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ABSTRACT
N incorporation mechanisms in GaAs;.xNx alloys are probed using combined experimental
and computational Rutherford Backscattering Spectrometry (RBS) and Nuclear Reaction Analysis
(NRA) angular yield scans. For xy < 0.025, in addition to substitutional nitrogen, Nas, (N-N)as and
(N-As)as split interstitials are observed. However, for xx > 0.025, evidence for N tetrahedral
interstitials, Nietra, emerges. We propose a mechanism for stabilization of Nietra in Which the elastic
interaction between Nieira and Nas is induced by the opposite signs of their misfit volumes. This
work opens opportunities for exploring the formation of Newa and its influence on the properties

of a variety of highly mismatched alloys.
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Dilute nitride semiconductor alloys have drawn significant attention due to the dramatic
bandgap reductions induced by dilute N compositions (xx up to 0.035) while maintaining near

lattice-matching with GaAs,'™® resulting in their suitability for long-wavelength lasers,”

0 11,12

detectors,”'® and ultra-high-efficiency solar cells. However, non-substitutional N
incorporation has been linked to diminished absorption and emission efficiencies, in dilute nitride
films, GaAsN-based heterostructures, and GaAsPN and GaAsNBi solar cell devices, with partial
recovery induced by post-growth annealing.!!"!®> Meanwhile, most computational studies have
focused on the relative stabilities of substitutional nitrogen (Nas) and (N-N)as and (N-As)as split

1620 with minimal consideration of N tetrahedral interstitials (Newa).'®!” To date,

interstitials,
nuclear reaction analysis (NRA) and x-ray photoelectron spectroscopy (XPS) have revealed ~20%
non-substitutional N incorporation, as both (N-As)as and (N-N)as split interstitials, independent of
film growth method,'>*'* with the non-substitutional N fraction reduced by post-growth
annealing.'>?>% Channeling NRA (NRA/c) supported by Monte Carlo-Molecular Dynamics
(MCMD) simulations suggests a dominant N interstitial complex aligned along the [010] direction
in GaAsN and GaAsNBi alloys.?""** Although the [010]-oriented N interstitial complex is typically
attributed to (N-As)as, electronic structure calculations suggest that (N-N)as may also be oriented
along the [010] direction.'®'®20 Furthermore, due to the inability of XPS to distinguish Nas from
Nietra, and the limited consideration of Niewa in earlier studies, direct detection of Niewra has not been
reported.

In this work, we use combined experimental and computational NRA and Rutherford
backscattering spectrometry (RBS/c) angular yield scans to investigate the N composition (xn)
dependence of N incorporation mechanisms in GaAsN. For the lowest xn, in addition to Nas, both

(N-N)as and (N-As)as split interstitials are apparent. However, for xn > 0.025, evidence for Nietra
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emerges. We discuss the role of N solute atom-induced strain fields as the driving force for Nietra
formation. This work opens opportunities for consideration of N and its influence on the
properties of a variety of highly mismatched alloys.

A series of 300 nm GaAsi.xNx films were grown by molecular-beam epitaxy on semi-
insulating (001) GaAs substrates, using solid Ga and As, and an N> rf plasma source, as described
elsewhere.?? Simultaneous NRA and RBS measurements were conducted using 4.5 or 4.64 MeV
a particles generated in NEC or General lonics tandem accelerators, both equipped with fully-
automated 5-axis goniometers. For RBS, backscattered a particles were detected by a silicon (Si)
surface-barrier detector located at 170° (for 4.5 MeV a) or 167° (for 4.64 MeV a), with respect to
the incident beam. For NRA, the yields of the “N(a,p)'’O reaction emitted protons were detected
by a Si surface-barrier detector located at 135° with respect to the incident beam, with scattered o
particles filtered out by 18 um aluminum or 25.4 pm Kapton. RBS and NRA yields vs. particle
energy were measured in the [100], [110], and [111] directions, with random (non-channeling)
conditions achieved by oscillating the specimen +4° away from the channeling condition in 0 and
¢.% In addition, the angular-dependence of RBS and NRA yields (so-called "angular yield scans")
were measured at £1.5° about the [100], [111], and [110] directions.

For each film, N compositions were determined from an analysis of the NRA proton yield
versus energy using the simulation of nuclear reaction analysis (SIMNRA) software.”” The
energy-dependent stopping power of o particles?® was used for energy-to-depth conversion,
enabling quantification of the minimum yields, ymin (ratio of aligned yield to random yield), and
the angular yield scans, Y(¢), both summed over the depths corresponding to the GaAsN layers (0

to 300 nm). In addition, Ygaas(¢) and Yn(¢p) were computed using Monte Carlo-Molecular
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Dynamics (MC-MD) simulations with 3 x 3 x 3 supercells of GaAs and GaAs.xNx containing 4
Nas, 4 Nietra, 0r 4 (N-As)as, equivalent xy = 0.037.21:23:2931

Analyses of defect-induced stress and calculations of defect binding energies in GaAs were
performed by atomistic simulations using the PreFerred Potential (PFP), a high-accuracy universal
neural network interatomic potential’>33 implemented in the Matlantis** software package. To
compute the stress induced by single point defects, we constructed 3x3X3 cubic supercells of
GaAs, containing single Nas or Niewra, without relaxations of supercell volumes. In addition, PFP
was used to compute the binding energy between isolated Nas and Niewra using fully relaxed 6X6Xx6

cubic supercells.

In Fig. 1, for the (a) [100], (b) [110], and (c) [111] channels, ¥min, Gaas and ymin, N are plotted
as a function of xn, with the computed positions of stability for Nas, Neetra, (N-As)as, and (N-N)as
shown beneath each plot.'® For all three channeling directions, Nas is shadowed by the GaAs
lattice, and (N-As)as and (N-N)as are displaced into the channels. Similarly, in the (a) [100] and
(c) [111] directions, Netra is shadowed by the GaAs lattice, observable only in the (b) [110]
channel. As shown in the plots, in all cases, ¥min,Gaas = 0.05 £ 0.02, suggesting minimal
displacement of Ga and As atoms into the [100], [110], and [111] channels, independent of xn. For
the (a) [100] and (c) [111] directions, ymin, N Values decrease monotonically with xn, suggesting a
N-dependent decrease in [(N-As)as] and [(N-N)as]. However, for the (b) [110] direction, Ymin, N
initially decreases with xn but finally increases for xn > 0.025. Since N is displaced into the [110]
channel but not into the [100] and [111] channels, the presence of Niewra must be considered, similar
to the cases of Efiera in GaAs and Niewa in ZnSe.3>3

To further explore atomic displacements into the channels, we consider the Ygaas(9) (open

circles) and Yn() (closed squares) about the (a) [100], (b) [110], and (c) [111] channels, shown



AIP
é Publishing

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

in Fig. 2. For GaAs, a minimum in YGaas(®), Ymin, Gaas, illustrated as a dashed horizontal line in
Fig. 2 (a), is apparent at 0°, where the incident beam is aligned with the channel. The half-width
at half-depth, W15, is illustrated with a horizontal arrow in Fig. 2 (b). For GaAs, Wi 110 > Y12
1100] ~ W12 (1], consistent with predictions of W1 oc 1/dna'2.3

For the [100] and [111] channels, Ymin, caas and W12, Gaas are essentially independent of xx
for the GaAsN layers (Figs. 2 (a) and (c)), consistent with the ymin, Gaas data presented in Fig. 1.
Meanwhile, for the [100] and [111] channels, the values of Ymin, n decrease with xn then plateau
for xny>0.021, presumably due to decreased [(N-As)as] and [(N-N)as]. For the (a) [100], (b) [110],
and (c) [111] channels, Ymin, N > Ymin, Gaas, consistent with the presence of (N-As)as and (N-N)as
in all layers.

For the [110] channel, shown in Fig. 2 (b), for low XN, Ymin, Gaas and Wi, Gaas are
independent of xn, but dramatically increase for xx > 0.025, indicating displacement of Ga and/or
As into the [110] channel. Similarly, for GaAsN, the Ymin, ~ increases for xy > 0.025, indicating an
increase in N displaced into the [110] channel. In addition, for xx = 0.032, “flux-peaking” features,
i.e. increases in Y min, Gaas and Ymin, N, are labelled with downward pointing arrows at -0.3 and +0.3°.
The presence of flux-peaking features in the [110] Y(¢) is consistent with the presence of
tetrahedral interstitials in the zinc blende lattice.>®

To support the hypothesis for Newa formation in GaAsN alloys with xy > 0.025, we
compare MC-MD simulations of Ycaas(¢) and Yn(o) (Fig. 3) for (a) [100], (b) [110], and (c) [111]
channels in GaAs (purple) and GaAsN (blue and green), using the predicted positions of Nas, Neetra,
and (N-As)as.'® For the computed Ycaas(®), P12 (110 > 112 1100} ~ P12 1113, consistent with the

measured values (above) and predictions of W12 oc 1/dma2.37
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For GaAsN, weighted averages of YN_as(®), Ynteta(®), and Yn-as) as(¢) were generated
assuming 80% substitutional N incorporation. In the case of N incorporation as Nas + (N-As)as,
shown in blue, the computed values of Ymin, v (P12, ) are higher (lower) than those of Ymin, Gaas
(¥1/2, Gaas), for all channels, due to the presence of (N-As)as in the channels. However, for GaAsN
containing Nas + (N-As)as + Nietra, sShown in green, Ymin, v (P12, n) are higher (lower) than those
of Yimin, Gaas (P12, Gaas), for the [110] channels, with minimal differences for the [100] and [111]
channels, a trend similar to that of the measured Yn(¢).

To estimate the average inter-N separation for N atoms distributed randomly in the GaAs
lattice, we use the radius of a sphere occupied by one N atom, termed the Wigner-Seitz radius,

39,40
Is,”

3 1/3 _
=[] = 03911y g (1)

2T XN NGads
with GaAs atomic density (ngaas = 4.44 x 10°? atoms/cm?®) and lattice parameter (agaas = 0.5633
nm). At the threshold composition for observation of Niewa, Xy = 0.025, with 80% Nas
incorporation, the computed value of s decreases to 0.81 nm. This value is similar to the distance
between Nas on fourth nearest-neighbor As sites (0.80 nm), whose vibrational modes have been
quantified using infrared spectroscopy, suggesting the presence of long-range elastic interactions
between N, at this separation *!

We now consider the elastic interactions between N solute atoms arising from their misfit
volumes. The misfit volume of a solute atom in a crystal is the difference between the volume of
the solute atom and its volume on a substitutional or interstitial site. To quantify the effect of misfit
volume on Niewa incorporation, we computed the stresses generated by Nas and Neetra. Due to its
negative (positive) misfit volume, Nas (Neewra) generates tensile (compressive) hydrostatic stress of

352 MPa (126 MPa). Thus, the coexistence of Nas and Nt is predicted to minimize the misfit



Publishing

AIP

\

134

135

136

137

138

139

140

141

142

143

144

145

146

volume and the corresponding internal stress in GaAsN alloys. Similar arguments have been
proposed for strain-induced stabilization of Gaetra in GaAsN alloys.*? The stabilization of Nieia in
GaAsN is further supported by our computation of Nas - Niewra nearest-neighbor binding energy as
-0.586 eV.

In summary, we have probed N incorporation mechanisms in GaAsi«Nx alloys using
measured and MC-MD computed Ygaas(¢) and Yn(@). For all GaAsixNx alloys, Nas, (N-N)as and
(N-As)as are observed, consistent with earlier studies.'*??*?* However, for xx > 0.025, evidence
for Niewra emerges. With support from atomistic simulations, we propose a stabilization mechanism
for Niewra in Which its elastic interaction with Nas is induced by the opposite signs of their misfit
volumes. This work opens opportunities for exploring the stability of Nietra and its influence on the

properties and device applications of a variety of highly mismatched alloys.
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SUPPLEMENTAL MATERIALS

See the supplemental materials for a description of the energy-to-depth conversion for the RBS
yield vs. energy spectra. Values of Ymin, Gaas and Ymin, N, from Ycaas(e) and Yn(o) collected about
the [100], [110], and [111] channeling directions, are tabulated. We also provide the RBS and
NRA yield vs. energy spectra for GaAsi.xNx layers in the [100], [110], and [111] channeling

directions.
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FIGURE CAPTIONS

FIG. 1: Ymin, Gaas and ymin, N Values for GaAs|«xNx layers plotted as a function of xn for the [100]
(a), [110] (b), and [111] (c) channels, from Yield vs. Energy spectra measured with 4.64 MeV a.
The models shown on the bottom are projections in the [100], [110], and [111] channeling
directions for GaAsN unit cells, that contain Nas, Nietra, (N-AS)as, and (N-N)as, using relaxed
positions predicted by density functional theory.'® The white, green, and blue spheres represent
Ga, As, and N respectively.

FIG. 2: Measured Nuclear Reaction Analysis (NRA) angular yields (Yn(o)) (filled squares) and
Rutherford Backscattering Spectrometry (RBS) angular yields (Ycaas(9)) (open circles) about the
[100] (a), [110] (b), and [111] (c) channels for GaAs;xNx with xx = 0.006 to xx = 0.032,
measured with 4.5 MeV a.

FIG. 3: Monte Carlo Molecular Dynamics simulations of Nuclear Reaction Analysis (NRA)
angular yields (Yn(¢)) and RBS angular yields (Yacaas(¢)) (top) about the [100] (a), [110] (b),
and [111] (c) directions for GaAs;.xNx containing Xn as = 0.03, XN_tetra = 0.0037, and Xn-aAs) As =
0.0037 (blue) and xn_as = 0.03 and x(n-as) as = 0.0074 (green) and for GaAs (purple). Ball-stick
models of GaAs unit cell projections (bottom) showing the displacement of N atoms into each

channel for Nietra, (N-N)as, and (N-As)as.
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