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Model-guided concurrent data assimilation for calibrating cardiac ion-channel
kinetics

Haedong Kima, Hui Yanga , Andrew R. Ednieb, and Eric S. Bennettb

aComplex Systems Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, PA, USA; bDepartment
of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science & Mathematics, Wright State University,
Dayton, OH, USA

ABSTRACT
Potassium channels (Kv) are responsible for repolarizing the action potential in cardiomyocytes.
There is a variety of Kv isoforms and corresponding currents (e.g. IKto, IKslow1, IKslow2) that contribute
to different phases of repolarization. Because only the sum of their activities can be measured in
the form of currents (IKsum), there is a need to delineate individual Kþ currents. Most existing stud-
ies make inference of Kv activities via curve-fitting procedures but encounter certain limitations as
follows: (1) curve-fitting decomposition only relies on the shape of Kþ current traces, which does
not discern the underlying kinetics; (2) IKsum traces can only be fitted for one clamp voltage at
each time, and then analyzed in a population-averaged way later. This paper presents a novel con-
current data assimilation method to calibrate biophysics-based models and delineate kinetics of Kv
isoforms with multiple voltage-clamp responses simultaneously. The proposed method is eval-
uated and validated with whole-cell IKsum recordings from wild-type and chronically glycosylation-
deficient cardiomyocytes. Experimental results show that the proposed method effectively handles
multiple-response data and describes glycosylation-conferred perturbations to Kv isoforms. Further,
we develop a graphical-user-interface (GUI) application that provides an enabling tool to biomed-
ical scientists for data-driven modeling and analysis of Kv kinetics in various heart diseases.
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1. Introduction

Potassium channels (Kv) play critical roles in the electrical
conduction system of the heart, particularly in the repolari-
zation phase of the action potential (AP). The AP is a
change of membrane potential over time, representing the
net electrical activity in a cardiomyocyte, and the AP shape
and duration are primarily determined by Kv isoforms. The
ability of the heart to pump blood through the body in an
appropriate rhythm is controlled by electrical signaling.
Hence, even modest changes in Kv activities can significantly
affect the AP duration and the QT interval, which lead to
fatal heart diseases (Ravens & Cerbai, 2008). As shown in
Fig. 1, the different phases of AP repolarization in mouse
cardiomyocytes are the result of the coordinated activity of a
variety of Kv isoforms (e.g. Kv4.2, Kv1.5, and Kv2.1) and
their corresponding currents (e.g. IKto, IKslow1, and IKslow2).
There are other major voltage-gated ion channels (VGICs),
such as for Naþ (Nav) and Ca2þ (Cav), that also contribute
to the AP. The Nav are primarily responsible for the AP
upstroke in the depolarization phase, while the Cav control
the cellular contraction. Aberrant activities of ion channels
can significantly impact the AP and lead to fatal arrhyth-
mias. Using whole-cell voltage-clamp recording methods,
only the collective activities of Kv isoforms can be measured
reliably as the sum of all Kþ currents (IKsum), and these Kv

isoforms have overlapping biophysical properties (i.e. voltage
dependence of gating and kinetics), which complicate the
ability to separate one type of IK from another (Brouillette
et al., 2004). Kv activities can be altered in various cardio-
myopathies (Giudicessi & Ackerman, 2012; Tristani-Firouzi
et al., 2001), thus there is an urgent need to decompose
IKsum more rigorously into individual Kþ currents and esti-
mate gating kinetics of Kv isoforms to understand their
pathological roles by comparing their activities in healthy
versus diseased hearts and cardiomyocytes.

Transgenic mouse models are the most commonly used
animal models that have provided insights into cardiac
research despite the differences between rodents and
humans; the isoforms expressed in both small and large
mammals share many similarities (Milani-Nejad & Janssen,
2014). Most existing studies using mouse models separate
individual Kþ currents mathematically via a curve-fitting
procedure (Costantini et al., 2005; Ednie et al., 2019; Teng
et al., 2022), assuming the IKsum current trace represents the
summation of exponential decay functions (two or three,
usually) and a constant term; each represents the shape of
individual Kþ currents. However, the ability to scrutinize
the kinetics and dynamics of individual Kv isoforms is lim-
ited by this traditional method because: (1) curve-fitting
decomposition only relies on the shape of Kþ current traces
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as discreet exponential functions which does not discern the
underlying kinetics and interactions of Kv isoforms; (2)
IKsum traces can only be decomposed for one clamp voltage
at a time, and estimated information from each fitting is
analyzed in a population-averaged way later. New methods
are urgently needed to simultaneously delineate the underly-
ing kinetics of multiple IKsum traces from the same cell con-
currently for a better understanding of Kv channels and
their roles as well as cellular variability in diseased
cardiomyocytes.

This paper presents a new approach of subject-specific
concurrent data assimilation for model-guided learning of
Kv isoforms. First, computer models of Kv and their currents
are designed with parameters that control the kinetic rates
and, in turn, determine the currents. It is worth mentioning
that Kþ currents are generated based on the mathematically
simulated gating mechanism. Second, we perform a sensitiv-
ity analysis of the kinetic parameters using fractional factor-
ial designs to identify the parameters that have significant
effects on the current generation. Several markers are
defined that best represent the characteristics of the Kþ cur-
rents in different perspectives. Third, a calibration routine is
proposed to adjust parameters selected by the sensitivity
analysis to couple in-silico models with in-vitro data of IKsum
recordings from the same cell concurrently. Last, low-
dimensional embedding is utilized to visualize calibrated
parameters in a collective way across the cells. The proposed
methodology is evaluated and validated by comparing IKsum
recordings on healthy control versus chronically glycosyla-
tion-deficient cardiomyocyte. Glycosylation is a co/post-
translational modification that is critical for protein
functions including activities of Kv and other VGICs (Ednie
& Bennett, 2012; Ohtsubo & Marth, 2006). Our in-vitro
experiments showed that chronic reduction in cardiomyo-
cyte N-glycosylation modulates VGIC activities and contrib-
ute to both electrical and contractile dysfunction (Ednie
et al., 2013; Ednie & Bennett, 2015; Ednie et al., 2019). In
fact, these studies also showed that reduced cardiomyocyte
complex N-glycosylation is sufficient to cause dilated cardio-
myopathy (DCM), which is the third most common cause
of heart failure and the major reason for heart transplant-
ation (Weintraub et al., 2017).

Experimental results show that the proposed method pro-
vides reliable estimations of Kv currents with underlying

kinetics and successfully captures cellular variability. For
example, it verifies the experimental data that showed the
significant reduction in the current magnitude and elongated
decaying for the glycosylation-deficient cardiomyocyte
group. Additionally, computational modeling estimates
channel kinetics, which was not possible in the electro-
physiological experiments alone. Cellular variability is visual-
ized by low-dimensional embedding of calibration
parameters into 3D space, which shows one of the powers
of systematic computer models that allow one to predict
how changes in VGICs impact cellular functions. Further,
we develop a graphical-user-interface (GUI) application to
make the proposed method accessible to biomedical scien-
tists for investigating Kv-related channelopathy. The pro-
posed method shows strong potential for modeling the
kinetics and gating mechanism of Kv to study heart diseases.
Our contributions are summarized as follows:

� We model the underlying kinetics of Kv isoforms from
IKsum recordings, which enables to simulate individual
Kþ currents based on biophysical principles.

� We develop a subject-specific concurrent data assimila-
tion routine that learns IKsum recordings measured from
the same cell at multiple membrane potentials simultan-
eously rather than a single IKsum trace independently to
model cellular-level dynamics.

� The prediction uncertainty is quantified and the distribu-
tion of kinetic parameters is visualized using low-dimen-
sional embedding.

� A GUI application is provided to make the proposed
method an enabling tool for biomedical scientists.

The software package of the GUI application, tutorial,
and reproducible MATLAB codes for modeling and analysis
results are available at https://github.com/haedong31/Kv_
data_assim.

2. Research background

2.1. Data assimilation and calibration of cardiac models

The functionality of the heart to pump blood through the
body is controlled by electrical signals generated by the organ
itself. Cardiac electrophysiology has contributed significantly

Figure 1. (a) Ventricular action potential in mouse cardiomyocytes and (b) diverse Kv isoforms and their currents contributing to the AP shape.
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to our understanding of the heart and disease-related modifi-
cations, such as congenital disorders of glycosylation (CDG).
Advancements in laboratory techniques allow researchers to
study molecular-level activities in cardiomyocytes via measur-
ing ionic currents conducted through VGICs. For example,
whole-cell current recordings are used to show the functions
of a certain gene that encodes a subunits of Nav in human car-
diomyocytes, leading to a small but inherent and chronic risk
of acquired arrhythmia (Splawski et al., 2002); pathophysio-
logical roles of reduced sialylation impacting Nav and Kv

activities in mouse cardiomyocytes (Ednie et al., 2015; Ednie
& Bennett, 2015); modulation of O-glycosylation causing
aberrant Kv activities (Schwetz et al., 2011). However, in-vitro
experiments alone are limited to investigate detailed channel
activities. There is a need to assimilate experimental data to
estimate information that are not able to be observed directly.
Traditionally, a curve-fitting method is used to make infer-
ences, which assumes a functional form of information to esti-
mate (e.g. individual currents of Kv isoforms) (Liu et al.,
2011).

In contrast, computer models consist of mathematical
equations describing biophysical properties and physiological
functions compatible with experimental observations.
Mathematical and computational modeling allows for study-
ing the heart in a quantitative and predictive way
(Whittaker et al., 2020). Computer models, coupled with
experimental observations, provide integrative insights into
the data by calibrating model parameters (Winslow et al.,
2011). For example, models can be used to interpolate proc-
esses not directly observed in experiments and extrapolate to
novel conditions such as disease-related perturbations
(Rodriguez et al., 2010). From an engineering perspective,
computer models of ion channels are dynamic system simu-
lations that represent continuously changing gating kinetics.
The dynamic nature of the models complicates the calibra-
tion process. Complex nonlinear structures of cardiac com-
puter models also make calibration difficult. We developed
statistical metamodeling and sequential design (Du et al.,
2016), nonlinear optimization algorithms (Du et al., 2014,
2018), and a heuristic optimization method (Kim et al.,
2022) in our previous in-silico studies to cope with the com-
plexity of cardiac models. However, all these studies are
based on current-shape parameters via curve fitting, or char-
acteristic curves/statistics from additional curve fitting
applied to estimated currents. In addition, only population-
average models are derived and calibrated via learning the
entire dataset for each healthy and diseased group. Little
work has been done to leverage computer models to cali-
brate and delineate kinetic dynamics of Kv isoforms with
multiple voltage-clamp responses simultaneously.

2.2. Congenital disorders of glycosylation

Protein glycosylation is one of the most abundant and
diverse forms of co/posttranslational modifications that
impact essential protein functions, such as modulation of
receptor or ion channel activities (Ednie & Bennett, 2012;
Ohtsubo & Marth, 2006). A growing number of studies have

shown the association between altered glycosylation and
heart diseases, such as dilated cardiomyopathy (DCM) and
hypertrophic cardiomyopathy (Ednie et al., 2019; Ohtsubo &
Marth, 2006). It is reported that up to 20% of patients with
congenital disorders of glycosylation (CDG), who commonly
show modest reductions in protein glycosylation, present
with cardiac deficits, including idiopathic DCM (Marques-
da Silva et al., 2017). However, uncovering the underlying
pathological mechanisms still remains elusive. We have
investigated how regulated glycosylation contributes to heart
failure in the context of electrophysiology. Electrical signal-
ing is orchestrated activities of a variety of ion channels and
transporters. VGICs are heavily glycosylated, with 30% of
the channel mass consisting of N-/O-linked glycans (Ednie
& Bennett, 2012). Glycosylation is a multi-step process and
usually ends with sialic acid added. We reported that a satu-
rating, electrostatic effect of negatively charged sialic
attached to the terminal of N-/O-glycan branches signifi-
cantly altered electrical signaling in Nav (Ednie et al., 2013,
2015) as well as Kv (Ednie & Bennett, 2015). Computational
modeling has been used to further investigate the functional
role of reduced sialylation in Nav and Kv (Du et al., 2016,
2018).

3. Research methodology

3.1. Computer models of potassium channel isoforms

Because of the relative ease at which their genetics can be
altered, mice have been useful models for studying cardiac
electric signaling (Milani-Nejad & Janssen, 2014; Nerbonne,
2004). In ventricular and atrial mouse cardiomyocytes, there
are three major components of IKsum: rapidly inactivating
transient outward Kþ currents (IKto,f and/or IKto,s), which
are conducted through Kv4.2 and Kv1.4 respectively, slowly
inactivating delayed rectifier Kþ currents (IKslow1 and
IKslow2), which are conducted through Kv1.5/Kv2.1, and the
non-inactivating steady-state Kþ current (IKss) (Xu et al.,
1999). IKto,s (Kv1.4) is primarily found in septal cardiomyo-
cytes (Bondarenko et al., 2004). In this study, we only
include IKto,f in IKto, because our in-vitro studies focused on
the ventricular apex myocytes. However, IKto can be easily
modified according to the region of ventricular cardiomyo-
cytes. We model these four dominant Kþ currents: IKto,
IKslow1, IKslow2, and IKss. Figure 2(b) illustrates the shape of
the primary Kþ currents and their contribution to the
whole-cell IK trace (IKsum) given the protocol in Fig. 2(a)
that applies 0mV voltage pulse from holding potential
�70mV from time tðhÞ to tðeÞ: Figure 2(c,d) shows a range
of voltage steps from �30mV to 50mV in 10mV incre-
ments and consequent changes in IKsum. Because of their
shape, IKss is assumed as a constant and the other currents
an exponential function in the traditional data-driven curve-
fitting approach. In this approach, if all four current models
are included, IKsum is defined by (1) (i.e. tri-exponential fit-
ting) with the shape parameters such as amplitude Ai and
time constant si for i 2 fKto, Kslow1, Kslow2, Kssg: In some
cases, it is reduced to a bi-exponential function combining
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IKslow1 and IKslow2.

IKsum ¼ AKtoe
�t=sKto þ AKslow1e

�t=sKslow1 þ AKslow2e
�t=sKslow2 þ AKss:

(1)

We developed mouse Kv models based on (Asfaw et al.,
2020; Bondarenko, 2014), using the Hodgkin-Huxley model-
ing scheme that has been used for various species, such as
humans (Ten Tusscher et al., 2004) and rabbits (Mahajan
et al., 2008). This type of model consists of two gating varia-
bles controlling the channel conductance, and its canonical
form is defined by (2)

IK ¼ GKa
nimðV � EKÞ, (2)

where GK is the maximum conductance, an and im are the
gating variables for n,m 2 N, V is the transmembrane
potential, and EK is the Kþ Nernst potential. V � EK implies
the driving force of the ion movement. Important compo-
nents in (2) are the gating variables a and i, representing
the fraction of activation and recovery from inactivation of
the channel where a, i 2 ½0, 1�: These processes are governed
by first-order kinetics and voltage-dependent transition rates
a and b: a is the rate at which a gate in a closed state opens,
whereas b is the rate at which a gate in an open state closes.
Equation (3) shows a schematic relationship of this gating
kinetics. n and m represent the numbers of activation and
inactivation gates, which are dependent on a particular Kv

isoform and determined by specific kinetics and properties
of that channel. In general, the number of gates depends on
the complexity of the channel behavior and the level of
detail required in the model.

ð1� aÞ �
aa

ba
a ð1� iÞ �

ai

bi
i: (3)

These two biophysical processes a and i can be expressed
using differential equations in two ways (4) and (5)

da
dt

¼ aað1� aÞ � baa
di
dt

¼ aið1� iÞ � bii (4)

da
dt

¼ a1 � a
sa

di
dt

¼ i1 � i
si

, (5)

where a1 and i1 are the steady-state values to which a and
b converge; sa and si are time constants determine the con-
vergence speed defined by

a1 ¼ aa
aa þ ba

i1 ¼ ai
ai þ bi

(6)

sa ¼ 1
aa þ ba

si ¼ 1
ai þ bi

: (7)

The steady-state values and time constants can be defined
directly by functions of voltage V without transition rates in
some cases. These voltage-dependent functions, such
as transition rates, steady states, or time constants, have
parameters ps that control the behavior of the kinetics of an
ion channel.

3.1.1. In-silico modeling of IKto
The rapidly inactivating transient outward current IKto,
which is conducted through Kv4.2, is characterized by a
sharp upstroke during activation and subsequent rapid
inactivation. It mainly contributes to the peak at the very
beginning of activation in IKsum. IKto is defined by

IKto ¼ GKtoa
3
KtoiKtoðV � EKÞ (8)

Figure 2. Example of voltage-clamp protocol and Kþ current traces. (a) Clamp-voltage pulse of 0mV from the holding potential -70mV. (b) Dominant Kþ currents and
their contributions to IKsum. (c) Series of clamp-voltage pulses (-30–50mV in 10mV increments) from the holding potential -70mV and (d) consequent IKsum traces.
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daKto
dt

¼ aað1� aKtoÞ � baaKto (9)

diKto
dt

¼ aið1� iKtoÞ � biiKto (10)

aa ¼ p7e
p5ðVþp1Þ (11)

ba ¼ p8e
�p6ðVþp1Þ (12)

ai ¼ p9e�ðVþp2Þ=p4

1þ p10e�ðVþp2þp3Þ=p4 (13)

bi ¼
p11eðVþp2þp3Þ=p4

1þ p12eðVþp2þp3Þ=p4 : (14)

There are two gating variables aKto and iKto responsible
for activation and inactivation, respectively. Their kinetics
are governed by transition-rate functions from (11) to (14).
Parameters ps for s ¼ f1, 2, :::, 12g in these equations act like
knobs, allowing to control the behavior of the IKto model.

3.1.2. In-silico modeling of IKslow1, IKslow2, and IKss
There are two major delayed rectifier currents in mouse ven-
tricular cardiomyocytes that are rapidly activating and slowly
inactivating: IKslow1 and IKslow2, which are conducted through
Kv1.5 and Kv2.1, respectively. As shown in Fig. 2(b), both rec-
tifier currents inactivate slower and have smaller magnitude
than IKto, and IKslow2 decays more gradually than IKslow1 (Liu
et al., 2011). The non-inactivating steady-state current IKss,
which is likely conducted through Kv isoforms K2P family
(Feliciangeli et al., 2015), remains constant during the volt-
age-clamp recording. These three currents contribute to most
part of the decaying portion of IKsum. To keep the models as
simple as possible to reduce the structural risk of overfitting,
we assume that IKslow1 and IKslow2 have the same activation
gating variable, and they have a similar inactivation pattern;
IKss has similar activation behavior with the two delayed recti-
fier currents but a slightly different rate.

IKslow1, IKslow2, and IKss are modeled without transition-
rate functions as opposed to IKto, and their steady-state and
time-constant functions are directly defined. First, the gating
variables of IKslow1, activation aKslow1, and inactivation
iKslow1, are defined by (16) and (17). The steady-state func-
tions (ass and iss) in (18) and (19) will be shared with the
other two current models. A full description of IKslow1 is
given as follows:

IKslow1 ¼ GKslow1aKslow1iKslow1ðV � EKÞ (15)

daKslow1
dt

¼ ass � aKslow1

sðKslow1Þa

(16)

diKslow1
dt

¼ iss � iKslow1

sðKslow1Þi

(17)

ass ¼ 1
1þ e�ðVþp1Þ=p4 (18)

iss ¼ 1
1þ eðVþp2Þ=p5 (19)

sðKslow1Þa ¼ p7
ep6ðVþp3Þ þ e�p6ðVþp3Þ þ p9 (20)

sðKslow1Þi ¼ p10 � p8iss: (21)

As a structural regularization, IKslow2 has the same activa-
tion variable with IKslow1 as in (23), and the time-constant
function of the inactivation iKslow2 shares the same
steady-state function iss (19) with IKslow1. As a result of this
modeling strategy, mathematical equations of IKslow2 are
given as follows:

IKslow2 ¼ GKslow2aKslow2iKslow2ðV � EKÞ (22)

aKslow2 ¼ aKslow1 (23)

diKslow2
dt

¼ iss � iKslow2

sðKslow2Þi

(24)

sðKslow2Þi ¼ p2 � p1iss: (25)

IKss does not have an inactivation variable because it is
non-inactivating current. It shares the same steady-state
function for activation ass (18) with the other two delayed
rectifier currents but have a separate time-constant function
(28) to address the different activation rate. IKss is
modeled as

IKss ¼ GKssaKssðV � EKÞ (26)

daKss
dt

¼ ass � aKss

sðKssÞa

(27)

sðKssÞa ¼ p2
ep1ðVþp03Þ þ e�p1ðVþp03Þ

þ p3: (28)

Note that p03 is equal to p3 in IKslow1.

3.2. Concurrent assimilation of functional data

Data assimilation is a systematic procedure to find the optimal
configuration and state of computational/mathematical mod-
els by coupling them with experimental data. Experimental
data D are observations of a real processR that represents sci-
entific phenomena under investigation. The output of physical
experiments yDðxÞ, given input x, inevitably contains errors
for various reasons, such as noise in measurement or experi-
mental environment. Suppose D and R can be related as fol-
lows in (29), where � is the error term.

yRðxÞ ¼ yDðxÞ þ � (29)
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Let yMðxjhÞ denote the output from a computer model
M, given parameters h: Assume that there are discrepancies
dðxjhÞ for the current states of parameters as follows in (30):

yDðxÞ ¼ yMðxjhÞ þ dðxjhÞ; so (30)

yRðxÞ ¼ yMðxjhÞ þ dðxjhÞ þ �: (31)

Our goal in data assimilation is to calibrate h to find the
best model states that minimize dðxjhÞ, while satisfying bio-
physical constraints. By doing that, in-silico models M are
coupled with in-vitro experimental data D, which provides
two complementary angles to study the real process R:

From this perspective, bi-/tri-exponential function in (1)
serves as yMðt, vjhÞ in the curve-fitting approach, where h ¼
fAiðvÞ, siðvÞg for i 2 fKto, Kslow1, Kslow2, Kssg: v repre-
sents voltage. Note that AiðvÞ and siðvÞ are dependent on
input data v, so for each voltage, we need to perform a data
assimilation procedure separately. In general, multiple input
voltage steps are applied to a cardiomyocyte producing a set
of IKsum recordings to study the voltage-dependent charac-
teristics. Suppose the sum of in-silico models of Kþ currents
Ii for i 2 fKto, Kslow1, Kslow2, Kssg serve as a computer
model for data assimilation as in (32):

yMðt, vjhÞ ¼
X
i

Ii, (32)

where h is the union of kinetic parameters ps for each Ii,
which are constants. In contrast, this computer model gen-
erates IKsum for different input voltages given one set of
parameters, because the in-silico models are designed by
biophysical principles encoding voltage dependence.
Therefore, d is defined by the summation of root-mean-
square errors (RMSEs) as given in (33). RMSE evaluates the
goodness-of-fit between experimental IKsum and model pre-
diction. RMSEs for a set of IKsum traces are summed up to
guide the optimization procedure calibrating the models in a
concurrent way for clamp voltages v ¼ 1, 2, :::, n:

d ¼
Xn
v¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtðeÞv

tðhÞv

ðyDv ðtÞ � yMðt, vjhÞÞ2
tðeÞv � tðhÞv

dt

vuut (33)

Cardiac models enable this concurrent data assimilation,
because they generate multiple current traces with different
input voltages by simulating underlying gating kinetics. Note
that the proposed method calibrates computer models directly
to IKsum recordings, while the previous studies use statistics
estimated from the data via curve-fitting (Du et al., 2014, 2016,
2018; Kim et al., 2022). We develop the box-constrained non-
linear optimization routine with multi-random initial points to
minimize d: Box constraints mean that h has a lower and upper
bound for each dimension, so solution space is constrained in a
hypercube. In this way, the optimization loop can be controlled
by users, allowing them to blend their domain knowledge into
the modeling. The multi-random-start scheme helps escape
local optima and find the solution as close to the optimum as
possible. Latin hypercube designs and parallel computations
are used to sample initial points and run them on multicores to

compensate for the increased computational burden. This work
is implemented in MATLAB R2022a.

3.3. Sensitivity analysis and model regularization

The principle of parsimony is critical in model calibration to
enhance fitting accuracy, prevent overfitting, and improve
interpretability of h: Excessive flexibility has a risk of overfit-
ting that occurs when the model fits data too closely, even
including noise and random effects in data. Besides, as the
number of parameters increases, it becomes complicated to
interpret the calibration results. It is worth emphasizing that
the presented models are designed with structural regulariza-
tion, in which some parameters and equations are recycled
in multiple places to simplify the model structure.

We also perform a sensitivity analysis to identify a subset
of the parameters that have significant impacts on the model
output and only calibrate these sensitive parameters.
Factorial designs are developed in which parameters vary at
two levels contrasting their effect on the model output. As
illustrated in Fig. 3, six markers are defined that capture
characteristics of Kþ current traces in voltage-clamp experi-
ments. Each marker represents: (a) the current magnitude of
10ms after applying a voltage step, which measures the acti-
vation rate; (b) 25% of the total recording time has elapsed,
(c) 50%, and (d) 75%, which collectively estimate the inacti-
vation rate over time; (e) the peak magnitude; and (f) the
time when current has decayed (1� e�1)% (almost 63%)
from the peak. Marker f will be equal to the total recording
time if current does not decline enough as in Fig. 3(c,d).

A fractional factorial design of 1024 runs is adopted for
IKto, which results in resolution VIII. The resolution ensures
that the main effects and 2-/3-factor interactions are strongly
clear. Full factorial designs are used for the other three cur-
rents. The marker points kk defined as in Fig. 3 are evaluated
at each design sample and factorial effects are calculated via
the linear model in (34) for each current. The least squares

method is used to estimate bks : Then, half-normal plots are
drawn to test significance of the estimated factorial effects.

kk ¼ bko þ
X
s

bks p
k
s þ �, k 2 fa, b, c, d, e, f g: (34)

3.4. Low-dimensional embedding

Most cardiac electrophysiology studies utilize statistical tests
for the mean to support hypotheses; in turn, the majority of
ion channel models are based on population-averaged data.
However, subject-specific analyses that consider the cellular-
level variability can provide new insights into data. For
example, it is possible there are differences between control
and experimental groups but also within the groups. Hence,
there is an urgent need to develop a tool to investigate cell-
specific characteristics. Because the proposed approach cali-
brates models using the dataset for each cell, it allows us to
quantify cellular variability in the tuned parameters. We
adopt low-dimensional embedding that transforms high-
dimensional data into a plane or 3D space while preserving
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relative locations of data points to visualize how distributional
differences in calibration parameters collectively impact
inter/intra-cell variability in healthy and diseased groups.

For this purpose, t-distributed stochastic neighbor
embedding (t-SNE) is used (Van der Maaten & Hinton,
2008). It has proven to be an effective method for visualiz-
ing high-dimensional data. t-SNE is a statistical method that
constructs two sets of probability distributions pij and qij
over pairs of data points i and j in a high-/low-dimensional
space, respectively. These are probabilities of similarities
such that neighboring points have a higher probability while
dissimilar points have a lower probability. We first define
the conditional probability of j given i:

pjji ¼
exp ð�dðxi, xjÞ2=ð2r2i ÞÞP

k6¼i exp ð�dðxi, xkÞ2=ð2r2i ÞÞ
, j 6¼ i,

0, j ¼ i,

8>><
>>: (35)

where dð�, �Þ is a distance function such as Euclidean dis-
tance, and

P
j pjji ¼ 1 for all i. Then pij can be defined by

the symmetric property of the joint probabilities:

pij ¼
pjji þ pijj

2N
, (36)

where N is the number of total data points, and
P

i, j pij ¼ 1:

It can be calculated from data once the standard deviation
ri is given. ri is set in a way that the perplexity of the con-
ditional probability distribution over other data points given
xi equals a prefixed value that is a hyperparameter of t-SNE.
Let Pi denote the conditional probability distribution, then
the perplexity of the distribution is

perplexityðPiÞ ¼ 2HðPiÞ, (37)

where HðPiÞ is the Shannon entropy of Pi defined by

HðPiÞ ¼ �
X
j

pjji log 2ðpjjiÞ: (38)

Then the probability distribution qij is defined by the
similarity of data points yi and yj in a low-dimensional
space:

qij ¼
ð1þ jjzi � zjjj2Þ�1P

k

P
l 6¼k ð1þ jjzk � zljj2Þ�1 , j 6¼ i,

0, j ¼ i,

8>><
>>: (39)

where
P

i, j qij ¼ 1: Note that qij is modeled by a heavy-

tailed Student’s t-distribution with one degree of freedom,
from which the name “t-SNE” originates. The objective of t-
SNE is to learn y that minimizes discrepancies between P
and Q, so that the low-dimensional distribution preserves
the structure of pij constructed from the original high-
dimensional data. To learn y, t-SNE maps y by minimizing
the Kullback-Leibler (KL) divergence, which measures the
similarity between two probability distributions:

KLðPjjQÞ ¼
X
j

X
i6¼j

pij log
pij
qij

: (40)

A gradient descent method is used for the minimization
of KLðPjjQÞ with respect to y.

Figure 3. Illustration of the six markers of voltage-clamp Kþ currents that quantify characteristics of the current shape of (a) IKto, (b) IKslow1, (c) IKslow2, and (d) IKss.
All currents are simulated for illustration, and the labels refer to (a) the current magnitude 10ms after voltage is applied, (b) 25% of the total recording time has
elapsed, (c) 50%, (d) 75%, (e) the peak magnitude, and (f) the time when current has decayed (1� e�1)% (almost 63%) from the peak.
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4. Experimental design and results

We apply the proposed framework to our data for investi-
gating the pathophysiology of electrical signaling altered by
reduced glycosylation. Recently, we showed that preventing
hybrid/complex N-glycosylation in mouse cardiomyocytes
was sufficient to cause DCM, achieved through genetic abla-
tion of the MGAT1 gene (MGAT1KO model), which enco-
des a critical glycosyltransferase, GlcNAcT1 (Ednie et al.,
2019). MGAT1KO mice developed DCM that deteriorated
into heart failure, and 100% died early, presumably from
ventricular arrhythmias leading to sudden cardiac death. To
further investigate the role of altered glycosylation in patho-
genesis and disease progression of the heart, we conducted
whole-cell patch-clamp experiments that showed reductions
in N-glycosylation significantly impact electrical signaling in
mouse cardiomyocytes (Ednie et al., 2019). To be specific,
whole-cell IKsum traces were measured in left ventricular
apex cardiomyocytes of �14-week-old control (wild type;
WT) and MGAT1KO mice, elicited by 4.5 s 10mV voltage
steps (-30 to þ50mV) from holding potential of �70mV.
There were 31 sets of whole-cell IK recordings from different
WT cells and 30 from MGAT1KO cells. Animals were used
and cared for as outlined by the NIH’s Guide for the Care
and Use of Laboratory Animals. All animal protocols were
reviewed and approved by the Wright State University
Institutional Animal Use and Care Committee.

It was observed in the experiment that Kþ currents were
reduced in MGAT1KO ventricular myocytes (Ednie et al.,
2019). Because of the overlapping inactivation rates of the
Kv isoforms responsible for IKslow1 and IKslow2 (Kv1.5 and
Kv2.1), a curve-fitting method of bi-exponential, combining
IKslow1 and IKslow2 of tri-exponential in (1), was applied to
decompose IKsum traces into component currents. All three
component currents were reduced, but the rectifier current
IKslow was significantly reduced and slowed notably.
Although this in-vitro investigation discovered aberrant
reductions in Kþ currents with chronic glycosylation defi-
ciency, it was difficult to determine channel kinetics rigor-
ously. For example, curve fitting was not able to provide
reliable results due to small current magnitude of the
MGAT1KO model, particularly at the lower voltage steps.
Therefore, here we leverage the suggested framework for
modeling Kv isoforms kinetics from our experimental data
of IKsum recordings. This new approach allows dissecting
whole-cell Kþ current traces into isoform components and
modeling their underlying kinetics concurrently.

4.1. Parameter screening

Figure 4 shows the half-normal plots of factorial effects of
parameters on the six markers. The red straight lines on the
plots serve as a criterion to identify the parameters that are
sensitive to the marker points. The farther parameters fall
above the straight lines, the more significant impacts they have
on the marker. We picked the parameters to be calibrated as a
union of the sets of parameters falling above the straight lines
on the six half-normal plots. For IKto fp1, p2, p3, p4, p5, p7, p11g
are selected, for IKslow1 fp1, p2, p4, p5, p9, p10g, for IKslow2 fp1g,

and for IKss fp1, p2, p3g: In addition, all the maximum con-
ductance variables are included in the calibration param-
eter set.

Figure 5 shows the selected parameters, highlighted in
different colors according to their functional roles in chan-
nel kinetics. We categorized the calibration parameters into
four classes: The red represents the voltage-threshold param-
eters and the green voltage slopes, controlling the voltage
dependence, the blue scale factors of kinetic functions, and
purple time-constant shifters. Note that the voltage-depend-
ence parameters in red and green appear multiple times
across different equations. This parsimonious model design
is intended to maximize the structural regularization to min-
imize overfitting. In general, voltage-threshold and time-
constant-shifting parameters impact the current traces more
than others.

4.2. Model fitness

We tested various nonlinear optimization algorithms in the
proposed model calibration routine that support box con-
straints, and the BFGS algorithm provided the most reliable
results. A separate accuracy metric is used to measure the
goodness-of-fit and potential prediction power of the cali-
bration results rather than reporting the final objective func-
tion value. The objective function (i.e. sum of RMSEs) does
not provide a straightforward interpretation that makes it
difficult to evaluate the calibration performance. R2, defined
in (41), is the most common prediction accuracy metric
ranging from 0 to 1 for linear regression models that repre-
sents the proportion of variation in data that is explained by
the model. However, this interpretation is not applicable to
nonlinear models because the variance decomposition in
(42) no longer holds.

R2 ¼ 1�
Pn

i¼1ðyi � byiÞ2Pn
i¼1ðyi � �yÞ2 (41)

Xn
i¼1

ðyi � �yÞ2 ¼
Xn
i¼1

ðbyi � �yÞ2 þ
Xn
i¼1

ðyi � byiÞ2 (42)

Therefore, a pseudo-R-squared measure, proposed in (Li
& Wang, 2019) is used to evaluate the model fitness in this
study. This nonlinear R2 measure is based on the concept of
linear correction of prediction function, allowing the
variance decomposition for nonlinear functions, which
guarantees straightforward interpretation and normalized
scores between 0 and 1 as in the classical R2: Figure 6(a,c)
presents averages of nonlinear R2 values over voltage steps
from �30 to 50mV by 10mV step size for WT and
MGAT1KO, respectively. In most cases, models explain
more than 90 % of variances on average (WT:
0:962460:0051; MGAT1KO: 0:893860:0077). The model
fitness measures in MGAT1KO are lower than WT in gen-
eral. It is expected that the small current magnitude of
MGAT1KO challenges the calibration process. We randomly
select a cell from each group and compare the actual model
predictions and experimental IKsum traces in Fig. 6(b,d) to
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validate the model calibration results further. As shown in
Fig. 6(d), MGAT1KO at �30mV clamp voltage, small and
noisy current trace, results in decreased R2, 0.8335. The fit-
ting was performed on Intel 4-core Xeon E7-4830 process-
ors. Without parallel computing on multiple cores, each cell
took an average of 438:166:8s to complete the data
assimilation procedure for 5 random initial points. It took
an average of 333:866:0s with multicore processing, which
is 31 % efficient.

4.3. Prediction of Kv activities

The in-silico modeling predicts that chronic reduction in
cardiomyocyte N-glycosylation results in significant changes
in channel steady states and kinetic behaviors. The most

notable result in the in-vitro experimental data was the sig-
nificant reduction in the current density in response to a
50-mV test potential. To verify this observation, Fig. 7
presents the prediction results of the current-density
relationship of the four Kþ currents. The model predicts the
compatible result showing the IKto, IKslow1, and IKslow2 den-
sities are significantly reduced in MGAT1KO cardiomyo-
cytes, while there are no remarkable differences in IKss. Note
that in the in-vitro experiments, bi-exponential fitting was
used, in which the two delayed rectifier currents are
combined (IKslow), because it is difficult to reliably fit a tri-
exponential function with a relatively short voltage step
(4.5 s here) (Liu et al., 2011). On the contrary, although the
proposed model-guided data assimilation distinguishes Kv1.5
and Kv2.1, it shows compatible prediction results with the

Figure 4. Half-normal plots of factorial effects for identifying significant parameters in the four current models on (a) Marker a, (b) Marker b, (c) Marker c, (d)
Marker d, (e) Marker e, and (d) Marker d.

Figure 5. Selected parameters by the sensitivity analysis of (a) IKto, (b) IKslow1, (c) IKslow2, and IKss. Parameters are highlighted in different colors according to their
functional roles in channel kinetics.
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experimental data, as well as high fitness accuracy (�90 %
R2) (Ednie et al., 2019).

Another aberrant activity of Kþ currents was slower
inactivation of delayed rectifier currents in MGAT1KO car-
diomyocytes. Figure 8 shows the prediction results of the
inactivation time constants of IKslow1 and IKslow2. The com-
puter models successfully capture this trend, resulting in the

time constant of inactivation in for IKslow1 (sðKslow1Þi ) being
estimated to be significantly slowed in MGAT1KO com-
pared to WT, i.e. �348.9ms, as shown in Fig. 8(a). IKslow2 is
also slowed (see Fig. 8(b)). Inactivation time constants are
important because they determine how slowly IKslow1 and
IKslow2 inactivate and, in turn, significantly affect the repola-

rization of the AP. sðKslow1Þi show higher variability than
other currents to address most of the decaying portion of

IKsum. This is likely due to the fact that while Kv4.2 and
Kv2.1 are O-glycosylated, Kv1.5 possess a single occupied N-
linked glycosylation. Hence, IKslow1 is more affected by
reduced N-glycosylation. A plot is not provided here, but
there is no significant effect on IKto for membrane potential
greater than 0mV. It is worth mentioning that the proposed

method was able to extrapolate sðKslow2Þi that is greater than
5 s from the 4.5-s-pulse protocol, which shows the general-
ization power of the in-silico modeling.

4.4. Cellular variability

The calibrated parameters are in a 61�20 matrix (i.e. 31
observations in WT and 30 in MGAT1KO, and there are 20
calibration parameters), and we apply t-SNE to encapsulate

Figure 6. Bar graphs of the averages of nonlinear R2s for nine voltage steps from �30mV to 50mV by the 10mV step size for (a) WT and (c) MGAT1KO. Exemplary
actual fitness between model predictions (in green) and experimental IKsum recordings (in pink) at six voltage steps of (b) cell 6 in WT and (d) cell 12 in MGAT1KO.
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these high-dimensional data in a three-dimensional space to
visualize each data point. Figure 9(a) presents the visualiza-
tion of the t-SNE embedding of the calibration results. It
shows not only clear differences between the two groups but
also variances of cells (i.e. data points) within the groups
across the entire data, indicating that MGAT1KO cells have
higher variance in the aggregated kinetic parameter space.
Determinants of the covariance matrices of the 3D embed-
ding data to quantify the variability of WT and MGAT1KO
in the kinetic parameter space. It turns out that WT has 38
% greater variability than MGAT1KO.

To further investigate it, we generated the histograms
of the maximum conductance of IKslow1 (G Kslow1), which
is the most significant parameter determining the magni-
tude of the current (see Fig. 9(b)), and experimental IK

density from the in-vitro data. There is clear skewness in
MGAT1KO IKsum density (small variance), while WT IK
density is more disperse (high variance). Calibrated
parameters, for example G Kslow1 , likely show smaller var-
iations in MGAT1KO to address this trend in the experi-
mental data. It is likely due to significant IK reduction in
the diseased group combined with the elimination of
complex N-glycosylation, thereby minimizing potential
variability of N-glycan structures

5. Discussion and conclusions

Repolarization is a complex process that involves various Kv

isoforms. It is critical to understand the unique properties
and functional roles of each Kv to investigate pathological

Figure 7. Current-density relationships of the major Kþ currents: (a) IKto (b) IKslow1, IKslow2, and IKss.

Figure 8. Inactivation time constants of (a) IKslow1, and (b) IKslow2.
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mechanisms of diseased cardiomyocytes that contribute to
fatal heart diseases. However, current laboratory techniques,
such as whole-cell patch-clamp recording, are not able to
measure individual activities of Kv isoforms reliably that
activate, inactivate, and close at overlapping times during
recordings, except through the attempt to remove Kv iso-
form activity through less-than-fully-specific pharmaco-
logical intervention. Thus, only the sum of the different Kv

isoform activities can be measured as a single current trace,
IKsum. Hence, it is necessary to decompose IKsum into indi-
vidual Kþ currents and estimate their channel activity via
data assimilation. This paper presents a subject-specific con-
current data assimilation method for learning Kv activities
using multiple IKsum recordings simultaneously for each cell.
A case study is provided using our in-vitro experimental
data of mouse cardiomyocyte IK in control conditions (WT)
and under conditions of reduced complex N-glycosylation
(MGAT1KO). We evaluate the calibration results using an
adjusted R2 measure for nonlinear models that preserves the
interpretability of the classical R2 based on the variance
decomposition for linear models. Experimental results show
the proposed method explains more than 90% of variances
by calibrated models in most cases (WT: 0:962460:0051;
MGAT1KO: 0:893860:0077).

In addition to achieving a high degree of goodness-of-fit,
it is important to determine the source of uncertainty and
variability in model predictions to build trustworthy models.
Until recently, the conventional approach to developing car-
diac models and fitting model parameters has involved using
single values. As a result, most mathematical models cur-
rently in use only provide point estimates without quantify-
ing uncertainty (Johnstone et al., 2016). Although variances
across cells are provided in the model predictions of current
density and inactivation times in Figs. 7 and 8, it remains
elusive whether the variability arises from model uncertainty
or true cellular variability in the data. Statistical methods for
uncertainty quantification (UQ) in cardiac models, such as

Bayesian inferences or Gaussian process emulators, have
been proposed (Coveney & Clayton, 2020; Johnstone et al.,
2016). Exploring the incorporation of UQ techniques into
data assimilation is a topic for future research. A GUI appli-
cation is provided as an enabling tool for biomedical scien-
tists without full expertise in modeling and computational
analysis.

The estimation of kinetics provides novel insights into
potential mechanisms by which specific Kv isoforms contrib-
ute to the overall reduction in IK observed in in-vitro
experiments following chronic reductions in N-glycosylation.
Thanks to the cell-specific approach, prediction uncertainty
is quantified, and error bars are provided in the prediction
results. Further, calibrated parameters are visualized via low-
dimensional embedding that allows for encapsulating cali-
brated parameters in 3D space and, in turn, visualizing the
variability across cells. WT cells show higher variability than
MGAT1KO myocytes, which is likely due to significant IK
reduction in the diseased group, combined with the elimin-
ation of complex N-glycosylation, thereby minimizing
potential variability of N-glycan structures. The proposed
method and pertinent software show strong potential for
studying Kv kinetics in various heart diseases. However,
there are still some limitations and challenges that need to
be addresses in future work. One of the main limitations of
this study is that it does not address the interactions of Kv

with other major VGICs, namely Nav and Cav, and cellular-
level processes. Thus, causal inference of the effects of
chronic glycosylation deficiency is limited. We plan to
develop an integrative modeling method for learning activ-
ities of major VGICs together.

Consent and approval

This research does not involve any human participants or
data. Therefore, no consent or approval was required for
this study.

Figure 9. (a) Low-dimensional embedding of calibration parameters into 3D space. Blue circles - WT myocytes (n ¼ 31); red triangles - MGAT1KO myocytes
(n ¼ 30). (b) Histogram of the calibrated kinetic parameter for maximum conductance of IKslow1 (G Kslow1), which is the most significant factor determining the mag-
nitude of IKslow1. (c) Histogram of experimental IKsum density.

164 H. KIM ET AL.



Disclosure statement

The authors report there are no competing interests to declare.

Funding

This work is supported by the National Science Foundation (MCB-
1856132 to HY and HK), (MCB-1856199 to EB and AE), (IOS-1146882
and IOS-1660926 to EB), and the American Heart Association
(Postdoctoral Fellowship 15POST25710010 to AE). HY and HK would
also like to thank the NSF I/UCRC Center for Health Organization
Transformation (CHOT) award NSF IIP-1624727 for the support of
their research work. Any opinions, findings, or conclusions found in
this research are those of the authors and do not necessarily reflect the
views of the sponsors.

ORCID

Hui Yang http://orcid.org/0000-0001-5997-6823

References

Asfaw, T. N., Tyan, L., Glukhov, A. V., & Bondarenko, V. E. (2020). A
compartmentalized mathematical model of mouse atrial myocytes.
American Journal of Physiology. Heart and Circulatory Physiology,
318(3), H485–H507. https://doi.org/10.1152/ajpheart.00460.2019

Bondarenko, V. E. (2014). A compartmentalized mathematical model
of the b1-adrenergic signaling system in mouse ventricular myo-
cytes. PLoS One, 9(2), e89113. https://doi.org/10.1371/journal.pone.
0089113

Bondarenko, V. E., Szigeti, G. P., Bett, G. C., Kim, S.-J., & Rasmusson,
R. L. (2004). Computer model of action potential of mouse ventricu-
lar myocytes. American Journal of Physiology. Heart and Circulatory
Physiology, 287(3), H1378–H1403. https://doi.org/10.1152/ajpheart.
00185.2003

Brouillette, J., Clark, R. B., Giles, W. R., & Fiset, C. (2004). Functional
properties of kþ currents in adult mouse ventricular myocytes.
Journal of Physiology, 559(Pt 3), 777–798. https://doi.org/10.1113/
jphysiol.2004.063446

Costantini, D. L., Arruda, E. P., Agarwal, P., Kim, K.-H., Zhu, Y., Zhu,
W., Lebel, M., Cheng, C. W., Park, C. Y., Pierce, S. A., Guerchicoff,
A., Pollevick, G. D., Chan, T. Y., Kabir, M. G., Cheng, S. H.,
Husain, M., Antzelevitch, C., Srivastava, D., Gross, G. J., …
Bruneau, B. G. (2005). The homeodomain transcription factor irx5
establishes the mouse cardiac ventricular repolarization gradient.
Cell, 123(2), 347–358. https://doi.org/10.1016/j.cell.2005.08.004

Coveney, S., & Clayton, R. H. (2020). Sensitivity and uncertainty ana-
lysis of two human atrial cardiac cell models using gaussian process
emulators. Frontiers in Physiology, 11, 364. https://doi.org/10.3389/
fphys.2020.00364

Du, D., Yang, H., Ednie, A. R., & Bennett, E. S. (2016). Statistical meta-
modeling and sequential design of computer experiments to model
glyco-altered gating of sodium channels in cardiac myocytes. IEEE
Journal of Biomedical and Health Informatics, 20(5), 1439–1452.
https://doi.org/10.1109/JBHI.2015.2458791

Du, D., Yang, H., Ednie, A. R., & Bennett, E. S. (2018). In-silico mod-
eling of the functional role of reduced sialylation in sodium and
potassium channel gating of mouse ventricular myocytes. IEEE
Journal of Biomedical and Health Informatics, 22(2), 631–639.
https://doi.org/10.1109/JBHI.2017.2664579

Du, D., Yang, H., Norring, S. A., & Bennett, E. S. (2014). In-silico
modeling of glycosylation modulation dynamics in herg ion chan-
nels and cardiac electrical signals. IEEE Journal of Biomedical and
Health Informatics, 18(1), 205–214. https://doi.org/10.1109/JBHI.
2013.2260864

Ednie, A. R., & Bennett, E. S. (2012). Modulation of voltage-gated ion
channels by sialylation. Comprehensive Physiology, 2(2), 1269–1301.

Ednie, A. R., & Bennett, E. S. (2015). Reduced sialylation impacts ven-
tricular repolarization by modulating specific kþ channel isoforms
distinctly. Journal of Biological Chemistry, 290(5), 2769–2783.
https://doi.org/10.1074/jbc.M114.605139

Ednie, A. R., Deng, W., Yip, K.-P., & Bennett, E. S. (2019). Reduced
myocyte complex n-glycosylation causes dilated cardiomyopathy.
FASEB Journal: Official Publication of the Federation of American
Societies for Experimental Biology, 33(1), 1248–1261. https://doi.org/
10.1096/fj.201801057R

Ednie, A. R., Harper, J. M., & Bennett, E. S. (2015). Sialic acids
attached to n-and o-glycans within the nav1. 4 d1s5–s6 linker con-
tribute to channel gating. Biochimica et Biophysica Acta, 1850(2),
307–317. https://doi.org/10.1016/j.bbagen.2014.10.027

Ednie, A. R., Horton, K.-K., Wu, J., & Bennett, E. S. (2013). Expression
of the sialyltransferase, st3gal4, impacts cardiac voltage-gated sodium
channel activity, refractory period and ventricular conduction.
Journal of Molecular and Cellular Cardiology, 59, 117–127. https://
doi.org/10.1016/j.yjmcc.2013.02.013

Ednie, A. R., Parrish, A. R., Sonner, M. J., & Bennett, E. S. (2019).
Reduced hybrid/complex n-glycosylation disrupts cardiac electrical
signaling and calcium handling in a model of dilated cardiomyop-
athy. Journal of Molecular and Cellular Cardiology, 132, 13–23.
https://doi.org/10.1016/j.yjmcc.2019.05.001

Feliciangeli, S., Chatelain, F. C., Bichet, D., & Lesage, F. (2015). The
family of k2p channels: Salient structural and functional properties.
Journal of Physiology, 593(12), 2587–2603. https://doi.org/10.1113/
jphysiol.2014.287268

Giudicessi, J. R., & Ackerman, M. J. (2012). Potassium-channel muta-
tions and cardiac arrhythmias—diagnosis and therapy. Nature
Reviews. Cardiology, 9(6), 319–332. https://doi.org/10.1038/nrcardio.
2012.3

Johnstone, R. H., Chang, E. T., Bardenet, R., De Boer, T. P., Gavaghan,
D. J., Pathmanathan, P., Clayton, R. H., & Mirams, G. R. (2016).
Uncertainty and variability in models of the cardiac action potential:
Can we build trustworthy models? Journal of Molecular and Cellular
Cardiology, 96, 49–62. https://doi.org/10.1016/j.yjmcc.2015.11.018

Kim, H., Yang, H., Ednie, A. R., & Bennett, E. S. (2022). Simulation
modeling of reduced glycosylation effects on potassium channels of
mouse cardiomyocytes. Frontiers in Physiology, 13, 816651. https://
doi.org/10.3389/fphys.2022.816651

Li, G., & Wang, X. (2019). Prediction accuracy measures for a nonlin-
ear model and for right-censored time-to-event data. Journal of the
American Statistical Association, 114(528), 1815–1825. https://doi.
org/10.1080/01621459.2018.1515079

Liu, J., Kim, K.-H., London, B., Morales, M. J., & Backx, P. H. (2011).
Dissection of the voltage-activated potassium outward currents in
adult mouse ventricular myocytes: I(to,f), i(to,s), i(k,slow1),
i(k,slow2), and i(ss). Basic Research in Cardiology, 106(2), 189–204.
https://doi.org/10.1007/s00395-010-0134-z

Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L.-H.,
Yang, M.-J., Chen, P.-S., Restrepo, J. G., Karma, A., Garfinkel, A.,
Qu, Z., & Weiss, J. N. (2008). A rabbit ventricular action potential
model replicating cardiac dynamics at rapid heart rates. Biophysical
Journal, 94(2), 392–410. https://doi.org/10.1529/biophysj.106.98160

Marques-da Silva, D., Francisco, R., Webster, D., dos Reis Ferreira, V.,
Jaeken, J., & Pulinilkunnil, T. (2017). Cardiac complications of con-
genital disorders of glycosylation (cdg): A systematic review of the
literature. Journal of Inherited Metabolic Disease, 40(5), 657–672.
https://doi.org/10.1007/s10545-017-0066-y

Milani-Nejad, N., & Janssen, P. M. (2014). Small and large animal
models in cardiac contraction research: Advantages and disadvan-
tages. Pharmacology & Therapeutics, 141(3), 235–249. https://doi.
org/10.1016/j.pharmthera.2013.10.007

Nerbonne, J. M. (2004). Studying cardiac arrhythmias in the mouse –
A reasonable model for probing mechanisms? Trends in
Cardiovascular Medicine, 14(3), 83–93. https://doi.org/10.1016/j.tcm.
2003.12.006

Ohtsubo, K., & Marth, J. D. (2006). Glycosylation in cellular mecha-
nisms of health and disease. Cell, 126(5), 855–867. https://doi.org/
10.1016/j.cell.2006.08.019

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 165

https://doi.org/10.1152/ajpheart.00460.2019
https://doi.org/10.1371/journal.pone.0089113
https://doi.org/10.1371/journal.pone.0089113
https://doi.org/10.1152/ajpheart.00185.2003
https://doi.org/10.1152/ajpheart.00185.2003
https://doi.org/10.1113/jphysiol.2004.063446
https://doi.org/10.1113/jphysiol.2004.063446
https://doi.org/10.1016/j.cell.2005.08.004
https://doi.org/10.3389/fphys.2020.00364
https://doi.org/10.3389/fphys.2020.00364
https://doi.org/10.1109/JBHI.2015.2458791
https://doi.org/10.1109/JBHI.2017.2664579
https://doi.org/10.1109/JBHI.2013.2260864
https://doi.org/10.1109/JBHI.2013.2260864
https://doi.org/10.1074/jbc.M114.605139
https://doi.org/10.1096/fj.201801057R
https://doi.org/10.1096/fj.201801057R
https://doi.org/10.1016/j.bbagen.2014.10.027
https://doi.org/10.1016/j.yjmcc.2013.02.013
https://doi.org/10.1016/j.yjmcc.2013.02.013
https://doi.org/10.1016/j.yjmcc.2019.05.001
https://doi.org/10.1113/jphysiol.2014.287268
https://doi.org/10.1113/jphysiol.2014.287268
https://doi.org/10.1038/nrcardio.2012.3
https://doi.org/10.1038/nrcardio.2012.3
https://doi.org/10.1016/j.yjmcc.2015.11.018
https://doi.org/10.3389/fphys.2022.816651
https://doi.org/10.3389/fphys.2022.816651
https://doi.org/10.1080/01621459.2018.1515079
https://doi.org/10.1080/01621459.2018.1515079
https://doi.org/10.1007/s00395-010-0134-z
https://doi.org/10.1529/biophysj.106.98160
https://doi.org/10.1007/s10545-017-0066-y
https://doi.org/10.1016/j.pharmthera.2013.10.007
https://doi.org/10.1016/j.pharmthera.2013.10.007
https://doi.org/10.1016/j.tcm.2003.12.006
https://doi.org/10.1016/j.tcm.2003.12.006
https://doi.org/10.1016/j.cell.2006.08.019
https://doi.org/10.1016/j.cell.2006.08.019


Ravens, U., & Cerbai, E. (2008). Role of potassium currents in cardiac
arrhythmias. Europace: European Pacing, Arrhythmias, and Cardiac
Electrophysiology:Jjournal of the Working Groups on Cardiac Pacing,
Arrhythmias, and Cardiac Cellular Electrophysiology of the European
Society of Cardiology, 10(10), 1133–1137. https://doi.org/10.1093/
europace/eun193

Rodriguez, B., Burrage, K., Gavaghan, D., Grau, V., Kohl, P., & Noble,
D. (2010). The systems biology approach to drug development:
Application to toxicity assessment of cardiac drugs. Clinical
Pharmacology and Therapeutics, 88(1), 130–134. https://doi.org/10.
1038/clpt.2010.95

Schwetz, T. A., Norring, S. A., Ednie, A. R., & Bennett, E. S. (2011).
Sialic acids attached to o-glycans modulate voltage-gated potassium
channel gating. Journal of Biological Chemistry, 286(6), 4123–4132.
https://doi.org/10.1074/jbc.M110.171322

Splawski, I., Timothy, K. W., Tateyama, M., Clancy, C. E., Malhotra,
A., Beggs, A. H., Cappuccio, F. P., Sagnella, G. A., Kass, R. S., &
Keating, M. T. (2002). Variant of scn5a sodium channel implicated
in risk of cardiac arrhythmia. Science (New York, N.Y.), 297(5585),
1333–1336. https://doi.org/10.1126/science.1073569

Ten Tusscher, K. H., Noble, D., Noble, P.-J., & Panfilov, A. V. (2004).
A model for human ventricular tissue. American Journal of
Physiology. Heart and Circulatory Physiology, 286(4), H1573–H1589.
https://doi.org/10.1152/ajpheart.00794.2003

Teng, A. C. T., Gu, L., Di Paola, M., Lakin, R., Williams, Z. J., Au, A.,
Chen, W., Callaghan, N. I., Zadeh, F. H., Zhou, Y.-Q., Fatah, M.,
Chatterjee, D., Jourdan, L. J., Liu, J., Simmons, C. A., Kislinger, T.,

Yip, C. M., Backx, P. H., Gourdie, R. G., Hamilton, R. M., &
Gramolini, A. O. (2022). Tmem65 is critical for the structure and
function of the intercalated discs in mouse hearts. Nature
Communications, 13(1), 6166. https://doi.org/10.1038/s41467-022-
33303-y

Tristani-Firouzi, M., Chen, J., Mitcheson, J. S., & Sanguinetti, M. C.
(2001). Molecular biology of kþ channels and their role in cardiac
arrhythmias. American Journal of Medicine, 110(1), 50–59. https://
doi.org/10.1016/s0002-9343(00)00623-9

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne.
Journal of Machine Learning Research, 9(86), 2579–2605.

Weintraub, R. G., Semsarian, C., & Macdonald, P. (2017). Dilated car-
diomyopathy. Lancet (London, England), 390(10092), 400–414.
https://doi.org/10.1016/S0140-6736(16)31713-5

Whittaker, D. G., Clerx, M., Lei, C. L., Christini, D. J., & Mirams,
G. R. (2020). Calibration of ionic and cellular cardiac electrophysi-
ology models. Wiley Interdisciplinary Reviews: Systems Biology and
Medicine, 12(4), e1482.

Winslow, R. L., Cortassa, S., O’Rourke, B., Hashambhoy, Y. L., Rice,
J. J., & Greenstein, J. L. (2011). Integrative modeling of the cardiac
ventricular myocyte. Wiley Interdisciplinary Reviews. Systems Biology
and Medicine, 3(4), 392–413. https://doi.org/10.1002/wsbm.122

Xu, H., Guo, W., & Nerbonne, J. M. (1999). Four kinetically distinct
depolarization-activated kþ currents in adult mouse ventricular
myocytes. Journal of General Physiology, 113(5), 661–678. https://
doi.org/10.1085/jgp.113.5.661

166 H. KIM ET AL.

https://doi.org/10.1093/europace/eun193
https://doi.org/10.1093/europace/eun193
https://doi.org/10.1038/clpt.2010.95
https://doi.org/10.1038/clpt.2010.95
https://doi.org/10.1074/jbc.M110.171322
https://doi.org/10.1126/science.1073569
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1038/s41467-022-33303-y
https://doi.org/10.1038/s41467-022-33303-y
https://doi.org/10.1016/s0002-9343(00)00623-9
https://doi.org/10.1016/s0002-9343(00)00623-9
https://doi.org/10.1016/S0140-6736(16)31713-5
https://doi.org/10.1002/wsbm.122
https://doi.org/10.1085/jgp.113.5.661
https://doi.org/10.1085/jgp.113.5.661

	Abstract
	Introduction
	Research background
	Data assimilation and calibration of cardiac models
	Congenital disorders of glycosylation

	Research methodology
	Computer models of potassium channel isoforms
	In-silico modeling of IKto
	In-silico modeling of IKslow1, IKslow2, and IKss

	Concurrent assimilation of functional data
	Sensitivity analysis and model regularization
	Low-dimensional embedding

	Experimental design and results
	Parameter screening
	Model fitness
	Prediction of Kv activities
	Cellular variability

	Discussion and conclusions
	Consent and approval
	Disclosure statement
	Funding
	Orcid
	References




