4
巧
\simeq
6
5
0
ĬΟ.
-
8
ŏ
$\overline{}$
Ċ.
=
\equiv
\simeq
S
ď
_
щ.
7
$\underline{\circ}$
\vdash
⋖
40
93
工
=
in.
ш.
\circ
ш
S
⋖

1	Onset of tetrahedral interstitial formation in GaAsN alloys		
2	J. J. P. Cooper, ¹ T. Jen, ¹ A. Novak, ¹ Z. Xi, ¹ L. Qi, ¹ F. U. Naab, ² Y. Q. Wang, ³ R. S. Goldman ^{1*}		
3	¹ Department of Materials Science and Engineering, University of Michigan, Ann Arbor,		
4	Michigan 48109-2136, USA		
5	² Michigan Ion Beam Laboratory, University of Michigan, Ann Arbor, Michigan 48109-		
6	2136, USA		
7	³ Materials Science and Technology Division, Los Alamos National Laboratory, Los		
8	Alamos, New Mexico 87545, USA		
9	March 9, 2024		
10	ABSTRACT		
11	N incorporation mechanisms in $GaAs_{1\text{-}x}N_x$ alloys are probed using combined experimental		
12	and computational Rutherford Backscattering Spectrometry (RBS) and Nuclear Reaction Analysis		
13	$(NRA) \ angular \ yield \ scans. \ For \ x_N < 0.025, \ in \ addition \ to \ substitutional \ nitrogen, \ N_{As}, \ (N-N)_{As} \ and \ not \ n$		
14	$(N\text{-}As)_{As}$ split interstitials are observed. However, for $x_N \geq 0.025$, evidence for N tetrahedral		
15	interstitials, N_{tetra} , emerges. We propose a mechanism for stabilization of N_{tetra} in which the elastic		
16	interaction between N_{tetra} and N_{As} is induced by the opposite signs of their misfit volumes. This		
17	work opens opportunities for exploring the formation of N_{tetra} and its influence on the properties		
18	of a variety of highly mismatched alloys.		
19	*Corresponding Author: <u>rsgold@umich.edu</u>		
20			

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Dilute nitride semiconductor alloys have drawn significant attention due to the dramatic bandgap reductions induced by dilute N compositions (x_N up to 0.035) while maintaining near lattice-matching with GaAs, 1-6 resulting in their suitability for long-wavelength lasers, 7,8 detectors, 9,10 and ultra-high-efficiency solar cells. 11,12 However, non-substitutional N incorporation has been linked to diminished absorption and emission efficiencies, in dilute nitride films, GaAsN-based heterostructures, and GaAsPN and GaAsNBi solar cell devices, with partial recovery induced by post-growth annealing. 11-15 Meanwhile, most computational studies have focused on the relative stabilities of substitutional nitrogen (NAs) and (N-N)As and (N-As)As split interstitials, 16-20 with minimal consideration of N tetrahedral interstitials (Ntetra). 16,17 To date, nuclear reaction analysis (NRA) and x-ray photoelectron spectroscopy (XPS) have revealed ~20% non-substitutional N incorporation, as both (N-As)As and (N-N)As split interstitials, independent of film growth method, 15,21-24 with the non-substitutional N fraction reduced by post-growth annealing. 15,25,26 Channeling NRA (NRA/c) supported by Monte Carlo-Molecular Dynamics (MCMD) simulations suggests a dominant N interstitial complex aligned along the [010] direction in GaAsN and GaAsNBi alloys. ^{21,23} Although the [010]-oriented N interstitial complex is typically attributed to (N-As)As, electronic structure calculations suggest that (N-N)As may also be oriented along the [010] direction. $^{16,18-20}$ Furthermore, due to the inability of XPS to distinguish N_{As} from N_{tetra}, and the limited consideration of N_{tetra} in earlier studies, direct detection of N_{tetra} has not been reported. In this work, we use combined experimental and computational NRA and Rutherford backscattering spectrometry (RBS/c) angular yield scans to investigate the N composition (x_N)

dependence of N incorporation mechanisms in GaAsN. For the lowest x_N, in addition to N_{As}, both $(N-N)_{As}$ and $(N-As)_{As}$ split interstitials are apparent. However, for $x_N \ge 0.025$, evidence for N_{tetra}

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

emerges. We discuss the role of N solute atom-induced strain fields as the driving force for N_{tetra} formation. This work opens opportunities for consideration of N_{tetra} and its influence on the properties of a variety of highly mismatched alloys. A series of 300 nm GaAs_{1-x}N_x films were grown by molecular-beam epitaxy on semi-

insulating (001) GaAs substrates, using solid Ga and As2, and an N2 rf plasma source, as described elsewhere.²² Simultaneous NRA and RBS measurements were conducted using 4.5 or 4.64 MeV a particles generated in NEC or General Ionics tandem accelerators, both equipped with fullyautomated 5-axis goniometers. For RBS, backscattered α particles were detected by a silicon (Si) surface-barrier detector located at 170° (for 4.5 MeV α) or 167° (for 4.64 MeV α), with respect to the incident beam. For NRA, the yields of the $^{14}N(\alpha,p)^{17}O$ reaction emitted protons were detected by a Si surface-barrier detector located at 135° with respect to the incident beam, with scattered α particles filtered out by 18 µm aluminum or 25.4 µm Kapton. RBS and NRA yields vs. particle energy were measured in the [100], [110], and [111] directions, with random (non-channeling) conditions achieved by oscillating the specimen $\pm 4^{\circ}$ away from the channeling condition in θ and $\phi.^{23}$ In addition, the angular-dependence of RBS and NRA yields (so-called "angular yield scans") were measured at $\pm 1.5^{\circ}$ about the [100], [111], and [110] directions.

For each film, N compositions were determined from an analysis of the NRA proton yield versus energy using the simulation of nuclear reaction analysis (SIMNRA) software.²⁷ The energy-dependent stopping power of α particles²⁸ was used for energy-to-depth conversion, enabling quantification of the minimum yields, χ_{min} (ratio of aligned yield to random yield), and the angular yield scans, $Y(\phi)$, both summed over the depths corresponding to the GaAsN layers (0 to 300 nm). In addition, $Y_{GaAs}(\phi)$ and $Y_N(\phi)$ were computed using Monte Carlo-Molecular

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

66

67	N_{As} , 4 N_{tetra} , or 4 (N-As) _{As} , equivalent $x_N = 0.037$. $^{21,23,29-31}$
68	Analyses of defect-induced stress and calculations of defect binding energies in GaAs were
69	performed by atomistic simulations using the PreFerred Potential (PFP), a high-accuracy universal
70	neural network interatomic potential ^{32,33} implemented in the Matlantis ³⁴ software package. To
71	compute the stress induced by single point defects, we constructed 3×3×3 cubic supercells of
72	GaAs, containing single N_{As} or N_{tetra} , without relaxations of supercell volumes. In addition, PFP
73	was used to compute the binding energy between isolated N_{As} and N_{tetra} using fully relaxed $6\times6\times6$
74	cubic supercells.
75	In Fig. 1, for the (a) [100], (b) [110], and (c) [111] channels, $\chi_{min, GaAs}$ and $\chi_{min, N}$ are plotted
76	as a function of x_N , with the computed positions of stability for N_{As} , N_{tetra} , $(N-As)_{As}$, and $(N-N)_{As}$
77	shown beneath each plot. 16 For all three channeling directions, N _{As} is shadowed by the GaAs
78	lattice, and (N-As) _{As} and (N-N) _{As} are displaced into the channels. Similarly, in the (a) [100] and
79	(c) [111] directions, N _{tetra} is shadowed by the GaAs lattice, observable only in the (b) [110]
80	channel. As shown in the plots, in all cases, $\chi_{min, GaAs} = 0.05 \pm 0.02$, suggesting minimal
81	displacement of Ga and As atoms into the [100], [110], and [111] channels, independent of x _N . For
82	the (a) [100] and (c) [111] directions, $\chi_{min, N}$ values decrease monotonically with x_N , suggesting a
83	N-dependent decrease in [(N-As) _{As}] and [(N-N) _{As}]. However, for the (b) [110] direction, $\chi_{min, N}$
84	initially decreases with x_N but finally increases for $x_N \ge 0.025$. Since N is displaced into the [110]
85	channel but not into the [100] and [111] channels, the presence of N _{tetra} must be considered, similar
86	to the cases of Er _{tetra} in GaAs and N _{tetra} in ZnSe. 35,36
87	To further explore atomic displacements into the channels, we consider the $Y_{\text{GaAs}}(\phi)$ (open
88	circles) and $Y_N(\varphi)$ (closed squares) about the (a) [100], (b) [110], and (c) [111] channels, shown

Dynamics (MC-MD) simulations with 3 x 3 x 3 supercells of GaAs and GaAs_{1-x}N_x containing 4

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

07	III Fig. 2. For GaAs, a minimum iii I GaAs(ψ), I min, GaAs, mustrated as a dashed nonzontal fine ii
90	Fig. 2 (a), is apparent at 0°, where the incident beam is aligned with the channel. The half-width
91	at half-depth, $\Psi_{1/2}$, is illustrated with a horizontal arrow in Fig. 2 (b). For GaAs, $\Psi_{1/2}$ [110] $> \Psi_{1/2}$
92	$_{[100]} \sim \Psi_{1/2[111]},$ consistent with predictions of $\Psi_{1/2} \varpropto 1/d_{hkl}^{1/2}.^{37}$
93	For the [100] and [111] channels, $Y_{min,\;GaAs}$ and $\Psi_{1/2,\;GaAs}$ are essentially independent of x_N
94	for the GaAsN layers (Figs. 2 (a) and (c)), consistent with the $\chi_{min,GaAs}$ data presented in Fig. 1.
95	Meanwhile, for the [100] and [111] channels, the values of $Y_{\text{min, N}}$ decrease with x_N then plateau
96	for $x_N \ge 0.021$, presumably due to decreased [(N-As) _{As}] and [(N-N) _{As}]. For the (a) [100], (b) [110],
97	and (c) [111] channels, $Y_{min, N} > Y_{min, GaAs}$, consistent with the presence of (N-As) _{As} and (N-N) _{As}
98	in all layers.
99	For the [110] channel, shown in Fig. 2 (b), for low x_N , $Y_{min,GaAs}$ and $\Psi_{1/2,GaAs}$ are
100	independent of x_N , but dramatically increase for $x_N \! \geq \! 0.025$, indicating displacement of Ga and/or
101	As into the [110] channel. Similarly, for GaAsN, the $Y_{min,N}$ increases for $x_N \ge 0.025$, indicating an arrange of the second sec
102	increase in N displaced into the [110] channel. In addition, for $x_N\!=\!0.032$, "flux-peaking" features.
103	i.e. increases in $Y_{min,\ GaAs}$ and $Y_{min,\ N}$, are labelled with downward pointing arrows at -0.3 and +0.3° and +0.3° are labelled with downward pointing arrows at -0.3 and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° and +0.3° are labelled with downward pointing arrows at -0.3° are labelled with a -0.3° are labelle
104	The presence of flux-peaking features in the [110] $Y(\phi)$ is consistent with the presence of
105	tetrahedral interstitials in the zinc blende lattice. ³⁸
106	To support the hypothesis for N_{tetra} formation in GaAsN alloys with $x_N \geq 0.025, \ weak with the support of the hypothesis for N_{tetra} formation in GaAsN alloys with x_N \geq 0.025, \ weak with the hypothesis for N_{tetra} formation in GaAsN alloys with x_N \geq 0.025, \ weak with the hypothesis for N_{tetra} formation in GaAsN alloys with x_N \geq 0.025, \ weak with the hypothesis for N_{tetra} formation in GaAsN alloys with x_N \geq 0.025, \ weak with the hypothesis for N_{tetra} for N_{tetr$
107	compare MC-MD simulations of $Y_{GaAs}(\phi)$ and $Y_{N}(\phi)$ (Fig. 3) for (a) [100], (b) [110], and (c) [111]
108	channels in GaAs (purple) and GaAsN (blue and green), using the predicted positions of N_{As},N_{tetra}
109	and (N-As) _{As} . For the computed $Y_{GaAs}(\phi)$, $\Psi_{1/2}[110] > \Psi_{1/2}[100] \sim \Psi_{1/2}[111]$, consistent with the
110	measured values (above) and predictions of $\Psi_{1/2} \propto 1/d_{hkl}^{1/2}$.37

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

132

133

For GaAsN, weighted averages of $Y_{N_As}(\phi)$, $Y_{Ntetra}(\phi)$, and $Y_{(N-As)_As}(\phi)$ were generated assuming 80% substitutional N incorporation. In the case of N incorporation as N_{As} + $(N-As)_{As}$, shown in blue, the computed values of Y_{min, N} (Ψ_{1/2, N}) are higher (lower) than those of Y_{min, GaAs} $(\Psi_{1/2, \text{ GaAs}})$, for all channels, due to the presence of (N-As)_{As} in the channels. However, for GaAsN containing $N_{As} + (N-As)_{As} + N_{tetra}$, shown in green, $Y_{min, N}$ ($\Psi_{1/2, N}$) are higher (lower) than those of Y_{min, GaAs} (Ψ_{1/2, GaAs}), for the [110] channels, with minimal differences for the [100] and [111] channels, a trend similar to that of the measured $Y_N(\varphi)$.

To estimate the average inter-N separation for N atoms distributed randomly in the GaAs lattice, we use the radius of a sphere occupied by one N atom, termed the Wigner-Seitz radius, r_s , 39,40

with GaAs atomic density ($n_{GaAs} = 4.44 \times 10^{22} \text{ atoms/cm}^3$) and lattice parameter ($a_{GaAs} = 0.5633$ nm). At the threshold composition for observation of N_{tetra}, x_N = 0.025, with 80% N_{As} incorporation, the computed value of rs decreases to 0.81 nm. This value is similar to the distance between N_{As} on fourth nearest-neighbor As sites (0.80 nm), whose vibrational modes have been quantified using infrared spectroscopy, suggesting the presence of long-range elastic interactions between N_{As} at this separation.⁴¹

We now consider the elastic interactions between N solute atoms arising from their misfit volumes. The misfit volume of a solute atom in a crystal is the difference between the volume of the solute atom and its volume on a substitutional or interstitial site. To quantify the effect of misfit volume on N_{tetra} incorporation, we computed the stresses generated by N_{As} and N_{tetra}. Due to its negative (positive) misfit volume, N_{As} (N_{tetra}) generates tensile (compressive) hydrostatic stress of 352 MPa (126 MPa). Thus, the coexistence of NAs and Ntetra is predicted to minimize the misfit

\forall	۲
10	5
=	c
\leq	г
0	JI
2	2
\circ	9
_	_
-	
\subset	∍
LC	5
-	ć.
C	5
24	Ε
C.	ə
\sim	5
_	_
$\overline{}$	-
_	
\subset	٥
_	_
	=
_	-
	1
<u>_</u>	s
_	٦
-	4
	_
CI)
_	ä
<	L
ш	J
-	
_	л
0	_
C	J
-	
_	-
	ı
m	_
_	Ξ
<	Ľ
_	-
00	
U	Ì
_	-
т	-
-	-
-	-
11	ı
ш	4
_	_
_	_

volume and the corresponding internal stress in GaAsN alloys. Similar arguments have been
proposed for strain-induced stabilization of Ga_{tetra} in $GaAsN$ alloys. 42 The stabilization of N_{tetra} in
GaAsN is further supported by our computation of N_{As} - N_{tetra} nearest-neighbor binding energy as
-0.586 eV.
In summary, we have probed N incorporation mechanisms in $GaAs_{1\text{-}x}N_x$ alloys using
measured and MC-MD computed $Y_{GaAs}(\phi)$ and $Y_N(\phi).$ For all $GaAs_{1-x}N_x$ alloys, $N_{As},$ $(N-N)_{As}$ and
$(N-As)_{As}$ are observed, consistent with earlier studies. ^{15,21,23,24} However, for $x_N \ge 0.025$, evidence
for N_{tetra} emerges. With support from atomistic simulations, we propose a stabilization mechanism
for N_{tetra} in which its elastic interaction with N_{As} is induced by the opposite signs of their misfit
volumes. This work opens opportunities for exploring the stability of N_{tetra} and its influence on the
properties and device applications of a variety of highly mismatched alloys.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

147	SUPPLEMENTAL MATERIALS
148	See the supplemental materials for a description of the energy-to-depth conversion for the RBS
149	yield vs. energy spectra. Values of $Y_{min,\;GaAs}$ and $Y_{min,\;N}$, from $Y_{GaAs}(\phi)$ and $Y_{N}(\phi)$ collected about
150	the [100], [110], and [111] channeling directions, are tabulated. We also provide the RBS and
151	NRA yield vs. energy spectra for $GaAs_{1\text{-}x}N_x$ layers in the [100], [110], and [111] channeling
152	directions.
153	
154	ACKNOWLEDGEMENTS
155	We gratefully acknowledge support from the National Science Foundation (Grant No. DMR
156	1810280). This work was performed, in part, at the Center for Integrated Nanotechnologies, an
157	Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of
158	Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is
159	managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA, under
160	$contract\ 89233218CNA000001.\ Z.\ Xi\ and\ L.\ Qi\ also\ gratefully\ acknowledge\ support\ from\ the$
161	Department of Energy (Grant No. DE-SC0023222)
162	
163	DATA AVAILABILITY
164	The data that support the findings of this study are mainly available within the article and

165 supplementary materials and from the corresponding author upon reasonable request.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

166 FIGURE CAPTIONS 16

7	FIG. 1 : $\chi_{min, GaAs}$ and $\chi_{min, N}$ values for	r GaAs _{1-x} N _x layers plotted as	a function of x_N for the [100]

- (a), [110] (b), and [111] (c) channels, from Yield vs. Energy spectra measured with 4.64 MeV α. 168
- 169 The models shown on the bottom are projections in the [100], [110], and [111] channeling
- 170 directions for GaAsN unit cells, that contain NAs, Ntetra, (N-As)as, and (N-N)As, using relaxed
- positions predicted by density functional theory. 16 The white, green, and blue spheres represent 171
- 172 Ga, As, and N respectively.
- 173 **FIG. 2**: Measured Nuclear Reaction Analysis (NRA) angular yields $(Y_N(\varphi))$ (filled squares) and
- 174 Rutherford Backscattering Spectrometry (RBS) angular yields (Y_{GaAs}(φ)) (open circles) about the
- 175 [100] (a), [110] (b), and [111] (c) channels for $GaAs_{1-x}N_x$ with $x_N = 0.006$ to $x_N = 0.032$,
- 176 measured with 4.5 MeV α .
- 177 FIG. 3: Monte Carlo Molecular Dynamics simulations of Nuclear Reaction Analysis (NRA)
- 178 angular yields $(Y_N(\phi))$ and RBS angular yields $(Y_{GaAs}(\phi))$ (top) about the [100] (a), [110] (b),
- 179 and [111] (c) directions for GaAs_{1-x}N_x containing $x_{N_As} = 0.03$, $x_{N_tetra} = 0.0037$, and $x_{(N-As)_As} = 0.037$, and $x_{N-As} = 0.037$,
- 180 0.0037 (blue) and $x_{N_As} = 0.03$ and $x_{(N-As)_As} = 0.0074$ (green) and for GaAs (purple). Ball-stick
- 181 models of GaAs unit cell projections (bottom) showing the displacement of N atoms into each
- 182 channel for N_{tetra}, (N-N)_{As}, and (N-As)_{As}.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

References

- ¹ W.G. Bi, and C.W. Tu, "Bowing parameter of the band-gap energy of GaNxAs1-x," Appl. Phys. Lett. 70, 1608 (1997).
- ² W. Shan, W. Walukiewicz, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, and S.R. Kurtz, "Band Anticrossing in GaInNAs Alloys," Phys. Rev. Lett. 82, 1221 (1999).
- ³ E.P. O'Reilly, A. Lindsay, P.J. Klar, A. Polimeni, and M. Capizzi, "Trends in the electronic structure of dilute nitride alloys," Semicond. Sci. Technol. 24, 033001 (2009).
- ⁴ W. Żuraw, W.M. Linhart, J. Occena, T. Jen, J.W. Mitchell, R.S. Goldman, and R. Kudrawiec, "Temperature-dependent study of GaAs1-x-yNxBiy alloys for band-gap engineering: photoreflectance and k · p modeling," Appl. Phys. Express 13, 091005 (2020).
- ⁵ T. Taliercio, R. Intartaglia, B. Gil, P. Lefebvre, T. Bretagnon, U. Tisch, E. Finkman, J. Salzman, M.-A. Pinault, M. Laügt, and E. Tournié, "From GaAs:N to oversaturated GaAsN: Analysis of the band-gap reduction," Phys. Rev. B 69, 073303 (2004).
- ⁶ J. Occena, T. Jen, J.W. Mitchell, W.M. Linhart, E.-M. Pavelescu, R. Kudrawiec, Y.Q. Wang, and R.S. Goldman, "Mapping the composition-dependence of the energy bandgap of GaAsNBi alloys," Appl. Phys. Lett. 115, 082106 (2019).
- ⁷ M. Gębski, D. Dontsova, N. Haghighi, K. Nunna, R. Yanka, A. Johnson, R. Pelzel, and J.A. Lott, "Baseline 1300 nm dilute nitride VCSELs," OSA Contin. 3, 1952 (2020).
- ⁸ H. Riechert, A. Ramakrishnan, and G. Steinle, "Development of InGaAsN-based 1.3 μm VCSELs," Semicond. Sci. Technol. 17, 892 (2002).
- ⁹ A. Albo, D. Fekete, and G. Bahir, "The opportunity of using InGaAsN/AlGaAs quantum wells for extended short-wavelength infrared photodetection," Infrared Phys. Technol. 96, 68 (2019).

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

¹⁰ B. Ściana, I. Zborowska-Lindert, D. Pucicki, B. Boratyński, D. Radziewicz, M. Tłaczała, J. Serafińczuk, P. Poloczek, G. Sek, and J. Misiewicz, "Technology and characterisation of GaAsN/GaAs heterostructures for photodetector applications," Opto-Electron. Rev. 16, 1 (2008). ¹¹ K. Yamane, Y. Maki, S. One, A. Wakahara, E.-M. Pavelescu, T. Ohshima, T. Nakamura, and M. Imaizumi, "Mechanism of improved crystallinity by defect-modification in proton-irradiated GaAsPN photovoltaics: Experimental and first-principle calculations approach," J. Appl. Phys. **132**, 065701 (2022). ¹² H. Kawata, S. Hasegawa, J. Matsumura, H. Nishinaka, and M. Yoshimoto, "Fabrication of a GaAs/GaNAsBi solar cell and its performance improvement by thermal annealing," Semicond.

Sci. Technol. 36, 095020 (2021).

¹³ S. Fahy, A. Lindsay, H. Ouerdane, and E.P. O'Reilly, "Alloy scattering of n-type carriers in GaNxAs1-x," Phys. Rev. B 74, 035203 (2006).

¹⁴ E.-M. Pavelescu, O. Ligor, J. Occena, C. Ticos, A. Matei, R.L. Gavrilă, K. Yamane, A. Wakahara, and R.S. Goldman, "Influence of electron irradiation and rapid thermal annealing on photoluminescence from GaAsNBi alloys," Appl. Phys. Lett. 117, 142106 (2020).

¹⁵ F. Ishikawa, K. Higashi, S. Fuyuno, M. Morifuji, M. Kondow, and A. Trampert, "Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure," Sci. Rep. 8, 5962 (2018).

¹⁶ K. Laaksonen, H.-P. Komsa, T.T. Rantala, and R.M. Nieminen, "Nitrogen interstitial defects in GaAs," J. Phys. Condens. Matter 20, 235231 (2008).

¹⁷ E. Arola, J. Ojanen, H.-P. Komsa, and T.T. Rantala, "Atomic and electronic structures of N interstitials in GaAs," Phys. Rev. B 72, 045222 (2005).

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

¹⁸ J.D. Querales-Flores, C.I. Ventura, and J.D. Fuhr, "Effect of N interstitial complexes on the electronic properties of GaAs 1 - x N x alloys from first principles," Phys. Rev. Mater. 3, 024602 (2019).

¹⁹ J. Li, X. Han, C. Dong, and C. Fan, "Formation energies of substitutional NAs and split interstitial complexes in dilute GaAsN alloys with different growth orientations," Appl. Phys. A **124**, 108 (2018).

²⁰ N. Shtinkov, P. Desiardins, R.A. Masut, and M. Côté, "Nitrogen incorporation and lattice constant of strained dilute GaAs_{1-x}N_x layers on GaAs (001): An ab initio study," Phys. Rev. B **74**, 035211 (2006).

²¹ T. Jen, G. Vardar, Y.Q. Wang, and R.S. Goldman, "Identifying the dominant interstitial complex in dilute GaAsN alloys," Appl. Phys. Lett. 107, 221904 (2015).

²² M. Reason, H.A. McKay, W. Ye, S. Hanson, R.S. Goldman, and V. Rotberg, "Mechanisms of nitrogen incorporation in GaAsN alloys," Appl. Phys. Lett. 85, 1692 (2004).

²³ J. Occena, T. Jen, E.E. Rizzi, T.M. Johnson, J. Horwath, Y.Q. Wang, and R.S. Goldman, "Bienhanced N incorporation in GaAsNBi alloys," Appl. Phys. Lett. 110, 242102 (2017).

²⁴ M.C. López-Escalante, B. Ściana, W. Dawidowski, K. Bielak, and M. Gabás, "Atomic configurations in AP-MOVPE grown lattice-mismatched InGaAsN films unravelled by X-ray photoelectron spectroscopy combined with bulk and surface characterization techniques," Appl. Surf. Sci. 433, 1 (2018).

²⁵ R.L. Field, Y. Jin, H. Cheng, T. Dannecker, R.M. Jock, Y.O. Wang, C. Kurdak, and R.S. Goldman, "Influence of N incorporation on persistent photoconductivity in GaAsN alloys," Phys. Rev. B 87, 155303 (2013).

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

- ²⁸ J.F. Ziegler, and J.P. Biersack, in *Treatise Heavy-Ion Sci. Vol. 6 Astrophys. Chem. Condens.* Matter, edited by D.A. Bromley (Springer US, Boston, MA, 1985), pp. 93–129.
- ²⁹ D. Wijesundera, Ion-Beam Channeling in Non-Centrosymmetric Crystals, Ph.D., University of Houston, 2010.
- ³⁰ D.N. Wijesundera, Q. Chen, K.B. Ma, X. Wang, B. Tilakaratne, and W.-K. Chu, "Planar channeling in wurtzite structured ZnO (0001): Anisotropic effects due to the noncentrosymmetric structure," Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 281, 77 (2012).
- ³¹ T. Jen, Ion Beam Analysis of Solute Incorporation in GaAsN and GaAsNBi Alloys, Ph.D., University of Michigan, 2017.
- ³² S. Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li, I. Kurata, T. Watanabe, Y. Yayama, H. Iriguchi, Y. Asano, T. Onodera, T. Ishii, T. Kudo, H. Ono, R. Sawada, R. Ishitani, M. Ong, T. Yamaguchi, T. Kataoka, A. Hayashi, N. Charoenphakdee, and T. Ibuka, "Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements," Nat. Commun. 13, 2991 (2022).
- ³³ S. Takamoto, D. Okanohara, Q.-J. Li, and J. Li, "Towards universal neural network interatomic potential," J. Materiomics 9, 447 (2023).
- ³⁴ Matlantis (https://matlantis.com/), "software as a service style material discovery tool," (2023).

²⁷ M. Mayer, SIMNRA User's Guide (Max-Planck-Institut für Plasmaphysik, Garching, 1997).

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

³⁵ J. Nakata, M. Taniguchi, and K. Takahei, "Direct evidence of Er atoms occupying an interstitial site in metalorganic chemical vapor deposition-grown GaAs:Er," Appl. Phys. Lett. 61, 2665 (1992). ³⁶ H. Kobayashi, K. Kimura, F. Nishiyama, S. Miwa, and T. Yao, "Lattice location of N in ZnSe by channeling-NRA," Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 132, 142 (1997).

³⁷ W.-K. Chu, J.W. Mayer, and M.-A. Nicolet, in *Backscattering Spectrom*., edited by W.-K. Chu, J.W. Mayer, and M.-A. Nicolet (Academic Press, 1978), pp. 223–275.

³⁸ H. Krause, M. Lux, E. Nowak, J. Vogt, R. Flagmeyer, G. Kühn, and G. Otto, "Lattice Site Localization of Zn in InP Using the PIXE/Channeling Technique," Phys. Status Solidi A 132, 295 (1992).

³⁹ J.M. Ziman, in *Models Disord. Theor. Phys. Homog. Disord. Syst.* (Cambridge University Press, Cambridge [Eng.]; New York, 1979), pp. 472–474.

⁴⁰ P.-G. Reinhard, and E. Suraud, in *Introd. Clust. Dyn.* (John Wiley & Sons, Ltd, 2003), pp. 259-266.

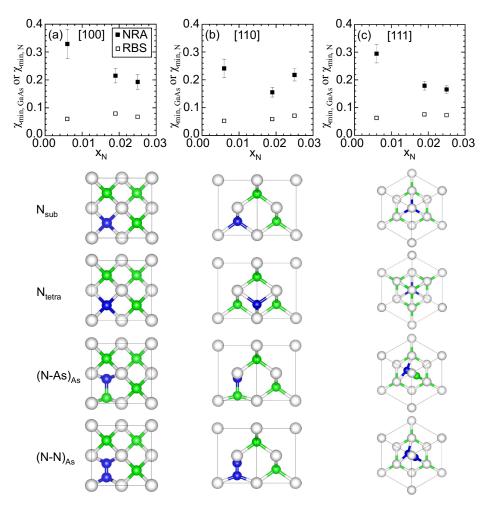
⁴¹ A. Carvalho, S.J. Barker, R. Jones, R.S. Williams, M.J. Ashwin, R.C. Newman, P.N. Stavrinou, G. Parry, T.S. Jones, S. Öberg, and P.R. Briddon, "Identification of the local vibrational modes of small nitrogen clusters in dilute GaAsN," Phys. B 401, 339 (2007). ⁴² P. Laukkanen, M.P.J. Punkkinen, J. Puustinen, H. Levämäki, M. Tuominen, K. Schulte, J. Dahl, J. Lång, H.L. Zhang, M. Kuzmin, K. Palotas, B. Johansson, L. Vitos, M. Guina, and K. Kokko, "Formation and destabilization of Ga interstitials in GaAsN: Experiment and theory," Phys. Rev. B 86, 195205 (2012).

Applied Physics Letters

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

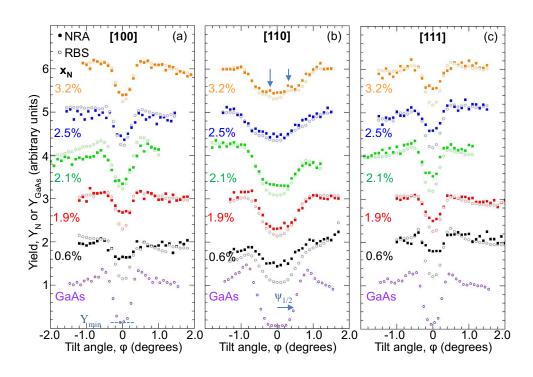
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454

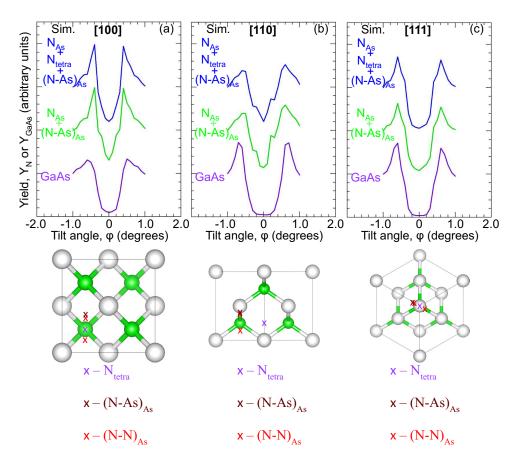

ACCEPTED MANUSCRIPT

Applied Physics Letters

FIG 1

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.


PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0192454



This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP Publishing

