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ABSTRACT

Potassium channels (K,) are responsible for repolarizing the action potential in cardiomyocytes.
There is a variety of K, isoforms and corresponding currents (e.g. ko, lksiow1, lkslow2) that contribute
to different phases of repolarization. Because only the sum of their activities can be measured in
the form of currents (lksum), there is a need to delineate individual K* currents. Most existing stud-
ies make inference of K, activities via curve-fitting procedures but encounter certain limitations as
follows: (1) curve-fitting decomposition only relies on the shape of Kt current traces, which does
not discern the underlying kinetics; (2) Ixsum traces can only be fitted for one clamp voltage at
each time, and then analyzed in a population-averaged way later. This paper presents a novel con-
current data assimilation method to calibrate biophysics-based models and delineate kinetics of K,
isoforms with multiple voltage-clamp responses simultaneously. The proposed method is eval-
uated and validated with whole-cell Ixs,m recordings from wild-type and chronically glycosylation-
deficient cardiomyocytes. Experimental results show that the proposed method effectively handles
multiple-response data and describes glycosylation-conferred perturbations to K, isoforms. Further,
we develop a graphical-user-interface (GUI) application that provides an enabling tool to biomed-
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ical scientists for data-driven modeling and analysis of K, kinetics in various heart diseases.

1. Introduction

Potassium channels (K,) play critical roles in the electrical
conduction system of the heart, particularly in the repolari-
zation phase of the action potential (AP). The AP is a
change of membrane potential over time, representing the
net electrical activity in a cardiomyocyte, and the AP shape
and duration are primarily determined by K, isoforms. The
ability of the heart to pump blood through the body in an
appropriate rhythm is controlled by electrical signaling.
Hence, even modest changes in K, activities can significantly
affect the AP duration and the QT interval, which lead to
fatal heart diseases (Ravens & Cerbai, 2008). As shown in
Fig. 1, the different phases of AP repolarization in mouse
cardiomyocytes are the result of the coordinated activity of a
variety of K, isoforms (e.g. K4.2, K,1.5, and K;2.1) and
their corresponding currents (e.g. Ik Iksiows> and Ixsiows)-
There are other major voltage-gated ion channels (VGICs),
such as for Na® (Na,) and Ca®*" (Ca,), that also contribute
to the AP. The Na, are primarily responsible for the AP
upstroke in the depolarization phase, while the Ca, control
the cellular contraction. Aberrant activities of ion channels
can significantly impact the AP and lead to fatal arrhyth-
mias. Using whole-cell voltage-clamp recording methods,
only the collective activities of K, isoforms can be measured
reliably as the sum of all K™ currents (Ixqum), and these K,

isoforms have overlapping biophysical properties (i.e. voltage
dependence of gating and kinetics), which complicate the
ability to separate one type of Ix from another (Brouillette
et al., 2004). K, activities can be altered in various cardio-
myopathies (Giudicessi & Ackerman, 2012; Tristani-Firouzi
et al, 2001), thus there is an urgent need to decompose
Ixeum More rigorously into individual K" currents and esti-
mate gating kinetics of K, isoforms to understand their
pathological roles by comparing their activities in healthy
versus diseased hearts and cardiomyocytes.

Transgenic mouse models are the most commonly used
animal models that have provided insights into cardiac
research despite the differences between rodents and
humans; the isoforms expressed in both small and large
mammals share many similarities (Milani-Nejad & Janssen,
2014). Most existing studies using mouse models separate
individual K* currents mathematically via a curve-fitting
procedure (Costantini et al., 2005; Ednie et al., 2019; Teng
et al., 2022), assuming the Ixg,m current trace represents the
summation of exponential decay functions (two or three,
usually) and a constant term; each represents the shape of
individual K" currents. However, the ability to scrutinize
the kinetics and dynamics of individual K, isoforms is lim-
ited by this traditional method because: (1) curve-fitting
decomposition only relies on the shape of K* current traces
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Figure 1. (a) Ventricular action potential in mouse cardiomyocytes and (b) diverse K, isoforms and their currents contributing to the AP shape.

as discreet exponential functions which does not discern the
underlying kinetics and interactions of K, isoforms; (2)
Ixsum traces can only be decomposed for one clamp voltage
at a time, and estimated information from each fitting is
analyzed in a population-averaged way later. New methods
are urgently needed to simultaneously delineate the underly-
ing kinetics of multiple I, traces from the same cell con-
currently for a better understanding of K, channels and
their roles as well as cellular variability in diseased
cardiomyocytes.

This paper presents a new approach of subject-specific
concurrent data assimilation for model-guided learning of
K, isoforms. First, computer models of K, and their currents
are designed with parameters that control the kinetic rates
and, in turn, determine the currents. It is worth mentioning
that K* currents are generated based on the mathematically
simulated gating mechanism. Second, we perform a sensitiv-
ity analysis of the kinetic parameters using fractional factor-
ial designs to identify the parameters that have significant
effects on the current generation. Several markers are
defined that best represent the characteristics of the K* cur-
rents in different perspectives. Third, a calibration routine is
proposed to adjust parameters selected by the sensitivity
analysis to couple in-silico models with in-vitro data of Ixsum
recordings from the same cell concurrently. Last, low-
dimensional embedding is utilized to visualize calibrated
parameters in a collective way across the cells. The proposed
methodology is evaluated and validated by comparing Ixsm
recordings on healthy control versus chronically glycosyla-
tion-deficient cardiomyocyte. Glycosylation is a co/post-
translational modification that is critical for protein
functions including activities of K, and other VGICs (Ednie
& Bennett, 2012; Ohtsubo & Marth, 2006). Our in-vitro
experiments showed that chronic reduction in cardiomyo-
cyte N-glycosylation modulates VGIC activities and contrib-
ute to both electrical and contractile dysfunction (Ednie
et al., 2013; Ednie & Bennett, 2015; Ednie et al., 2019). In
fact, these studies also showed that reduced cardiomyocyte
complex N-glycosylation is sufficient to cause dilated cardio-
myopathy (DCM), which is the third most common cause
of heart failure and the major reason for heart transplant-
ation (Weintraub et al., 2017).

Experimental results show that the proposed method pro-
vides reliable estimations of K, currents with underlying

kinetics and successfully captures cellular variability. For
example, it verifies the experimental data that showed the
significant reduction in the current magnitude and elongated
decaying for the glycosylation-deficient cardiomyocyte
group. Additionally, computational modeling estimates
channel kinetics, which was not possible in the electro-
physiological experiments alone. Cellular variability is visual-
ized by low-dimensional embedding of calibration
parameters into 3D space, which shows one of the powers
of systematic computer models that allow one to predict
how changes in VGICs impact cellular functions. Further,
we develop a graphical-user-interface (GUI) application to
make the proposed method accessible to biomedical scien-
tists for investigating K,-related channelopathy. The pro-
posed method shows strong potential for modeling the
kinetics and gating mechanism of K, to study heart diseases.
Our contributions are summarized as follows:

e We model the underlying kinetics of K, isoforms from
Ixeum recordings, which enables to simulate individual
K™ currents based on biophysical principles.

e We develop a subject-specific concurrent data assimila-
tion routine that learns Ixg,, recordings measured from
the same cell at multiple membrane potentials simultan-
eously rather than a single Ixq,, trace independently to
model cellular-level dynamics.

e The prediction uncertainty is quantified and the distribu-
tion of kinetic parameters is visualized using low-dimen-
sional embedding.

e A GUI application is provided to make the proposed
method an enabling tool for biomedical scientists.

The software package of the GUI application, tutorial,
and reproducible MATLAB codes for modeling and analysis
results are available at https://github.com/haedong31/Kv_
data_assim.

2. Research background
2.1. Data assimilation and calibration of cardiac models

The functionality of the heart to pump blood through the
body is controlled by electrical signals generated by the organ
itself. Cardiac electrophysiology has contributed significantly


https://github.com/haedong31/Kv_data_assim
https://github.com/haedong31/Kv_data_assim

to our understanding of the heart and disease-related modifi-
cations, such as congenital disorders of glycosylation (CDG).
Advancements in laboratory techniques allow researchers to
study molecular-level activities in cardiomyocytes via measur-
ing ionic currents conducted through VGICs. For example,
whole-cell current recordings are used to show the functions
of a certain gene that encodes o subunits of Na, in human car-
diomyocytes, leading to a small but inherent and chronic risk
of acquired arrhythmia (Splawski et al., 2002); pathophysio-
logical roles of reduced sialylation impacting Na, and K,
activities in mouse cardiomyocytes (Ednie et al., 2015; Ednie
& Bennett, 2015); modulation of O-glycosylation causing
aberrant K, activities (Schwetz et al., 2011). However, in-vitro
experiments alone are limited to investigate detailed channel
activities. There is a need to assimilate experimental data to
estimate information that are not able to be observed directly.
Traditionally, a curve-fitting method is used to make infer-
ences, which assumes a functional form of information to esti-
mate (e.g. individual currents of K, isoforms) (Liu et al,
2011).

In contrast, computer models consist of mathematical
equations describing biophysical properties and physiological
functions compatible with experimental observations.
Mathematical and computational modeling allows for study-
ing the heart in a quantitative and predictive way
(Whittaker et al., 2020). Computer models, coupled with
experimental observations, provide integrative insights into
the data by calibrating model parameters (Winslow et al.,
2011). For example, models can be used to interpolate proc-
esses not directly observed in experiments and extrapolate to
novel conditions such as disease-related perturbations
(Rodriguez et al, 2010). From an engineering perspective,
computer models of ion channels are dynamic system simu-
lations that represent continuously changing gating kinetics.
The dynamic nature of the models complicates the calibra-
tion process. Complex nonlinear structures of cardiac com-
puter models also make calibration difficult. We developed
statistical metamodeling and sequential design (Du et al,
2016), nonlinear optimization algorithms (Du et al., 2014,
2018), and a heuristic optimization method (Kim et al.,
2022) in our previous in-silico studies to cope with the com-
plexity of cardiac models. However, all these studies are
based on current-shape parameters via curve fitting, or char-
acteristic curves/statistics from additional curve fitting
applied to estimated currents. In addition, only population-
average models are derived and calibrated via learning the
entire dataset for each healthy and diseased group. Little
work has been done to leverage computer models to cali-
brate and delineate kinetic dynamics of K, isoforms with
multiple voltage-clamp responses simultaneously.

2.2. Congenital disorders of glycosylation

Protein glycosylation is one of the most abundant and
diverse forms of co/posttranslational modifications that
impact essential protein functions, such as modulation of
receptor or ion channel activities (Ednie & Bennett, 2012;
Ohtsubo & Marth, 2006). A growing number of studies have
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shown the association between altered glycosylation and
heart diseases, such as dilated cardiomyopathy (DCM) and
hypertrophic cardiomyopathy (Ednie et al., 2019; Ohtsubo &
Marth, 2006). It is reported that up to 20% of patients with
congenital disorders of glycosylation (CDG), who commonly
show modest reductions in protein glycosylation, present
with cardiac deficits, including idiopathic DCM (Marques-
da Silva et al,, 2017). However, uncovering the underlying
pathological mechanisms still remains elusive. We have
investigated how regulated glycosylation contributes to heart
failure in the context of electrophysiology. Electrical signal-
ing is orchestrated activities of a variety of ion channels and
transporters. VGICs are heavily glycosylated, with 30% of
the channel mass consisting of N-/O-linked glycans (Ednie
& Bennett, 2012). Glycosylation is a multi-step process and
usually ends with sialic acid added. We reported that a satu-
rating, electrostatic effect of negatively charged sialic
attached to the terminal of N-/O-glycan branches signifi-
cantly altered electrical signaling in Na, (Ednie et al., 2013,
2015) as well as K, (Ednie & Bennett, 2015). Computational
modeling has been used to further investigate the functional
role of reduced sialylation in Na, and K, (Du et al., 2016,
2018).

3. Research methodology
3.1. Computer models of potassium channel isoforms

Because of the relative ease at which their genetics can be
altered, mice have been useful models for studying cardiac
electric signaling (Milani-Nejad & Janssen, 2014; Nerbonne,
2004). In ventricular and atrial mouse cardiomyocytes, there
are three major components of Ixg,m: rapidly inactivating
transient outward K" currents (Ig,¢ and/or Igy,s), which
are conducted through K,4.2 and K,1.4 respectively, slowly
inactivating delayed rectifier K' currents (Iggow: and
Ikgowz)> Which are conducted through K,1.5/K,2.1, and the
non-inactivating steady-state K" current (Ix,) (Xu et al,
1999). Ikiwos (Ky1.4) is primarily found in septal cardiomyo-
cytes (Bondarenko et al, 2004). In this study, we only
include Iy ¢ in Iy, because our in-vitro studies focused on
the ventricular apex myocytes. However, Ix, can be easily
modified according to the region of ventricular cardiomyo-
cytes. We model these four dominant K* currents: I,
Ikstowts Iksiowz> and Iggs. Figure 2(b) illustrates the shape of
the primary K' currents and their contribution to the
whole-cell Iy trace (Ixsum) given the protocol in Fig. 2(a)
that applies 0mV voltage pulse from holding potential
—70mV from time t" to t{¢). Figure 2(c,d) shows a range
of voltage steps from —30mV to 50mV in 10mV incre-
ments and consequent changes in Igem,. Because of their
shape, I is assumed as a constant and the other currents
an exponential function in the traditional data-driven curve-
fitting approach. In this approach, if all four current models
are included, Ixq,m is defined by (1) (i.e. tri-exponential fit-
ting) with the shape parameters such as amplitude A; and
time constant t; for i € {Kto, Kslowl, Kslow2,Kss}. In some
cases, it is reduced to a bi-exponential function combining
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Figure 2. Example of voltage-clamp protocol and K™ current traces. (a) Clamp-voltage pulse of 0mV from the holding potential -70 mV. (b) Dominant K* currents and
their contributions to lysum. () Series of clamp-voltage pulses (-30-50mV in 10 mV increments) from the holding potential -70 mV and (d) consequent lxs, traces.

IKslowl and IKslow2~
Iksum = AAI<'(0‘37t/T]<‘0 + Axslow! eit/TKSIDWI + AKslow2€7t/TKSIOWZ + Axss-
(1)
We developed mouse K, models based on (Asfaw et al.,
2020; Bondarenko, 2014), using the Hodgkin-Huxley model-
ing scheme that has been used for various species, such as
humans (Ten Tusscher et al., 2004) and rabbits (Mahajan
et al,, 2008). This type of model consists of two gating varia-

bles controlling the channel conductance, and its canonical
form is defined by (2)

Ix = Gga"i"(V — Ex), (2)

where Gy is the maximum conductance, a” and i" are the
gating variables for n,m € N, V is the transmembrane
potential, and Ex is the K™ Nernst potential. V — Ex implies
the driving force of the ion movement. Important compo-
nents in (2) are the gating variables a and i, representing
the fraction of activation and recovery from inactivation of
the channel where a,i € [0, 1]. These processes are governed
by first-order kinetics and voltage-dependent transition rates
o and . o is the rate at which a gate in a closed state opens,
whereas f§ is the rate at which a gate in an open state closes.
Equation (3) shows a schematic relationship of this gating
kinetics. n and m represent the numbers of activation and
inactivation gates, which are dependent on a particular K,
isoform and determined by specific kinetics and properties
of that channel. In general, the number of gates depends on
the complexity of the channel behavior and the level of
detail required in the model.

(1-a)

2a  (1-i) =

— L

Ba Bi 3)

These two biophysical processes a and i can be expressed
using differential equations in two ways (4) and (5)

da di
- = — — = =a(l1—1)—B.i 4
I 0,(1—a)— f,a o oi(1 —i) — i (4)
da ayx,—a di i —1i
E o Ta E o T; ’ (5)

where a,, and iy are the steady-state values to which a and
b converge; 7, and 1; are time constants determine the con-
vergence speed defined by

%} . Ol
Ay = loo =
oy + ﬁa o+ ﬂi (6)
1 1 o
Tg = ——— Ti=——"F7.
oy + ﬁa o+ ﬁi

The steady-state values and time constants can be defined
directly by functions of voltage V without transition rates in
some cases. These voltage-dependent functions, such
as transition rates, steady states, or time constants, have
parameters p; that control the behavior of the kinetics of an
ion channel.

3.1.1. In-silico modeling of I,

The rapidly inactivating transient outward current Iy,
which is conducted through K4.2, is characterized by a
sharp upstroke during activation and subsequent rapid
inactivation. It mainly contributes to the peak at the very
beginning of activation in Ixgm. Ik is defined by

(8)

Ikt = GKt0a3Kt0iKto(V - EK)



daxio
dI;t = au(l - aKto) - ﬁaaKto (9)
digio . )
— = ol = ko) = o (10)
0y :p7eP5(V+P1) (11)
Ba = pye (VI (12)
—(V+p2)/ps
oy = —P2° (13)
1+ proe(VHP2tps)/pa
(V4+pa+p3)/pa
pi =2 (14)

14 prae(VErtea)/ps

There are two gating variables ag and ik responsible
for activation and inactivation, respectively. Their kinetics
are governed by transition-rate functions from (11) to (14).
Parameters p; for s = {1,2,...,12} in these equations act like
knobs, allowing to control the behavior of the Ik, model.

3.1.2. In-silico modeling of lxsjon1, Iksiow2 and Iy

There are two major delayed rectifier currents in mouse ven-
tricular cardiomyocytes that are rapidly activating and slowly
inactivating: Iggow1 and Iggows which are conducted through
K, 1.5 and K,2.1, respectively. As shown in Fig. 2(b), both rec-
tifier currents inactivate slower and have smaller magnitude
than I, and Ixgow, decays more gradually than Igge,; (Liu
et al, 2011). The non-inactivating steady-state current Iy,
which is likely conducted through K, isoforms K,p family
(Feliciangeli et al.,, 2015), remains constant during the volt-
age-clamp recording. These three currents contribute to most
part of the decaying portion of Iggm. To keep the models as
simple as possible to reduce the structural risk of overfitting,
we assume that Iggow: and Ixgowz have the same activation
gating variable, and they have a similar inactivation pattern;
Ixss has similar activation behavior with the two delayed recti-
fier currents but a slightly different rate.

Iksdowl> Ikslowzs and Ixe are modeled without transition-
rate functions as opposed to Igy, and their steady-state and
time-constant functions are directly defined. First, the gating
variables of Iggowi» activation aggowi> and inactivation
ixslowl> are defined by (16) and (17). The steady-state func-
tions (as and ig) in (18) and (19) will be shared with the
other two current models. A full description of Iggow: is
given as follows:

IKslowl - GKslowl AKslowl iKslowl (V - EK) (15)
daKslowl _ Ass — AKslowl (16)

dt TE;KSIOWI)
diKslowl o iss - iKslowl (17)

1

dt - T(Kslowl)
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1
Ass = T —Vap)im (18)
1+ e~ (V4p1)/ps
1
s = ————o——7— (19)
1+ e(V+p2)/ps
(Kslowl) __ p7
Ta gPs(V+p3) + e—Pé(V+P3) +P9 (20)
‘CEKS]OWI) = D10 — Psiss- (21)

As a structural regularization, Iggow, has the same activa-
tion variable with Igxgow: as in (23), and the time-constant
function of the inactivation igxgow2 Shares the same
steady-state function is (19) with Ixgowi- As a result of this
modeling strategy, mathematical equations of Igxgow, are
given as follows:

IKslowZ = GKslow2aK510w2 iKslowZ(V - EK) (22)
AKslow2 = AKslowl (23)
diKslowZ _ iss - iKslowZ (2 4)
At T(Kslowz)
i
Kslow2 .
TS slow2) = P2 — Pilss- (25)

Ixss does not have an inactivation variable because it is
non-inactivating current. It shares the same steady-state
function for activation a, (18) with the other two delayed
rectifier currents but have a separate time-constant function

(28) to address the different activation rate. Iy is
modeled as
IKss = GKssaKss(V - EK) (26)
daKss Ass — OKss
o &) @7)
(Kss) __ P2
fa T eP1(V4p3) 4 g=pi(Vps) TP (28)

Note that p’ is equal to p3 in Ixgow:.

3.2. Concurrent assimilation of functional data

Data assimilation is a systematic procedure to find the optimal
configuration and state of computational/mathematical mod-
els by coupling them with experimental data. Experimental
data D are observations of a real process R that represents sci-
entific phenomena under investigation. The output of physical
experiments y”(x), given input x, inevitably contains errors
for various reasons, such as noise in measurement or experi-
mental environment. Suppose D and R can be related as fol-
lows in (29), where ¢ is the error term.

YR (x) = yP(x) + e (29)
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Let y™(x|0) denote the output from a computer model
M, given parameters (). Assume that there are discrepancies
0(x]0) for the current states of parameters as follows in (30):

yP(x) = yM(x|0) + 6(x]0), so (30)

YR (x) = yM(x]0) + 5(x]0) +e.

Our goal in data assimilation is to calibrate 0 to find the
best model states that minimize J(x|0), while satisfying bio-
physical constraints. By doing that, in-silico models M are
coupled with in-vitro experimental data D, which provides
two complementary angles to study the real process R.

From this perspective, bi-/tri-exponential function in (1)

(31)

serves as ¥ (¢,v|0) in the curve-fitting approach, where 0 =
{A;(v),ti(v)} for i€ {Kto,Kslowl,Kslow2,Kss}. v repre-
sents voltage. Note that A;(v) and 7;(v) are dependent on
input data v, so for each voltage, we need to perform a data
assimilation procedure separately. In general, multiple input
voltage steps are applied to a cardiomyocyte producing a set
of Ixeum recordings to study the voltage-dependent charac-
teristics. Suppose the sum of in-silico models of K" currents
I; for i€ {Kto,Kslowl, Kslow2,Kss} serve as a computer
model for data assimilation as in (32):

yM(tv]0) = Zli’

where 0 is the union of kinetic parameters p; for each I;,
which are constants. In contrast, this computer model gen-
erates Ixy,m for different input voltages given one set of
parameters, because the in-silico models are designed by
biophysical principles encoding voltage dependence.
Therefore, 0 is defined by the summation of root-mean-
square errors (RMSEs) as given in (33). RMSE evaluates the
goodness-of-fit between experimental Igy,, and model pre-
diction. RMSEs for a set of Iy, traces are summed up to
guide the optimization procedure calibrating the models in a
concurrent way for clamp voltages v =1,2,...,n.

(32)

£

- (2(1) — yM(1.v10))°
(¢) (h) d
v=1 tyl) tv - tv

Cardiac models enable this concurrent data assimilation,
because they generate multiple current traces with different
input voltages by simulating underlying gating kinetics. Note
that the proposed method calibrates computer models directly
to Ixsum recordings, while the previous studies use statistics
estimated from the data via curve-fitting (Du et al., 2014, 2016,
2018; Kim et al., 2022). We develop the box-constrained non-
linear optimization routine with multi-random initial points to
minimize ¢. Box constraints mean that 0 has a lower and upper
bound for each dimension, so solution space is constrained in a
hypercube. In this way, the optimization loop can be controlled
by users, allowing them to blend their domain knowledge into
the modeling. The multi-random-start scheme helps escape
local optima and find the solution as close to the optimum as
possible. Latin hypercube designs and parallel computations
are used to sample initial points and run them on multicores to

(S:

t (33)

compensate for the increased computational burden. This work
is implemented in MATLAB R2022a.

3.3. Sensitivity analysis and model regularization

The principle of parsimony is critical in model calibration to
enhance fitting accuracy, prevent overfitting, and improve
interpretability of 0. Excessive flexibility has a risk of overfit-
ting that occurs when the model fits data too closely, even
including noise and random effects in data. Besides, as the
number of parameters increases, it becomes complicated to
interpret the calibration results. It is worth emphasizing that
the presented models are designed with structural regulariza-
tion, in which some parameters and equations are recycled
in multiple places to simplify the model structure.

We also perform a sensitivity analysis to identify a subset
of the parameters that have significant impacts on the model
output and only calibrate these sensitive parameters.
Factorial designs are developed in which parameters vary at
two levels contrasting their effect on the model output. As
illustrated in Fig. 3, six markers are defined that capture
characteristics of K* current traces in voltage-clamp experi-
ments. Each marker represents: (a) the current magnitude of
10 ms after applying a voltage step, which measures the acti-
vation rate; (b) 25% of the total recording time has elapsed,
(c) 50%, and (d) 75%, which collectively estimate the inacti-
vation rate over time; (e) the peak magnitude; and (f) the
time when current has decayed (1 —e ')% (almost 63%)
from the peak. Marker f will be equal to the total recording
time if current does not decline enough as in Fig. 3(c,d).

A fractional factorial design of 1024 runs is adopted for
Ik, Which results in resolution VIII. The resolution ensures
that the main effects and 2-/3-factor interactions are strongly
clear. Full factorial designs are used for the other three cur-

rents. The marker points 2* defined as in Fig. 3 are evaluated
at each design sample and factorial effects are calculated via
the linear model in (34) for each current. The least squares

method is used to estimate . Then, half-normal plots are
drawn to test significance of the estimated factorial effects.

ik:ﬁ’;_s_Zﬁfpf—f—e,ke{a,b,c,d,e,f}. (34)

3.4. Low-dimensional embedding

Most cardiac electrophysiology studies utilize statistical tests
for the mean to support hypotheses; in turn, the majority of
ion channel models are based on population-averaged data.
However, subject-specific analyses that consider the cellular-
level variability can provide new insights into data. For
example, it is possible there are differences between control
and experimental groups but also within the groups. Hence,
there is an urgent need to develop a tool to investigate cell-
specific characteristics. Because the proposed approach cali-
brates models using the dataset for each cell, it allows us to
quantify cellular variability in the tuned parameters. We
adopt low-dimensional embedding that transforms high-
dimensional data into a plane or 3D space while preserving
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Figure 3. lllustration of the six markers of voltage-clamp K* currents that quantify characteristics of the current shape of (a) lxio, (b) Iksiow1s (€) Iksiowzr @and (d) lkss.
All currents are simulated for illustration, and the labels refer to (a) the current magnitude 10 ms after voltage is applied, (b) 25% of the total recording time has
elapsed, (c) 50%, (d) 75%, (e) the peak magnitude, and (f) the time when current has decayed (1 — e~")% (almost 63%) from the peak.

relative locations of data points to visualize how distributional
differences in calibration parameters collectively impact
inter/intra-cell variability in healthy and diseased groups.

For this purpose, t-distributed stochastic neighbor
embedding (t-SNE) is used (Van der Maaten & Hinton,
2008). It has proven to be an effective method for visualiz-
ing high-dimensional data. t-SNE is a statistical method that
constructs two sets of probability distributions p; and gj
over pairs of data points i and j in a high-/low-dimensional
space, respectively. These are probabilities of similarities
such that neighboring points have a higher probability while
dissimilar points have a lower probability. We first define
the conditional probability of j given i:

exp (—d(x;, %)/ (207))
Yz exp (—d(xix0)*/(202))
0,j = i,

Pjli = A (35)

where d(-,-) is a distance function such as Euclidean dis-
tance, and . pj; =1 for all i. Then p; can be defined by

the symmetric property of the joint probabilities:
pjii + Pij
="
where N is the number of total data points, and Zi’j pi = 1.

(36)

It can be calculated from data once the standard deviation
o; is given. o; is set in a way that the perplexity of the con-
ditional probability distribution over other data points given
x; equals a prefixed value that is a hyperparameter of t-SNE.
Let P; denote the conditional probability distribution, then
the perplexity of the distribution is

perplexity(P;) = 21, (37)

where H(P;) is the Shannon entropy of P; defined by

H(P) =~ Y pyiloga(py) 68
j

Then the probability distribution g; is defined by the
similarity of data points y; and y; in a low-dimensional
space:

27
(1+ ]|z — 7)™

D= 2ok i (1 + [lze — all>)™
0>j: i)

j# (39)

where 3, .q; =1. Note that g; is modeled by a heavy-
tailed Student’s t-distribution with one degree of freedom,
from which the name “t-SNE” originates. The objective of t-
SNE is to learn y that minimizes discrepancies between P
and Q, so that the low-dimensional distribution preserves
the structure of p; constructed from the original high-
dimensional data. To learn y, t-SNE maps y by minimizing
the Kullback-Leibler (KL) divergence, which measures the
similarity between two probability distributions:

KL(PIQ) = 3 Y pijlog 22

L (40)
i i

A gradient descent method is used for the minimization
of KL(P||Q) with respect to y.
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4. Experimental design and results

We apply the proposed framework to our data for investi-
gating the pathophysiology of electrical signaling altered by
reduced glycosylation. Recently, we showed that preventing
hybrid/complex N-glycosylation in mouse cardiomyocytes
was sufficient to cause DCM, achieved through genetic abla-
tion of the MGATI gene (MGATI1KO model), which enco-
des a critical glycosyltransferase, GIcNAcT1 (Ednie et al,
2019). MGAT1KO mice developed DCM that deteriorated
into heart failure, and 100% died early, presumably from
ventricular arrhythmias leading to sudden cardiac death. To
further investigate the role of altered glycosylation in patho-
genesis and disease progression of the heart, we conducted
whole-cell patch-clamp experiments that showed reductions
in N-glycosylation significantly impact electrical signaling in
mouse cardiomyocytes (Ednie et al., 2019). To be specific,
whole-cell Iy, traces were measured in left ventricular
apex cardiomyocytes of ~14-week-old control (wild type;
WT) and MGATI1KO mice, elicited by 4.5s 10mV voltage
steps (-30 to +50mV) from holding potential of —70mV.
There were 31 sets of whole-cell Ix recordings from different
WT cells and 30 from MGATI1KO cells. Animals were used
and cared for as outlined by the NIH’s Guide for the Care
and Use of Laboratory Animals. All animal protocols were
reviewed and approved by the Wright State University
Institutional Animal Use and Care Committee.

It was observed in the experiment that K™ currents were
reduced in MGATI1KO ventricular myocytes (Ednie et al,
2019). Because of the overlapping inactivation rates of the
K, isoforms responsible for Ixgow: and Iggow2 (K, 1.5 and
K;2.1), a curve-fitting method of bi-exponential, combining
Ixgow: and Iggows Of tri-exponential in (1), was applied to
decompose Igg,, traces into component currents. All three
component currents were reduced, but the rectifier current
Ixgow Wwas significantly reduced and slowed notably.
Although this in-vitro investigation discovered aberrant
reductions in K currents with chronic glycosylation defi-
ciency, it was difficult to determine channel kinetics rigor-
ously. For example, curve fitting was not able to provide
reliable results due to small current magnitude of the
MGATIKO model, particularly at the lower voltage steps.
Therefore, here we leverage the suggested framework for
modeling K, isoforms kinetics from our experimental data
of Ixsum recordings. This new approach allows dissecting
whole-cell K* current traces into isoform components and
modeling their underlying kinetics concurrently.

4.1. Parameter screening

Figure 4 shows the half-normal plots of factorial effects of
parameters on the six markers. The red straight lines on the
plots serve as a criterion to identify the parameters that are
sensitive to the marker points. The farther parameters fall
above the straight lines, the more significant impacts they have
on the marker. We picked the parameters to be calibrated as a
union of the sets of parameters falling above the straight lines
on the six half-normal plots. For Ix, {p1, P2, P3» Pas P35 P7> P11}
are Selected, for IKslowl {pl,pz,p4,p5,P9,p10}, for IKslowZ {P1}>

and for I {p1,p2p3}- In addition, all the maximum con-
ductance variables are included in the calibration param-
eter set.

Figure 5 shows the selected parameters, highlighted in
different colors according to their functional roles in chan-
nel kinetics. We categorized the calibration parameters into
four classes: The red represents the voltage-threshold param-
eters and the green voltage slopes, controlling the voltage
dependence, the blue scale factors of kinetic functions, and
purple time-constant shifters. Note that the voltage-depend-
ence parameters in red and green appear multiple times
across different equations. This parsimonious model design
is intended to maximize the structural regularization to min-
imize overfitting. In general, voltage-threshold and time-
constant-shifting parameters impact the current traces more
than others.

4.2. Model fitness

We tested various nonlinear optimization algorithms in the
proposed model calibration routine that support box con-
straints, and the BFGS algorithm provided the most reliable
results. A separate accuracy metric is used to measure the
goodness-of-fit and potential prediction power of the cali-
bration results rather than reporting the final objective func-
tion value. The objective function (i.e. sum of RMSEs) does
not provide a straightforward interpretation that makes it
difficult to evaluate the calibration performance. R?, defined
in (41), is the most common prediction accuracy metric
ranging from 0 to 1 for linear regression models that repre-
sents the proportion of variation in data that is explained by
the model. However, this interpretation is not applicable to
nonlinear models because the variance decomposition in
(42) no longer holds.

Z?:l()’i _ )/’\1)2

S ST w
i=1\1
M= =d_ G- +D> -5 (42
i=1 i=1 i=1

Therefore, a pseudo-R-squared measure, proposed in (Li
& Wang, 2019) is used to evaluate the model fitness in this
study. This nonlinear R> measure is based on the concept of
linear correction of prediction function, allowing the
variance decomposition for nonlinear functions, which
guarantees straightforward interpretation and normalized
scores between 0 and 1 as in the classical R*. Figure 6(a,c)
presents averages of nonlinear R* values over voltage steps
from —30 to 50mV by 10mV step size for WT and
MGATIKO, respectively. In most cases, models explain
more than 90 % of variances on average (WT:
0.9624+0.0051; MGATI1KO: 0.8938%0.0077). The model
fitness measures in MGAT1KO are lower than WT in gen-
eral. It is expected that the small current magnitude of
MGATIKO challenges the calibration process. We randomly
select a cell from each group and compare the actual model
predictions and experimental Ixg,, traces in Fig. 6(b,d) to



IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING ‘ 161

w4 Marker a 1 Marker b 1 Marker ¢
g @ e | §[® £ [©
E 0.8 X lelow1 E 0.8 E 0.8
3 * IKslowZ 3 2
3 3 | 3 3
[+) 0.6 Kss o 0.6 ‘f( [<) 0.6
2 = & 2 ¥
< 04 1 < 04 1 2 < 04 1 2
g Y g U g U £
1) I £< I
L & L + L i i
s 0.2] 2 F 1 Soa2 F 3 S 0.2 T 2
£ 7 E % T E g
S | S R‘Wm g S 3
‘P 54
R 1 1.5 2 5 1 1.5 2 5 1 1.5 2
Half-normal Quantiles Half-normal Quantiles Half-normal Quantiles
Marker d Marker e Marker f
e 1 s 1 ©» 038
g @ g (@ § [
S S S
5% w08 f ‘5 0.6
s S S
S 0.6 S 0.6 i 3
[72] (7] (7]
< { < i 2 -
S 04 1 2 & S 04 = 1§
3 3 g 5
= + 4 = + = 0.
© 0.2 1 2 © 0.2 5 ©
£ — E F o E fd b 2
=] (<] - ibx B 3( o 1+qu -
z =2 &G z
25 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2

Half-normal Quantiles

Half-normal Quantiles

Half-normal Quantiles

Figure 4. Half-normal plots of factorial effects for identifying significant parameters in the four current models on (a) Marker a, (b) Marker b, (c) Marker c, (d)

Marker d, (e) Marker e, and (d) Marker d.

0y = p76p5(V+p1)

Ba

@I,

_ pge_pG(V+p1)

pge_(v+p2)/p4

5= 1+ ploe—(v+p2+P3)/P4

pig eV 1P2+8)/pa

Bi=

1 -+ p12e(V+P2+P3)/P4

)|

Kslow?2

O g
i — P2 — DPilss

1 (b) I
Aee = slow1
14 e~ (VHp1)/pa
. 1
bes = 7 + e(V+p2)/ps
(1) _ pr
Ta" = opolVim) 1 gre(Virs) | B8
Tz’(l) = B — p8iss
d
’7_(3) = P2 ( )IK_S|S_, 1
@ PV ADh) 4 o (Vipy) |8

Figure 5. Selected parameters by the sensitivity analysis of (a) lxto, (b) lksiowts (€) lksiow2, @and lkss. Parameters are highlighted in different colors according to their

functional roles in channel kinetics.

validate the model calibration results further. As shown in
Fig. 6(d), MGATIKO at —30mV clamp voltage, small and
noisy current trace, results in decreased R*, 0.8335. The fit-
ting was performed on Intel 4-core Xeon E7-4830 process-
ors. Without parallel computing on multiple cores, each cell
took an average of 438.1+6.8s to complete the data
assimilation procedure for 5 random initial points. It took
an average of 333.8+6.0s with multicore processing, which
is 31 % efficient.

4.3. Prediction of K, activities

The in-silico modeling predicts that chronic reduction in
cardiomyocyte N-glycosylation results in significant changes
in channel steady states and kinetic behaviors. The most

notable result in the in-vitro experimental data was the sig-
nificant reduction in the current density in response to a
50-mV test potential. To verify this observation, Fig. 7
presents the prediction results of the current-density
relationship of the four K™ currents. The model predicts the
compatible result showing the Ixi, Iksows> and Iggowz den-
sities are significantly reduced in MGAT1KO cardiomyo-
cytes, while there are no remarkable differences in Ig,. Note
that in the in-vitro experiments, bi-exponential fitting was
used, in which the two delayed rectifier currents are
combined (Ixgow), because it is difficult to reliably fit a tri-
exponential function with a relatively short voltage step
(4.5s here) (Liu et al,, 2011). On the contrary, although the
proposed model-guided data assimilation distinguishes K,1.5
and K,2.1, it shows compatible prediction results with the



162 . H. KIM ET AL.

W1:'32 -30 mV/0.9369 -10 mV/0.9888
i 2 .
ga 10 Experimental IK
29 «. — Model Prediction
28 § 1
27 5
% 1o
24 "'6. 0 0
g(zi En. 0 2000 4000 0 2000 4000
21 4 = 0 mV/0.9833 20 mV/0.9791
20 < 20
519 < 30
o # 5
c 1 O
=16 < 10 20
15— = 0 0
} (1) ‘ z° 0 2000 4000 0 2000 4000
9 4 © 30 mV /0.9936 50 mV/0.9895
g H g 40
6 40
5
4 ] 20 20
2
1 l
n 0 0
0 (03 1 0 2000 4000 0 2000 4000
MGAT1KO 4 -30 mV / 0.8335 (b) -10 mV / 0.9869
32 1 I
31 1
5 ] °
5 ] )
26 1 2
25 E™
24 4 o 0
%g . 29_ 0 2000 4000 0 2000 4000
21 1 = 0 mV/0.9898 20 mV /0.9859
20 1 g 15 30
x 19 4 =
$1s 15
g 17 {010 20
318 13
12 E -E- 0 0
1 EI) 1 g 0 2000 4000 0 2000 4000
9 o 30 mV/0.9814 50 mV/0.9732
8 ] = 40
7 4 0
6 10 40
5 <
4 8 20
3 1 20
2 4
1 -
n 0 0
0 0.5 1 0 2000 4000 0 2000 4000
Average Nonlinear R? Time (ms)

©

Figure 6. Bar graphs of the averages of nonlinear R?s for nine voltage steps from —30mV to 50 mV by the 10 mV step size for (a) WT and (c) MGAT1KO. Exemplary
actual fitness between model predictions (in green) and experimental lgsum recordings (in pink) at six voltage steps of (b) cell 6 in WT and (d) cell 12 in MGAT1KO.

experimental data, as well as high fitness accuracy (~90 %
R?) (Ednie et al., 2019).

Another aberrant activity of K currents was slower
inactivation of delayed rectifier currents in MGATIKO car-
diomyocytes. Figure 8 shows the prediction results of the
inactivation time constants of Igxgow: and Iggowz. The com-

puter models successfully capture this trend, resulting in the

time constant of inactivation in for Ixgow: (rSKSlOWl)) being

estimated to be significantly slowed in MGAT1KO com-
pared to WT, i.e. ~348.9ms, as shown in Fig. 8(a). Ixgowa is
also slowed (see Fig. 8(b)). Inactivation time constants are
important because they determine how slowly Ixgow1 and
Ixgowz inactivate and, in turn, significantly affect the repola-

rization of the AP. t""Y show higher variability than
other currents to address most of the decaying portion of

Iksum. This is likely due to the fact that while K.4.2 and
K,2.1 are O-glycosylated, K,1.5 possess a single occupied N-
linked glycosylation. Hence, Ikgow: is more affected by
reduced N-glycosylation. A plot is not provided here, but
there is no significant effect on Iy, for membrane potential

greater than 0 mV. It is worth mentioning that the proposed

method was able to extrapolate rEKSlOWZ) that is greater than

5s from the 4.5-s-pulse protocol, which shows the general-
ization power of the in-silico modeling.

4.4. Cellular variability

The calibrated parameters are in a 61x20 matrix (ie. 31
observations in WT and 30 in MGAT1KO, and there are 20
calibration parameters), and we apply t-SNE to encapsulate
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these high-dimensional data in a three-dimensional space to
visualize each data point. Figure 9(a) presents the visualiza-
tion of the t-SNE embedding of the calibration results. It
shows not only clear differences between the two groups but
also variances of cells (i.e. data points) within the groups
across the entire data, indicating that MGAT1KO cells have
higher variance in the aggregated kinetic parameter space.
Determinants of the covariance matrices of the 3D embed-
ding data to quantify the variability of WT and MGATI1KO
in the kinetic parameter space. It turns out that WT has 38
% greater variability than MGATI1KO.

To further investigate it, we generated the histograms
of the maximum conductance of Ixgowi (G ksiow1)» Which
is the most significant parameter determining the magni-
tude of the current (see Fig. 9(b)), and experimental Ix

density from the in-vitro data. There is clear skewness in
MGATIKO Iggum density (small variance), while WT Ix
density is more disperse (high variance). Calibrated
parameters, for example G ko > likely show smaller var-
iations in MGAT1KO to address this trend in the experi-
mental data. It is likely due to significant Ix reduction in
the diseased group combined with the elimination of
complex N-glycosylation, thereby minimizing potential
variability of N-glycan structures

5. Discussion and conclusions

Repolarization is a complex process that involves various K,
isoforms. It is critical to understand the unique properties
and functional roles of each K, to investigate pathological
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mechanisms of diseased cardiomyocytes that contribute to
fatal heart diseases. However, current laboratory techniques,
such as whole-cell patch-clamp recording, are not able to
measure individual activities of K, isoforms reliably that
activate, inactivate, and close at overlapping times during
recordings, except through the attempt to remove K, iso-
form activity through less-than-fully-specific pharmaco-
logical intervention. Thus, only the sum of the different K,
isoform activities can be measured as a single current trace,
Ixsum- Hence, it is necessary to decompose Ixg,n, into indi-
vidual K" currents and estimate their channel activity via
data assimilation. This paper presents a subject-specific con-
current data assimilation method for learning K, activities
using multiple Ixg,m recordings simultaneously for each cell.
A case study is provided using our in-vitro experimental
data of mouse cardiomyocyte Ix in control conditions (WT)
and under conditions of reduced complex N-glycosylation
(MGAT1KO). We evaluate the calibration results using an
adjusted R*> measure for nonlinear models that preserves the
interpretability of the classical R* based on the variance
decomposition for linear models. Experimental results show
the proposed method explains more than 90% of variances
by calibrated models in most cases (WT: 0.9624+0.0051;
MGATI1KO: 0.8938+0.0077).

In addition to achieving a high degree of goodness-of-fit,
it is important to determine the source of uncertainty and
varijability in model predictions to build trustworthy models.
Until recently, the conventional approach to developing car-
diac models and fitting model parameters has involved using
single values. As a result, most mathematical models cur-
rently in use only provide point estimates without quantify-
ing uncertainty (Johnstone et al.,, 2016). Although variances
across cells are provided in the model predictions of current
density and inactivation times in Figs. 7 and 8, it remains
elusive whether the variability arises from model uncertainty
or true cellular variability in the data. Statistical methods for
uncertainty quantification (UQ) in cardiac models, such as

Bayesian inferences or Gaussian process emulators, have
been proposed (Coveney & Clayton, 2020; Johnstone et al.,
2016). Exploring the incorporation of UQ techniques into
data assimilation is a topic for future research. A GUI appli-
cation is provided as an enabling tool for biomedical scien-
tists without full expertise in modeling and computational
analysis.

The estimation of kinetics provides novel insights into
potential mechanisms by which specific K isoforms contrib-
ute to the overall reduction in Ix observed in in-vitro
experiments following chronic reductions in N-glycosylation.
Thanks to the cell-specific approach, prediction uncertainty
is quantified, and error bars are provided in the prediction
results. Further, calibrated parameters are visualized via low-
dimensional embedding that allows for encapsulating cali-
brated parameters in 3D space and, in turn, visualizing the
variability across cells. WT cells show higher variability than
MGATIKO myocytes, which is likely due to significant I
reduction in the diseased group, combined with the elimin-
ation of complex N-glycosylation, thereby minimizing
potential variability of N-glycan structures. The proposed
method and pertinent software show strong potential for
studying K, kinetics in various heart diseases. However,
there are still some limitations and challenges that need to
be addresses in future work. One of the main limitations of
this study is that it does not address the interactions of K,
with other major VGICs, namely Na, and Ca,, and cellular-
level processes. Thus, causal inference of the effects of
chronic glycosylation deficiency is limited. We plan to
develop an integrative modeling method for learning activ-
ities of major VGICs together.
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