[D,,, Da}\l’,ﬂ; = RVOWE\I/E(; -+ R,VO“;G\I’76
D,,D¢DV,s = RyeaDeVys + Ry DaVes + Ryes Do Ve
We then compute
D,,0x]Vs = [D,,D*D,|¥,5 = [D,, DYDY, 5 +D*D,,D,] Vs
= g° (RucaDeV.s5 + Ruey DoV + RucsDa Vs
+Da(Rya7€\Ileg + R,,age\lf,ye)
= R, DV 5+ R, Da¥es + R, Do Ve
+DRuay Vs + Ryay DV
+DaRya56\I/-ye + Rya(geDa\Iﬁyg
= 2R,“,'Da¥e + 2R, Do ¥y — R, DVos
+DRuayVes + DRyas VUne
By contracting with g7” we finally obtain
D,,0g]0"s = 2R,*“DyVes + 2R, DV — R, D V5
+DR.0" Vs + DRyns e
= 2R,%D,¥". + R*D,¥
+DaRa6\I/65 + DOIR,,,OASG\I/V6
Again using the Bianchi identity to write DR, 45 = DRy, — DR,
we prove the Lemma. q.e.d.
We use the above Lemma to compute the commutator between the
Killing differential operator K as defined by (9) and the D’Alembertian

operator [g.
We compute for a scalar function ¢:

[K,0gl¢ = [DuK"D,,UOglg = Dy [K*" Dy, Ugl¢ + [Dy, Ug] KDy ¢
= D, (K"'D,Og¢p — g (K" D,¢)) + Dy, Og| KD, ¢
Writing Og (KD, ¢) = (g K*)D,¢+2D*K*' DD, ¢+ K" 0D, ¢,
we have
[K,0gl¢ = D,(K"[D,,Ogl¢ — OgK*'D,¢ — 2D*K*'D,D, )
+[D,, O, K* Dy ¢.
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Applying Lemma A.1 to ¢ and to X* = K**D, ¢, we have
K" [D,,0gl¢ = —K'R,‘D.o,
D, 0 ]K*""D,¢ = R,DH(K,D"¢)+ (DR —-D'R,) K,D"¢.
We therefore obtain
K,0gl¢p = D,(—OgK"'D,¢ —2D*K"'D,D,¢) — D, (K" R, ‘Do)
+R,‘D*(K,D"¢) + (DR — DR ) Ko, D" ¢.
From (8), i.e. Do K" +DHFKY, + DYKH, = 0, we have
(D K*)D*D,¢ = —-D'K",D*D,¢ —D"K",DD,¢
—D*K", DD, ¢ — D,K*"'D*D, ¢,
which gives
(D, K*")D*D,¢ = —%D”K”QDO‘DV¢.
This implies
[K,0gl¢ = D,(—-OgK"'D,¢+ D'K",D*D,¢) — D, (K" R, Do)
+R,‘D#(K,D"¢) + (DR — DR ) K, D"¢.
Observe that in expanding the D, derivative there is a cancellation of
the term (OgK*)D,D,¢:
K,0glp = —D,(0K")D,¢ — O K*'D,D,¢
+D,D"K",D, D% + D*K",D,D*D,¢
-D, (K"R,‘D¢) + R,‘DH* (K., D"¢)
+ (DR - D"R,) K, D"¢
= —-D,([0OzK")Dy¢ +D'K",D,D*D,¢
—DM(K‘“’RVEDggb)
(151) +R,‘D#*(K,D"¢) + (DR — D*R,€) K, D" ¢.
We now derive an expression for the two terms appearing in the first
line above. For the second term we have, using again the Killing equa-
tion (8),
(DoK*)D*D,D,¢ = (-D*K",—-D"K",)D“D,D,¢
= -DYK",D*D,D,¢ - D"K",D“D,D ¢
= —-2D*K",D*D,D,¢
= —2D"K",(D,D*D,¢ + D%, D,]D,¢)
= —2DMK",(D,D°D,¢ + R%,,°Dso)
Observe that the first term on the right hand side is the same as the

term on the left hand side. We therefore obtain:

2
(D*K",)D,D°D,¢ = —gDO‘K”uR"aV‘sDMb.
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For the first term, starting with D,K,, + D, K,, + D,K,, = 0 and
applying D* we have

0 = D"D,K,,+D'D,K,,+D'D,K,,

D'D,K,,+D,D"K,, +R*, ‘K¢ + R, K
+D,D*K,, + R*,,°K,e + R,K.,.
This gives
D*D.K,, = -D,D“K,,—D,D“K,,
-R*,, ‘Ko —R*,, Koe —RKje — R, K.

Using (150), we can write D,D“K,, +D,D*K,,, = 2D,D*K,,, which
gives

D*D.K,, = -2D,D°K,, — (R*,,“+R%,,) Kqc

-R,‘K,c — R, K.
Applying D* to the above we have
D*D*D,K,, = —2D*D,D“K,, — (R*,,“ + R%,,°) D" K.
— (D*R%,,°+ D'R%,,°) Koe — D" (R,°K e + R,°Key)

which can be written as

D'D*D.K,, +2D"D,D*K,,
(152) = — (R, +R%,°) D'Kqe

— (D"R*,, +D'RY,,6) Koe —DF (R K e + RKey)
The left hand side of (152) is given by
D*D*D.K,, +2D"D,D*K,,
= 3D“D.,D"K,, + [D", DD, |K .
Using Lemma A.1 to write
[D¥, Og] K = 2R, DK +R*Do Ko,
+D“Ro Koy + DR KFe,
we have
D'D*D,K,, +2D"D,DK,,
(153) =3D*D,D"K,, + 2R/, D, K
+R*D Ko, + DRy Koy + DRy KFe.

Plugging in the above as the left hand side in (152), we arrive to
1

D“D,D*K,, = —(3

R%,,  + RQWG) D¥K e
1
+§ [ B (DMRaVlf + DMR&/WE) Kae
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-D"(R,‘K e + R,°K)) — R*“Do K,
~D°R, Ky — DORyay K¥|.
Writing again from (153),
D'D*D.K,, = D*D,D"K,, +2R.", D, K
+RaEDO£K€V + DaRCM€ €V + DaR[LLCl{lleKME7

we obtain

1
D'OgKu, = — (?)R"‘W6 — RQW€> DK

1
+3| - (DR, + DR, Ko
-D* (R,‘K e + R,‘Ko) + 2R*D K,
+2D R, Koy + 2D Ry, K.
Plugging the above in (151), we obtain
(154)
K 1 ad € a € 2 7743 a O
[IC,Oglop = DF K gR u — R, D6¢_§D K.R","Ds¢
1
_ g [ _ (DMRaWLE + D/tRa‘w/E) Kae _ DM (Rye e + Ru€Key)
+ 2R*Do Ko, + 2DR, Koy + 2D R0, K | D¢
— D, (K"R,‘D.¢) + R, D*(K.,D"¢)
+ (DR — D"R,) K., D"¢.
We now show that the first line of (154) cancels out. Using that R® % =
—RO‘#‘S6 we have
2

3D“KEQRO‘N€5D5¢

1
DM‘K’Q6 <3Ra(5u o Raﬂ(?e) D6¢ _
1 € a ¢
= DK (RO“SM ~ R} ) Do

1
= g(—DEKC,ﬂRC“S 4+ D KH R, )Ds¢p = 0

where we wrote once again D, K., = —DK,, — DqK, and observe
that the first term is symmetric in au while the second Riemann ten-
sor term in antisymmetric in au, and the second term in symmetric
in pe while the first Riemann tensor is antisymmetric in pv. Writing
D'K,"R®,, = D'K,'R,,*° = D*K,"R,,"° = ~D*K, "R, we
obtain the cancellation of the first line.
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We now simplify the remaining three lines on the RHS of (154). We
have

1 « € (0% €

RHS = 75[_ (DFR®,,,  + DPR® ) Ko
_D,“ (RVE e + RMEKGV)
+2RYDy Ko, +2DR, Koy + 2DR0, K | Dy ¢
~D,K"R,D.¢ — K"'D,R,D.¢ — K" R,D,D.¢
+R,‘D*K,,D"¢ + R, K, D'D"¢ + (DR — D'R,) K., D"¢

1 1

g (DMRaVME 4 D,uRaw/e) Kae + gD,u (Rue e 4 R;,LGKGV)

2 2 2

+R,‘DFK."” — gRo‘eDaKw — gDO‘ROfKeV — gDaRWH,EK“6

~D,K"R,” ~ K""D,R," + (DR — D'R,) K.”| D6,

This gives
1
RHS = 3 (D¥R?,,  — DFR,, " — 2DR,°) Koae
4
+(DR — S D'R,,*) Koy
2

2
SR, DK, + §R,fDMKEV} DY,

By writing D¥R%,,* = =D, R* + D‘R%, and D*R%,, = D*R*, —
D,R® we have

RHS = |- gDaRi,KM + (D“R - gD“Rﬁ‘) Koy

9 9
—ZR, DK, + §R;DMKED] D¢,

as stated.
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