Limited effects of xylem anatomy on embolism resistance in cycad leaves

Guo-Feng Jiang^{1,*}, Bo-Tao Qin¹, Yu-Kun Pang¹, Lan-Li Qin^{1,2}, Luciano Pereira³, Adam B. $Roddy^4$

- ¹Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and
- Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation,
- and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,
- College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, PR
- China
- ²College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi 546300, PR
- China
- ³Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- ⁴Institute of Environment, Department of Biological Sciences, Florida International
- University, Miami FL 33199 USA

* Corresponding author: Guo-Feng Jiang (gfjiang@gxu.edu.cn)

- **ORCID**
- GFJ: https://orcid.org/0000-0002-3221-8608
- ABR: https://orcid.org/0000-0002-4423-8729

Word counts:

Total word count (excluding	6413	No. of figures:	8 (all in colour)
summary, references and			
legends):			
Summary:	192	No. of Tables:	6
Introduction:	1564	No. of Supporting	1
		Information files:	
Materials and Methods:	2149		
Results:	912		
Discussion:	1788		

Summary

30 31 32

33

34

• Drought-induced xylem embolism is a primary cause of plant mortality. Although ~70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked

35 36 37

38

39

• We quantified the vulnerability to drought-induced embolism, pressure-volume curves, *in situ* water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads.

40 41 42

43

44 45

46

47

• Compared to other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than non-cycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads.

48 49 50

51 52

53

 Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits—particularly vessels—may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.

54 55

56

Keywords: Xylem cavitation, hydraulics, drought induced embolism resistance, tracheid bordered pits, PV curve, cycads, xylem anatomy, water stress

58

59

57

Introduction

- 60 Cycads have long been considered a relict of a once more diverse and globally distributed
- 61 group (Mamay, 1969; Brenner et al., 2003). Cycads likely originated on the Laurasian
- 62 landmass during the Carboniferous and expanded on Gondwana during the Jurassic (Coiro et
- 63 *al.*, 2023). Despite exhibiting little gross morphological change over the last 330 million
- 64 years, molecular evidence suggests that modern cycads recently and rapidly diversified
- during the Neogene, a period marked by increasing aridity (Nagalingum et al., 2011;
- 66 Condamine et al., 2015; Coiro et al., 2023). Current cycad diversity encompasses 367 extant
- 67 species in ten genera belonging to two families (Cycadaceae and Zamiaceae) (Calonje et al.,
- 68 2022), of which 68% are threatened with extinction (IUCN, 2022). Extant cycads occur
- 69 across a wide range of habitats, including both mesic and xeric habitats, forest understories,
- and open habitats (Norstog & Nicholls, 1997; Hill et al., 2004; Zhang et al., 2015). This

```
71
      diversity in habitat and their diversification during a period of global aridification suggests
      that hydraulic physiology and drought tolerance may have been important in shaping cycad
 72
 73
      ecological niches. Given the current threats of climate change and human disturbance, there
 74
      exists increasing urgency to understand and conserve cycads.
 75
 76
      Globally, forests are threatened by rising temperatures and droughts, which push plants past
 77
      their physiological thresholds, leading to hydraulic failure (Choat et al., 2012; Adams et al.,
 78
      2017; Brodribb et al., 2020; Tavares et al., 2023). As water availability declines, leaves lose
 79
      turgor pressure and air embolisms can spread through the xylem (Tyree & Sperry, 1989;
 80
      Brodersen et al., 2019). Resistance to embolism formation and spread, therefore, has been an
 81
      important component of xylem evolution and diversification into ever-drier habitats
 82
      (Pittermann et al., 2010; Pittermann et al., 2012; Larter et al., 2017; Skelton et al., 2021;
 83
      Bouda et al., 2022). Embolism resistance is typically quantified from vulnerability curves
 84
      (VCs) that depict the relationship between water potential and the percent decline in
 85
      hydraulic capacity, with critical thresholds considered to be key indicators of drought
 86
      tolerance (e.g. P<sub>12</sub>, P<sub>50</sub>, P<sub>88</sub> that represent water potentials at 12%, 50%, 88% declines in
 87
      hydraulic capacity or the percentage of air discharged from the xylem). In addition to
 88
      exhibiting differences in the vulnerability to embolism spread, plants can also exhibit
 89
      differences in how closely they operate to these critical embolism thresholds, termed
      hydraulic safety margins (HSMs) (Choat et al., 2018; Brodribb et al., 2020; Tavares et al.,
 90
 91
      2023). HSMs are calculated as the difference between critical water potentials, such as
      between the dry season water potential (P<sub>min</sub>) and P<sub>50</sub> (HSM<sub>50</sub>) or P<sub>88</sub> (HSM<sub>88</sub>. Thus, HSMs can
 92
 93
      contextualize plant water potentials relative to a species' vulnerability to embolism (Powers
 94
      et al., 2020; Skelton et al., 2021; Tavares et al., 2023).
 95
      Embolism resistance and hydraulic efficiency are thought to be linked to xylem anatomy.
 96
 97
      Wider, longer conduits that conduct water more efficiently than narrower, shorter ones are
 98
      thought to have fewer conduit end walls where hydraulic resistance can increase tension and
 99
      drive embolism spread, suggesting a mechanistic tradeoff between safety and efficiency
100
      (Hacke et al., 2006; Christman et al., 2012; Tyree & Zimmermann, 2013; Guet et al., 2015;
      Gleason et al., 2016; Levionnois et al., 2021). However, embolism resistance may not be
101
```

directly related to conduit diameter (Volaire et al., 2018; Trueba et al., 2019; Avila et al.,

2022; Jiang et al., 2022; Lens et al., 2022). As a result, the safety-efficiency tradeoff may be

102

```
data aggregation (Isasa et al., 2023). However, the relationship between conduit diameter and
105
106
      vulnerability is complex and may depend on the 3D topology of the conduit network, the
107
      proportions of vessels and tracheids, and nano-scale xylem traits (Lens et al., 2023; Olson et
108
      al., 2023; Pratt et al., 2023).
109
110
      Interconduit pits, which connect adjacent conduits, have also been thought to influence
111
      embolism spread through the xylem network. Interconduit pits may function either as safety
      valves that close under tension and prevent embolism spread or as pores that optimize
112
113
      hydraulic conductance of the xylem network by reducing hydraulic resistance between
      adjacent conduits (Kaack et al., 2021). Pits may represent ~50% of the total plant hydraulic
114
      resistance (Sperry et al., 2005; Hacke et al., 2006; Choat et al., 2008; Jacobsen & Pratt, 2018;
115
116
      Kaack et al., 2019). Thus, pit ultrastructure may influence both safety and efficiency by
      limiting embolism spread during drought while also allowing for water flow between
117
      adjacent conduits (Pittermann et al., 2005; Choat et al., 2008; Tyree & Zimmermann, 2013).
118
      Functionally important pit traits include the thickness of the interconduit pit membranes
119
120
      leading to narrower pit membrane pores in flowering plants (Lens et al., 2011), and the
      frequency of inter-conduit pits (Hargrave et al., 1994). Thicker pit membranes reduce the
121
122
      likelihood of an air bubble traversing the pit membrane to spread into adjacent conduits. Pit
123
      frequency may influence embolism vulnerability, and there may be a tradeoff between having
124
      numerous pits in order to promote hydraulic integration and having few pits to prevent
      embolism spread (Hargrave et al., 1994; Choat et al., 2004; Wheeler et al., 2005; Hacke et
125
126
      al., 2006). Thicker pit membranes in flowering plants (and gymnosperm species without a
127
      torus-margo pit membrane) are often associated with greater embolism resistance (Lens et al.,
128
      2011; Li et al., 2016; Doria et al., 2019; Trueba et al., 2019; Kaack et al., 2021; Levionnois
129
      et al., 2021), and embolism-resistant species may sometimes exhibit narrower and more
130
      elliptically shaped pits and pit apertures and shallower pit chambers (Hacke & Jansen, 2009;
131
      Lens et al., 2011; Scholz et al., 2013). Taken together, these relationships between pit traits
132
      and embolism vulnerability suggest that plants with lower pit density, larger pit membrane
      area, larger pit aperture area, and less elliptical pits may be associated with higher hydraulic
133
134
      conductivity and lower embolism resistance (Pittermann et al., 2010; Lens et al., 2011;
135
      Brodersen et al., 2014; Jacobsen et al., 2016). Yet, the mechanistic link among anatomical
```

weak (Gleason et al., 2016) or depend on the range of trait values covered and the level of

```
136
      traits, hydraulic efficiency, and embolism vulnerability is complex, with no data for cycads
      (Gleason et al., 2016; Lens et al., 2022).
137
138
139
      Interestingly, although axial water transport occurs predominantly via tracheids in cycads,
140
      some cycad species also have vessels, which are thought to have been one of the key
141
      innovations allowing angiosperms to transport higher fluxes of water (Jacobsen, 2021). In
142
      theory, species with a higher proportion of tracheids would be more resistant to embolism
143
      spread than species with a higher percentage of vessels (Pratt et al., 2023), though data for
144
      cycads is lacking. Moreover, cycad species tend to have homogenous pit membranes similar
145
      to those of angiosperms (Schneider et al., 2007; Jacobsen, 2021; Pang et al., 2023) and ferns
146
      (Carlquist & Schneider, 2007), but different from the torus-margo pits of most non-cycad
147
      gymnosperms (Pittermann et al., 2005; Carlquist & Schneider, 2007; Choat et al., 2008).
148
      While increasing torus is associated with higher embolism resistance among conifers
149
      (Bouche et al., 2014), pit size and tracheid size also influence embolism resistance (Song et
150
      al., 2022). Yet, some pit traits of cycads differ from those of other vascular plant lineages and
151
      are linked to native climate (Pang et al., 2023). For example, cycads have interconduit pit
152
      membranes larger than those of ferns and angiosperms but smaller than those of non-cycad
153
      gymnosperms, and cycads native to mesic habitats have larger pit membranes and lower pit
154
      density (D_p) than xeric species (Pang et al., 2023). These patterns suggest that pit traits may
155
      influence embolism vulnerability, which may, in turn, influence drought tolerance and habitat
156
      affinities.
157
      Cycads are an excellent system in which to test xylem structure-function relationships
158
159
      because congeneric species are closely related, recently diverged, and exhibit high diversity
160
      in overall morphology (Stevenson et al., 1996; Zhang et al., 2015), habitat affinities
161
      (Whitelock, 2003), and leaf structure (Zhang et al., 2015; Zhang et al., 2017; Coiro et al.,
162
      2020; Glos et al., 2022; Coiro et al., 2023). The unique morphology and smaller, less
163
      permeable pit membranes among cycads (Zhang et al., 2015; Tomlinson et al., 2018;
164
      Jacobsen, 2021; Pang et al., 2023) suggest cycads may exhibit unique relationships among
      anatomical traits and embolism vulnerability. Additionally, the two cycad families differ
165
166
      ecologically in ways that may reflect differences in embolism vulnerability: Cycadaceae
      diversified earlier and occur in wetter habitats than Zamiaceae (Jiang et al., 2016; Meng et
167
168
      al., 2021; Coiro et al., 2023). However, embolism vulnerability has not before been
```

169 quantified for cycads. Therefore, we asked: (1) How do embolism resistance and HSMs vary among cycad clades compared to other plant lineages (angiosperms, pteridophytes, and non-170 cycad gymnosperms)? (2) Are tracheid and vessel traits correlated with embolism 171 172 vulnerability and HSMs in cycad leaves? (3) Do pit traits of tracheids or vessels correlate with hydraulic safety? To address these questions, we measured embolism vulnerability and 173 used light microscopy (LM), scanning electron microscopy (SEM), and transmission electron 174 microscopy (TEM) to quantify pit and tracheid traits among 20 cycad species (Fig. 1, Table 175 1). We also measured dry season midday water potentials to estimate the minimum seasonal 176 water potential (P_{min}) and pressure-volume (PV) curves to calculate hydraulic safety margins 177 (HSMs). We predicted that the long-lived, durable leaves of cycads would be highly resistant 178 179 to drought-induced embolism and that their variation in their vulnerability to embolism would 180 be linked to anatomical traits, such as interconduit pit frequency and thickness, which have 181 been shown to influence vulnerability to embolism spread in other plant groups.

182

183

184

Materials and Methods

Plant material

- 185 Three to five healthy individuals from each of ten Cycadaceae species and ten Zamiaceae
- species, representing five of the ten cycad genera (Table 1), were sampled from the Nanning
- Botanical Garden, Nanning, Guanxi Province, China (22°47′12.93″, 108°23′3.30″). Plants
- were watered approximately weekly depending on precipitation. On each plant, one sun-
- exposed rachis with intact pinnae was cut in the evening or early morning, sealed in a black
- 190 plastic bag with wet tissues, then transported to the laboratory within an hour. Rachises were
- 191 recut under water and allowed to rehydrate while covered with a black plastic bag for ~8
- 192 hours.

193

Measurement of vulnerability curves

- 194 The pneumatic method was used to estimate embolism vulnerability on rachises with intact
- pinnae for all 20 species (Pereira et al., 2016), based on our previous validation of the
- pneumatic VCs with the bench-drying method for three cycad species (Qin et al., 2022). We
- 197 used the Pneumatron device for automated measurements of air discharge (AD) using a
- reservoir volume of 3.5 ml (Pereira et al., 2020). The reservoir pressure was monitored by the
- Pneumatron every 0.5 sec for one minute per measurement, with ten-minute intervals
- 200 between measurements.

202 The basipetal end of each fully hydrated rachis was cut in air with a sharp razor blade to clear obstructions for air flow and then connected to the Pneumatron (Pereira et al., 2016; Pereira 203 204 et al., 2020). Because most species exude mucilage that clogs tubing, we recut the rachis to 205 remove accumulated mucilage periodically until no more mucilage was seen at the cut end. 206 During VC measurements, rachises with leaves were slowly dehydrated in a dark, 207 temperature-controlled room, allowing water potentials to remain equilibrated throughout the 208 measurements (Sperry et al., 1988). The duration of the drydown for each sample varied from 209 8 to 30 days depending on the species. Periodically during this period, xylem water potentials of pinnae were measured using a Scholander pressure chamber (0.01MPa resolution; PMS 210 Instrument Company, Albany, OR, USA). Prior to excising pinnae for water potential 211 212 measurement, pinnae were covered with aluminum foil and sealed in a plastic bag for at least 213 1 hour, so that they could equilibrate with the rachis water potential. Immediately after 214 excising the pinna, the cut surface on the rachis was sealed with a quick-drying adhesive to 215 prevent leakage during subsequent AD measurements (Pereira et al., 2016). For each sample, 216 we made 9-10 water potential measurements throughout the duration of the AD 217 measurements. AD measurements were stopped when the rachises and pinnae had dehydrated 218 and no more air was discharged in at least 60 consecutive measurements. To match water

221

222

223

224

225

219

220

Most of the vulnerability curves exhibited two plateaus, with the first plateau representing empty mucilage canals and the second plateau representing fully embolised conduits. The percent of AD at each measurement (PAD_i) into the reservoir was calculated as (Pereira *et al.*, 2016):

potential to AD, we assumed water potential declined linearly between consecutive water

potential measurements, allowing interpolation of water potential at every time point.

226

227
$$PAD_i = 100 * (AD_i - AD_{min}) / (AD_{max} - AD_{min})$$

228

229

230

231

232

where AD_i is the amount of air discharged for measurement i, AD_{min} is the minimum amount of air discharged from the fully hydrated branch, and AD_{max} is the maximum amount of air discharged from the branch when completely desiccated. PAD was plotted against water potential and a logistic function used to estimate critical water potentials (Pammenter & Vander Willigen, 1998):

PAD = $100 / (1 + exp ((S_p / 25)(P_x - P_{50})))$

235236

239

241

where S_p (%PAD MPa⁻¹) is the slope of the curve. From this equation, the P_{12} , P_{50} , P_{88} were

calculated for PAD of 12%, 50%, 88%, respectively. Because measurement of gas discharge

before Ψ_{tlp} is affected by open conduits, we followed recent protocols to exclude water

240 potentials above Ψ_{tlp} (Miranda *et al.*, 2023).

Light microscopy

- All measurements were made on one fully expanded, sun-exposed rachis with pinnae
- sampled from each individual. Cross-sections of the rachis were made ~30 cm from the
- rachis tip using a sliding microtome (RM225, Leica Inc.) at a thickness of 30-60 µm. Sections
- 245 were bleached for 10 min, rinsed in water, stained with Safranin O (0.5% w/v in water) for 5
- 246 min and Alcian Blue (1% w/v in 3% acetic acid) for 20 secs 1 min, then mounted on glass
- slides. Images of rachis cross-sections were taken at 5x and 10x, with fields of view of
- 248 approximately 3.99 mm² and 0.89 mm², respectively, using a compound microscope outfitted
- 249 with a digital camera (DM3000, Leica Inc.). About 50 80 images were taken for each rachis
- and stitched together using Leica Application Suite (v.4.11; Switzerland). We measured
- number of conduits (N), conduits density (T_d) , long/short diameter of conduits, and double
- 252 conduit wall thickness (T_w) using ImageJ (Rueden *et al.*, 2017).
- To determine tracheid length (L_t) , we cut longitudinal rachis segments (~5 cm in length)
- 254 from the same rachis sampled for cross-sections into ~5-mm thick blocks and incubated them
- at 70°C in a 1:1 solution of H₂O₂ (30%) and acetic acid (100%) until all pigments had been
- 256 removed. Blocks were removed from this solution, placed in a petri dish with water for 3-5
- 257 minutes, and flattened with forceps, allowing tracheids to be stained. All samples were
- stained with Alcian Blue (1 % w/v in 3 % acetic acid) for 10 min, washed in water, mounted
- on slides, and imaged at 5x. About 10-25 images were taken for each rachis sample and
- 260 stitched together. L_t of ~50 tracheids per species was measured from the stitched images
- 261 using ImageJ (Fig. 1).

262 Pit characteristics from scanning electron microscopy (SEM) and transmission electron

- 263 microscopy (TEM)
- 264 Freshly collected rachises were cut into 1-3 cm long pieces and placed in 100 ml 5% FAA
- 265 (90:5:5 ratio of 70% ethanol, acetic acid, formaldehyde) at room temperature (25°C) to
- 266 prevent expansion or shrinkage. Longitudinal sections ~1-cm long were made with a sliding
- 267 microtome at a thickness of 2-3 mm, fixed to aluminum sample holders with carbon double-

sided tape (Nisshin EM Co., Ltd.), air-dried for 12 h at room temperature, and coated with gold using a sputter coater (Cressington 108Auto) for 40 secs at 0.08 mA under an argon atmosphere to produce a 20-nm-thick gold layer. A scanning electron microscope (FEI Quattro S) with a voltage of 2 kV was used to visualize inter-tracheid pits according to standard protocols (Jansen *et al.*, 2009; Lens *et al.*, 2011). Mean values for all pit traits (Table 2) were based on at least 50 measurements from SEM images of various inter-tracheid walls per plant.

Because vessels have been found in cycads (Huang & Zhang, 1999; Huang *et al.*, 2017; Jacobsen, 2021), we examined maceration slides of all 20 species to identify vessel elements. Because it is difficult to distinguish between tracheids and vessels in cross-section in cycads, we estimated the proportions of tracheids and vessels from longitudinal sections of vascular bundles imaged with SEM (Fig. 1). For a given area of interest (AOI), all vessel elements and tracheids were measured for area, diameter and length. The percentage per image area of vessels or tracheids was calculated as vessels (or tracheids) % = vessel areas (or tracheid areas) / area of AOI x 100%.

For TEM measurements, ~1-cm long segments from the freshly collected rachis were cut into 1x2-mm blocks. These blocks were fixed within 10 min after sampling in 500 μl of buffered glutaraldehyde (25% glutaraldehyde 3 ml, 0.2 mol sodium phosphate buffer 15 ml, ddH₂O 12 ml) for one night under a vacuum (~50 kPa). Samples were cleaned for 15 min under vacuum with 0.1 mol NaH₂PO₄ buffer three times, transferred to a 1% KMnO₄ solution for 1-h under vacuum, then cleaned again under vacuum for 15-min in 0.1 mol NaH₂PO₄ buffer three times. Samples were then moved through an ethanol dehydration series with ~10 min per step (30%, 50%, 70%, 90%, and 100%), followed by another 20-min dehydration in 100% acetone 100%. Samples were then moved through an acetone (100%): Epon resin (Pelco; Epon resin: Dodecenyl succinic anhydride: Methyl Nadic 8:3:5) dilution series: 5-h in a 3:1 acetone:Epon resin, 5-h in 1:1 acetone:Epon resin, and 12-h in 1:3 acetone:Epon resin. Samples were then transferred to 100% Epon resin (Pelco; Eponate 12 resin: Dodecenyl succinic anhydride: Methyl Nadic 8:3:5) for 12-h and heated at 37°C, 45°C, and 60°C for 12-h, 12-h, and 48-h, respectively, to polymerize the resin. All these steps occurred under the same vacuum conditions.

301	With an ultra-microtome (Leica Ultracut EMUC7/FC7, Leica Inc.) 50-90 nm thick sections
302	were cut and placed on copper grids (Athena, Plano GmbH, Wetzlar, Germany). Samples
303	were stained in the dark with 1% uranyl acetate and 1% lead citrate for 10 min. We used a
304	transmission electron microscope (HT-7700, Hitachi, Japan) at an acceleration voltage of 80
305	kV and 18 mA to obtain digital images based on at least one cross-section of a rachis per
306	individual and three individuals per species. Pit membrane thickness (T_{pm}) and pit chamber
307	depth $(D_{\rm pc})$ were measured on ~50 interconduit pit membranes obtained from 3-5 sections per
308	species using ImageJ.
309	Hydraulic safety margins (HSMs)
310	Midday leaf water potentials (P_{min}) were measured between 12:30–14:00 h in the peak of the
311	dry season on consecutive sunny days and repeated for all species in years 2020, 2021, and
312	2022. For each species, 3-5 sun exposed rachises from different individuals were excised and
313	sealed in humidified plastic bags ~2 hr to allow water potential equilibration. Leaf water
314	potential was measured by inserting one pinna into a Scholander-style pressure chamber. We
315	took P_{min} (mean values of three individuals) to be the most negative of the three
316	measurements during the three years. Hydraulic safety margins were calculated from P_{min} and
316 317	were calculated from P_{min} and VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} .
317	VCs as HSM ₅₀ = P_{min} - P_{50} and HSM ₈₈ = P_{min} - P_{88} .
317 318	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves
317318319	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or
317 318 319 320	$VCs \ as \ HSM_{50} = P_{min} - P_{50} \ and \ HSM_{88} = P_{min} - P_{88}.$ $\textbf{Pressure-volume curves}$ Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to
317 318 319 320 321	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of
317 318 319 320 321 322	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of leaf pinnae were always close to -0.2 MPa. Pressure–volume curves were constructed for
317 318 319 320 321 322 323	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of leaf pinnae were always close to -0.2 MPa. Pressure–volume curves were constructed for each sample by repeatedly measuring bulk water potential using a pressure chamber and
317 318 319 320 321 322 323 324	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of leaf pinnae were always close to -0.2 MPa. Pressure–volume curves were constructed for each sample by repeatedly measuring bulk water potential using a pressure chamber and weighing the sample mass ($\pm 0.0001g$, model ML204T; Mettler Toledo) to determine the
317 318 319 320 321 322 323 324 325	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of leaf pinnae were always close to -0.2 MPa. Pressure–volume curves were constructed for each sample by repeatedly measuring bulk water potential using a pressure chamber and weighing the sample mass ($\pm 0.0001g$, model ML204T; Mettler Toledo) to determine the relationship between water potential and water content (Scholander <i>et al.</i> , 1965; Sack &
317 318 319 320 321 322 323 324 325 326	VCs as $HSM_{50} = P_{min}$ - P_{50} and $HSM_{88} = P_{min}$ - P_{88} . Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of leaf pinnae were always close to -0.2 MPa. Pressure–volume curves were constructed for each sample by repeatedly measuring bulk water potential using a pressure chamber and weighing the sample mass ($\pm 0.0001g$, model ML204T; Mettler Toledo) to determine the relationship between water potential and water content (Scholander <i>et al.</i> , 1965; Sack & Pasquet-Kok, 2011; Roddy <i>et al.</i> , 2019; Jiang <i>et al.</i> , 2022). Prior to each water potential
317 318 319 320 321 322 323 324 325 326 327	VCs as $HSM_{50} = P_{min} - P_{50}$ and $HSM_{88} = P_{min} - P_{88}$. Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of leaf pinnae were always close to -0.2 MPa. Pressure–volume curves were constructed for each sample by repeatedly measuring bulk water potential using a pressure chamber and weighing the sample mass (± 0.0001 g, model ML204T; Mettler Toledo) to determine the relationship between water potential and water content (Scholander <i>et al.</i> , 1965; Sack & Pasquet-Kok, 2011; Roddy <i>et al.</i> , 2019; Jiang <i>et al.</i> , 2022). Prior to each water potential measurement, samples were equilibrated in humidified plastic bags for ~20 min. The pressure
317 318 319 320 321 322 323 324 325 326 327 328	VCs as $HSM_{50} = P_{min} - P_{50}$ and $HSM_{88} = P_{min} - P_{88}$. Pressure–volume curves Shoots with leaf pinnae were collected from at least three individuals per species at night or at predawn and transported back to the laboratory, then recut underwater and allowed to rehydrate for at least 6-h while covered with a black plastic bag. Initial water potentials of leaf pinnae were always close to -0.2 MPa. Pressure–volume curves were constructed for each sample by repeatedly measuring bulk water potential using a pressure chamber and weighing the sample mass ($\pm 0.0001g$, model ML204T; Mettler Toledo) to determine the relationship between water potential and water content (Scholander <i>et al.</i> , 1965; Sack & Pasquet-Kok, 2011; Roddy <i>et al.</i> , 2019; Jiang <i>et al.</i> , 2022). Prior to each water potential measurement, samples were equilibrated in humidified plastic bags for ~20 min. The pressure chamber was kept humidified with wet paper towels to prevent evaporation during

absolute capacitance (C_T) , water potential at turgor loss point (Ψ_{tlp}) , and water content at the

turgor loss point (RWC_{tlp}), as well as leaf mass per area (LMA) (Table 2).

Data analysis

334

- All statistical analyses were performed using R (version 4.1.3, R Development Core Team).
- We used linear regression and standard major axis (SMA) regression (R package 'smatr') to
- determine the relationships between traits (Warton et al., 2012), and the statistical tests were
- considered significant at P < 0.05. Principal component analysis (PCA) was carried out using
- 339 the 'vegan' package. Mean trait values were z-scaled and centered prior to calculating
- 340 principal components, and we removed strongly correlated traits with similar functional
- 341 implications to prevent having more traits than the number of taxa. Correlations among P₁₂,
- P₅₀, P₈₈, HSM₅₀, HSM₈₈, and the PC1 and PC2 scores were tested with Pearson correlations.
- 343 Differences among cycads and other plant lineages were analyzed using one-way ANOVA,
- 344 followed by Tukey post-hoc tests. Student's t-tests were used to determine differences in
- traits between Cycadaceae and Zamiaceae. Published data for P₁₂, P₅₀, P₈₈, HSM₅₀, HSM₈₈, D_h,
- and L_t of other vascular plant groups were obtained from https://xylemfunctionaltraits.org/.
- 347 Because only one species of non-cycad gymnosperm had data for leaves, this comparison
- 348 necessarily was between primary xylem in cycad rachises and primary and secondary xylem
- 349 in woody species of gymnosperms and angiosperms, which included stems and leaves. Data
- 350 for most of ferns were from (Suissa & Friedman, 2021) and (Pittermann et al., 2011) using
- 351 WebPlotDigitizer.

352

- 353 In addition to PCA, we also used Canonical Correlation Analysis (CCA) to determine
- 354 whether there were correlations between suites of traits. For CCA, we used four groups of
- traits: pressure-volume traits (SWC, C_T , Ψ_{tlp} , RWC_{tlp}), vessel traits (vessel proportion, vessel
- diameter, hydraulic weighted vessel diameter D_v , L_v , vessel F_{pf} , vessel A_{pit} , vessel R_{pit} , vessel
- 357 D_p , and T_{pm}), tracheid traits (tracheid proportion, A_{pit} , A_{pa} , A_p , F_{pf} , F_{pa} , R_{pit} , R_{pa} , D_p , T_{pm} , D_t ,
- 358 CWR, L_t), and vulnerability traits (P_{min} , P_{12} , P_{50} , P_{88}). We used log-transformed traits and the R
- 359 packages 'CCA' and 'CCP' to run analyses and test for significant relationships using the
- 360 Wilks' Lambda approximation of the F-statistic.
- 362 To account for the statistical non-independence of species with shared evolutionary history,
- 363 we incorporated phylogenetic covariance into our regression analyses. We pruned the
- 364 phylogenetic tree from (Coiro et al., 2023) to include only our 20 species. We calculated

365 phylogenetically corrected generalized least squares regressions for pairwise trait combinations using the R packages "ape" (Paradis & Schliep, 2018), "caper" (Orme et al., 366 367 2012), and "phytools" (Revell, 2012) with functions of "read.tree", "comparative.data", "nlme", and "gls" with "corBrownian" correlation structure. 368 369 370 **Results** 371 372 Hydraulic safety of cycads 373 Most of the pneumatic non-adjusted VCs were sigmoid in shape (Fig. S1), some species exhibited substantial variation in VCs among individuals (e.g. E. manikensis, C. 374 segmentified, Z. furfuracea) (Fig. 2) after adjusting them for gas discharge prior to turgor 375 loss. Adjusting curves had little effect on P₁₂, P₅₀, and P₈₈ (Fig. 2), though adjustment shifted 376 the P_{12} significantly from -1.51 \pm 0.12 in the non-adjusted curves to -1.95 \pm 0.12 MPa (P <377 0.05) in the adjusted curves. Across all 20 species, mean values of P₁₂, P₅₀, and P₈₈ were -1.95 378 \pm 0.12 MPa, -2.26 \pm 0.15 MPa, -2.57 \pm 0.21 MPa, respectively (Table 3). P₁₂ of cycads was 379 380 similar to angiosperms, but more negative than pteridophytes, and non-cycad gymnosperms had the most negative P_{12} (Table 3). P_{50} of cycads was similar to angiosperms and 381 382 pteridophytes, while non-cycad gymnosperms had the most negative values (Fig. 3a; Table 383

3). No differences in P₈₈ were found between cycads and pteridophytes, but angiosperms and

non-cycad gymnosperms had more negative P₈₈ than cycads (Fig. 3b; Table 3). Hydraulic

safety margins (HSM₅₀) of cycads were similar to pteridophytes and angiosperms, but non-

cycad gymnosperms had the highest values (Fig. S2; Table 3). HSM₈₈ of cycads were also

similar to pteridophytes and angiosperms, non-cycad gymnosperms had the highest HSM₈₈

and pteridophytes the lowest values (Fig. S2; Table 3). P₁₂, P₅₀, and P₈₈ were significantly 388

more negative among Cycadaceae than among Zamiaceae, but these differences were not

390 reflected in HSM₅₀ and HSM₈₈ because P_{min} was also more negative among Cycadaceae than

391 Zamiaceae (Table S1).

384

385

386

387

389

392

394

393 Vessels were found in all 20 cycad species (Fig. 1; S3), but the proportions of vessels were

relatively low compared to proportion of tracheids (Table 4), and vessel diameter (D_v) was

395 similar as tracheid diameter (D_t) , L_t was much longer than vessel element (L_v) (Table 4).

396 Tracheid diameters (D_t) of cycads were significantly narrower than those of angiosperms, 397 similar to pteridophytes and non-cycad gymnosperms (Fig. S4a; Table 3), but cycads had 398 significantly longer L_t than non-cycad gymnosperms (Fig. S4b; Table 3), similar to ferns. 399 400 **Trait-by-trait relationships** 401 Overall, there were few significant correlations between anatomy and physiology among 402 cycads for the traits measured here. No pairwise correlations between metrics of vulnerability 403 to embolism (P_{12} , P_{50} , P_{88}) and either tracheid and vessel traits (D_t , L_t , CWR, D_v , L_v) or pit membrane thickness (T_{pm}) and depth of the pit chamber (D_{pc}) were significant (Fig. 4; Fig. 404 S5), even after accounting for shared evolutionary history (Table S2, S3). P₁₂, P₅₀, P₈₈, and 405 406 HSM₅₀ also showed no correlations to pit density (D_p) , pit membrane shape (R_{pit}) of vessels or tracheids, except that P_{50} and P_{88} were negatively correlated with R_{pit} of tracheids (Fig. S6). 407 408 However, the relationship between HSM₅₀ and tracheid D_p became significant after 409 accounting for shared evolutionary history (Table S2). Only the longest pit aperture axis (D_{pal}) and pit aperture shape (R_{pa}) of tracheids were correlated with metrics of vulnerability 410 (Fig. S7; Table S2, S3), though these became non-significant after accounting for shared 411 412 evolutionary history (Table S2). P₁₂, P₅₀, P₈₈, HSM₅₀, and HSM₈₈ showed no correlations to 413 vessel or tracheid proportions, except that tracheid proportion was positively correlated with 414 HSM₅₀ (Fig. 5), though this correlation was weakened after accounting for shared evolutionary history (P = 0.0506) (Table S2). However, P_{12} , P_{50} , P_{88} , HSM_{50} , and HSM_{88} were 415 416 significantly correlated with pit membrane fraction (F_{pf}) and pit membrane size (A_{pit}) of 417 vessels but not of tracheids (Fig. 6; Table S2, S3). 418 419 The two cycad families displayed significant differences in average trait values. Zamiaceae 420 had significantly shorter D_{pms} smaller A_{pit} , and lower F_{pf} of vessels than Cycadaceae, as well as 421 longer D_{pal} , higher F_{pa} , more elliptical pit (R_{pit}) and pit aperture (R_{pa}) shapes, thinner pit 422 membranes (T_{pm}) , and higher density of conduits than Cycadaceae (Table S4). Turgor loss 423 points (Ψ_{tlp}) were significantly less negative in Zamiaceae than in Cycadaceae, and 424 Zamiaceae had higher LMA (Table S5). Interestingly, Ψ_{tlp} was significantly correlated with 425 P_{min}, P₁₂, P₅₀, and P₈₈, even after accounting for shared evolutionary history (Fig. 7; Table S2). 426 427 Multivariate analyses 428 CCA revealed a significant correlation between the suite of embolism vulnerability traits and 429 the suite of vessel traits. The first two dimensions of the CCA were significant, with

```
430 canonical correlations of 0.96 (\lambda = 0.003, F = 2.93, df = 36, P = 0.002) and 0.91 (\lambda = 0.038, F
```

- = 2.06, df = 24, P = 0.04). The first canonical dimension was most strongly correlated with
- vessel D_p (0.47) and T_{pm} (0.37) versus vessel proportion (-0.44), D_v (-0.44), and vessel R_{pit} (-
- 433 0.29). The second canonical dimension was most strongly influenced by vessel $F_{\rm pf}$ (0.72) and
- vessel A_{pit} (0.57) versus vessel diameter (-0.13), vessel proportion (-0.13), and vessel D_p (-
- 435 0.13) (Fig. 8, S8; Table 5-6). No other canonical correlations (e.g. tracheid traits vs.
- vulnerability, tracheid traits vs. PV traits, vessel traits vs. PV traits, PV traits vs.
- vulnerability) between suites of traits were significant.

- 439 PCA using species' z-scaled and centered trait values for the 22 pit, tracheid, vessel, and PV
- traits (Table 2) revealed that the first two components explained 21.91% and 15. 58% of the
- 441 total variation, respectively (Fig. S9). The first PC was driven mainly by both tracheid and
- vessel traits of R_{pit} , R_{pa} , F_{pf} , D_{pc} , T_{pm} , A_{pit} , D_{p} , and RWC_{tlp}, LMA, Ψ_{tlp} (Fig. S9). The second PC
- 443 was most strongly associated with A_{pa} , T_{pm} , D_t , CWR, and L_v (Fig. S9). Vulnerability traits P_{12} ,
- 444 P₅₀, P₈₈ HSM₅₀, and HSM₈₈ showed no correlations with PC2 scores (Table S6). On the other
- hand, HSM_{50} and HSM_{88} were positively associated with PC1 scores, driven primarily by $R_{\rm pit}$
- and R_{pa} of tracheids, T_{pm} and D_{pc} , and F_{pf} , A_{pit} of vessels, as well as LMA and Ψ_{tlp} (Fig.S9;
- 447 Table S6).

448

449

Discussion

- 450 Despite their ecological and evolutionary importance, cycads have been largely overlooked in
- 451 studies of plant water relations and hydraulics. Cycads started to prosper during the
- 452 Carboniferous (Coiro et al., 2023), a period of global drying that culminated in terrestrial
- 453 biodiversity loss during the Carboniferous rainforest collapse (Sahney et al., 2010). Such
- dramatic climate change is often a strong agent of selection, such that lineages diversifying
- during these time periods often show signs of adaptive changes in morphology, anatomy, and
- 456 physiology (Crane et al., 1995; Pittermann et al., 2012; Condamine et al., 2015; Simonin &
- 457 Roddy, 2018). Furthermore, extant cycads occur naturally across a range of habitats in
- 458 tropical and subtropical regions (Calonje et al., 2022). These aspects of cycad ecology and
- evolutionary history would suggest that cycads would be drought-tolerant. Yet, our results
- show that cycads are more vulnerable to drought-induced embolism than most other
- 461 gymnosperms.

464 Given the diversification history and ecology of extant cycads, we had predicted cycads 465 would be at least as resistant to embolism as other gymnosperms. However, our results 466 showed that cycads had more vulnerable P₅₀ than non-cycad gymnosperms (Fig. 3; Table 3). 467 This pattern could be due to our comparison of cycad rachises to gymnosperm stems, even 468 though cycad leaves are long-lived, or to cycads' relying on drought resistance traits other than only embolism resistance. For example, cycads have large, pachycaulous stems, large 469 rachises with mucilage, and thick leaflets, all of which may allow for high water and 470 471 carbohydrate storage that can prolong survival and delay water potential declines during protracted droughts (Marler, 2023). However, HSMs of cycads were as low as in other major 472 473 plant groups, indicating that cycad water potentials frequently approach turgor loss and 474 embolism spread, increasing their risk of hydraulic failure (Choat et al., 2012; Brodribb et al., 475 2020). These low HSMs in cycads occurred even in plants that were regularly watered, 476 suggesting that cycads may always operate near thresholds of turgor loss and embolism 477 spread (Fig. 7). Because high HSM₅₀ can be a strong predictor of biomass accumulation (Tavares et al., 2023), low HSM₅₀ among cycads may play a role in their slow rates of growth 478 479 and biomass accumulation. The low margin of turgor loss, high vulnerability to embolism 480 spread, and low hydraulic safety margins together suggest that cycads have a limited range of 481 operational water potentials and that physiological drought may quickly impede 482 photosynthetic carbon uptake. 483 484 Many other cycad traits are consistent with a physiological strategy characterized by low 485 rates of metabolism. Cycads exhibit high LMA and low SWC and hydraulic capacitance (C_T) , both of which are on the low end for angiosperm leaves (Table S5) (Roddy et al., 2019; An et 486 487 al., 2023), all trait values consistent with low rates of photosynthetic metabolism (Wright et 488 al., 2004; Zhang et al., 2015; Wang et al., 2022; Nadal et al., 2023). Yet, they benefit from 489 symbiotic nitrogen-fixing cyanobacteria (Kipp et al., 2023), which may elevate their water 490 use efficiency and potentially compensate for the limiting effects of low SWC on metabolic 491 rates (Wang et al., 2022). While high hydraulic capacitance can forestall water potential 492 declines (Smith-Martin et al., 2022), particularly in species with high vulnerability to embolism spread, cycads were both highly vulnerable to embolism and had low leaf 493 494 hydraulic capacitance. Yet, in our bench-drying experiments to measure embolism 495 vulnerability, shoots required 8-30 days to desiccate, suggesting that they may have low rates

Embolism resistance, safety margins, and water relations of cycads

496 of residual water loss, which is thought to be an important drought tolerance trait (Duursma et al., 2019; Roddy et al., 2023). Together, these lines of evidence suggest that limiting water 497 loss through low rates of gas exchange and low residual conductance and high water storage 498 stem capacitance as Joshua tree (Simpson, 1975) may be important to cycad drought 499 resistance and may compensate for xylem that is vulnerable to embolism spread. 500 501 There were distinct differences in physiological traits between the two cycad families (Tables 502 503 S1, and S4-5). That Cycadaceae had more negative P_{min} and Ψ_{tlp} than Zamiaceae suggests that these two families may be diverging along the isohydric-anisohydric axis (Tardieu & 504 505 Simonneau, 1998; McDowell et al., 2008) (Table S1, S5; Fig. 7). That Zamiaceae may be 506 more isohydric than Cycadaceae is, perhaps, surprising given that Zamiaceae tend to occur in drier habitats than Cycadaceae (Meng et al., 2021). Notably, the species we sampled include 507 508 some of the more mesic species of *Encephalartos* and do not include *Dioon*, which is thought to be drought-tolerant, suggesting that the differences between families observed here may be 509 due, in part, to a sampling bias. More evidence is needed to further characterize these 510 hydraulic strategies and how they may be linked to climate preferences. More generally, 511 512 conifer species differing in their degree of isohydry vs. anisohydry exhibit different stomatal 513 behaviors mediated by abscisic acid concentrations (Brodribb et al., 2014), but work on 514 stomatal physiology in cycads has been limited (Haworth et al., 2011). 515 516 Correlations between embolism resistance and anatomy 517 A variety of xylem traits have been posited as determinants of embolism resistance, including 518 conduit dimensions, xylem network structure, frequency of interconduits pits, and the 519 ultrastructure of interconduit pits and their membranes (Kaack et al., 2021; Lens et al., 2022; 520 Pereira et al., 2023). Our measurements suggest that vessel but not tracheid was likely linked to vulnerability to embolism spread among cycads. Xylem conduit dimensions have long 521 522 been thought to influence both hydraulic efficiency and safety (Hargrave et al., 1994; 523 Christman et al., 2012; Guet et al., 2015; Levionnois et al., 2021). Cycads exhibited wider conduit and longer tracheids (L_t) than other non-cycad gymnosperms (Fig. S4; Table 3), both 524 525 of which would lead to higher hydraulic conductivity per conduit and greater embolism 526 vulnerability. However, embolism resistance among cycads was unrelated to conduit traits, 527 including tracheid and vessel dimensions and tracheid cell wall reinforcement (Fig. 4-5), consistent with data for ferns (Pittermann et al., 2011), but in contrast to data for conifer 528

```
529
      stems (Song et al., 2022). Though larger xylem conduits have been thought to confer greater
      embolism vulnerability (Pittermann et al., 2006; Gleason et al., 2016), many studies have
530
531
      failed to find relationships between conduit dimensions and embolism vulnerability in a
      variety of taxa, now including cycads (Volaire et al., 2018; Trueba et al., 2019; Avila et al.,
532
533
      2022; Jiang et al., 2022). Notably, for cycads studied here, we investigated the relationships
      in primary xylem which might be different from the secondary xylem in other plant taxa.
534
535
      Cycads had longer and wider tracheids than other gymnosperms as ferns (Pittermann et al.,
536
      2011), which would increase their hydraulic efficiency and potentially allow for higher rates
537
      of water transport and competitive ability.
538
      The frequency of interconduit pits may also influence embolism spread. Wider conduits
539
      would have more interconduit pits because they have more surface area even if the frequency
540
      of pits on the conduit surface were constant. Since embolism spread needs only one pit, more
541
542
      pits would increase the likelihood of embolism spread between adjacent conduits (Hargrave
      et al., 1994; Choat et al., 2004). Similarly, a higher pit frequency on the conduit surface (i.e.
543
      higher F_{\rm nf}) would also increase the total number of pits on a conduit and the likelihood of
544
545
      embolism spread (Wheeler et al., 2005; Hacke et al., 2006). However, cycads exhibited no
546
      significant relationships between embolism resistance and tracheid traits (tracheid diameter
547
      and length, interconduit pit area A_{pit}, density, and fraction F_{pf}) (Fig. S6, S10; Table S2).
      However, higher F_{pf} and A_{pit} of vessels were associated higher embolism resistance (Fig.6;
548
      Table S3), notably in contrast to predictions (Lens et al., 2023; Pratt et al., 2023).
549
550
551
      The structure of pit membranes may also influence embolism resistance. Because pit
552
      membranes are composed of layers of crossing fibers, an air bubble must be pulled through
      the pores of the pit membrane in order to move between connected conduits. Thin pit
553
554
      membranes are more likely to have larger pores than thicker pit membranes, providing an
555
      explanation for why pit membrane thickness is a good predictor of embolism resistance (Lens
      et al., 2011; Doria et al., 2019; Trueba et al., 2019; Kaack et al., 2021; Levionnois et al.,
556
557
      2021). However, among cycads there was no correlation between pit membrane thickness and
558
      embolism vulnerability (Fig. S5). Rather, tracheid pit shape and pit aperture shape were
      correlated with P<sub>50</sub> and P<sub>88</sub> (Figs.S6-7; Table S2) and have been shown to also correlate with
559
560
      native climate among cycads (Pang et al., 2023).
```

These results suggest that embolism resistance in cycads may be due to complex relationships among anatomical traits. The CCA results revealed that xylem vessel traits and vulnerability were related in the first two dimensions, with higher $T_{\rm pm}$, vessel $D_{\rm p}$, vessel $P_{\rm pf}$, and vessel $A_{\rm pit}$ being most strongly associated with more negative $P_{\rm min}$, P_{12} , P_{50} , and P_{88} (Fig. 8, S8; Tables 5-6). That $T_{\rm pm}$ and vessel $D_{\rm p}$ emerged as important traits in the CCA but exhibited no significant pairwise relationship with any critical water potential highlights that relationships among anatomical traits may be more important than any single trait. Though some angiosperms exhibit strong relationships between a single anatomical trait and embolism vulnerability (Lens *et al.*, 2011; Li *et al.*, 2016; Doria *et al.*, 2019; Trueba *et al.*, 2019; Kaack *et al.*, 2021; Levionnois *et al.*, 2021), our results highlight that embolism vulnerability is likely influenced by complex interactions among multiple traits (Pittermann *et al.*, 2021; Lens *et al.*, 2023). If changes in one trait are easier to evolve than changes in multiple traits, then our results suggest that cycads may be less adaptable to climate change than angiosperms. Alternatively, if small changes to many traits are easier to evolve than large changes to a single trait, then cycad physiology may be more adaptable than that of angiosperms.

578 Conclusion

Cycads provide an excellent opportunity to understand the evolutionary history of xylem structure-function relationships. All cycads studied here had vessels and were consistently more vulnerable to embolism with narrower hydraulic safety margins than other gymnosperms. Furthermore, many of the xylem traits thought to influence embolism resistance in other plant groups revealed no significant correlations with embolism resistance among cycads. Rather, the anatomical determinants of embolism resistance among cycads may depend on the many interactions between these anatomical traits, especially vessel traits. Differences in embolism resistance and xylem anatomy between the two extant cycad families suggest species in these two families may employ divergent physiological strategies to cope with drought. Although cycads have declined in dominance since their peak prior to the Cretaceous angiosperm revolution, their rapid and recent diversification in the face of aridification suggests that physiological and anatomical evolution may have been an important axis of evolution (Crane *et al.*, 1995; Condamine *et al.*, 2015; Simonin & Roddy, 2018). Understanding these ecophysiological strategies and tolerance may prove crucial in

593	conserving the \sim 70% of extant cycads that are currently endangered and in predicting their
594	responses to future climate change.
595	
596	Acknowledgements
597 598 599 600 601 602 603 604 605	We thank the Nanning Botanical Garden, for providing access to plants and help in field sampling. We thank F. Lens, J. Pittermann, and two anonymous reviewers for useful comments on the manuscript. We also gratefully thank the core facility center of State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources for providing technical supports. This work was supported by grants from the Natural Science Foundation of Guangxi Province (Key Program 2022GXNSFDA035059), and the Bama county program for talents in science and technology, Guangxi, China (20210020, 20220011) to G-FJ., and the Scientific Research Project of Qingxiu Mountain Management Committee (QXS2021-05). ABR was supported by US National Science Foundation grant number IOS-2243971.
607	Author contributions
608 609 610 611	GF.J. conceived the ideas and designed the study. GF.J., BT.Q., YK.P., and LL.Q. collected the data. GF.J., BT.Q., YK.P., LL.Q., L.P., and A.B. R. analyzed the data. GF.J. wrote the manuscript, and all authors reviewed and revised each draft before giving approval for submission of the final version.
613	Competing interests
614	None declared.
615	
616	Data availability
617	All data supporting the findings of this study are available within the paper and within its
618	supplementary data published online. Reuse of the data is permitted after obtaining
619	permission from the corresponding author.
620	

621 References

- 622 Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhausser SM, Tissue DT, Huxman TE, 623 Hudson PJ, Franz TE, Allen CD, et al. 2017. A multi-species synthesis of physiological mechanisms 624 in drought-induced tree mortality. *Nature Ecology & Evolution* **1**(9): 1285-1291.
- 625 An YD, Roddy AB, Zhang TH, Jiang GF. 2023. Hydraulic differences between flowers and leaves are driven primarily by pressure-volume traits and water loss. Frontiers in Plant Science 14: 1130724. 626
- Avila RT, Kane CN, Batz TA, Trabi C, Damatta FM, Jansen S, McAdam SAM. 2022. The relative area of 627 628 vessels in xylem correlates with stem embolism resistance within and between genera. Tree physiology.
- Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S. 2014. A broad survey of 629 630 hydraulic and mechanical safety in the xylem of conifers. J Exp Bot 65(15): 4419-4431.
- Bouda M, Huggett BA, Prats KA, Wason JW, Wilson JP, Brodersen CR. 2022. Hydraulic failure as a 631 632 primary driver of xylem network evolution in early vascular plants. Science 378(6620): 642-646.

634

635 636

637

638

639 640

641 642

645

646

649

650

651

652 653

656

657

658 659

660

661

662

665

668

- Brenner ED, Stevenson DW, Twigg RW. 2003. Cycads: evolutionary innovations and the role of plantderived neurotoxins. Trends Plant Sci 8(9): 446-452.
- Brodersen C, Choat B, Jansen S, Rico C, Pittermann J. 2014. Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit Membranes. *Plant physiology* 165.
- Brodersen CR, Roddy AB, Wason JW, McElrone AJ. 2019. Functional Status of Xylem Through Time. Annual Review of Plant Biology 70: 407-433.
- Brodribb TJ, McAdam SA, Jordan GJ, Martins SC. 2014. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc Natl Acad Sci U S A 111(40): 14489-14493.
- Brodribb TJ, Powers J, Cochard H, Choat B. 2020. Hanging by a thread? Forests and drought. Science **368**(6488): 261-266.
- 643 Calonje M, Stevenson DW, Osborne R. 2022. The World List of Cycads, online edition [Internet]. Available 644 from: http://www.cycadlist.org. .
 - Carlquist S, Schneider EL. 2007. Tracheary elements in ferns: New techniques, observations, and concepts. American Fern Journal 97(4): 199-211.
- 647 Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers of tree mortality under drought. Nature 558: 531-539. 648
 - Choat B, Cobb AR, Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole □ plant hydraulic function. *New Phytologist* **177**(3): 608-626.
 - Choat B. Jansen S. Brodribb TJ, Cochard H. Delzon S. Bhaskar R. Bucci SJ, Feild TS, Gleason SM, Hacke UG, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491(7426): 752-755.
- 654 Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. 2004. Changes in pit membrane porosity due to 655 deflection and stretching: the role of vestured pits. J Exp Bot 55(402): 1569-1575.
 - Christman MA, Sperry JS, Smith DD. 2012. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193(3): 713-720.
 - Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. 2023. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. New Phytol.
 - Coiro M, Jelmini N, Neuenschwander H, Calonje MA, Vovides AP, Mickle JE, Lumaga MRB. 2020. Evolutionary Signal of Leaflet Anatomy in the Zamiaceae. International Journal of Plant Sciences **181**(7): 697-715.
- 663 Condamine FL, Nagalingum NS, Marshall CR, Morlon H. 2015. Origin and diversification of living cycads: 664 a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evolutionary Biology 15: 65.
- Crane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. *Nature* 666 667
 - Doria LC, Meijs C, Podadera DS, Del Arco M, Smets E, Delzon S, Lens F. 2019. Embolism resistance in stems of herbaceous Brassicaceae and Asteraceae is linked to differences in woodiness and precipitation. Ann Bot 124(1): 1-14.
- 671 Duursma RA, Blackman CJ, Lopéz R, Martin-StPaul NK, Cochard H, Medlyn BE. 2019. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New 672 673 Phytologist 221(2): 693-705.
- 674 Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, 675 Cao KF. 2016. Weak tradeoff between xylem safety and xylem specific hydraulic efficiency across 676 the world's woody plant species. New Phytologist 209(1): 123-136.
- Glos RAE, Salzman S, Calonje M, Vovides AP, Coiro M, Gandolfo MA, Specht CD. 2022. Leaflet 677 Anatomical Diversity in Zamia (Cycadales: Zamiaceae) Shows Little Correlation with Phylogeny and 678 679 Climate. The Botanical Review.

- 680 **Guet J, Fichot R, Ledee C, Laurans F, Cochard H, Delzon S, Bastien C, Brignolas F. 2015.** Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in *Populus nigra* L. *J Exp Bot* **66**(15): 4643-4652.
- Hacke UG, Jansen S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. *New Phytologist* 182(3): 675-686.
- Hacke UG, Sperry JS, Wheeler JK, Castro L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. *Tree physiology* 26(6): 689-701.
- Hargrave KR, Kolb KJ, Ewers FW, Davis SD. 1994. Conduit diameter and drought □ induced embolism in Salvia mellifera Greene (Labiatae). *New Phytologist* 126(4): 695-705.
- Haworth M, Fitzgerald A, McElwain JC. 2011. Cycads show no stomatal-density and index response to elevated carbon dioxide and subambient oxygen. *Australian journal of botany* **59**(7): 630-639.
- 691 Hill KD, Stevenson DW, Osborne R. 2004. The world list of cycads. The Botanical Review 70(2): 274-298.
- Huang Y, Han Y, Wei L, Wang J. 2017. Comparative Studies of Tracheary Element Structure of Some
 Gymnosperms with Angiosperms. *American Journal of Plant Sciences* 08: 959-984.
- Huang YY, Zhang HD. 1999. The brief report on first discovery of vessel in cycads. *Journal of Guangxi* Agricultural and Biological Science 18(2): 161-162.

697 698

699 700

701

702

703

704 705

706

707

708

709

710

711 712

713

714 715

716 717

718

719 720

- Isasa E, Link RM, Jansen S, Tezeh FR, Kaack L, Sarmento Cabral J, Schuldt B. 2023. Addressing controversies in the xylem embolism resistance–vessel diameter relationship. *New Phytologist* 238(1): 283-296
- IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-1. < https://www.iucnredlist.org>.
- **Jacobsen AL. 2021.** Diversity in conduit and pit structure among extant gymnosperm taxa. *American Journal of Botany* **108**(4): 559-570.
- **Jacobsen AL, Pratt RB. 2018.** Going with the flow: Structural determinants of vascular tissue transport efficiency and safety. *Plant Cell Environment* **41**(12): 2715-2717.
- **Jacobsen AL, Tobin MF, Toschi HS, Percolla MI, Pratt RB. 2016.** Structural determinants of increased susceptibility to dehydration-induced cavitation in post-fire resprouting chaparral shrubs. *Plant Cell and Environment* **39**(11): 2473-2485.
- **Jansen S, Choat B, Pletsers A. 2009.** Morphological Variation of Intervessel Pit Membranes and Implications to Xylem Function in Angiosperms. *American Journal of Botany* **96**(2): 409-419.
- **Jiang GF, Hinsinger DD, Strijk JS. 2016.** Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads. *Scientific Reports* **6**: 31473-31482.
- **Jiang GF, Li SY, Li YC, Roddy AB. 2022.** Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. *Plant physiology* **189**(4): 2159-2174.
- Kaack L, Altaner CM, Carmesin C, Diaz A, Holler M, Kranz C, Neusser G, Odstrcil M, Schenk HJ, Schmidt V, et al. 2019. Function and three-dimensional structure of intervessel pit membranes in angiosperms: a review. *IAWA Journal* 40(4): 673-702.
- Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi CL, Zhang Y, Schenk HJ, Schuldt B, et al. 2021. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. *New Phytologist* 230(5): 1829-1843.
- Kipp MA, Stüeken EE, Strömberg CAE, Brightly WH, Arbour VM, Erdei B, Hill RS, Johnson KR, Kvaček J, McElwain JC, et al. 2023. Nitrogen isotopes reveal independent origins of N2-fixing symbiosis in extant cycad lineages. *Nature Ecology & Evolution*.
- Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S. 2017. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. *New Phytologist* 215(1): 97.
- Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. 2022. Functional xylem characteristics associated with drought-induced embolism in angiosperms. *New Phytologist* n/a(n/a).
- Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. 2023. Comparative anatomy vs
 mechanistic understanding: how to interpret the diameter-vulnerability link. *IAWA Journal* 44(3-4):
 368-380.
- Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. *New Phytologist* 190(3): 709-723.
- Levionnois S, Jansen S, Wandji RT, Beauchene J, Ziegler C, Coste S, Stahl C, Delzon S, Authier L,
 Heuret P. 2021. Linking drought-induced xylem embolism resistance to wood anatomical traits in
 Neotropical trees. New Phytologist 229(3): 1453-1466.
- Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ, Schmitt M, Schuldt B, Jansen S. 2016.
 Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem.
 IAWA Journal 37(2): 152-171.
- 738 Mamay SH. 1969. Cycads: Fossil evidence of late paleozoic origin. *Science* 164(3877): 295-296.
- 739 Marler T. 2023. Stem Carbohydrate Richness in Two Cycad Species. *HortScience* 58: 808-809.

- 740 McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, 741 Williams DG. 2008. Mechanisms of plant survival and mortality during drought: why do some plants 742 survive while others succumb to drought? New Phytologist 178(4): 719-739.
- 743 Meng Y-Y, Xiang W, Wen Y, Huang D-L, Cao K-F, Zhu S-D. 2021. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species. Ann Bot. 744
- Miranda MT, Pereira L, Pires GS, Guan X, Silva LM, Kreinert S, Machado EC, Jansen S, Ribeiro RV. 745 2023. Xylem sap residue in cut-open conduits can affect gas discharge in pneumatic experiments. 746 bioRxiv: 2023.2008.2008.552466. 747
- Nadal M, Clemente-Moreno MJ, Perera-Castro AV, Roig-Oliver M, Onoda Y, Gulías J, Flexas J. 2023. 748 749 Incorporating pressure–volume traits into the leaf economics spectrum. *Ecology letters* **26**(4): 549-562.
- Nagalingum N, Marshall C, Quental T, Rai H, Little D, Mathews S. 2011. Recent synchronous radiation of a 750 751 living fossil. Science **334**(6057): 796-799.
- 752 Norstog KJ, Nicholls TJ, 1997, Biology of the cycads. Ithaca, New York: Cornell University Press,

755

756

757

758

761

762

766 767

768

769

773

774 775

776

777 778

779

780

781

786

787

788

789

- Olson ME, Pace MR, Anfodillo T. 2023. The vulnerability to drought-induced embolism-conduit diameter link: breaching the anatomy-physiology divide. IAWA Journal 44(3-4): 335-354.
- Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. 2012. caper: Comparative Analyses of Phylogenetics and Evolution in R.
- Pang YK, Qin LL, Zhang TH, Lei JY, Zhang Y, Roddy AB, Jiang GF. 2023. Coordination of intertracheid pit traits and climate effects among cycads. Physiol Plant 175(3): e13924.
- 759 Pammenter NW, Vander Willigen C. 1998. A mathematical and statistical analysis of the curves illustrating 760 vulnerability of xylem to cavitation. *Tree physiology* **18**(8-9): 589-593.
 - Paradis E, Schliep KP. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35 3: 526-528.
- 763 Pereira L, Bittencourt PRL, Oliveira RS, Junior MBM, Barros FV, Ribeiro RV, Mazzafera P. 2016. Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics. 764 765 New Phytologist 211(1): 357-370.
 - Pereira L, Bittencourt PRL, Pacheco VS, Miranda MT, Zhang Y, Oliveira RS, Groenendijk P, Machado EC, Tyree MT, Jansen S, et al. 2020. The Pneumatron: An automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant Cell and Environment **43**(1): 131-142.
- 770 Pereira L. Kaack L. Guan X. Silva LM, Miranda MT, Pires GS, Ribeiro RV, Schenk HJ, Jansen S. 2023. Angiosperms follow a convex trade-off to optimize hydraulic safety and efficiency. New Phytol. 771 772
 - Pittermann J, Baer A, Sang Y. 2021. Primary tissues may affect estimates of cavitation resistance in ferns. New Phytologist 231(1): 285-296.
 - Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE. 2010. The Relationships between Xylem Safety and Hydraulic Efficiency in the Cupressaceae: The Evolution of Pit Membrane Form and Function. Plant physiology 153(4): 1919-1931.
 - Pittermann J, Limm E, Rico C, Christman MA. 2011. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytologist 192(2): 449-461.
 - Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH. 2005. Torus-Margo pits help conifers compete with angiosperms. Science 310(5756): 1924-1924.
- Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH. 2006. Mechanical reinforcement of 782 tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell and Environment 29(8): 783 1618-1628.
- 784 Pittermann J, Stuart S, Dawson T, Moreau A. 2012. Cenozoic climate change shaped the evolutionary 785 ecophysiology of the Cupressaceae conifers. Proc Natl Acad Sci U S A 109: 9647-9652.
 - Powers JS, Vargas-G G, Brodribb TJ, Schwartz NB, Perez-Aviles D, Smith-Martin CM, Becknell JM, Aureli F, Blanco R, Calderón-Morales E, et al. 2020. A catastrophic tropical drought kills hydraulically vulnerable tree species. Global change biology 26: 3122-3133.
 - Pratt RB, Castro V, Jacobsen AL. 2023. The functional significance of tracheids co-occurring with vessels in xylem of Eudicots suggests a role in embolism tolerance. IAWA Journal.
- Qin L, Pang Y, Zhang T, An Y, Jiang G-F. 2022. Contrasting hydraulic safety margins of three cycads. 791 Guihaia 42(9): 1602-1611. 792
- 793 Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in 794 Ecology and Evolution 3(2): 217-223.
- 795 Roddy AB, Guilliams CM, Fine PVA, Mambelli S, Dawson TE, Simonin KA. 2023. Flowers are leakier than 796 leaves but cheaper to build. New Phytol 239(6): 2076-2082.
- Roddy AB, Jiang GF, Cao KF, Simonin KA, Brodersen CR. 2019. Hydraulic traits are more diverse in 797 798 flowers than in leaves. New Phytologist 223(1): 193-203.

- Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. *Bmc Bioinformatics* 18(1): 529.
- Sack L, Pasquet-Kok J. 2011. Leaf pressure-volume curve parameters. *PrometheusWiki website:*http://prometheuswiki. publish. csiro. au/tikiindex. php: accessed 1 May 2014.

- **Sahney S, Benton MJ, Falcon-Lang HJ. 2010.** Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica. *Geology* **38**(12): 1079-1082.
- Schneider EL, Carlquist S, Chemnick JG. 2007. Scanning electron microscope studies of cycad tracheids.
 South African Journal of Botany 73(4): 512-517.
 - Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT. 1965. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. *Science* 148(3668): 339-346.
 - Scholz A, Rabaey D, Stein A, Cochard H, Smets E, Jansen S. 2013. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. *Tree physiology* 33(7): 684-694.
- **Simonin KA, Roddy AB. 2018.** Genome downsizing, physiological novelty, and the global dominance of flowering plants. *Plos Biology* **16**(1): e2003706.
- **Simpson P. 1975.** Anatomy and morphology of the Joshua Tree (Yucca brevifolia): an arborescent monocotyledon.
 - Skelton RP, Anderegg LDL, Diaz J, Kling MM, Papper P, Lamarque LJ, Delzon S, Dawson TE, Ackerly DD. 2021. Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. *Proceedings of the National Academy of Sciences* 118(10): e2008987118.
 - Smith-Martin CM, Muscarella R, Ankori-Karlinsky R, Delzon S, Farrar SL, Salva-Sauri M, Thompson J, Zimmerman JK, Uriarte M. 2022. Hurricanes increase tropical forest vulnerability to drought. *New Phytologist* 235(3): 1005-1017.
 - Song Y, Poorter L, Horsting A, Delzon S, Sterck F. 2022. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. *J Exp Bot* 73(3): 1033-1048.
 - **Sperry JS, Donnelly JR, Tyree MT. 1988.** A method for measuring hydraulic conductivity and embolism in xylem. *Plant, cell & environment* **11**(1): 35-40.
- Sperry JS, Hacke UG, Wheeler JK. 2005. Comparative analysis of end wall resistivity in xylem conduits.
 Plant Cell and Environment 28(4): 456-465.
- 829 Stevenson DW, Norstog KJ, Molsen DV. 1996. Midribs of cycad pinnae. Brittonia 48(1): 67-74.
 - Suissa JS, Friedman WE. 2021. From cells to stems: the effects of primary vascular construction on drought-induced embolism in fern rhizomes. *New Phytologist*.
 - **Tardieu F, Simonneau T. 1998.** Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. *J Exp Bot*(49): 419-432.
 - Tavares JV, Oliveira RS, Mencuccini M, Signori-Müller C, Pereira L, Diniz FC, Gilpin M, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, et al. 2023. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. *Nature* 617(7959): 111-117.
 - **Tomlinson PB, Ricciardi A, Huggett BA. 2018.** Cracking the omega code: hydraulic architecture of the cycad leaf axis. *Ann Bot* **121**(3): 483-488.
 - **Trueba S, Delzon S, Isnard S, Lens F. 2019.** Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. *J Exp Bot*.
 - **Tyree M, Zimmermann M. 2013.** *Xylem structure and the ascent of sap.* New York: Springer Science & Business Media.
- Tyree MT, Sperry JS. 1989. Vulnerability of xylem cavitation and embolism. *Annual Review of Plant Physiology & Plant Molecular Biology* 40(1): 19-38.
 Volaire F, Lens F, Cochard H, Xu H, Chacon-Doria L, Bristiel P, Balachowski J, Rowe N, Violle O
 - Volaire F, Lens F, Cochard H, Xu H, Chacon-Doria L, Bristiel P, Balachowski J, Rowe N, Violle C, Picon-Cochard C. 2018. Embolism and mechanical resistances play a key role in dehydration tolerance of a perennial grass *Dactylis glomerata* L. *Ann Bot* 122(2): 325-336.
- Wang Z, Huang H, Wang H, Peñuelas J, Sardans J, Niinemets Ü, Niklas KJ, Li Y, Xie J, Wright IJ. 2022.
 Leaf water content contributes to global leaf trait relationships. *Nature communications* 13(1): 5525.
- Warton DI, Duursma RA, Falster DS, Taskinen S. 2012. smatr 3 an R package for estimation and inference about allometric lines. *Methods in Ecology and Evolution* 3(2): 257-259.
- Wheeler JK, Sperry JS, Hacke UG, Hoang N. 2005. Inter-vessel pitting and cavitation in woody *Rosaceae* and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. *Plant, cell & environment* 28(6): 800-812.
- 856 Whitelock L 2003. The Cycads.In Landry G. Brittonia. Portland, OR, USA: Timber Press. 90-90.

- Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, 857 858 Cornelissen JHC, Diemer M, et al. 2004. The worldwide leaf economics spectrum. Nature 859 **428**(6985): 821-827.
- 860 Zhang YJ, Sack L, Cao K-F, Wei X-M, Li N. 2017. Speed versus endurance tradeoff in plants: Leaves with
- higher photosynthetic rates show stronger seasonal declines. Scientific Reports 7: 42085. 861
- Zhang YJ, Cao KF, Sack L, Li N, Wei XM, Goldstein G. 2015. Extending the generality of leaf economic 862 863 design principles in the cycads, an ancient lineage. New Phytologist 206(2): 817-829.

865

866

Supporting Information

- 867 Additional Supporting Information may be found online in the Supporting Information
- 868 section at the end of the article.
- 869 Fig. S1. Percentage of air discharged as a function of xylem water potential for 20 cycad
- 870 species (a-t).
- Fig. S2. Hydraulic safety margins of HSM_{50} (Minimum seasonal water potential $-P_{50}$) and 871
- HSM_{88} (Minimum seasonal water potential $-P_{50}$) values of different plant lineages. 872
- 873 Fig. S3. Macerations from rachises of four exampled cycads of Cycas segmentifida, Cycas
- 874 sexsaminifera, Encephalartos concinnus, Cycas revoluta.
- 875 **Fig. S4.** Tracheid diameter (D_t) and length (L_t) of different plant lineages.
- Fig. S5. Relationships among embolism resistance traits (P_{12}, P_{50}, P_{88}) and interconduit pit 876
- 877 traits.
- 878 Fig. S6. Relationships among embolism resistance traits (P₁₂, P₅₀, P₈₈, HSM₅₀) and vessel or
- 879 tracheid pit traits.
- Fig. S7. Relationships among embolism resistance traits (P₁₂, P₅₀, P₈₈, HSM₅₀) and tracheids 880
- 881 pit aperture traits.
- Fig. S8. Canonical Correlation Analysis (CCA) of dimension 1 and 2 for vessel traits and 882
- 883 safety traits (P_{min} , P_{12} , P_{50} , P_{88}).
- Fig. S9. Principal component analysis (PCA) of selected 22 traits. 884
- **Fig. S10.** Relationships among tracheid/vessel diameter (D_t or D_v) and length (L_t or L_v) and pit 885
- 886 traits.

- 888 **Table S1** Differences of hydraulic traits between Cycadaceae and Zamiaceae.
- 889 **Table S2** Detailed results of phylogenetically corrected generalized least squares (PGLS)
- 890 regressions for pairwise tracheid trait.

- **Table S3** Detailed results of phylogenetically corrected generalized least squares (PGLS) regressions for pairwise vessel trait. **Table S4** Differences of conduit and pit traits between Cycadaceae and Zamiaceae. Table S5 Differences in pinna traits between Cycadaceae and Zamiaceae. Table S6 Correlations among hydraulic safety traits and PC1 and PC2 scores from principal component analysis (PCA) analysis of the 20 cycad species. Figure legends
 - **Fig. 1.** Anatomical images of selected cycad species. Light microscopy images depict cross-section of rachises (a) *Cycas sexsaminifera*; (b) *Encephalartos manikensis*. (c-g) Light microscopy images of tracheids, (h-l) scanning electron micrographs of vascular bundles showing tracheids and vessels, and (m-q) transmission electron micrographs of intertracheid pits for (c,h,m) *Cycas sexseminifera*, (d,i,n) *Encephalartos gratus*, (e,j,o) *Encephalartos laurentianus*, (f,k,p) *Encephalartos manikensis*, and (g,l,q) *Encephalartos sclavoi*. Note that the colored boxes in (l) depict the areas of different cell types: yellow is the entire area of interest, blue is the area of tracheids, and red is the area of vessels.

- **Fig. 2.** Percentage of air discharged as a function of xylem water potential for 20 cycad species (a-t). All curves were adjusted by excluding points measured above the turgor loss point. Dashed red lines indicate the P₅₀. The dark blue solid line marks the sigmoidal fit.
- Fig. 3. Embolism resistance (P₅₀ and P₈₈) among different plant lineages. Medians ± interquartile ranges are depicted by black points and error bars on top of individual species values (colored points). (a) P₅₀ values for angiosperms (n = 954), gymnosperms (n = 354), Cycadaceae (n = 10), Zamiaceae (n = 10), and pteridophytes (n = 18). (b) P₈₈ values for angiosperms (n = 692), gymnosperms (n = 256), Cycadaceae (n = 10), Zamiaceae (n = 10), and pteridophytes (n = 14). Except for cycads, data include stems, trunks, and leaves of

- 922 woody plants downloaded from xylem functional traits database
- 923 (https://xylemfunctionaltraits.org/), and the data for five of the pteridophytes were sourced
- 924 from Suissa and Friedman (2021).
- 925
- 926 **Fig. 4.** Relationships among embolism resistance (P₁₂, P₅₀, P₈₈) and tracheid or vessel traits:
- 927 (a-c) tracheid diameter (D_t , n = 20); (d-f) tracheid length (L_t , n = 19); (g-i) cell wall
- reinforcement (CWR, n = 20); (j-1) vessel diameter (D_v , n = 20); (m-o) vessel element length
- 929 (L_v , n = 20). Points and error bars indicate mean \pm SE (n = 3 6 individual plants).
- Cycadaceae are shown in blue points, and Zamiaceae are shown in yellow points.
- 931
- 932 **Fig. 5.** Relationships among hydraulic safety traits (P₁₂, P₅₀, P₈₈, HSM₅₀, HSM₈₈) and (a-e)
- vessel and (f-j) tracheid proportions. Points and error bars indicate mean \pm SE (n = 3 6
- 934 individual plants). Cycadaceae are shown in blue points, and Zamiaceae are shown in
- 935 yellow points.
- 936
- 937 Fig. 6. Relationships among hydraulic safety traits (P₁₂, P₅₀, P₈₈, HSM₅₀, HSM₈₈) and vessel or
- tracheid pit traits: (a-e) vessel pit membrane fraction (F_{pf} , n = 20); (f-j) vessel pit surface
- area (A_{pit} , n = 20); (k-o) tracheid pit membrane fraction (F_{pf} , n = 20); (p-t) tracheid pit
- surface area (A_{pit} , n = 20). Points and error bars indicate mean \pm SE (n = 3 6 individual
- plants). Cycadaceae are shown in blue points, and Zamiaceae are shown in yellow points.
- 942
- 943 Fig. 7. Relationships between turgor lost point (Ψ_{tlp}) and (a) P_{50} , (b) P_{88} , (c) minimum
- seasonal water potential (P_{min}), and (d) P_{12} . Points and error bars indicate mean \pm SE (n = 3 –
- 6 individual plants). Cycadaceae are shown in blue points, and Zamiaceae are shown in
- 946 yellow points.
- 947
- 948 Fig. 8. Pairwise trait correlation matrix from the Canonical Correlation Analysis (CCA) to
- determine correlations between vulnerability traits (P_{min}, P₁₂, P₅₀, P₈₈), and vessel traits
- 950 (vessel proportion, vessel diameter and hydraulic weighted vessel diameter D_{v} , vessel
- element length L_v , vessel pit membrane fraction F_{pf} , vessel pit membrane area A_{pit} , vessel pit
- shape R_{pit} , vessel pit density D_p , and pit membrane thickness T_{pm}).
- 953
- 954

. .

Table 1. The 20 cycad species for this study.

Family	Species	Code
Cycadaceae	Cycas debaoensis Y.C.Zhong & C.J.Chen	Cd
	Cycas diannanensis Z.T.Guan & G.D.Tao	Cdi
	Cycas elongata (Leandri) D.Yue Wang	Ce
	Cycas ferruginea F.N.Wei	Cf
	Cycas guizhouensis K.M.Lan & R.F.Zou	Cg
	Cycas hainanensis C.J.Chen	Ch
	Cycas revoluta Thunb.	Cr
	Cycas segmentifida D.Yue Wang & C.Y.Deng	Cs
	Cycas sexseminifera F.N.Wei	Cse
	Cycas szechuanensis W.C.Cheng & L.K.Fu	Csz
Zamiaceae	Ceratozamia latifolia Miq.	Cla
	Ceratozamia subroseophylla MartDomínguez & NicMor.	Csu
	Encephalartos concinnus R.A.Dyer & I.Verd.	Eco
	Encephalartos gratus Prain	Eg
	Encephalartos laurentianus De Wild.	El
	Encephalartos manikensis (Gilliland) Gilliland	Em
	Encephalartos sclavoi De Luca, D.W.Stev. & A.Moretti	Es
	Encephalartos tegulaneus Melville	Et
	Macrozamia moorei F.Muell.	Mm
	Zamia furfuracea L.f.	Zf

Table 2. Definition of all traits for the study.

Symbol	Definition	Unit

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D_{pms}	Diameter of the outer pit membrane along the shortest axis	μm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D_{pml}		μm
	$D_{ m pas}$	Diameter of the outer pit aperture along the shortest axis	μm
	D_{pal}		
$ \begin{array}{c} A_{\rm ps} \\ F_{\rm pf} \\ \\ F_{\rm pf} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$A_{ m pit}$	Interconduit pit surface area or interconduit pit membrane	μ m ²
$ F_{pt} $		surface area	
region pit aperture fraction = pit aperture surface area/pit membrane surface area F _p Pit fraction = mean fraction of the tracheid area occupied by intertracheid pits=A _p A _x 1 = F _x F _{pr} F _c Contact fraction = fraction of the total tracheid wall perimeter in contact with another tracheid A _p Total intertracheid pit membrane surface area per tracheid area = F _x A _t A _t Average tracheid wall area = πD _b L _t R _{pit} Pit shape = ratio of the longest axis of outer pit membrane to the shortest axis R _{pit} Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis D _p Pit density=number of interconduit pits per conduit wall area no μμπ² nm mm² Pit membrane thickness number of pit aperture to the shortest axis D _p Pit density=number of interconduit pits per conduit wall area number of interested number aperture vessel proportion Vessel proportion Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested Tracheid proportion = Vessel surface vertical section area/Area of interested Tracheid proportion = Vessel surface vertical section area/Area of interested Tracheid proportion = Vessel in the area of interested from vertical section Vessel number Tracheid number Anatomical and physiological traits of rachis from light microscopy Jo or D ₁ Hydraulically-weighted conduit diameter μμπ μμπ K _h Theoretical hydraulic conductivity kg m² Number of conduit = total conduit number of a cross section for rachis T _d Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis	A_{pa}	Intertracheid pit aperture surface area	μ m ²
region pit aperture fraction = pit aperture surface area/pit membrane surface area F _p Pit fraction = mean fraction of the tracheid area occupied by intertracheid pits=A _p A _x 1 = F _x F _{pr} F _c Contact fraction = fraction of the total tracheid wall perimeter in contact with another tracheid A _p Total intertracheid pit membrane surface area per tracheid area = F _x A _t A _t Average tracheid wall area = πD _b L _t R _{pit} Pit shape = ratio of the longest axis of outer pit membrane to the shortest axis R _{pit} Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis D _p Pit density=number of interconduit pits per conduit wall area no μμπ² nm mm² Pit membrane thickness number of pit aperture to the shortest axis D _p Pit density=number of interconduit pits per conduit wall area number of interested number aperture vessel proportion Vessel proportion Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested Tracheid proportion = Vessel surface vertical section area/Area of interested Tracheid proportion = Vessel surface vertical section area/Area of interested Tracheid proportion = Vessel in the area of interested from vertical section Vessel number Tracheid number Anatomical and physiological traits of rachis from light microscopy Jo or D ₁ Hydraulically-weighted conduit diameter μμπ μμπ K _h Theoretical hydraulic conductivity kg m² Number of conduit = total conduit number of a cross section for rachis T _d Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis	=	Pit membrane fraction=proportion of pit membrane area per	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{pa}	Pit aperture fraction = pit aperture surface area/pit membrane	%
intertracheid pits= $A_pA_1^{-1} = F_cF_{pf}$ Contact fraction = fraction of the total tracheid wall perimeter in contact with another tracheid A_p Total intertracheid pit membrane surface area per tracheid area= F_pA_1 A_1 Average tracheid wall area = $\pi D_p L_1^*$ R_{pit} Pit shape = ratio of the longest axis of outer pit membrane to the shortest axis P_p Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis P_p Pit density=number of interconduit pits per conduit wall area nm nm P_p Pit density=number of interconduit pits per conduit wall area nm nm P_p Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis P_p Pit density=number of interconduit pits per conduit wall area nm nm P_p Pit membrane thickness P_p Pit density=number from membrane surface to inner edge of pit aperture Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested Number of vessels in the area of interested from vertical section Anatomical and physiological traits of rachis from light microscopy P_p , or D_q Hydraulically-weighted vessel or tracheid diameter P_p Phydraulically-weighted conduit diameter P_p Phydraulically-weighted conduit number of a cross section for rachis area of a cross section for rachis/area of a cross section for rachis P_p Double conduit wall thickness P_p Double conduit wall thickness P_p Physiological and furtional traits SWC Saturated water content P_p Physiological and furtional traits P_p Relative water content at turgor loss point P_p Miday water potential (Minimum seasonal water potential) P_p Miday water potential (Minimum seasonal water potential) P_p Miday water potential (Minimum seasonal water potential) P_p Miday water potential	r		
intertracheid pits= $A_pA_1^{-1} = F_cF_{pf}$ Contact fraction = fraction of the total tracheid wall perimeter in contact with another tracheid A_p Total intertracheid pit membrane surface area per tracheid area= F_pA_1 A_1 Average tracheid wall area = $\pi D_p L_1^*$ R_{pit} Pit shape = ratio of the longest axis of outer pit membrane to the shortest axis P_p Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis P_p Pit density=number of interconduit pits per conduit wall area nm nm P_p Pit density=number of interconduit pits per conduit wall area nm nm P_p Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis P_p Pit density=number of interconduit pits per conduit wall area nm nm P_p Pit membrane thickness P_p Pit density=number from membrane surface to inner edge of pit aperture Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested Number of vessels in the area of interested from vertical section Anatomical and physiological traits of rachis from light microscopy P_p , or D_q Hydraulically-weighted vessel or tracheid diameter P_p Phydraulically-weighted conduit diameter P_p Phydraulically-weighted conduit number of a cross section for rachis area of a cross section for rachis/area of a cross section for rachis P_p Double conduit wall thickness P_p Double conduit wall thickness P_p Physiological and furtional traits SWC Saturated water content P_p Physiological and furtional traits P_p Relative water content at turgor loss point P_p Miday water potential (Minimum seasonal water potential) P_p Miday water potential (Minimum seasonal water potential) P_p Miday water potential (Minimum seasonal water potential) P_p Miday water potential	F_{n}	Pit fraction = mean fraction of the tracheid area occupied by	%
$ F_c \\ c \\$	r		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{c}		_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\mathbf{p}}$		mm ² mm ⁻²
A_1 Average tracheid wall area = $\pi D_b L_i^*$ mm² R_{pat} Pit shape = ratio of the longest axis of outer pit membrane to the shortest axis- R_{pa} Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis- D_p Pit density=number of interconduit pits per conduit wall area Pit membrane thicknessno, μ m² D_{pc} Depth of pit chamber from membrane surface to inner edge of pit aperturenmVessel proportionVessel proportion = Vessel surface vertical section area/Area of interested%Tracheid proportionTracheid proportion = Vessel surface vertical section area/Area of interested%Vessel numberNumber of vessels in the area of interested from vertical section%Anatomical and physiological traits of rachis from light microscopy ψ D_v or D_t Hydraulically-weighted vessel or tracheid diameter μ m D_h Hydraulically-weighted conduit diameter μ m K_h Number of conduit = total conduit number of a cross section for rachis- T_d Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis- T_w Double conduit wall thickness μ m W_h Tracheid length or vessel element length μ mPhysiological and traits μ mSWCSaturated water content π π Ψ_{hp} Turgor loss point π L_{hp} Relative water content at turgor loss point π L_{hp} Relative water content at turgor loss point <td< td=""><td>р</td><td></td><td></td></td<>	р		
R_{pat} Pit shape = ratio of the longest axis of outer pit membrane to the shortest axis	A_{\bullet}		mm^2
$R_{\rm pa}$ shortest axis- Fit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis- c $D_{\rm p}$ Pit density—number of interconduit pits per conduit wall area number of pit density—number of interconduit pits per conduit wall area number of pit density—number of interconduit pits per conduit wall area number of pit density—number of interconduit pits per conduit wall area number of pit density—number of intercested or number of pit apertureno.μm²Vessel proportionVessel proportion = Vessel surface vertical section area/Area of interested of interested or interested from vertical section area/Area of interested number of tracheids in the area of interested from vertical section number of tracheids in the area of interested from vertical section number of tracheid number of tracheids in the area of interested from vertical section or pit tracheid number of tracheid diameter number of a cross section for rachis number of conduit diameter number of a cross section for rachis number of conduit density = total conduit number of a cross section for rachis number of conduit density = total conduit number of a cross section for rachis number of a cross section for rachis number of a cross section for rachis number of tracheid, $(t/b)^2$ number of tracheid number of a cross section for rachis number of n			-
R_{pa} Pit aperture shape = ratio of the longest axis of outer pit aperture to the shortest axis - D_p Pit density=number of interconduit pits per conduit wall area Pit membrane thickness no.μm² D_{pc} Depth of pit chamber from membrane surface to inner edge of pit aperture nm Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested % Tracheid proportion Tracheid proportion = Vessel surface vertical section area/Area of interested of interested % Vessel number Number of vessels in the area of interested from vertical section % Vessel number Number of vessels in the area of interested from vertical section % Anatomical and physiological traits of rachis from light microscopy with a purple of tracheids in the area of interested from vertical section % Anatomical and physiological traits of rachis from light microscopy with a purple of tracheids in the area of interested from vertical section % Anatomical and physiological traits of rachis from light microscopy with a purple of tracheids in the area of interested from vertical section % Anatomical and physiological traits of rachis from light microscopy with a purple of tracheids in the area of interested from vertical section for achis and purple of tracheids in the area of interested from ver	2 pit		
to the shortest axis D_p Pit density=number of interconduit pits per conduit wall area no.µm² nm D_{pc} Pit membrane thickness nm D_{pc} Depth of pit chamber from membrane surface to inner edge of pit aperture Vessel proportion Vessel proportion = Vessel surface vertical section area/Area of interested rested D_{pc} Tracheid proportion = Vessel surface vertical section area/Area of interested D_{pc} Number of vessels in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of tracheids in the area of interested from vertical section D_{pc} Number of trach	R_{-}		_
D_p Pit density=number of interconduit pits per conduit wall area Pit membrane thickness Depth of pit chamber from membrane surface to inner edge of pit apertureno.μm² nmVessel proportionDepth of pit chamber from membrane surface to inner edge of pit aperturewessel proportion = Vessel surface vertical section area/Area of interested%Tracheid proportionTracheid proportion = Vessel surface vertical section area/Area of interested%Vessel numberNumber of vessels in the area of interested from vertical section%Tracheid numberNumber of tracheids in the area of interested from vertical section%Anatomical and physiological traits of rachis from light microscopyμm D_v or D_v Hydraulically-weighted vessel or tracheid diameterμm D_v or D_v Hydraulically-weighted conduit diameterμm D_v and the stream of the conduit end to conduit number of a cross section for rachis $\frac{1}{1000}$ T_d Conduit density = total conduit number of a cross section for rachisno.mm² T_w Double conduit wall thicknessμmCWRConduit cell wall reinforcement, the thickness to span ratio of tracheid, $t(tb)^2$ - L_v or L_v Tracheid length or vessel element lengthμmPhysiological and functional traits $\frac{1}{2}$ $\frac{1}{2}$ SWCSaturated water content $\frac{1}{2}$ $\frac{1}$	repa		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D		no um-2
D_{pc} Depth of pit chamber from membrane surface to inner edge of pit apertureDepth apertureVessel proportionVessel proportion = Vessel surface vertical section area/Area of interested%Tracheid proportionTracheid proportion = Vessel surface vertical section area/Area of interested%Vessel numberNumber of vessels in the area of interested from vertical section%Tracheid numberNumber of tracheids in the area of interested from vertical section%Anatomical and physiological traits of rachis from light microscopy W D_0 Hydraulically-weighted vessel or tracheid diameter W W Hydraulically-weighted conduit diameter W W MPa $^{-1}$ s $^{-1}$ NNumber of conduit = total conduit number of a cross section for rachis W W Oudit density = total conduit number of a cross section for rachis/area of a cross section for rachis W W Double conduit wall thickness W W Double conduit wall thickness W W Tracheid length or vessel element length W W Turgor loss point W W Turgor loss point W W Relative water content at turgor loss point W W Relative water content at turgor loss point W	*		•
Vessel proportionpit apertureVessel proportion = Vessel surface vertical section area/Area of interested $\%$ Tracheid proportionTracheid proportion = Vessel surface vertical section area/Area of interested $\%$ Vessel numberNumber of vessels in the area of interested from vertical section $\%$ Tracheid numberNumber of tracheids in the area of interested from vertical section $\%$ Anatomical and physiological traits of rachis from light microscopy $\%$ D_{0} , or D_{1} Hydraulically-weighted vessel or tracheid diameter μm D_{h} Hydraulically-weighted conduit diameter μm K_{th} Theoretical hydraulic conductivity $kg m^{-1}$ N Number of conduit = total conduit number of a cross section for rachis $ T_{d}$ Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis $ T_{w}$ Double conduit wall thickness $ CWR$ Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^{2}$ $ L_{t}$ or L_{V} Tracheid length or vessel element length μm P_{thp} Turgor loss point $g g^{-1}$ V_{tlp} Absolute capacitance $mol m^{-2} MPa^{-1}$ RWC_{tlp} Relative water content at turgor loss point $\%$ LMA Leaf mass per area MPa P_{12} , P_{30} , P_{88} Xylem water potential at 12%/50%/88% percentage of air discharged MPa P_{min} Midday water potential (Minimum seasonal water potential) MPa			
Vessel proportionVessel proportion = Vessel surface vertical section area/Area of interested%Tracheid proportion of interestedTracheid proportion = Vessel surface vertical section area/Area of interested from vertical section%Vessel numberNumber of vessels in the area of interested from vertical section%Anatomical and physiological traits of rachis from light microscopy W D_v or D_t Hydraulically-weighted vessel or tracheid diameter μm D_h Hydraulically-weighted conduit diameter μm W Theoretical hydraulic conductivity W W Number of conduit = total conduit number of a cross section for rachis W W Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis W W Double conduit wall thickness W W Double conduit wall thickness W W Tracheid length or vessel element length W W Tracheid length or vessel element length W	$D_{\rm pc}$	· · ·	11111
Vessel piopontioninterested%Tracheid proportionTracheid proportion = Vessel surface vertical section area/Area of interested%Vessel numberNumber of vessels in the area of interested from vertical section%Tracheid numberNumber of tracheids in the area of interested from vertical section%Anatomical and physiological traits of rachis from light microscopy μ D_0 Hydraulically-weighted vessel or tracheid diameter μ D_h Hydraulically-weighted conduit diameter μ K_{th} Theoretical hydraulic conductivity μ MPa^{-1} s ⁻¹ μ N Number of conduit = total conduit number of a cross section for rachis μ T_d Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis μ T_w Double conduit wall thickness μ E Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ μ E			
	Vessel proportion		%
Vessel number Number of vessels in the area of interested from vertical section Number of tracheids in the area of interested from vertical section Section Number of tracheids in the area of interested from vertical section Section Physiological traits of rachis from light microscopy D_{ν} or D_{t} Hydraulically-weighted vessel or tracheid diameter μ μ m Hydraulically-weighted conduit diameter μ μ m			
Vessel numberNumber of vessels in the area of interested from vertical section%Tracheid numberNumber of tracheids in the area of interested from vertical section%Anatomical and physiological traits of rachis from light microscopy μ D_v or D_t Hydraulically-weighted vessel or tracheid diameter μ m D_h Hydraulically-weighted conduit diameter μ m K_{th} Theoretical hydraulic conductivity $kg m^{-1} kg m^{-1} s^{-1}$ NNumber of conduit = total conduit number of a cross section for rachis $ T_d$ Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis $ T_w$ Double conduit wall thickness μ mCWRConduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ $ L_1$ or L_V Tracheid length or vessel element length μ Physiological and functional traits μ SWCSaturated water content μ Ψ_{tlp} Turgor loss point μ C_T Absolute capacitance μ RWC_{tlp} Relative water content at turgor loss point μ LMA Leaf mass per area μ P_{12} , P_{50} , P_{88} Xylem water potential at $12\%50\%/88\%$ percentage of air discharged to the maximum air discharged μ P_{min} Midday water potential (Minimum seasonal water potential) μ	Tracheid proportion		%
Tracheid numberNumber of tracheids in the area of interested from vertical section%Anatomical and physiological traits of rachis from light microscopy I D_v or D_t Hydraulically-weighted vessel or tracheid diameter I D_h Hydraulically-weighted conduit diameter I K_{th} Theoretical hydraulic conductivity I I I I I Number of conduit = total conduit number of a cross section for rachis I I Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis I <	Vessel number		0/2
Anatomical and physiological traits of rachis from light microscopy D_{v} or D_{t} Hydraulically-weighted vessel or tracheid diameter μm D_{h} Hydraulically-weighted conduit diameter μm K_{th} Theoretical hydraulic conductivity $kg m^{-1}$ N Number of conduit = total conduit number of a cross section for rachis T_{d} Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis/area of a cross section for rachis/area of a cross section for rachis/ T_{w} Double conduit wall thickness T_{w} Double conduit wall thickness T_{w} Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^{2}$ T_{w} Tracheid length or vessel element length T_{w} Tracheid length or vessel element length T_{w} Saturated water content T_{w} Saturated water content T_{w} Relative water content at turgor loss point T_{w} Absolute capacitance T_{w} Relative water potential at 12%/50%/88% percentage of air discharged to the maximum air discharged T_{w} Midday water potential (Minimum seasonal water potential) T_{w} MPa	v esser number		/0
Anatomical and physiological traits of rachis from light microscopy D_v or D_t Hydraulically-weighted vessel or tracheid diameter μm D_h Hydraulically-weighted conduit diameter μm K_{th} Theoretical hydraulic conductivity $kg m^1$ MPa $^1s^{-1}$ NNumber of conduit = total conduit number of a cross section for rachis- T_d Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachisno.mm² T_w Double conduit wall thickness μm CWRConduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ - L_t or L_V Tracheid length or vessel element length μm Physiological and functional traits $g g^{-1}$ SWCSaturated water content $g g^{-1}$ Ψ_{tlp} Turgor loss point MPa C_T Absolute capacitance $mol m^{-2} MPa^{-1}$ RWC_{tlp} Relative water content at turgor loss point $\%$ LMA Leaf mass per area $g m^2$ P_{12} , P_{50} , P_{88} Xylem water potential at $12\%50\%/88\%$ percentage of air discharged to the maximum air discharged MPa P_{min} Midday water potential (Minimum seasonal water potential) MPa	Tracheid number		%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Anatomical and nhy		
$D_{\rm h}$ Hydraulically-weighted conduit diameterμm $K_{\rm th}$ Theoretical hydraulic conductivitykg m¹ MPa⁻¹ s⁻¹NNumber of conduit = total conduit number of a cross section for rachis- $T_{\rm d}$ Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachisno.mm⁻² $T_{\rm w}$ Double conduit wall thicknessμmCWRConduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ - $L_{\rm t}$ or $L_{\rm V}$ Tracheid length or vessel element lengthμmPhysiological and functional traitsg g⁻¹SWCSaturated water contentg g⁻¹ $\Psi_{\rm tlp}$ Turgor loss pointMPa $C_{\rm T}$ Absolute capacitancemol m⁻² MPa⁻¹ $RWC_{\rm tlp}$ Relative water content at turgor loss point%LMALeaf mass per areag m⁻² $P_{\rm 12}$, $P_{\rm 50}$, $P_{\rm 88}$ Xylem water potential at 12%/50%/88% percentage of air discharged to the maximum air dischargedMPa $P_{\rm min}$ Midday water potential (Minimum seasonal water potential)MPa			um
K_{th} Theoretical hydraulic conductivitykg m ⁻¹ MPa ⁻¹ s ⁻¹ NNumber of conduit = total conduit number of a cross section for rachis- T_d Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachisno.mm ⁻² T_w Double conduit wall thickness μm CWRConduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ - L_t or L_V Tracheid length or vessel element length μm Physiological and functional traitsg g ⁻¹ SWCSaturated water contentg gg ⁻¹ Ψ_{tlp} Turgor loss pointMPa C_T Absolute capacitancemol m ⁻² MPa ⁻¹ RWC_{tlp} Relative water content at turgor loss point%LMALeaf mass per areag m ⁻² P_{12} , P_{50} , P_{88} Xylem water potential at 12%/50%/88% percentage of air discharged to the maximum air dischargedMPa P_{min} Midday water potential (Minimum seasonal water potential)MPa			•
Number of conduit = total conduit number of a cross section for rachis $T_{\rm d}$ Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis pound it will thickness $T_{\rm w}$ Double conduit wall thickness CWR Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ $L_{\rm t}$ or $L_{\rm V}$ Tracheid length or vessel element length Physiological and functional traits SWC Saturated water content $\Psi_{\rm tlp}$ Turgor loss point $V_{\rm tlp}$ Absolute capacitance $V_{\rm tlp}$ Relative water content at turgor loss point $V_{\rm tlp}$ Relative water content at turgor loss point $V_{\rm tlp}$ Relative water content at turgor loss point $V_{\rm tlp}$ Relative water content at turgor loss point $V_{\rm tlp}$ Relative water content at turgor loss point $V_{\rm tlp}$ Relative water potential at 12%/50%/88% percentage of air discharged to the maximum air discharged $V_{\rm tlp}$ Midday water potential (Minimum seasonal water potential) $V_{\rm tlp}$ Midday water potential (Minimum seasonal water potential)			•
Number of conduit = total conduit number of a cross section for rachis $T_{\rm d}$ Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis $T_{\rm w}$ Double conduit wall thickness μ m CWR Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ $L_{\rm t}$ or $L_{\rm V}$ Tracheid length or vessel element length μ m Physiological and functional traits SWC Saturated water content $g g^{-1}$ $\Psi_{\rm tlp}$ Turgor loss point $g g^{-1}$ $g g^{-1}$ $g g g g g g g g g g g g g g g g g g g$	$oldsymbol{\Lambda}_{ ext{th}}$	Theoretical hydraunic conductivity	
rachis $T_{\rm d}$ Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachis area of a cross section for rachis $T_{\rm w}$ Double conduit wall thickness CWR Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ $L_{\rm t}$ or $L_{\rm V}$ Tracheid length or vessel element length Physiological and functional traits SWC Saturated water content $g g^{-1}$ $\Psi_{\rm tlp}$ Turgor loss point $C_{\rm T}$ Absolute capacitance $RWC_{\rm tlp}$ Relative water content at turgor loss point LMA Leaf mass per area $P_{\rm 12}, P_{\rm 50}, P_{\rm 88}$ Xylem water potential at 12%/50%/88% percentage of air discharged to the maximum air discharged $P_{\rm min}$ Midday water potential (Minimum seasonal water potential) MPa	N	Number of conduit - total conduit number of a cross section for	MIFa 8
$T_{\rm d}$ Conduit density = total conduit number of a cross section for rachis/area of a cross section for rachisno.mm²² $T_{\rm w}$ Double conduit wall thicknessμmCWRConduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ μm $L_{\rm t}$ or $L_{\rm V}$ Tracheid length or vessel element lengthμmPhysiological and functional traitsymmSWCSaturated water contentg g g¹¹ $\Psi_{\rm tlp}$ Turgor loss pointMPa $C_{\rm T}$ Absolute capacitancemol m²² MPa¹¹ $RWC_{\rm tlp}$ Relative water content at turgor loss point%LMALeaf mass per areag m²² P_{12} , P_{50} , P_{88} Xylem water potential at 12%/50%/88% percentage of air discharged to the maximum air dischargedMPa $P_{\rm min}$ Midday water potential (Minimum seasonal water potential)MPa	IN		-
rachis/area of a cross section for rachis $T_{\rm w}$ Double conduit wall thickness μ m CWR Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ $L_{\rm t}$ or $L_{\rm V}$ Tracheid length or vessel element length μ m Physiological and functional traits SWC Saturated water content $g g g^{-1}$ $\Psi_{\rm tp}$ Turgor loss point $g g g^{-1}$ $\Psi_{\rm tp}$ Turgor loss point $g g g^{-1}$ $g g g g^{-1}$ $g g g g g g g g g g g g g g g g g g g$	T		no mm-2
$T_{\rm w}$ Double conduit wall thicknessμmCWRConduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ - $L_{\rm t}$ or $L_{\rm V}$ Tracheid length or vessel element lengthμmPhysiological and functional traitsSWCSaturated water contentg g g⁻¹ $\Psi_{\rm tlp}$ Turgor loss pointMPa $C_{\rm T}$ Absolute capacitancemol m⁻² MPa⁻¹ $RWC_{\rm tlp}$ Relative water content at turgor loss point%LMALeaf mass per areag m⁻² P_{12} , P_{50} , P_{88} Xylem water potential at 12%/50%/88% percentage of air discharged to the maximum air dischargedMPa $P_{\rm min}$ Midday water potential (Minimum seasonal water potential)MPa	I_{d}		110.111111
CWR Conduit cell wall reinforcement, the thickness to span ratio of tracheid, $(t/b)^2$ L_t or L_V Tracheid length or vessel element length μm Physiological and functional traits SWC Saturated water content $g g g^1$ Ψ_{tlp} Turgor loss point MPa C_T Absolute capacitance $mol m^{-2} MPa^{-1}$ RWC_{tlp} Relative water content at turgor loss point $g g m^{-2}$ LMA Leaf mass per area $g m^{-2}$ P_{12} , P_{50} , P_{88} Xylem water potential at $12\%/50\%/88\%$ percentage of air discharged to the maximum air discharged P_{min} Midday water potential (Minimum seasonal water potential) MPa	T		1177
tracheid, $(t/b)^2$ L_t or L_V Tracheid length or vessel element length Physiological and functional traits SWC Saturated water content g g g ⁻¹ Ψ_{tlp} Turgor loss point MPa C_T Absolute capacitance mol m ⁻² MPa ⁻¹ RWC_{tlp} Relative water content at turgor loss point % LMA Leaf mass per area g m ⁻² P_{12} , P_{50} , P_{88} Xylem water potential at 12%/50%/88% percentage of air discharged to the maximum air discharged P_{min} Midday water potential (Minimum seasonal water potential) MPa			μπ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CWK		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I an I		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			μm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 0		a a-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		
$\begin{array}{cccc} LMA & Leaf \ mass \ per \ area & g \ m^{-2} \\ P_{12}, P_{50}, P_{88} & Xylem \ water \ potential \ at \ 12\%/50\%/88\% \ percentage \ of \ air \\ & discharged \ to \ the \ maximum \ air \ discharged \\ P_{min} & Midday \ water \ potential \ (Minimum \ seasonal \ water \ potential) & MPa \end{array}$		<u>*</u>	
P ₁₂ , P ₅₀ , P ₈₈ Xylem water potential at 12%/50%/88% percentage of air MPa discharged to the maximum air discharged P _{min} Midday water potential (Minimum seasonal water potential) MPa	1		
discharged to the maximum air discharged P _{min} Midday water potential (Minimum seasonal water potential) MPa			_
P _{min} Midday water potential (Minimum seasonal water potential) MPa	$\mathbf{P}_{12}, \mathbf{P}_{50}, \mathbf{P}_{88}$		MPa
J 1 /	D) (D
HSM ₅₀ , HSM ₈₈ Hydraulic safety margins = $P_{min} - P_{50}$ or $P_{min} - P_{88}$ MPa			
	HSM ₅₀ , HSM ₈₈	Hydraulic safety margins = $P_{min} - P_{50}$ or $P_{min} - P_{88}$	MPa

Table 3. Statistical differences of hydraulic safety, tracheid diameter, and tracheid length among plant lineages.

	P ₁₂ (-MPa)	P ₅₀ (-MPa)	P ₈₈ (-MPa)	HSM_{50}	HSM_{88}	$D_{t}(\mu m)$	$L_{\rm t} (\mu {\rm m})$
				(MPa)	(MPa)		
Angiosperms	1.44 ±	2.80 ±	4.75 ±	0.08 ±	2.15 ±	54.83 ±	-
	0.06bc	0.06b	0.11a	0.08b	0.12ab	3.04a	
Pteridophytes	$0.92 \pm$	$1.68 \pm$	$2.59 \pm$	$0.59 \pm$	$0.84 \pm$	$37.22 \pm$	$8432.86 \pm$
	0.11c	0.15c	0.18b	0.24b	0.21b	2.65ab	1737.96a
Non-cycad	$3.25 \pm$	$4.83 \pm$	$6.17 \pm$	$2.00 \pm$	$3.02 \pm$	$15.98 \pm$	$1583.80 \pm$
gymnosperm	0.12a	0.13a	0.19a	0.17a	0.23a	0.63c	117.11b
S							
Cycads	$1.95 \pm$	$2.26 \pm$	$2.57 \pm$	$0.88 \pm$	$1.20 \pm$	$32.72 \pm$	$6637.85 \pm$
	0.12b	0.15bc	0.21b	0.10ab	0.14b	0.94bc	445.49a

Note: Different letters indicate significant differences between taxa. Data for angiosperms and non-cycad gymnosperms were downloaded from xylem functional traits database (https://xylemfunctionaltraits.org//), and the data for pteridophytes were sourced from Suissa and Friedman (2021) and Pittermann et al. (2011). P < 0.05, one-way ANOVA, values are means \pm standard errors. Hydraulic safety traits (P_{12} , P_{50} , P_{88} , HSM₅₀, HSM₈₈), tracheid diameter (D_t), and tracheid length (L_t).

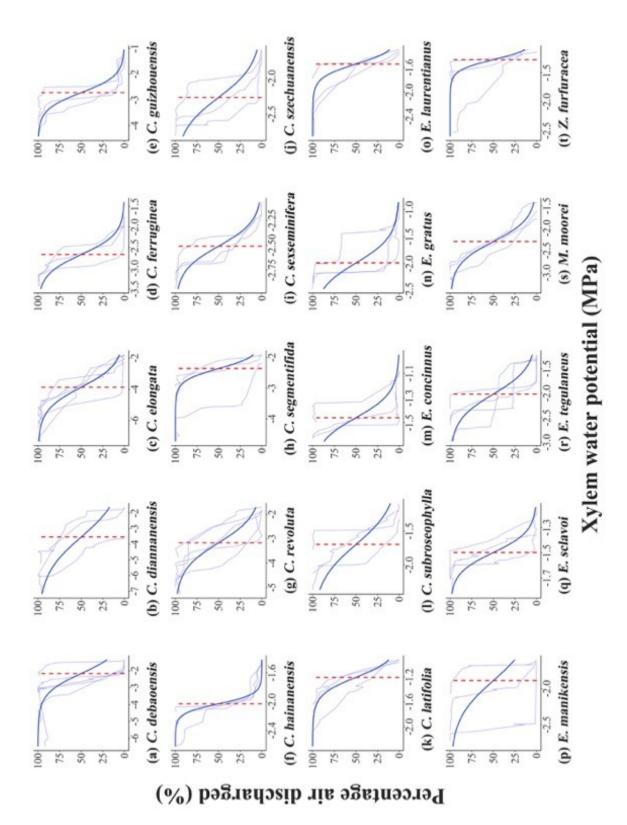
Table 4. Statistical differences of vessel and tracheid traits for the 20 cycads in this study.

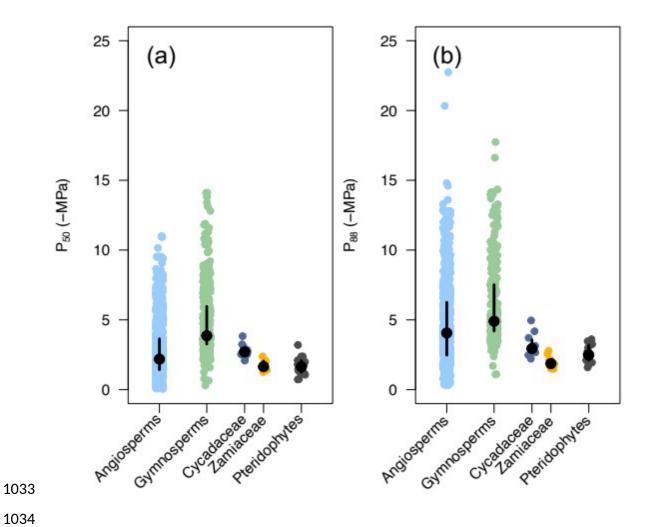
Characters	Vessel	Tracheid	T	Sig
Proportions	10.92±0.97	35.39±1.93	-11.33	0.000**
Vessel or tracheid diameter (D_v or D_t)	32.30±1.19	32.72±0.94	-0.276	0.784
Vessel or tracheid length $(L_{\rm v} {\rm or} L_{\rm t})$	2.00±0.02	3.60±0.19	-8.385	0.000**

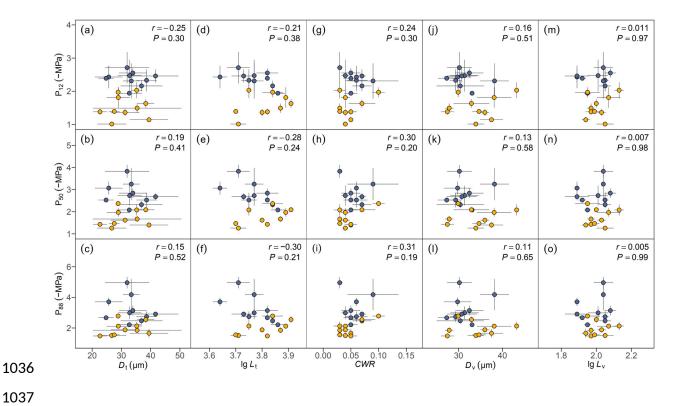
pit membrane fraction	34.61 ± 1.37	54.39±1.50	-9.746	0.000**
$(F_{ m pf})$				
$D_{ m pml}$	8.97 ± 0.27	8.53 ± 0.21	1.289	0.205
D_{pms}	6.68 ± 0.29	7.35 ± 0.19	-1.899	0.066
Pit membrane area A_{pit}	48.53 ± 3.22	50.43 ± 2.14	-0.491	0.627
Pit shape (R_{pit})	1.42 ± 0.058	1.18 ± 0.03	3.775	0.001**
Pit density (D_p)	0.008 ± 0.000	0.01 ± 0.001	-5.831	0.000**

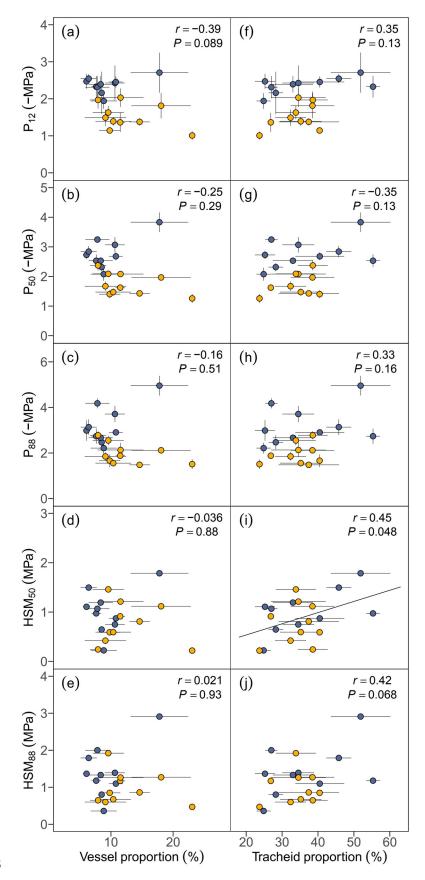
Note: values indicate mean \pm SE (n = 20). *: significant difference (P < 0.05), **: significant difference (P < 0.01) from student's *t*-tests. Diameter of the outer pit membrane along the longest axis (D_{pml}) and shortest axis (D_{pms}).

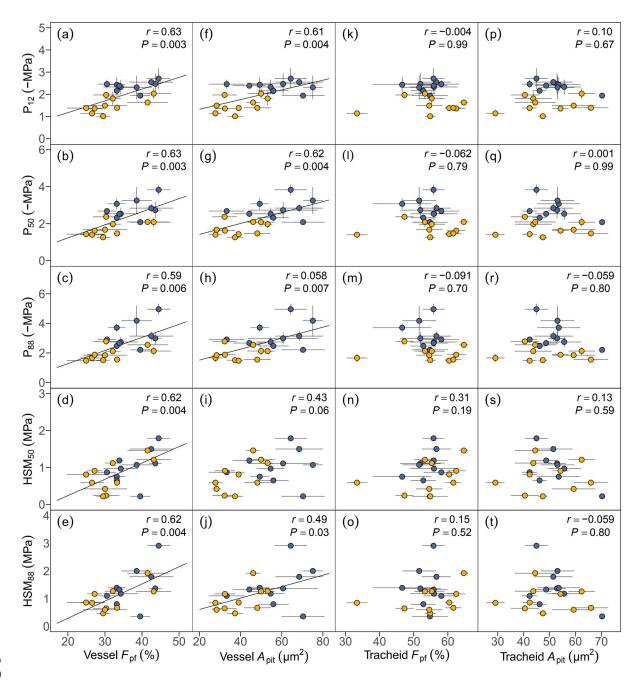
Table 5. Canonical correlation analysis of vessel traits and embolism resistance. *: significant correlation (P < 0.05).


Canonical	Rao's F	dfl	df2	P
	2.93	36	27 97	0.002*
0.915	2.06	24	23.80	0.042*
0.854		14	18.00	0.261 0.942
	0.962 0.915	Canonical Correlation Rao's F 0.962 2.93 0.915 2.06 0.854 1.37	Canonical Correlation Rao's F dfl 0.962 2.93 36 0.915 2.06 24 0.854 1.37 14	Canonical Correlation Rao's F df1 df2 0.962 2.93 36 27.97 0.915 2.06 24 23.80 0.854 1.37 14 18.00


Table 6. Standardized canonical coefficients of anatomical and vulnerability traits for Dimension 1, 2 and embolism resistance traits of Table 5.


Anatomical traits	Dimension 1	Dimension 2
vessel element length	7.51	5.56
vessel diameter	14.31	-20.10
vessel proportion	-2.97	2.56
vessel pit shape (R_{pit})	-1.16	5.00
vessel pit membrane area	2.93	6.97
(A_{pit})		
pit membrane thickness	2.28	0.59
$(T_{ m pm})$		
vessel pit membrane	-3.20	6.74
fraction (F_{pf})		
vessel $D_{ m v}$	-23.49	11.19
Embolism resistance traits		
minimum seasonal water	4.87	-5.16
potential (P _{min})		
P_{12}	89.54	1.44
P ₅₀	-245.87	3.78
P_{88}	153.81	4.64




Cycas sexseminifera Encephalartos gratus Encephalartos laurentianus Encephalartos manikensis Encephalartos selavoi

