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Abstract— Today’s mainstream vehicles are equipped with
Advanced Driver Assistance Feature (ADAS) known as
Adaptive Cruise Control (ACC) to allow for partial automation.
ACC uses on-board sensors to automatically adjust speed and
maintain safe following distance. Contrary to expectations that
automation could relieve congestion, ACC on vehicles powered
by internal combustion engines (ICE) could reduce capacity and
worsen congestion because its limited initial acceleration during
queue discharge could increase the average headway.
Fortunately, when ACC is paired with fully electric vehicles
(EVs), EV’s unique powertrain characteristics such as
instantaneous torque and regenerative braking could allow
ACC to adopt shorter headways and accelerate more swiftly to
maintain shorter headways during queue discharge, therefore
reverse the negative impact on capacity. This has been verified
in a series of field experiments, model calibration, and
microscopic simulations; EVs with ACC could potentially
increase capacity by 21.9% compared to their ICE counterpart.

I. INTRODUCTION

Advancements in vehicle automation and driver assistance
have presented new opportunities to reduce traffic congestion.
While full automation may not yet be production ready, partial
automation has become ubiquitous today. Using on-board
sensors such as radar, most of the new vehicles sold today can
automatically adjust the speed and maintain a safe following
distance via an advanced driver assistance systems (ADAS)
feature known as adaptive cruise control (ACC), and this will
reinvent traffic flow and operations. Meanwhile, many
researchers have paid significant attention to the traffic flow
impact of ACC-equipped vehicles powered by internal
combustion engines (ICE); recent field experiments
demonstrate that ACC amplifies minor speed fluctuations into
major disturbances further upstream and therefore is string
unstable, [1-8]. In addition, ACC may reduce capacity [9-14].
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Specifically, ACC could increase the average headway at
queue discharge because the limited initial power and torque
generated by ICE leads to delayed response during initial
acceleration [11-14]. To capture these field observations,
many have developed microscopic car following models
[15-19] and macroscopic level models such as the
fundamental diagram [20-21]. Others have investigated the
interaction between ACC and human drivers [22]. Overall,
most research findings on the traffic flow impact of ACC have
been negative. However, the combination of EVs and ACC
has been overlooked. With ever increasing EV adoption, the
unique EV powertrain characteristics could present a new
opportunity to improve capacity.

Internal combustion engine (ICE) gradually increases its
torque output as the engine speed increases. Since power is the
product of torque and engine speed, higher power on ICE
would only be attainable after reaching higher engine speeds.
But realistically, human drivers seldom operate at high engine
speeds but rather at low to medium engine speeds (3500
revolutions per minute or lower) to maintain reasonable fuel
economy and long-term powertrain reliability. Similarly,
ADAS features such as ACC are designed to maintain
moderate engine speeds and therefore could not generate
significant acceleration under normal operation. Conversely,
EVs produce very high maximum torque immediately upon
moving from a complete stop, even at low engine speeds.
Revisiting the concept that power is the product of torque and
engine speed, EVs could produce relatively higher power at
lower ranges of engine speeds as illustrated in Figure 1. As a
result, EVs yield better acceleration under normal operating
conditions. Furthermore, the electric motors apply
regenerative braking immediately upon releasing the throttle
and could yield an instantaneous deceleration of as much as
2.5 m/s? on mainstream EVs. If the mechanical brakes were
applied in addition to the regenerative braking effect from
simply releasing the throttle, EVs could easily apply a
deceleration of 0.5 m/s? without much delay. Combining the
instantaneous torque with the strong braking performance
from electric motor’s regenerative braking, EVs with ACC
could potentially adopt shorter headways and accelerate more
swiftly to maintain shorter headways when speeds fluctuate
and during queue discharge, thereby improve capacity and
reverse the previously mentioned negative impact of ACC.
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Figure 1.

This research intends to conduct field tests to quantify the
potential impact of EVs with ACC on capacity and provide a
novel and comprehensive set of trajectory level car following
data. The data could then be used to develop and calibrate
models to be integrated into simulation for scaled-up
prospective analyses on the traffic flow impact of EVs with
ADAS.

In the following section, the experiment setup will be
discussed, followed by data analysis, preliminary model
calibration and simulation analyses, and conclude with
recommendations for future work.

II. FIELD EXPERIMENTS

Field observation is the best research method because there
are currently no established simulation tools that could
accurately model ACC equipped EVs. Ideally, macroscopic
level observations of traffic flow provide the most accurate
measurement. This could be done by mounting cameras at an
overpass overlooking multiple lanes of freeway. However,
this method cannot yield any meaningful results in today’s
traffic stream that has very few ACC-equipped EVs. Instead,
car-following experiments in controlled environments using
two test vehicles, a leading vehicle as the point of reference,
and a following vehicle that is an EV equipped with ACC,
were conducted. The trajectory data could serve as benchmark
for developing car following models, which can serve as
inputs for microscopic simulation that could scale-up the
two-vehicle car following experiment to larger traffic streams.
Specifically, an ICE vehicle (Toyota Camry) with a 3,310 Ib.
curb weight and maximum power output of 203 horsepower at
6,600 rpm from a 2.5-liter naturally aspirated engine was used
as the leading vehicle in the field experiments. For the
following vehicle, we selected a mainstream EV (Hyundai
IONIQ 5) from a legacy manufacturer with a 4,414 Ib. curb
weight and an electric motor that delivers 225 horsepower and
258 Ib.-ft. of torque. These vehicles were selected to maintain
consistent power to weight ratios with the ACC-equipped ICE
vehicles (2020 Toyota Corollas) in the corresponding field
tests [11, 14]. In addition, EVs two other manufacturers were
tested — Tesla Model 3 and Polestar 2. The Tesla Model 3 has a
curb weight of 3,686 lbs and its powertrain generates 221
horsepower and 302 Ib-ft of torque. The Polestar 2, on the
other hand, has a curb weight of 4,400 1bs and an output of 231
horsepower and 243 1b-ft of torque from its powertrain. The
Polestar 2 provided an example with similar power to weight
ratio from a legacy European manufacturer (Volvo) while the
Tesla Model 3 represented an example of a high-volume EV
from a non-traditional manufacturer. Although the power to
weight ratio of the Tesla Model 3 is inconsistent and much
more favorable compared with the other EVs tested, the Tesla
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Model 3 was selected to be inclusive of the popular options in
today’s EV market. EV models from other manufacturers
were not attainable or available at the time of field tests. An
ICE vehicle (2022 Toyota Corolla) with a 2,910 1b. curb
weight and maximum power output of 139 horsepower at
6,000 rpm from a 1.8-liter naturally aspirated engine was used
as the leading vehicle in the field experiments involving the
Tesla Model 3 and Polestar 2 as the following vehicles. As
discussed earlier, this is intended to maintain consistency with
the vehicles tested in the corresponding experiments for
ACC-equipped ICE vehicles [11, 14].

Trajectory data were collected using one of the most
advanced GPS devices known as Racebox. Racebox offers a
remarkably high 25 Hz frequency and excellent 10 cm
accuracy. The GPS coordinates were used to determine
speed, acceleration, and spacing between adjacent vehicles
(via Haversine distance); headway can be determined using
spacing and speed.

A. Car-following Experiments

Initially, both vehicles were aligned in a single lane with a
distance A. Both vehicles then began to accelerate manually
up to a pre-defined free-flow speed; there were four different
free-flow speeds tested: 97 km/hr (60 mph), 89 km/hr (55
mph), 72 km/hr (45 mph), and 56 km/hr (35 mph). To avoid
safety hazards and unnecessary interruption to nearby traffic
at the test site, speeds above sustained free flow speeds above
97 km/hr (60 mph) and below 56 km/hr (35 mph) were not
considered. After reaching the pre-defined free-flow speed,
the driver of the following vehicle (EV) activated the ACC
with the desired speed set the same as the free-flow speed,
then manually accelerated slightly beyond the free-flow
speed to approach the leading vehicle closer before
re-activating ACC to allow ACC to automatically adjust the
following distance by applying minor speed adjustments.
This is a stabilization process intended to replicate the
equilibrium condition at capacity where maximum sustained
flow is observed. Beyond this steady state condition, the
experiment replicated non-steady state condition in which
vehicles approach the back of the queue and accelerate during
queue discharge; the driver of the leading vehicle applied
normal decelerations manually to a congested speed,
remained at the congested speed at 10 second or more, then
returned to the free-flow speed. The driver of the leading
vehicle accelerated manually under normal acceleration while
the following vehicle accelerated via ACC. Figure 2 displays
an example of the speed profile tested with 89 km/hr (55 mph)
free-flow speed and various congested speeds in the speed
fluctuations: 72 km/hr (45 mph), 56 km/hr (35 mph), 40
km/hr (25 mph), 24 km/hr (15 mph), and complete stop, for a
total of 5 fluctuations. The same procedures were applied to
experiments using other free-flow speeds, with the same set
of speed fluctuations for the case with 97 km/hr (60 mph)
free-flow speed, 4 fluctuations for 72 km/hr (45 mph)
free-flow speed, and 3 fluctuations for 56 km/hr (35 mph)
free-flow speed. 8 repetitions were performed for each series
of speed fluctuations, with 2 repetitions conducted for each
gap setting (short, medium, long, and extra-long). In total,
136 repetitions were performed for all gap settings,
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encompassing various free-flow speeds and speed
fluctuations with vehicles having the same desired speed.

In addition, the experiments tested cases with the
maximum desired speed of the following vehicle set 8 km/hr
(5 mph) and 16 km/hr (10 mph) higher. For each additional
desired speed combination, 4 repetitions were tested, with
one conducted for each gap setting (short, medium, long, and
extra-long). Overall, an additional 136 repetitions were
performed (68 trials for each desired speed combination).
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Figure 2.

B. Test Site

Field experiments were conducted on isolated portions of
rural public roads in Dixon, California during off-peak hours.
The remote location and lack of interference from other road
users allowed us to reproduce various traffic conditions
efficiently throughout the data collection process. Robben Rd.
was primarily used while Pedrick Rd. and Sikes Rd. were
alternate locations in case the conditions were less ideal on
Robben Rd.

III. RESULTS AND DISCUSSIONS

Example speed profile of field test.

Field experiments demonstrate that EVs with ACC can
achieve considerably shorter headways as low as 1.23 second
in idealized steady-state conditions. This is a result of EV’s
instantaneous regenerative braking that allows EVs to safely
follow the preceding vehicles more closely at higher speeds.

Unlike ACC-equipped ICE vehicles, ACC-equipped EVs
were able to maintain these shorter headways beyond the ideal
steady-state conditions because EVs enabled responsive
deceleration using regenerative braking when approaching the
back of queue and instantaneous peak torque that results in
nearly immediate acceleration once the leading vehicle began
accelerating during queue discharge. This entails that the
potentially higher capacities could be sustained even in
non-steady state conditions. In comparison, previous research
on ACC-equipped internal combustion engine (ICE) vehicles
showed that headways increased by s to 1.6s in the same
experiment [11, 14], due to the ICE’s sluggish acceleration
during queue discharge. Of course, this can be attributed to
ICE’s progressive power delivery with initially lower output
that leads to unresponsive acceleration.

To effectively showcase these findings, Figure 3 presents a
time-space diagram for both the leading and following
vehicles. As depicted in the plots, the ACC-equipped EV
follower Hyundai IONIQ 5 regained its initial minimum
headway following a speed fluctuation intended to simulate
approaching back of queue and accelerating during queue
discharge, which contrasts with the car following behavior of
conventional ACC-equipped ICE vehicles, as shown by
Figure 9 obtained from earlier field experiments [11]. Figure 4

3

illustrates that ACC-equipped ICE vehicle exhibits a very
gradual initial acceleration when returning to free-flow speeds
during queue discharge. In the end, the headway increases.
EVs produce strong initial acceleration from the instantaneous
peak torque, and as illustrated in Figure 3, the slope of the
time-space diagram is steeper for EV’s acceleration.
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Time-space diagram: Hyundai IONIQ 5 (89 to 40 to 89 km/hr,
55 to 25 to 55 mph, short gap).

Figure 3.
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Time-space diagram: Toyota Corolla (89 to 40 to 89 km/hr, 55
to 25 to 55 mph, short gap).

Figure 4.

Interestingly, Figure 3 also shows that the aggressive
regenerative braking applied by the following vehicle
(ACC-equipped EV) did not amplify the speed change from
the 97 km/hr (55 mph) free-flow speed to the 40 km/hr (25
mph) congested speed. This is certainly different from the
example shown in Figure 4, where the ACC-equipped ICE
vehicle amplified the speed change relative to the speed
fluctuations undertaken by the leading vehicles. Observations
from both field tests and trajectories in Figures 3 and 4
revealed that ACC-equipped EVs immediately applied
aggressive regenerative braking that enabled the follower to
quickly reach and maintain its desired headway as leader
began decelerating, whereas the limited braking capability
resulted in the ACC-equipped ICE vehicle (follower) to
decelerate for an extended period to speeds below that of the
leading vehicle’s final speed in the congested state to finally
reach its desired headway, and ultimately amplifies speed
change. This stark contrast could mean that ACC-equipped
EVs may improve stability of traffic, a vastly different
outcome than the string unstable car following behavior of
ACC-equipped ICE vehicles demonstrated in Figure 4 and
confirmed by various prior experiments [1-8].

Furthermore, these field experiments suggest another
interesting finding: setting higher desired speed does not affect
the car following behavior. As ACC-equipped EV accelerates
swiftly to follow the lead vehicle and maintain the minimum
headway, it would not be possible to accelerate beyond the
leading vehicle speed even if the ACC desired speed was set
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higher, due to the minimum spacing and headway constraint.
This is evident in the time space diagram shown in Figure 5.
On the other hand, ACC-equipped ICE vehicles would
accelerated beyond the speed of the leading vehicle to undergo
a “catch-up” process before decelerating again to ensure that
the minimum headway is maintained, as shown in Figure 6
[23].
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Figure 5.  Time-space diagram: Hyundai IONIQ 5 (89 to 40 to 89 km/hr,
55 to 25 to 55 mph, short gap, 8 km/hr or 5 mph higher follower desired
speed).
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Figure 6.  Time-space diagram: Toyota Corolla (89 to 40 to 89 km/hr, 55
to 25 to 55 mph, short gap, 8 km/hr or 5 mph higher follower desired speed).

For the other test vehicles, observations from the field tests
of the Polestar 2 mirrored those from the experiments using
the Hyundai IONIQ 5, exhibiting similar minimum headways
that was also sustained in non-steady state conditions. As
depicted in Figure 7, the time space diagram shows similar
trajectories when decelerating while the Polestar 2 approaches
the back of queue and when accelerating during queue
discharge, though there appears to be a slight amplification of
the speed change as opposed to the trajectories in Figure 3.
However, the results for the Tesla field tests deviated from our
expectations, as shown in Figure 8; Tesla was unable to regain
its initial minimum headway after a speed fluctuation,
exhibiting characteristics similar to those of ACC-equipped
ICE vehicles [11, 14]. It appears that the ACC equipped by
Telsa does not utilize the advantages of EV powertrain,
especially the instant peak torque that provides immediate
acceleration during queue discharge, instead, the ACC
equipped by Tesla gradually accelerates at a leisurely pace as
the leading vehicle accelerates during queue dissipation.
Similarly, the same ‘“catch-up” process associated with
ACC-equipped ICE vehicles that is shown in Figure 6 can be
found in Figure 9, when the desired speed of the follower
(Tesla Model 3) is set higher than that of the leader. As an
added note, the same string unstable behavior can be observed
when examining Tesla Model 3’s trajectory in ACC mode,
shown in both Figuire 8 and Figure 9. Finally, the field
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experiments also revealed that the ACC system equipped by
Tesla cannot maintain constant headway even at constant
speeds, and this often led to inconsistent car following
behavior that could render traffic flow modeling difficult and
unreliable.
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Time-space diagram: Polestar 2 (89 to 40 to 89 km/hr, 55 to 25
to 55 mph, short gap).

Figure 7.
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Figure 8.  Time-space diagram: Tesla Model 3 (89 to 40 to 89 km/hr, 55 to
25 to 55 mph, short gap).
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Figure 9.  Time-space diagram: Tesla Model 3 (89 to 56 to 89 km/hr, 55 to

35 to 55 mph, short gap, 8 km/hr or 5 mph higher follower desired speed).

Nevertheless, this set of experiments provides very
important initial insights on the potential benefits of electric
powertrain to vehicle automation going forward. The data
generated from these carefully planned experiments could be
used to develop and validate microscopic level models for car
following, which could be used as the underlying assumption
in a scaled-up simulation of macroscopic traffic. Ultimately,
the true capacity benefit that EVs with automation could offer
would be validated and affirmed given the appropriate models
and simulation tools developed based on empirical data.

To follow up, an asymmetric full speed range car following
model [19, 23] was developed for the ICE field tests [11, 14],
and the same model (shown in the following) was calibrated to
reproduce the car following behavior of ACC-equipped EVs:
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For constant speed or deceleration: a.,(t—1) <0

agy (1) = Ky(d(t— 1) =ty Vet —7) = L) + K5 (vy(t —7) — vy (£ — 7))
For acceleration: a. (t—1)>0

a5y (1) = Ks (1t — 1) — v, (1))

where:

a., (8): the subject (following) vehicle’s acceleration at time ¢,
K:: control gain in position difference between the leading
vehicle and the subject vehicle

K;: control gain in speed difference between the leading
vehicle and the subject vehicle during deceleration

K:: control gain in speed difference between the leading
vehicle and the subject vehicle during acceleration,

a(t); distance gap between the subject vehicle’s front bumper
and the leading vehicle’s front bumper at time ¢

tne desired time gap of the ACC controller

L: length of the leading vehicle

v(0): speed of the leading vehicle at time ¢

v.(t): speed of the subject (following) vehicle at time ¢

z: reaction delay

In comparison with the model parameters calibrated for
ACC-ICE vehicle car following [19, 23], ACC-equipped EV's
require large values of control gains to reflect EV’s unique
powertrain characteristics: strong regenerative braking and
brisk acceleration from instant peak torque. Note that this
model calibration did not include data from the Tesla Model 3
because Tesla’s car following behavior did not exhibit a
significant improvement over the ICE counterpart.
Furthermore, the model did not require to be a piece-wise
linear function; this simple linear model should suffice due to
EV’s ability to deliver constant peak power over a broader
range of speeds.

After integrating the model calibrated for the collected EV
field data into microscopic simulation software Aimsun via
microSDK, simulation experiments of a 20 km freeway
corridor (SR-99) in Sacramento, California demonstrate that
ACC-equipped ICE powered vehicles yielded a capacity of
5335 veh/hr while the ACC-equipped EVs yielded a capacity
of 6503 veh/hr, for three lanes in each direction at 100%
market penetration. This equates to an increase of 21.9% in
capacity. It is worth noting that this simulation represents a
real-world corridor that includes various complex geometries
such as cloverleaf interchanges and short weaving sections
that diminish highway capacity to values much lower than the
idealized capacities. Finally, we would like to refrain from
making any direct comparisons with the capacities generated
by human driven vehicles because the contribution of
powertrain difference on human driver behavior and the
subsequent highway capacity are largely unknown. This is
because most human driven vehicles today are still powered
by ICE and observations and empirical studies on the true
impact of electric powertrain on human driver behavior
(instead of ACC) cannot be conducted due to the low market
penetration. With that in mind, the influence of powertrain,
specifically fully electric vehicles that deliver peak
performance over a broad range of speeds, is worth future
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investigations, beyond this study’s focus on ACC-equipped
ICE powered vehicles and EVs. With increasing popularity of
fully electric vehicles, the overlooked benefit of potentially
higher capacity and reduced congestion from EVs could have
implications for future transportation planning and
operations.

IV. CONCLUSION AND RECOMMENDATIONS

Commercially available Adaptive Cruise Control (ACC)
equipped vehicles have become increasingly prevalent on
today’s mainstream vehicles. ACC is an Advanced Driver
Assistance Feature (ADAS) that allows for partial automation
by automatically adjusting speeds and maintaining safe
following distance using data collected from on-board sensors.
The increasing adoption of fully electric vehicles (EVs) has
brought new opportunities; EV’s unique operating
characteristics such as instantaneous torque and strong
regenerative braking could improve capacity and mitigate
congestion when EVs are paired with ACC.

Field experiments demonstrate that ACC equipped EVs
can achieve a minimum headway as short as 1.23 second in
steady state conditions. Moreover, deviations from the steady
state conditions do not affect the minimum headway, as shown
by an extensive set of field experiment with a wide range of
speed fluctuations to simulate approaching back of the queue
and queue discharge at and near disturbances and bottlenecks
that may arise from ingress and egress at freeway on and off
ramps, turning movements, or road geometric changes such as
gradient and curvature, etc. Finally, EVs equipped with ACC
could does not amplify speed changes further upstream, which
could imply more stable traffic stream and less abrupt rapid
propagation. Overall, ACC-equipped EVs could outperform
ICE vehicles with ACC, as well as human drivers, in terms of
capacity. Interestingly, our initial findings suggest this only
applies to EVs from legacy manufacturers, whereas EVs from
emerging manufacturers such as Tesla deliver car following
dynamics akin to an ICE vehicle with ACC.

We recommend future experiments to capture the effect of
lane change on ACC-quipped EV’s car following behavior, as
the receiving lane change car following behavior may be
distinct from what had been observed in the car following
experiments presented in this paper. In addition, future studies
should conduct field tests in naturalistic environments where
traffic conditions are more stochastic, especially in mixed
environments with a combination of both ICE vehicles and
EVs, especially ICE vehicles following EVs to determine the
potential impact of a mixed traffic stream with vastly different
powertrain characteristics. Finally, given the valuable data
presented in this field study, future work should develop car
following models unique to ACC-equipped EVs to capture the
microscopic level car following behavior, and this would
establish an important foundation for developing simulation
platforms to perform prospective analyses at large scale; our
preliminary model calibration and simulation experiment
demonstrate that EVs could increase freeway capacity by
21.9% compared to its ICE counterpart, isolating the effect of
human vs. automated driving behavior. This would address
many unknowns related to ACC-equipped EVs, examples
include macroscopic models such as the fundamental diagram
and the effectiveness of implementing dedicated lane for fully
electric vehicles operating in ACC mode, and all of which will
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prepare future researchers and practitioners for new
opportunities in traffic operations and management in the era
of increasingly automated and electrified vehicles. Especially
in the near term, when the market penetration of
ACC-equipped EVs is relatively small and traffic engineers
will need rely heavily on effective traffic management
strategies such as preferential lanes or dynamic tolls to fully
take advantage of the capacity benefits offered by EVs
equipped with ACC. Most of all, the effect of powertrain
characteristics on traffic flow is often overlooked and this
study will shed light on a new but very important perspective
for traffic flow and operations in the coming years, as
electrification of vehicle fleet becomes more common. We
would finally suggest studying human driver behavior when
operating EVs, in addition to EVs equipped with ACC.

V. APPENDIX

The field data known as MicroSIM ACC can be found in
the following: https:/github.com/microSIM-ACC/EV. The
data organization is shown in Figure 10. For instance, a trial
with long gap setting, +0 desired speed, free flow speed of
45mph and speed fluctuation down to 15 mph will be found in
the path “Long\0_desired\45\15”

Gap setting
(Short,
Medium, Long,
XLong)

Desired Speed
(+0, +5, +10
mph)

Free Flow
Speed
(60, 55, 45, 35
mph)

Speed
fluctuation

Figure 10. Field data folder organization.

A snapshot of few entries of a trial from field experiments is
shown below.
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