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Molecular mechanisms and trade-offs underlying 
fluctuating thermal regimes during low-temperature 
storage 
Alex S Torson1, George D Yocum1 and Julia H Bowsher2   

Insects exposed to constant low temperatures (CLT) exhibit 
high rates of mortality as well as a variety of sublethal effects. In 
many species, interruptions of CLT with brief pulses of warm 
temperatures (fluctuating thermal regimes, FTR) lead to 
increases in survival and fewer sublethal effects. However, we 
still lack a complete understanding of the physiological 
mechanisms activated during FTR. In this review, we discuss 
recent advances in understanding FTR’s underlying molecular 
mechanisms. We discuss knowledge gaps related to potential 
trade-offs between FTR’s beneficial effects and the costs of 
these repairs to overwintering reserves and reproduction. We 
present the hypothesis that the warm pulse of FTR helps to 
maintain daily rhythmicity. 
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Introduction 
Insect physiology is dynamic and tightly linked with 
temperature. Through acclimation, most temperate in
sects can tolerate exposure to stressful low temperatures, 
whether during temporary cold exposure or through 
physiological programming associated with diapause. 
But, extended exposure can lead to an accumulation of 
cellular damage and neuromuscular dysfunction known 
as chill injury [1]. Chill injury is particularly problematic 
in managed insect species that have been stored at 
constant low temperatures (CLT) for extended periods 
of time during winter months. CLT is used for storage of 

biological control agents (e.g. [2]) and agricultural polli
nators (e.g. [3]). The chill injury caused by CLT storage 
has correlates in nature, when insects are exposed to cold 
snaps during unpredictable weather. Climate change will 
likely increase the variability of winter temperatures due 
to snow melt [4], potentially increasing chill injury. Not 
surprisingly, the details of thermal profiles have ramifi
cations for insect physiology, survival, and lifetime re
productive success. Under CLT, insects exhibit a 
dramatic reduction in cold-induced mortality if exposed 
to brief, daily pulses of warm temperatures (fluctuating 
thermal regimes, FTR). 

The benefits of FTR on the survival of chill-injured 
insects appear to be nearly universal. However, many 
managed insects are stored in the winter under CLT and 
have no opportunity to feed or replenish energy reserves  
[5]. Therefore, it is widely assumed that the energetic 
costs of cellular repair during FTR will cause a trade-off 
in other aspects of performance — such as reproductive 
output (e.g. [6]). In this review, we discuss 1) physiolo
gical support for -omics-inferred molecular mechanisms 
of FTR, 2) potential trade-offs between FTR’s benefit 
and energy allocation, and 3) additional hypotheses that 
warrant further investigation. Although FTR treatments 
have been applied in a variety of contexts, the me
chanisms of FTR have been most thoroughly studied in 
insects exposed to CLT. Therefore, for this review, we 
focus solely on FTR in the context of CLT. 

Physiological support for -omics inferences 
Improved performance and survival outcomes under 
FTR have been reported across several insect orders [7]. 
Broad-scale ‘-omics’ experiments suggest multiple con
served physiological mechanisms, including processes 
promoting ion, metabolic, and osmotic homeostasis, as 
well as restructuring of cell membranes, stabilization of 
the cytoskeleton, increased immune activity and detox
ification, and mitigation of oxidative stress (for a detailed 
review, see Ref. [8]). Direct observations supporting 
several of these mechanisms are still limited, but recent 
progress has been made in the context of ion home
ostasis [9,10], membrane composition and function [11], 
and oxidative stress [12], which we discuss in more detail 
below ( Figure 1). 
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Membranes are among the most thermally sensitive 
macromolecular structures [13]. Extended cold exposure 
can lead to decreased rates of active transport, which drive 
disruptions in ion homeostasis and ultimately result in 
membrane depolarization, loss of muscle function, and 
cell death [1,14]. El-Saadi et al. [9] and Grumiaux et al.  
[10] provided strong support for the ability of FTR to 
mitigate these disruptions in Drosophila melanogaster and 
D. suzukii, respectively. In both instances, adult flies ex
posed to FTR had lower hemolymph [K+] relative to 
CLT. These results are consistent with previous ob
servations in the firebug, Pyrrhocoris apterus, and the te
nebrionid beetle, Alphitobius diaperinus [15]. However, it 
remains unclear whether the warm pulses associated with 
FTR simply promote changes in the permeability of cell 
membranes (restoring passive drift of ions down their 
concentration gradient) or promote an increase in the 
enzymatic activity or expression of ion transporters. 
These mechanisms are likely not mutually exclusive, and 
recent -omics data supports this [16]. 

The fluidity of the lipids within cell membranes influ
ences the activity of many important membrane en
zymes and transmembrane transport processes. Chilling 
can result in changes to permeability of membranes and 
reduced activity of membrane-bound enzymes that ra
pidly lead to the accumulation of chilling injuries and 

mortality [8]. In D. melanogaster adults, CLT leads to a 
shift in membrane composition and shorter fatty acyl 
chains [11]. These changes in composition and structure 
likely help to maintain membrane fluidity at lower 
temperatures, but could also alter the membranes’ per
meability and the function of ion channels [17]. Under 
FTR, these flies reorganize their membranes to more 
closely resemble flies that had not experienced cold 
stress [11]. In addition to membrane reorganization, 
FTR-exposed insects also increased the abundance of 
transcripts encoding structural components of mem
branes (e.g. transmembrane proteins and aquaporins,  
[16]). Further, Melicher et al. [18] showed that Megachile 
rotundata pupae increase expression of transcripts en
coding ion channels after just one day of FTR exposure. 
Since the regulation of ion and osmotic homeostasis in 
insects is a complex interaction between gut epithelia 
and the Malpighian tubules [19], we argue that the field 
must increase research that mechanistically tests tissue- 
specific regulation of ion homeostasis. 

Changes in membrane permeability also affect mi
tochondrial function during cold stress [20]. A decrease 
in mitochondrial function during CLT is likely to have a 
variety of consequential downstream effects, but oxida
tive stress has received particularly close attention  
[12,21–26]. Oxidative stress occurs when the production 

Figure 1  
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A summary of recent advances and proposed future directions in the physiological mechanisms of FTR. Within each hypothesized response box 
(white), the green boxes in the lower left-hand corner represent direct observations testing the hypothesis, yellow boxes indicate -omics inferences 
that support the hypothesis, and red boxes show that the hypothesis has not yet been tested. The + or – in the lower right-hand corner represents 
whether the direct observations of that response support (+) or do not support (–) the hypothesis. Boxes containing both + and – indicate conflicting 
results among studies.   
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of reactive oxygen species (ROS) exceeds an organism’s 
ability to clear excess ROS with antioxidants, leading to 
damage of lipids, proteins, and DNA [27]. ROS-induced 
damage could be further compounded in chill-injured 
insects if enzymatic antioxidants are less efficient as 
temperature decreases, but to our knowledge, this has 
not been tested. Therefore, a periodic exposure of 
warmth in FTR should increase the efficiency of those 
enzymes, allowing cells to clear the ROS that have built 
up under CLT. In adult Alphitobius diaperinus, super
oxide dismutase (SOD) activity increases during low- 
temperature stress and glutathione ratios increase (in
dicating decreased oxidative stress) during the warm 
period of FTR [21]. Consistent with these observations, 
after exposure to CLT, M. rotundata prepupae increase 
expression of transcripts encoding SOD and glutathione 
peroxidase, relative to FTR [12]. However, counter to 
predictions, neither CLT- and FTR-exposed prepupae 
or pupae differed in their total antioxidant capacity or 
levels of lipid peroxidation (a common proxy for ROS- 
induced damage). Importantly, this study measured only 
lipid peroxidation before the point at which mortality 
between the two treatments began to diverge. It there
fore remains possible that 1) differences in antioxidant 
capacity between CLT and FTR could emerge as 
mortality begins to increase in CLT and 2) oxidative 
damage is occurring at the DNA or protein level. These 
observations in M. rotundata, also contrast with elevated 
levels of lipid peroxidation and protein carbonylation 
during CLT exposure in D. melanogaster larvae, relative 
to FTR [28]. We assume that this discrepancy between 
studies is associated with the underlying cold tolerance 
of the species, but it could also be driven by underlying 
differences in metabolic rates between the two species 
during CLT or differences in the duration of the FTR 
exposure. 

Is there a cost to fluctuating thermal regimes? 
While the benefits of FTR on insect survival during 
CLT are well-established [8], the energetic demands 
and other potential trade-offs are still uncertain 
(Table 1). The warm pulse of FTR is associated with a 
brief ‘overshoot’ in CO2 production [21,29]. Lalouette 
et al. [21] hypothesized this overshoot is a result of ac
tivation of the reparative functions associated with 
FTR restoration of ion [9] and metabolic homeostasis  
[11,28] and repair of stress-induced damage from chill 
injury [1] could require significant energetic investment. 
Costly repair mechanisms could explain the overshoot in 
metabolic rates during the warm pulse of FTR observed 
by Lalouette et al. [21] and Yocum et al. [29]. Restoring 
ion gradients is energetically intensive — requiring the 
availability of ATP to recover homeostasis via metabo
lically demanding ion transporters [1]. Over longer 
durations of FTR exposure, we hypothesize that con
tinually reestablishing ion homeostasis could result in a 

significant energetic demand on the insect. In support of 
this hypothesis, Megachile rotundata prepupae increase 
the expression of multiple transcripts encoding ATP- 
dependent ion channels during the warm pulse of FTR  
[18]. We appreciate that disentangling the energy re
quirements of each of these mechanisms individually 
would be a true challenge, especially given that knock
downs of these critical physiological processes would 
likely result in lethal phenotypes. Tissue-specific in
quiries into the dynamics of mitochondrial respiration 
and ATP synthesis between CLT and FTR (cf. Colinet 
et al. [30]) could begin to address in what tissues these 
costs are being incurred. 

If the elevated metabolic rates associated with the warm 
pulse of FTR cause an increase in energetic demands, 
this cost should be reflected in the energy consumption 
rates of FTR-exposed insects. However, existing mea
surements of body composition and ATP levels during 
FTR do not provide clear support for this relationship. 
For example, lipid content over 40 days of FTR ex
posure in D. suzukii adults [10] and Thaumatotibia leuco
treta larvae [7] exposed to short-term FTR (< 1 day) do 
not differ relative to individuals exposed to CLT. Fur
ther, measurements of ATP levels during FTR are in
consistent across studies. Adult A. diaperinus during the 
first three days of CLT or FTR does not differ in ATP 
levels [31]. This contrasts with higher ATP levels in 
FTR-exposed Sarcophaga crassipalpis pharate adults. 
Importantly, the temperature profiles of the FTR differ 
dramatically between these two studies, with S. crassi
palpis exposed to both longer bouts of low temperatures 
and warm pulses during the FTR treatment. Perhaps, 
longer durations of warm pulses during FTR lead to 
greater energetic demands. Nevertheless, data on the 
relationship between FTR exposure and energetic de
mands are still scarce and will likely require measure
ments of other energy reserves such as glycogen as well 
as measurements spanning longer durations of FTR 
exposure. 

The ultimate impact of an energetic cost is a decrease in 
reproduction. The hypothesis that the benefits of FTR 
come at a cost to investment in reproduction has recently 
been scrutinized (Table 1). In most of these studies, 
FTR exposure comes at no cost to reproduction. How
ever, there are contexts in which FTR exposure nega
tively impacts reproduction [6,32], and others in which 
there is a benefit to fecundity [32,33]. In Drosophila su
zukii, FTR exposure as adults greatly reduces mortality, 
but has no effect on female fecundity or male mating 
capacity, whereas exposure to FTR as pupae in this 
species decreases adult female fecundity [6]. The trends 
presented in these studies support a more complex re
lationship between FTR exposure and reproductive 
output, with life stage of exposure, sex, and duration of 
the treatments emerging as important factors. In some 
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life stages, there is either an inherent cost to the warm 
temperature exposure itself or there is a trade-off with 
the beneficial mechanisms activated during FTR. 

New directions for research on fluctuating 
thermal regimes 
Hypothesis 1. FTR repairs neuronal damage caused by 
chilling 

As disruptions to ion and osmotic homeostasis persist, 
elevated levels of K+ in the hemolymph promote ex
tracellular depolarization and ultimately lead to cell 
death and a range of sublethal effects including neuro
muscular dysfunction [1]. Recent work investigating the 
mechanisms of chill injury in Locusta migratoria has de
monstrated the role hypokalemia plays in promoting an 
increase in intracellular Ca2+ and inducing cell death [34] 
as well as tissue-specific variation in chill-injury-induced 
programmed cell death via caspase-3 activity [35]. Two 
competing, but not mutually exclusive, hypotheses 
suggest that FTR functions to protect against or repair 
damage caused by chill injury [8]. The improvements in 
neuromuscular coordination of FTR-exposed insects, 
relative to CLT, suggest that FTR could act to inhibit 
these cell death mechanisms and/or act to repair damage 
downstream of their activation. Megachile rotundata pre
pupae [26] and pupae [16] under FTR have increased 
abundance of transcripts encoding neural patterning 
proteins, but to our knowledge, no other evidence of this 
relationship has been reported. Therefore, with a better 
understanding of the mechanisms that drive cell death 
during chill injury, follow-on experiments to test if FTR 
mitigates the activity of cell death mechanisms are now 
feasible. 

Hypothesis 2. The periodicity of FTR acts as a zeitgeber 
to synchronize insect clocks 

Besides the well-established role of FTR in aiding the 
recovery of membrane integrity and ion homeostasis, we 
hypothesize that the warm temperature pulse could also 
be functioning as a zeitgeber synchronizing the insects’ 
clocks. Disruption of circadian mechanisms could lead to 
the desynchronization of daily activities and physiolo
gical processes [36]. There are two forms of circadian 
clocks, central and peripheral. The peripheral clocks are 
under various levels of regulation by the central clock 
and can have different physiological characteristics from 
those of the central clock [37]. Under certain environ
mental conditions, the peripheral clocks may become 
misaligned from the central clock [38]. Misalignment of 
the clocks can lead to deleterious impacts on an organ
ism’s physiology [39,40]. 

Insects’ clocks function correctly only within a limited 
range of temperatures and photoperiods, outside these 

conditions, the insect’s physiology can be negatively 
impacted. Exposure to sub- and super-optimal tem
peratures can significantly alter insects’ rhythmicity  
[41–43]. The molecular underpinning for these altera
tions in rhythmicity appears to be changes in proteins 
levels for multiple clock genes (reviewed by Maguire 
and Sehgal [43]). The lack of a zeitgeber synchronizing 
the various clocks should be viewed as a stress due to its 
ability to alter insects’ rhythmicity. Rearing M. rotundata 
under darkness and at constant 29°C results in the adults 
emerging randomly throughout the day and night, 
whereas exposing developing M. rotundata to a thermo
period with an amplitude as little as 2°C synchronizes 
emergence to the beginning of the thermophase (i.e. the 
start of the temperature increase) and decreases the total 
number of days required for all adults to emerge [44]. 
Rearing adult Drosophila simulans under thermal profiles 
with a predictable (P) or nonpredictable (NP) tempera
ture peak and a constant temperature (CT) control 
yielded a complex set of results [45]. The P line of flies 
had a significantly longer developmental time than ei
ther the CT or NP lines. The NP line had a significantly 
longer chill coma recovery time as compared with the 
CT and P lines. Finally, the CT flies had significantly 
larger body size than either of the two other lines of flies. 
It is clear from this study that untangling the possible 
role of the FTR warm pulse as a zeitgeber from its other 
physiological impacts will not be easy. 

There are several important questions that need to be 
answered: 1) how stable is the temperature lower limit 
for maintaining rhythmicity — does it vary year to year 
or over development? 2) Are there developmental stages 
that are more sensitive than others to the effects of clock 
misalignment and if so, why? 3) What role does the 
duration of misalignment have on the overall outcome of 
the misalignment event? 4) Does having an ecologically 
relevant zeitgeber alter the thermal limit for maintaining 
rhythmicity? 5) What are the genes regulating the lower 
temperature limits for maintaining rhythmicity and what 
are the environmental cues that regulate them? Periodic 
arousals occur in hibernating mammals. These periodic 
increases in metabolic rate are thought to be governed 
by a clock mechanism that is independent of circadian 
control [46,47], and is instead regulated by metabolic 
rate, possibly the depletion of a key metabolic compo
nent [47]. While different in many aspects, mammalian 
hibernation and the insect FTR response may have in
teresting intersections in metabolic repair and en
dogenous cellular cycling. 

Conclusions 
Recent studies have driven forward our understanding of 
the physiological and molecular mechanisms that pro
mote the neuromuscular dysfunction and cell death as
sociated with chill injury [34,35]. A significant body of 
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literature now shows that the disruptions in ion home
ostasis that promote these chill-injury phenotypes are 
mitigated by FTR exposure. Future inquiries into 
FTR’s ability to reduce the intracellular influx of Ca2+ 

and cell death are now warranted. Recent measurements 
of the energetic and reproductive costs of FTR exposure 
have yielded complex results suggesting that negative 
consequences of FTR are life-stage-dependent. Finally, 
we propose additional work investigating the role FTR 
plays in repairing the damage caused by chill injury and 
coordinating circadian rhythm. 
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