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Abstract
We develop a notion of linear strands for multigraded free resolutions, and we prove
a multigraded generalization of Green’s Linear Syzygy Theorem.

1 Introduction

Linear strands ofminimal free resolutions over a standard graded polynomial ring play
an important role in commutative algebra and projective geometry; see e.g. [21, 22,
30, 34, 35], and see [18, Chapter 7] for a comprehensive introduction to the subject.
The main goal of this paper is to develop a notion of linear strands of resolutions
over multigraded polynomial rings, by which we mean polynomial rings graded by
an arbitrary abelian group. Our paper parallels other recent homological results in
multigraded commutative algebra [3, 9, 16, 31] in the following sense: while the final
results are strong analogues of results from the standard graded case, including an
analogue of the main result of [25], getting to those results requires reconceiving the
central definitions and developing novel proof techniques.

Multigraded polynomial rings arise, for instance, as the coordinate rings of toric
varieties/stacks [14]. One particularly interesting class of examples is given by
nonstandard Z-graded polynomial rings, which correspond to weighted projective
spaces/stacks, and our work on linear strands is novel even in this setting.

A highlight of the classical theory of linear strands is its connection with Green’s
“Np-properties" [24], which measure the linearity of free resolutions of coordinate
rings of curves embedded in P

n . This provides a major motivation for the current
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work, and we specifically aim to provide a foundation for our work on Np-properties
for curves in weighted projective spaces [4].

This work also adds to the recent overarching program of developing homological
tools and results for understanding syzygies in the multigraded setting. This includes:
work of Maclagan-Smith and others on Castelnuovo-Mumford regularity in the multi-
graded context [2, 5, 9, 31, 32]; the introduction of virtual resolutions as a framework
for studying multigraded syzygies of varieties in [7] and the followup results [10, 15,
23, 27, 28, 36]; generalizations of the Bernstein-Gel’fand-Gel’fand correspondence
[1, 8, 26], which will be essential for the results in this paper; and extensions of Beilin-
son’s resolution of the diagonal [3, 6, 11, 12] and Tate resolutions [3, 16, 17] to toric
settings.

Results

To discuss our results in detail, we must fix some notation. Let k be a field, and let
S = k[x0, . . . , xn], graded by an abelian group A. We denote by 0 the identity in A.
We will assume that S has a positive A-grading, by which we mean that S0 = k and
that there exists a homomorphism θ : A → Z such that θ(deg(xi )) > 0 for all i . Our
main example is the case where S is the Cox ring of a projective toric variety X and
A = Cl(X) is the divisor class group of X .

Let M be a finitely generated graded S-module that is generated in degree 0 and
F its minimal A-graded free resolution (such resolutions always exist; see e.g. [2,
Lemma 3.11(1)]). In the case where S is standard graded, i.e. A = Z and deg(xi ) = 1
for all i , the linear strand of F is the subcomplex generated by elements of each Fi of
degree i . In other words, the linear strand is the subcomplex given by the summands
of F that come from the first row of its Betti table; it has the form Sb0 ← S(−1)b1 ←
S(−2)b2 ← · · · , and the entries of the differentials are k-linear combinations of the
variables.

To define the linear strand of a multigraded free resolution, we first ask: what does
it mean for a multigraded complex to be “linear"? A key observation is that the degrees
of the generators of the free modules may be insufficient to determine linearity. As a
simple example, take S = k[x0, x1] with deg(x0) = 1 and deg(x1) = 2, and consider
the complexes

S
x1←− S(−2) and S

x20←− S(−2).

(1.1)

The complexes are identical as modules, but intuitively, the one on the left is “linear”
while the one on the right is not. Thus, outside of the standard graded case, our notion
of linearity must involve properties of the differentials, not just the underlying free
modules.

Definition 1.2 We call a morphism f : G → G ′ of free A-graded S-modules strongly
linear if there exist bases ofG andG ′ with respect to which f is a matrix whose entries
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are k-linear combinations of the variables. A complex C of free A-graded S-modules
is strongly linear if its differentials are such.

Since strong linearity cannot be detected using Betti numbers, our approach to
defining multigraded linear strands is necessarily different from the standard graded
case. To guide the way to our definition, we first consider a key property of linear
strands in the standard graded setting:

When S is standard graded, the linear strand of the free resolution F is the
(unique) maximal subcomplex L of F such that L is linear (i.e. each term Li is
generated in degree i), and L is a summand of F as an S-module.1

From now on, we will say a subcomplex C ′ of a complex C of A-graded S-modules is
quasi-split ifC ′ is a summand ofC as an S-module (but not necessarily as a complex).

There is also a useful formula for computing linear strands via the Bernstein-
Gel’fand-Gel’fand (BGG) correspondence [18, Corollary 7.11]. Our main result is
that maximal linear subcomplexes of minimal free resolutions exist and are unique
even in the multigraded setting, and that they can also be computed via a multigraded
analogue of the BGG correspondence:

Theorem 1.3 (see Theorem 4.3) Let k be a field, and suppose S = k[x0, . . . , xn]
is positively graded by an abelian group A. Let M be a finitely generated graded
S-module that is generated in degree 0 and F its minimal free resolution.

(1) There exists a unique maximal strongly linear, quasi-split subcomplex L of F.
(2) The complex L in (1) can be expressed in terms of the Bernstein-Gel’fand-Gel’fand

(BGG) correspondence as L = L(K ), where

K = ker

(
M0 ⊗ ωE

∑n
i=0 xi⊗ei−−−−−−→ R(M)

)

is a module over the Koszul dual exterior algebra E of the ring S (see Sect. 2 for
an explanation of the notation here).

We define the strongly linear strand of the resolution F to be the subcomplex L
as in Theorem 1.3. We go on to define strongly linear strands in greater generality,
without the assumption that M is generated in degree 0; see Definition 5.4. The for-
mula in Theorem 1.3(2) can be used to efficiently compute strongly linear strands in
Macaulay2 [29].

Theorem 1.3(2) is known in the standard graded case [18, Corollary 7.11], but
the arguments we use to prove Theorem 1.3(2) are completely different from those
used to prove that result. The main difference is that the proof of [18, Corollary
7.11] uses the interpretation of linearity in terms of growth of Betti numbers, but
this interpretation is unavailable outside of the standard graded case. Our approach is
more delicate, involving a homological perturbation argument (Theorem 4.12) and an
explicit calculation of the unit and counit of the multigraded BGG adjunction (Lemma

1 This characterization relies on the fact that M is generated entirely in degree 0; see Remark 5.4.
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3.1). Some aspects of these technical results have analogues in work of Eisenbud-
Fløystad-Schreyer (e.g. [17, Theorem 3.7(b)]), but our approach is quite different from
theirs. The basic difficulty that arises is that the role of complexes over an exterior
algebra in the classical BGG correspondence is played by differential modules over
an exterior algebra in the multigraded case. Thus, many of the techniques used in the
proof of key technical results like [17, Theorem 3.7(b)] are not available in our setting;
see Remark 4.15 for details.

Finally, we turn to an application of Theorem 1.3. One of the most important results
about linear strands in the standard graded case is Green’s Linear Syzygy Theorem
[25] (see [18, Theorem 7.1] for a modern statement), which gives a bound on the
length of the linear strand in terms of simple invariants of M . Green’s result answered
positively a conjecture of Eisenbud-Koh [19] and is the basis of perhaps the simplest
modern proof of Green’s seminal results on Np conditions for high degree curves (see
[18, Theorem 8.8(1)]). We generalize Green’s theorem to the multigraded setting:

Theorem 1.4 (Multigraded Linear Syzygy Theorem) Let A, S, M, and F be as in
Theorem 1.3. The length of the strongly linear strand of F is at most max{dim M0 −
1, dim R0(M)}, where R0(M) is the variety of rank one linear syzygies of M.

We refer the reader to Notation 6.1 for a precise definition of R0(M). See The-
orem 6.2 for a more general statement involving modules that are not necessarily
generated in a single degree. Both of the bounds dim M0 − 1 and dim R0(M) in the
theoremmay be attained: see Remark 6.4. The proof of Theorem 1.4 combinesGreen’s
proof of the Linear Syzygy Theorem and our theory of multigraded linear strands, as
articulated in Theorem 1.3. In other words, the main novelty in Theorem 1.4 is in the
statement, and the main subtleties are in the development of a theory of multigraded
linear strands, as discussed above.

As in Green’s work, the Multigraded Linear Syzygy Theorem has implications
for the geometric study of syzygies, namely, for the syzygies of vector bundles on
subvarieties of a toric variety. Before stating our main result along these lines, we
note: for a homogeneous ideal I in a multigraded polynomial ring S, we say that I is
nondegenerate if I belongs to the square of the maximal ideal of S.

Corollary 1.5 Let X be a projective toric variety with Cox ring S and P ⊆ S a
nondegenerate, homogeneous prime ideal with Y ⊆ X the corresponding integral
subvariety. Let N be a finitely generated graded S-module such that the sheaf Ñ is a
vector bundle on Y , and let M be a submodule of the A = Cl(X)-graded S-module⊕

d∈Eff(S) H
0(Y , Ñ (d)).

(1) Eff(M) = {a ∈ A: Ma �= 0} contains a minimal element with respect to the
partial ordering described in Notation 4.19.

(2) Let a ∈ Eff(M) be a minimal element. The a-strongly linear strand (see Definition
5.4) of the minimal free resolution of M has length at most dimk(Ma) − 1.

A nearly identical result holds when X is a projective toric stack: see Corollary 6.5.
See also [4, Theorem 4.5] for a similar geometric consequence of the Multigraded
Linear Syzygy Theorem that plays a crucial role in the proofs of the main results in
[4].
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Notation

Throughout the paper, k denotes a field, and A is an abelian group. We will assume
S = k[x0, . . . , xn] is positively A-graded. The A-grading on S need not be positive
for the results in Sects. 2 and 3, but this is necessary for Sects. 4–6.

Let E = �k(e0, . . . , en) be an exterior algebra, equipped with the A ⊕ Z-grading
givenbydeg(ei ) = (− deg(xi );−1).We call theZ-grading on E the auxiliarygrading.
In this paper, a differential E-module is an A ⊕ Z-graded E-module equipped with
a square 0 endomorphism of degree (0;−1). All E-modules are right modules, but
any right E-module M can be considered as a left E-module with action em =
(−1)aux(e) aux(m)me, where aux(−) denotes the degree in the auxiliary grading.

2 Background on themultigraded BGG correspondence

Let DM(E) denote the category of differential E-modules, and let Com(S) denote the
category of complexes of A-graded S-modules. By a result of Hawwa-Hoffman-Wang
in [26], the classical BGG correspondence [8] generalizes to an adjunction

L : DM(E) � Com(S) : R. (2.1)

See [3, Section 2.2] for a detailed discussion of thismultigraded BGG correspondence.
We recall here the formulas for L andR. If D ∈ DM(E), the complex L(D) has terms
and differential given by:

L(D) j =
⊕
a∈A

S(−a) ⊗k D(a; j) and s ⊗ d 
→
(

n∑
i=0

xi s ⊗ eid

)
− s ⊗ ∂D(d).

Let ωE denote the E-module Homk(E,k) ∼= E(−∑n
i=0 deg(xi );−n − 1). Given

C ∈ Com(S), the differential E-module R(C) ∈ DM(E) has underlying module

⊕
j∈Z

⊕
a∈A

(C j )a ⊗k ωE (−a;− j),

and the differential acts on the j th summand
⊕

a∈A(C j )a ⊗k ωE (−a;− j) by

c ⊗ f 
→ (−1) j
(

n∑
i=0

xi c ⊗ ei f

)
+ ∂C (d) ⊗ f .

We will need the following key properties of the multigraded BGG functors:

Proposition 2.2 ([26] Propositions 3 and 4) The functorsL andR are exact, and, given
C ∈ Com(S) and D ∈ DM(E), the maps D → RL(D) and LR(C) → C arising
from the unit and counit of the adjunction (2.1) are both quasi-isomorphisms.
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3 Computing the unit and counit of themultigraded BGG adjunction

We will need an explicit calculation of the unit and counit of the adjunction (2.1); this
is the content of Lemma 3.1. Lemma 3.1 plays a key role in the proof of Theorem 1.3.

Let C ∈ Com(S) and D ∈ DM(E), and let η : D �−→ RL(D) and ε : LR(C)
�−→ C

denote the quasi-isomorphisms arising from the unit and counit of the adjunction
(2.1). We record the following calculations of the underlying modules of RL(D) and
LR(C):

RL(D) =
⊕

(a, j)∈A⊕Z

⊕
d∈A

Sd−a ⊗k D(a; j) ⊗k ωE (−d;− j),

LR(C)i =
⊕

(a, j)∈A⊕Z

⊕
d∈A

S(−d) ⊗k (C j )a ⊗k (ωE )(d−a;i− j).

Lemma 3.1 The unit of adjunction η : D → RL(D) is given by the composition

D →
⊕

(a; j)∈A⊕Z

Homk(E(a; j), D(a; j)) → RL(D),

where the first map sends d ∈ D to the collection ga, j ∈ Homk(E(a; j), D(a; j)) given
by

ga, j (e) =
{

(−1) j de, deg(de) = (a; j),
0, else; ,

and the second map identifies Homk(E(a; j), D(a; j)) with D(a; j) ⊗k ωE (−a;− j)
and then embeds into the summands with d = a. The counit ε : LR(C) → C is given,
in homological degree i , by

LR(C)i →
⊕
a∈A

S(−a) ⊗k (Ci )a → Ci ,

where the first map projects onto the summands with a = d and i = j , and the second
map is the S-module action multiplied by (−1)i . In particular, η is injective, and ε is
surjective.

Proof Let X ∈ DM(E) and Y ∈ Com(S). Given a ∈ A and j ∈ Z, let σ denote
the automorphism of Homk(X(a; j), (Y j )a) given by sending a map g to (−1) j g. The
adjunction isomorphism

HomDM(E)(L(X),Y ) ∼= HomCom(S)(X ,R(Y ))
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is given by the composition

∏
j

HomS(L(X) j ,Y j ) =
∏
j

HomS(
⊕
a∈A

X(a; j) ⊗k S(−a),Y j )

∼=−→
∏

a∈A, j∈Z
Homk(X(a; j), (Y j )a)

σ−→
∏

a∈A, j∈Z
Homk(X(a; j), (Y j )a)

∼=−→
∏

a∈A, j∈Z
HomE (X ,Homk(E(a; j), (Y j )a))

= HomE (X ,R(Y )),

where the two unlabeled isomorphisms are given by Hom-⊗ adjunction. Now take
X = D and Y = L(D), and apply this isomorphism to idL(D) to compute the map η.
The map ε is computed similarly. 
�

4 Existence and uniqueness of maximal strongly linear subcomplexes

Recall from Definition 1.2 that a complex C of free A-graded S-modules is strongly
linear if there exists a choice of basis of C with respect to which its differentials are
matrices whose entries are k-linear combinations of the variables.

Remark 4.1 We caution that our definition of strong linearity involves a choice of
coordinates x0, . . . , xn in S, and it is generally not invariant under all graded ring
automorphisms of S. For instance, if S = k[x, y] with degrees 1 and 2, then the
automorphism of S that sends x to itself and y to y − x2 will not preserve strongly
linear complexes. However, in our main cases of interest, S is the Cox ring of a toric
variety or stack X associated to a fan, in which case the variables of S are determined
by the rays of the fan.

We also note that, if S is the Cox ring of a toric variety X , then the notion of strong
linearity depends only on the Cox ring S and not its irrelevant ideal. Thus, since there
exist distinct toric varieties with the same Cox ring, strong linearity is insensitive to
certain aspects of the geometry of X .

We establish some notation. LetM be a graded S-module and a ∈ A. The E-module
Ma ⊗k ωE (−a; 0) is a summand of R(M); we let

Ka(M) = ker(Ma ⊗k ωE (−a; 0) ∂R(M)−−−→ R(M)). (4.2)

The goal of this section is to prove the following result, which implies Theorem
1.3.

Theorem 4.3 Let M be an A-graded S-module that is generated in a single degree d,
and let F be the minimal free resolution of M.
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(1) L(Kd(M)) is a strongly linear, quasi-split subcomplex of F (see the introduction
for the definition of a quasi-split subcomplex).

(2) Any strongly linear, quasi-split subcomplex of F is isomorphic to a quasi-split
subcomplex of L(Kd(M)).

Thus, L(Kd(M)) is the unique maximal strongly linear, quasi-split subcomplex of F.
In particular, if F is strongly linear, then F ∼= L(Kd(M)).

The proof of Part (1) uses Theorem 4.12, which says, roughly, that the minimal
free resolution of M is a “deformation" of L(H(R(M))). Part (2) relies on the explicit
calculation of the unit and counit of the multigraded BGG adjunction from Lemma
3.1.

Example 4.4 Say S = k[x0, x1, x2], where deg(x0) = 1 = deg(x1) and deg(x2) = 2.
The minimal free resolution F of M = S/(x0, x21 , x2) is

S

[
y0 y2 y21

]
←−−−−−− S(−1) ⊕ S(−2)2

⎡
⎣ y2 0 y21

−y0 −y21 0
0 y2 −y0

⎤
⎦

←−−−−−−−−−− S(−3)2 ⊕ S(−4)

[ −y21
y0
y2

]

←−−−− S(−5).

The maximal strongly linear quasi-split subcomplex of F is

L(K0(M)) =
⎡
⎣S

[ y0 y2 ]←−−−− S(−1) ⊕ S(−2)

[ y2−y0

]
←−−−− S(−3) ← 0

⎤
⎦ .

4.1 Proof of Theorem 4.3(1)

We begin by recalling the notion of a contraction of one chain complex onto another,
which was introduced by Eilenberg-Maclane [20, §12].

Definition 4.5 Given two chain complexes C and C ′ in an abelian category, a con-
traction of C onto C ′ is a triple (π, ι, h), where π : C → C ′ and ι : C ′ → C are
morphisms of complexes such that πι = idC ′ , h : C → C is a null homotopy of
idC −ιπ , and the relations

πh = 0, hι = 0, h2 = 0

are satisfied.

Construction 4.6 The contractions we consider in this paper arise in the following
way. Let D ∈ DM(E), and let L(D) denote the complex with underlying S-module
identical to L(D) and j th differential induced by −∂D . Similarly, let L(H(D)) denote
the complex with underlying module identical toL(H(D)) and trivial differential. We
now construct a contraction of L(D) onto L(H(D)).
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The complex L(D) splits S-linearly; that is, letting Z j and Bj denote the j-cycles
and j-boundaries in L(D), we may choose an S-module decomposition

L(D) j = Bj ⊕ Hj ⊕ L j

for all j such that Bj ⊕ Hj = Z j . For each j , let g j : L j → Bj−1 denote the
isomorphism such that the j th differential on L(D) can be expressed as

⎛
⎝0 0 g j

0 0 0
0 0 0

⎞
⎠ .

Using the isomorphism Hj ∼= Hj (L(D)) ∼= L(H(D)) j , we define morphisms

ι : L(H(D)) ↪→ L(D) and π : L(D) � L(H(D))

of complexes such that πι = id. There is a null homotopy h of id−ιπ given, in degree
j , by

⎛
⎝ 0 0 0

0 0 0
g−1
j+1 0 0

⎞
⎠ .

Since πh = 0, hι = 0, and h2 = 0, the triple (π, ι, h) is a contraction of L(D) onto
L(H(D)).

Example 4.7 Suppose S = k[x], where deg(x) = 1. Let us apply Construction 4.6
in the case where D = R(S). We have R(S) = ⊕

d≥0 ωE (−d; 0), with differential
given bymultiplication by the exterior variable e. Let F = ⊕

d≥0 S(−d). The complex
LR(S) has the form

0 ← F ← F(−1) ← 0,

with differential given by the matrix

⎛
⎜⎜⎜⎜⎜⎝

x 0 0 · · ·
−1 x 0 · · ·
0 −1 x · · ·
0 0 −1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

.
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The complex LR(S) has the same underlying module and differential

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · ·
−1 0 0 · · ·
0 −1 0 · · ·
0 0 −1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Notice that the homology of LR(S) is S, concentrated in degree 0. To build a con-
traction of LR(S) onto L(H(R(S))), we take B0 = F(−1) = L1, H0 = S, and
L0 = B1 = H1 = 0; and then follow the recipe in Construction 4.6.

We now recall the notion of a minimal free resolution of a complex of A-graded
S-modules. We begin with the following

Definition 4.8 Let M be an A-graded S-module. We say M is bounded above (resp.
below) in A-degrees if there exists a homomorphism θ : A → Z such that

(1) θ induces a positive A-grading on S, and
(2) We have

⊕
θ(a)=i Ma = 0 for all i � 0 (resp. i � 0). That is, M is bounded

above (resp. below) with respect to the Z-grading induced by θ .

Similarly, given an A ⊕ Z-graded E-module N , we say N is bounded above/below
in A-degrees if there exists a map θ satisfying (1) such that the Z-grading given by
Ni = ⊕

j∈Z
⊕

θ(a)=i N(a; j) is bounded above/below.

Remark 4.9 The existence of a map θ satisfying (1) in Definition 4.8 is assumed, since
S is positively A-graded. Thus, any finitely generated S-module is bounded below in
A-degrees.

If F and F ′ are minimal complexes of free A-modules that are homologically
bounded below and whose terms are bounded below in A-degrees, then any quasi-
isomorphism from F to F ′ is a chain isomorphism. This follows essentially from
the proof of [33, Proposition 4.4.1], noting that we may apply the graded version of
Nakayama’s Lemma to the terms of F and F ′.

Definition 4.10 Given a complexC of A-graded S-modules, aminimal free resolution

ofC is a quasi-isomorphism F
�−→ C , where F is a minimal complex of free A-graded

S-modules that is homologically bounded below and whose terms are bounded below
in A-degrees.

Remark 4.11 It follows from the above discussion that, when aminimal free resolution
of a complex C of A-graded S-modules exists, it is unique up to isomorphism.

The main ingredient in our proof of Theorem 4.3(1) is the following result:

Theorem 4.12 Let G be a homologically bounded below complex of A-graded S-
modules whose terms are bounded below in A-degrees. Using the notation of
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Construction 4.6, choose a contraction (π, ι, h) of LR(G) onto L(H(R(G))). Let
∂ ′ denote the S-linear endomorphism of LR(G) given by multiplication on the left
by

∑n
i=0 xi ⊗ ei , and let F be the complex with underlying module the same as

L(H(R(G))) and differential given by

δ +
∑
i≥2

δi , where δ is the differential on L(H(R(G))), and δi = (−1)i−1π(∂ ′h)i−1∂ ′ι.

(4.13)

The complex F is the minimal free resolution of G, in the sense of Definition 4.10.
Moreover, each δi is an i-fold composition of strongly linear maps.

The proof of Theorem 4.12 requires the following technical lemma, which is a
consequence of the Basic Perturbation Lemma in homological algebra.

Lemma 4.14 Let D ∈ DM(E), and assume D is bounded below in A-degrees. Using
the notationofConstruction4.6, choose a contraction (π, ι, h)ofL(D) ontoL(H(D)).
The complex L(D) is homotopy equivalent to a minimal complex of A-graded S-
modules whose underlying S-module coincides with L(H(D)) and whose differential
is given by the formula in (4.13).

Remark 4.15 In the case where S is standard graded, a result similar to Lemma 4.14 is
proven by Eisenbud-Fløystad-Schreyer [17, Corollary 3.6], as an application of [17,
Lemma 3.5]. However, outside of the standard graded case, the output of the multi-
graded BGG functor L cannot be interpreted as the totalization of a bicomplex, and
so [17, Lemma 3.5] does not apply to our situation. This is why we need homological
perturbation techniques to prove Lemma 4.14. This connection between Eisenbud-
Fløystad-Schreyer’s results and the Basic Perturbation Lemma goes back to Coandă
in [13].

Proof of Lemma 4.14 The S-linear endomorphism ∂ ′ of L(D) given by multiplication
on the left by

∑n
i=0 xi ⊗ ei is a “perturbation" of the differential on L(D), meaning

that (∂ ′)2 = 0 and that adding ∂ ′ to the differential on L(D) yields a complex (namely
L(D), in this case). The S-linear endomorphism h∂ ′ of L(D) sends an element in
the summand D(a; j) ⊗ S(−a) of L(D) to

⊕n
i=0 D(a−deg(xi ); j) ⊗ S(−a + deg(xi )).

By our bounded below assumption on D, the endomorphism h∂ ′ is therefore locally
nilpotent, in the sense of [13, Remark A.6]. The statement now follows from the Basic
Perturbation Lemma [13, Lemma A.4]. 
�
Proof of Theorem 4.12 ByProposition2.2, there is a quasi-isomorphismLR(G)

�−→ G.
Since the underlying module of G is bounded below in A-degrees, the same is true of
the E-moduleR(G). It therefore follows fromLemma 4.14 that the complexLR(G) is
homotopy equivalent to a minimal complex F whose underlying S-module coincides
with L(H(R(G))) and whose differential is given by the formula (4.13). Composing,

we arrive at a quasi-isomorphism F
�−→ G. The complex F is homologically bounded

below and has terms that are bounded below in A-degrees, sinceG has these properties;
it follows that F is the minimal free resolution of G, in the sense of Definition 4.10.
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Finally, observe that, for i ≥ 1, the endomorphism (∂ ′h)i−1∂ ′ of LR(G) is an i-fold
composition of strongly linear maps. 
�
Remark 4.16 A version of Theorem 4.12 involving differential E-modules, rather than
complexes of S-modules, can be proven in much the same way. Since we do not need
such a statement in this paper, we leave the details to the reader.

Remark 4.17 Let F be a bounded complex of finitely generated, free S-modules. In
the standard graded case, the complex L(H(R(F))) is called the “linear part" of the
minimal free resolution of F [17, Section 3]. In other words, if we choose a basis for
F and write the differential ∂F as a matrix, L(H(R(F))) is isomorphic to the complex
obtained by erasing any term in any entry of ∂F that is not a k-linear combination of the
variables. Theorem 4.12 suggests that one may extend Eisenbud-Fløystad-Schreyer’s
notion of the “linear part” of a complex to the multigraded setting in the following
way. We define the strongly linear part (not to be confused with the strongly linear
strand, which we define in the next section) of a minimal, homologically bounded
below complex F of free S-modules whose terms are bounded below in A-degrees to
be the complex L(H(R(F))).

Wewill not undertake a detailed study of strongly linear parts in this paper.However,
let us compute one example of a strongly linear part. Say S = k[x0, x1, x2, x3] is the
Cox ring of a Hirzebruch surface of type 3, so that A = Z

2, and the grading on S is
given by deg(x0) = (1, 0) = deg(x2), deg(x1) = (−3, 1), and deg(x3) = (0, 1). The
minimal free resolution F of M = S/(x3 − x30 x1, x2) is the Koszul complex

0 ← S

[
x3−x30 x1 x2

]
←−−−−−−−− S(0,−1) ⊕ S(−1, 0)

[ −x2
x3−x30 x1

]

←−−−−−−− S(−1,−1) ← 0. (4.18)

One can compute directly that L(H(R(M))) is the complex

0 ← S
[ x3 x2 ]←−−−− S(0,−1)2

[ −x2
x3

]
←−−−− S(0,−2) ← 0.

Let us now turn to the proof of Theorem 4.3(1). We start with some notation.

Notation 4.19 Let M be an A-graded S-module. We let Eff(M) denote the set {a ∈
A: Ma �= 0}, and we equip Eff(M) with the partial order given by a ≥ a′ if and only
if a − a′ ∈ Eff(S). To explain the notation: when M = S, and S is the Cox ring of a
smooth projective toric variety X , then Eff(S) is the effective cone of X .

We record the following simple result:

Lemma 4.20 Let M be a graded A-graded S-module, and suppose a ∈ Eff(M) is a
minimal element under the partial ordering described in Notation 4.19. Let Ka(M) be
as defined in (4.2). The natural map Ka(M) → H(R(M)) is injective. In particular,
we have a quasi-split injection L(Ka(M)) → L(H(R(M))).

Proof By the minimality of a, no element of Ka(M) is in the image of ∂R(M), i.e. the
natural map Ka(M) → H(R(M)) is injective. The last statement follows from the
exactness of the functor L, which is a consequence of Proposition 2.2. 
�
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Proof of Theorem 4.3(1) By Lemma 4.20, we have a natural quasi-split injection

γ : L(Kd(M)) → L(H(R(M))).

Since S is positively graded, and M is generated in a single degree, M is bounded
below in A-degrees; we can therefore apply Theorem 4.12 to M . We need only show
that δiγ = 0 for i ≥ 2, where the maps δi are as in the statement of Theorem 4.12. In
fact, one can check that h∂ ′ιγ = 0: the key point is that no element of Kd(M) is in
the image of ∂R(M), and this forces h to vanish on the image of ∂ ′ιγ . 
�

4.2 Proof of Theorem 4.3(2)

We will need the following multigraded analogue of [17, Proposition 2.1], which
shows that strongly linear complexes are exactly those obtained by applying L to an
E-module. The proof is nearly identical to the standard graded version, so we omit it.

Proposition 4.21 A complex C ∈ Com(S) is strongly linear if and only if C ∼= L(N )

for some N ∈ DM(E) with trivial differential.

Remark 4.22 There is a parallel theory of strongly linear differential E-modules, and
a version of Proposition 4.21 holds for such objects as well.

Proof of Theorem 4.3(2) Suppose L is a quasi-split, strongly linear subcomplex of F .
Applying Proposition 4.21, choose an E-module N such that L ∼= L(N ). Letψ denote
the composition

N → H(RL(N )) → H(R(F)) → H(R(M)),

where the first map is induced by the unit η of the adjunction (2.1), the second is
induced by the inclusion L(N ) ↪→ F , and the third is induced by the surjection
F � M . It suffices to show:

(a) ψ is injective, and
(b) the image of ψ is contained in Kd(M) (note that, since d is a minimal element of

Eff(M), Lemma 4.20 implies that Kd(M) is a submodule of H(R(M))).

Indeed, the result is immediate from (a), (b), and the exactness of L (Proposition 2.2).
The maps N → RL(N ) and R(F) → R(M) are quasi-isomorphisms (again by

Proposition 2.2), so, to prove (a), we need only check that the map H(RL(N )) →
H(R(F)) is injective. It follows from the naturality of the identification in [3, Propo-
sition 2.10(a)] that we have a commutative square

TorS∗(k,L(N ))

∼=

TorS∗(k, F)

∼=

H(RL(N )) H(R(F))
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of A⊕Z-graded k-vector spaces. Since the top horizontal map is injective, the bottom
horizontal map is as well. This proves (a).

As for (b): by Lemma 3.1, the image of the quasi-isomorphism η : N �−→ RL(N )

lies in
⊕

(a, j)∈A⊕Z

N(a; j) ⊗ ωE (−a;− j).

The composition RL(N ) ↪→ R(F) � R(M) sends each summand N(a; j) ⊗
ωE (−a;− j) with j �= 0 to 0. Since M is generated in degree d, F0 is generated
in degree d as well. It follows that L(N )0 is generated in degree d, since it is a sum-
mand of F0; equivalently, N(a;0) = 0 for a �= d. We conclude that im(ψ) ⊆ Kd(M).
This proves (b). 
�
Remark 4.23 Let M be an A-graded S-module that is bounded below in A-degrees.
Proposition 4.21 and [3, Theorem 2.14] imply that the minimal free resolution of M is

strongly linear if and only if there is a quasi-isomorphism H(R(M))
�−→ R(M). If we

further assume that M is generated in a single degree d, then the results in this section
can be used to show that this is also equivalent to the naturalmap Kd (M) → H(R(M))

being an isomorphism.

5 Linear strands of multigraded free resolutions

Wemay now define the strongly linear strand of amultigradedminimal free resolution:

Definition 5.1 Let M be an A-graded S-module that is generated in a single degree
d. The strongly linear strand of the minimal free resolution F of M is the maxi-
mal strongly linear quasi-split subcomplex of F , whose existence and uniqueness is
guaranteed by Theorem 4.3. Explicitly, the strongly linear strand of F is given by
L(Kd(M)), where Kd(M) is as in (4.2).

By [18, Corollary 7.11], Definition 5.1 recovers the usual definition of the linear
strand when S is standard graded.

Example 5.2 In Example 4.4, the complex L(K0(M)) is the strongly linear strand.
Additionally, a straightforward calculation shows that the strongly linear strand of the

minimal free resolution (4.18) is 0 ← S
x2←− S(−1, 0) ← 0.

Let M be an A-graded S-module that is bounded below in A-degrees, and let F be
its minimal free resolution. If M is not generated in a single degree, then defining its
strongly linear strand as the maximal strongly linear quasi-split subcomplex of F no
longer makes sense, as the following simple example in the standard grading setting
illustrates.

Example 5.3 Let S = k[x] with deg(x) = 1, and let M = S/(x) ⊕ S(−1)/(x). The
minimal free resolution F of M is

0 ← S ⊕ S(−1)

[
x 0
0 x

]
←−−− S(−1) ⊕ S(−2) ← 0.
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The standard convention would be to say that the linear strand of F is S
x← S(−1).

But, F itself is strongly linear, so its linear strand is not the maximal strongly linear
quasi-split subcomplex of F .

Instead, we use BGG to give a more general definition of strongly linear strands.

Definition 5.4 Let M be an A-graded S-module that is bounded below in A-degrees,
F its minimal free resolution, and a ∈ Eff(M) (see Notation 4.19) a minimal element.
The a-strongly linear strand of F is defined to be L(Ka(M)), where Ka(M) is as
defined in (4.2). When Eff(M) has a unique minimal element a (e.g. when A = Z),
we say L(Ka(M)) is the strongly linear strand of F .

Remark 5.5 When S is standard graded, Definition 5.4 recovers the usual definition of
the linear strand [18, Corollary 7.11].

Lemma 5.6 Let F be as in Definition 5.4, and let a be a minimal element of Eff(F).
The a-strongly linear strand of F is a nonzero quasi-split subcomplex of F.

Proof The a-strongly linear strand is a quasi-split subcomplex of F by Lemma 4.20.
It is nonzero because a generator of the socle of

⊕
j∈Z(Fj )a ⊗k ωE (−a;− j) always

gives a nonzero element of Ka(F). 
�

6 Amultigraded linear syzygy theorem

We now prove Theorem 1.4 and Corollary 6.5. By relying on the theory of strongly
linear strands that we have developed, we are able to largely derive these results from
adaptations of arguments of Eisenbud and Green. We fix the following

Notation 6.1 Let a ∈ A, and let W ⊆ S be the k-vector subspace of S generated by
the variables. Let Ra(M) denote the subvariety of Spec(k[W ⊗k Ma]) defined by:

Ra(M) = {w ⊗ m ∈ W ⊗k Ma : wm = 0 in M}.

Wewill prove the following slightlymore general version of Theorem 1.4 involving
modules that are not necessarily generated in a single degree:

Theorem 6.2 Let M bean A-graded S-module that is boundedbelow in A-degrees, and
let F be its minimal free resolution. Let a ∈ Eff(M) (see Notation 4.19) be a minimal
element. The length of the strongly linear strand of F is at most max{dimk Ma −
1, dim Ra(M)}.

We need the following lemma.

Lemma 6.3 Let M and a be as in Theorem 6.2. Let I ⊆ {0, . . . , n} be nonempty, set
SI := k[xi : i ∈ I ], and define EI similarly. Let MI denote the SI -module obtained
by applying restriction of scalars to M along the inclusion SI ↪→ S.

(1) Ka(MI ) = {y ∈ Ka(M): yei = 0 for all i /∈ I }.
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(2) Set c = n+1−#I . If the length of the a-strongly linear strand of the minimal free
resolution of MI is l, then the length of the a-strongly linear strand of the minimal
free resolution of M is at most l + c.

Proof The proof of (1) is the same as that of [18, Corollary 7.12]. The proof of
(2) is essentially the same as that of [18, Corollary 7.13], but slightly different
notationally, so we include it here. By induction, we may assume c = 1; say
I = {0, . . . , î, . . . , n}. By (1), we have a left exact sequence 0 → Ka(MI ) ↪→
Ka(M)

ei−→ Ka(M)(− deg(xi );−1). The image of the rightmost map lies in
Ka(MI )(− deg(xi );−1). It follows that Ka(M)vanishes in auxiliary degrees i > l+1.

�
Proof of Theorem 6.2 We proceed exactly as in [18, §7D]. Write ma = dimk Ma .
Assume first that dim(Ra(M)) ≤ ma − 1. We must show that the length of the a-
strongly linear strand L of F is at most ma − 1. Given a k-vector space N , we let
N∗ = Homk(N ,k). Let

Q = coker

(
n⊕

i=0

M∗
a+deg(xi ) ⊗k E(deg(xi ) + a; 1) α−→ M∗

a ⊗k E(a; 0)
)

,

where α is the dual of the map Ma ⊗k ωE (−a; 0) → ⊕n
i=0 Ma+deg(xi ) ⊗k ωE (−a −

deg(xi );−1) induced by ∂R. By definition, L = L(Q∗). It suffices to show that Q is
concentrated in auxiliary degrees−(ma −1), . . . , 0. Since Q is generated in auxiliary
degree 0, it suffices to show that Q is annihilated by every monomial in E with ma

factors. The proof in this case now follows exactly as in [18, §7D]. The case where
dim(R) ≥ m0 also follows just as in [18, §7D], noting that one uses Lemma 6.3(2)
for the inductive step. 
�
Remark 6.4 In the standard graded case, both of the bounds dim Ra(M) anddimk Ma−
1 may be achieved. Indeed, the bound dim Ra(M) is attained by taking M = k
[18, Example 7.2], and the bound dimk Ma − 1 is achieved by taking M =
Extn−1

S (S/I , S(n + 1)), where I is the ideal defining a rational normal curve in P
n

[18, Example 7.3]. Similarly, the bounds in Theorem 6.2 are sharp in the nonstandard
graded setting as well. Once again, taking M = k gives an example of a strongly
linear strand of length dim Ra(M) over any positively A-graded polynomial ring S.
See Example 6.6 below for an example of a module M over a nonstandard Z-graded
ring with strongly linear strand of length dimk Ma − 1; this is a weighted projective
variant of [18, Example 7.3].

We finally turn to the proof of Corollary 1.5, which generalizes to toric varieties a
result originally proven by Green [24] over projective space.

Proof of Corollary 1.5 (1) is immediate, since S is positively graded [3, Example A.2].
(2) follows from essentially the same argument as in [18, Corollary 7.4], but we
give the details here. Let m ∈ Ma and w ∈ W ; recall that W ⊆ S is the k-vector
subspace of S generated by the variables. Notice that m ⊗ w ∈ Ra(M) if and only if
m⊗wi ∈ Ra(M) for all homogeneous componentswi ofw. Assumem⊗w ∈ Ra(M)
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and that w is homogeneous; by Theorem 6.2, it suffices to show that this syzygy is
trivial, i.e. either m = 0 or w = 0. Suppose m �= 0, and let Q be a maximal ideal
of S such that the image mQ of m in the localization MQ is nonzero. Let wQ denote
the image of w in (S/P)Q . Notice that MQ is a submodule of a free (S/P)Q-module;
thus, since wQmQ = 0, this forces wQ = 0, and so w ∈ P . Since P does not contain
a homogeneous linear form, we conclude that w = 0. 
�

We also give a variant of Corollary 6.5 for toric stacks.2 As there can be vector
bundles on a toric stack whose corresponding sheaves over the associated toric variety
are not vector bundles (e.g. O(1) over a weighted projective stack whose weights are
not all 1), this extra level of generality might prove useful for some readers.

Corollary 6.5 Let X be a projective toric stack with Cox ring S and P ⊆ S a nondegen-
erate, homogeneous prime ideal with Y ⊆ X the corresponding integral substack. Let
F be a vector bundle on Y and M a submodule of the A = Cl(X)-graded S-module
given by

⊕
d∈Eff(S) H

0(Y ,F(d)).

(1) Eff(M) = {a ∈ A: Ma �= 0} contains a minimal element with respect to the
partial ordering described in Notation 4.19.

(2) Let a ∈ Eff(M) be a minimal element. The a-strongly linear strand (see Definition
5.4) of the minimal free resolution of M has length at most dimk(Ma) − 1.

Proof Same as the proof of Corollary 6.5. 
�

Example 6.6 Let X be the weighted projective space P(1, 1, 1, 2, 2) and C ⊆ X the

curve defined by the 2×2minors of

(
x0 x1 x22 x3
x1 x2 x3 x4

)
.One can check thatC is a smooth

rational curve and S/IC is Cohen-Macaulay; in fact, it is closely related to some of
the examples from [4, §2]. Let M be the canonical module of S/IC , so that M̃ = ωC .
The free resolution F of M has Betti table

0 1 2 3
1 : 3 4 1 .

2 : . 4 4 .

3 : . . 1 .

4 : . . . 1

2 See [3, §3.1] for our definition of a projective toric stack, as well as a discussion of the relationship
between a toric stack and its corresponding toric variety. When X is smooth, there is no distinction; but as
in other algebraic investigations of toric geometry, sheaves are generally better behaved on the toric stack
than on the corresponding toric variety.
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and a computation in Macaulay2 shows that the strongly linear strand of F is:

S(−1)3

(
x0 0 x1 0 x3 0
0 x0 −x2 x1 −x4 x3−x2 −x1 0 −x2 0 −x4

)

←−−−−−−−−−−−−−−−−−− S(−2)4 ⊕ S(−3)2⎛
⎜⎜⎜⎜⎝

−x1 0 x3
x2 0 −x4
x0 −x3 0
0 x4 −x3
0 x1 −x0
0 −x2 x1

⎞
⎟⎟⎟⎟⎠

←−−−−−−−−−− S(−3)1 ⊕ S(−4)2 ← 0.

Note that this has length 2, which is dim M0 − 1.
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