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Mechanical criticality of fiber networks at a finite temperature
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At zero temperature, spring networks with connectivity below Maxwell’s isostatic threshold undergo a me-
chanical phase transition from a floppy state at small strains to a rigid state for applied shear strain above a critical
strain threshold. Disordered networks in the floppy mechanical regime can be stabilized by entropic effects
at finite temperature. We develop a scaling theory for this mechanical phase transition at finite temperature,
yielding relationships between various scaling exponents. Using Monte Carlo simulations, we verify these
scaling relations and identify anomalous entropic elasticity with sublinear T dependence in the linear elastic
regime. While our results are consistent with prior studies of phase behavior near the isostatic point, the present
work also makes predictions relevant to the broad class of disordered thermal semiflexible polymer networks for
which the connectivity generally lies far below the isostatic threshold.
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I. INTRODUCTION

Fibrous materials are common in physiological systems
that are responsible for the mechanical stability of cells
and tissues. Examples include the interconnected network
of biopolymers in the cytoskeleton and in the extracellular
matrix. The linear elasticity of these biopolymer networks
depends not only on the properties of the individual fibers but
also on network architecture and specifically their connectiv-
ity, characterized by the local coordination number z. The key
role of connectivity on the stability of mechanical structures
has been well established by Maxwell [1], who showed that
networks with Hookean, central-force (CF) interactions are
linearly stable only when their average connectivity exceeds
the isostatic threshold zc = 2d , where d is dimensionality. For
physiological networks, however, this rigidity transition is not
relevant, as their connectivity lies well below this threshold
[2–4] and network stability depends on non-CF interactions
such as fiber bending rigidity [5–12]. Recent theory and ex-
perimental studies have identified a strain-controlled rigidity
transition for networks of fibers such as collagen, e.g., for
shear strains above a critical threshold γc [13]. Moreover, this
transition exhibits rich critical phenomena, including scaling
behavior and non-mean-field effects [14–23]. But these prior
studies of fiber systems have been limited to athermal net-
works, and little is known of the effects of thermal fluctuations
that can be expected to stabilize mechanically floppy systems
and lead to entropic elasticity [24–27]. Prior simulations and
mean-field theory have pointed to critical signatures for the
isostatic transition at finite temperature T [28–30]. Addition-
ally, in a study on random-bond subisostatic networks under
finite isotropic strain, Ref. [31] found that thermal fluctuations
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stabilize a floppy network with an anomalous temperature
dependence near a critical bulk strain that appears to coincide
with what was found at the isostatic point. But a theory for
the mechanical criticality and the corresponding exponents re-
main unclear for the strain-controlled transition in subisostatic
systems at a finite temperature, including the broad class of
semiflexible polymers.

Here we study the critical behavior of the strain-controlled
rigidity transition at finite temperature by performing Monte
Carlo (MC) simulations of central-force spring networks. In
the linear regime, we find an anomalous entropic elastic
regime that extends throughout the regime with γ < γc in
Fig. 1(b). Here the linear shear modulus varies with T as G ∼
T α , with an exponent α � 0.8. Along the line at γ = 0, these
results are consistent with Ref. [28]. For shear strains γ >

γc(z), the network’s elastic response becomes independent of
temperature, consistent with the stretching-dominated regime
previously seen for connectivities z > zc. We also develop a
scaling theory that not only provides a theoretical framework
for these results but also allows us to identify scaling relations
among various critical exponents, which we also test here. We
also quantify the network’s fluctuations that can have either
thermal or athermal, nonaffine origin. We find a peak in the
fluctuations near the critical strain, analogous to prior results
for athermal systems. In contrast to temperature-controlled
phase transitions, temperature T acts as a stabilization effect
or field and moves the system away from criticality, analogous
to quantum critical points at zero temperature [32]. Similar to
such systems, we also find that the effects of criticality extend
to finite temperature as illustrated in Fig. 1(a) all along the
critical line given by γc(z).

II. SCALING THEORY

The nonlinear mechanics of fiber networks at zero temper-
ature has been explained in terms of a bending-dominated to a
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FIG. 1. Schematic phase diagrams of disordered spring networks
in the limit of low temperature T (a) and finite T (b). The shear
stiffness K exhibits different scaling behavior with temperature based
on the network’s connectivity z and the applied shear strain γ . In the
limit of small γ , K reduces to the linear shear modulus. (a) With
increasing strain, mechanically floppy (subisostatic) networks with
z < zc cross over from entropic to enthalpic, stretching-dominated
behavior in the vicinity of the T = 0 phase boundary (dashed arrow).
(b) With increasing T , critical behavior extends to a broad zone about
γc in which the T dependence changes.

stretching-dominated critical transition that occurs at a critical
shear strain γc(z), which depends on the network’s connec-
tivity z and architecture [13–15,33,34]. We develop a scaling
theory inspired by real-space renormalization arguments in-
troduced by Kadanoff [35]. The critical signatures of this
strain-controlled mechanical phase transition have been re-
cently examined using a real-space renormalization approach
and finite-size scaling methods and recently extended to ather-
mal networks [18,20,21]. For finite temperature T , however,
we consider the system’s free energy F per network element,
e.g., mesh or strand. As with other critical phenomena, we
focus on the singular part F as a function of reduced strain
t = γ − γc and T , noting that strain γ is the control variable
for the transition at t = 0 and T is an auxiliary field that
moves the system away from the (athermal) critical point. We
expect critical signatures such as fluctuations and singularities
as both t and T → 0.

Under rescaling of the system by a factor L, we expect
the system to exhibit a homogenous free energy density near
criticality, for which

F (t,T ) = L−dF (tLx,TLy), (1)

where d is the dimensionality and x, y > 0 are fundamental
exponents. The mechanical quantities such as shear stress σ

and the shear stiffness or differential shear modulus K are
obtained by taking the first and second derivatives of F with
respect to strain, i.e., t . Thus,

K = ∂σ

∂γ
∼ ∂2F (t,T )

∂t2
∼ L−d+2xF2,0(tLx,TLy), (2)

where Fn,m refers to the nth partial derivative with respect to
t and mth partial derivative with respect to T of F . Since the
rescaling factor L is an arbitrary parameter, we can substitute
L = |t |−1/x in Eq. (2). This identifies the correlation length
exponent ν = 1/x and leads to a scaling function

K = |γ − γc| fG±(T/|γ − γc|ψ ), (3)

where f = dν − 2 and ψ = yν. Moreover, to ensure the con-
tinuity of function F2,0(±1, s) at the critical point t → 0, we

must have F2,0(±1, s) ∼ s f /ψ . This power-law relation pro-
vides the T -dependence behavior of K at γc, i.e., K (γc) ∼ T β ,
where β = f /ψ .

III. MODEL

In order to study the effects of temperature in fiber net-
works, we perform Monte Carlo simulations in 2D systems
using the triangular network model. Starting from a full
triangular network with z = 6, we randomly cut bonds un-
til a desired subisostatic connectivity z < zc is reached. We
remove the dangling nodes since they have no mechanical
contribution to the network’s response. Here we simulate
networks at an average connectivity of z = 3.3. A small sec-
tion of such model is shown in Appendix A.

The network’s elastic energy is limited to central force in-
teractions only, i.e., there is no bending energy in our models.
The energy is given by

E = μ

2

∑
〈i j〉

(li j − li j,0)2

li j,0
, (4)

where li j,0 and li j are the initial and current bond length
between nodes i and j, respectively, and μ is the stretching
stiffness of the bonds. The summation is over all nodes in
the network. We note that in order to isolate the influence
of thermal fluctuations, we have not included bending inter-
actions in our model. Incorporating a finite bending rigidity
κ would require an additional scaling variable κ/|γ − γc|φ
in Eq. (3). There would also be a competition between these
two stabilizing effects. Nevertheless, our results for κ = 0 can
be expected to represent a good approximation for weakly
bending systems, particularly such as intermediate filament
or fine-clot fibrin networks, where their thermal persistence
length is comparable to the mesh size [36–38]. Describing
the full temperature and bending dependence, however, will
become a challenging task.

We simulate a system with N nodes in a volume V us-
ing MC simulations in the canonical ensemble. We set the
stretching stiffness μ = 1 and vary the reduced temperature
T ≡ kBT/μl2

c , where kB is the Boltzmann constant and lc =
〈li j,0〉 is the average initial bond length in networks, which
is 1.0 in our model. After applying a shear strain, we find
the minimum energy configuration at zero temperature using
FIRE [39] and let the system reach its equilibrium configura-
tion at T by running at least τeq = 107 MC steps with a trial
move size chosen to yield a 50% acceptance ratio based on the
Metropolis algorithm [40,41]. We calculate average energy
and stress components using simulations over τrun = 10τeq

MC steps. The stiffness K is obtained from the average shear
stress σ as K = ∂σ/∂γ [28] (see Appendix A). The data are
an ensemble average of 10 random samples, unless otherwise
stated.

IV. RESULTS

We first study the behavior of internal pressure P (see
Appendix A) for thermal networks as a function of shear strain
and temperature. As shown in Fig. 2, we find that thermal
networks are under tension, i.e., P < 0. As we increase γ , the
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FIG. 2. Pressure as a function of shear strain for diluted trian-
gular networks with z = 3.3 and varying temperature. The lateral
system size is W = 50. The inset shows the behavior of P vs T at
five different strain values. The lowest data points are in the linear
regime (γ < γc); the next one is at γc. The upper three data sets are
for large strains where γ > γc.

potential energy between the nodes increases, which results
in a larger absolute value of P (Fig. 2). The dependence of
pressure vs temperature is shown in the inset of Fig. 2 for five
different values of γ . In the linear regime where γ < γc, we
find that the magnitude of P is linearly increasing with T , i.e.,
the system’s pressure is dominated by the ideal gas effects.
This is in agreement with Ref. [28]. As we increase γ close to
γc, however, the T dependence of P becomes sublinear. At
very large strains, pressure has no temperature dependence
(inset of Fig. 2).

Figure 3(a) shows the shear stiffness K as a function of
shear strain γ for various reduced temperatures T . In the small
strain regime, as T increases, the network stiffness increases
with an anomalous T -dependence exponent of 0.8. This
anomalous entropic elasticity is consistent with prior results
for the linear shear modulus [28], although we observe this
throughout the (central-force) floppy region indicated by blue
in Fig. 1(a). For strains beyond γc, the network’s response be-
comes independent of temperature because of highly stretched

FIG. 3. (a) Shear stiffness or differential shear modulus of
diluted triangular networks at z = 3.3 vs strain for various temper-
atures as indicated in the legend. System size is W = 50. Critical
strain is indicated by the red arrow. Inset: Shear modulus vs temper-
ature at four different shear strains: The lowest curve is in the linear
regime where γ < γc; the second curve is at γc. Upper two data sets
are for large strains where γ > γc. (b) Widom-like collapse of the
data in (a) using the critical exponents f = 0.76 and ψ = 2.35.

FIG. 4. (a) Entropic stress σS scaled with temperature vs shear
strain in diluted triangular networks at z = 3.3. (b) Scaling behavior
of σS vs temperature in the linear regime (blue circles) and at the
critical strain (red diamonds).

bonds. This mechanical response depends only on the net-
work structure and strain magnitude. At the critical strain, on
the other hand, we find that the stiffness exhibits a different
anomalous scaling behavior with K ∼ T 0.4 [inset of Fig. 3(a)]
similar to prior results and mean-field predictions at the iso-
static point at zc and γ = 0 in Fig. 1(a) [28,29]. By estimating
the critical exponents f and ψ , we collapse the modulus data
in Fig. 3(b) according to the scaling function in Eq. (3). The
exponent f is found from the supercritical regime γ > γc at
zero temperature, where K − Kc ∼ |γ − γc| f . For this system
size, we find f = 0.76 ± 0.14. We select the value of expo-
nent ψ that leads to the optimal collapse of our data. The
apparent deviation observed in the regime close to γc of this
collapse is related to the finite-size effects in our simulations;
if the correlation length becomes comparable or larger than
the system size, which can occur for strains close to the critical
point, then the simulations are incapable of capturing the
critical effects [20]. These exponents are in good agreement
with our derived relation K (γc) ∼ T f /ψ .

To explore entropic elasticity in these thermal networks,
it is informative to identify the entropic contribution to the
stress and its scaling behavior. We extend the scaling theory
above to identify entropic effects more directly by taking
derivatives with respect to T . Denoting the system’s entropy
as S and noting that F = E − TS, we can divide the stress
contributions in two parts as

σ = 1

V

∂F

∂γ
= 1

V

∂E

∂γ
− T

V

∂S

∂γ
, (5)

where the first term is the enthalpic contribution σE and the
second term is the entropic part σS . In a canonical ensem-
ble, we have S = −(∂/∂T )F [42]. Classic entropic elasticity
is characterized by stress and moduli that scale linearly
with T , e.g., for which σ = σS and one should observe a
T -independent behavior of σS/T . In our diluted disordered
networks, however, σS/T [28] shows a strong dependence on
temperature [Fig. 4(a)]. As we approach the critical strain,
σS/T exhibits a diverging behavior at low temperature. This
is consistent with our scaling theory, where the entropic stress
is expected to behave as

σS = T |t | f−ψ+1F1,1(±1,T/|t |ψ ). (6)

At γ = γc, continuity of this requires that σS ∼ T ( f+1)/ψ .
Together with the previously identified exponents f � 0.76
and ψ � 2.35, this prediction can account for the anomalous
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FIG. 5. (a) Fluctuations calculated from Eq. (7) as a function
of strain in diluted triangular networks with z = 3.3 and varying
temperature. At T = 0, these nonaffine fluctuations exhibit a peak
at the critical strain. As the temperature increases, the mechanical
criticality of the system becomes less pronounced. (b) The same data
in (a) that are scaled with the applied strain magnitude.

T dependence near the critical point in Figs. 4(a) and 4(b).
Specifically, at the critical strain, our simulations revealed
that σS follows a power-law scaling with temperature, with
an exponent of 0.7. In the linear regime, however, the entropic
contribution is dominant (see Appendix B) and σ = σS and
K ∼ T α , where G−(s) ∼ sα [Fig. 1(a)], which is also consis-
tent with what we observe in Fig. 4(b).

The anomalous temperature dependence of shear modu-
lus in diluted networks is due to disorder. MC simulations
on 1D chains of springs show expected entropic elasticity
[28]. To gain insight into the sublinear dependence of K
on temperature at the critical strain, we chose to investi-
gate the honeycomb lattice model without any distortion (see
Appendix C). Due to its symmetry, this model exhibits γc =
0.0 [14], i.e., a honeycomb lattice is critically stable in the
linear regime. We find that K ∼ T 0.5 for this model in the
linear regime, which resembles the behavior of shear modulus
in diluted triangular networks near their critical connectivity
[28,29].

One of the most striking features of a critical phase transi-
tion is the divergence of fluctuations near the critical point.
Following Ref. [43], we calculate these fluctuations in our
thermal networks as

δ
 = 〈(u − uaff )2〉
�2
cδγ

2
, (7)

where the bars indicate MC averages and the angular brackets
represent the averages over nodes and random samples, �c
is the average initial position of the bonds (which is 1.0 in
lattice models), δγ is the imposed strain step, uaff is the affine
location of the node’s position that was obtained using the MC
averages of the previous strain step, and u is the instantaneous
position of the node during current MC simulation run. For
low values of T , δ
 exhibits a peak at the critical strain
(Fig. 5). At high temperatures, however, the system moves
further from criticality and the large thermal fluctuations sup-
press the critical effects in this strain-controlled transition;
thus, the peak vanishes. For T = 0, the fluctuations are sup-
pressed, as expected for finite-size effects. We also note that
the apparent scaling behavior of δ
 ∼ γ −2 away from γc is
a trivial effect of our definition in Eq. (7) [This is shown in
Fig. 5(b).] By examining the fluctuations near γc, we confirm
that the finite temperature effects smear out the criticality

in these disordered systems, analogous to zero-temperature
criticality in quantum systems [28,32].

V. CONCLUSIONS

Our results show that thermal fluctuations can stabilize
mechanically floppy networks in a way similar to the addition
of bending or other interactions. We also find anomalous en-
tropic elasticity with a corresponding exponent α � 0.8 of T
throughout the regime of strains γ < γc. This is quantitatively
consistent with prior simulations of the linear (small strain)
regime [28] and qualitatively consistent with a prior mean-
field theory for which the (mean-field) exponent α = 1 [29].
This anomalous entropic elasticity with exponent α � 0.8 is,
however, expected only for systems that are sufficiently far
from criticality. In the vicinity of the critical line in Fig. 1(a),
a smaller exponent β close to 1/2 is observed. This is similar
to what has been reported near the isostatic point [28,29]. Ref-
erence [44] also reports an exponent close to 1/2, consistent
with the near-critical behavior in Refs. [28,29] and Fig. 3(a).
We note that the authors of Ref. [44] combine bulk strain with
shear, resulting in a very small floppy regime (blue in Fig. 1)
that likely makes identification of the exponent α difficult.

The observed anomalous temperature dependence is
closely related to the behavior of entropic contributions. We
find that the entropic stress σS dominates the response in the
linear regime albeit with a sublinear T dependence. How-
ever, our results also suggest that such singular signatures
of criticality associated with the transition in Fig. 1 may be
dominated by nonsingular thermal effects such as for the
pressure in Fig. 2. Fundamentally, shear stress is insensitive to
ideal gaslike contributions arising from thermal fluctuations.
Thus, in order to test these predictions experimentally, it will
be important to focus on volume-preserving simple shear, as
is the case with most rheometers [45].

Although we have focused on networks of Hookean
springs, our results should also apply to the broad class of
semiflexible polymer networks such as those of cytoskeletal
polymers [36,46,47] or related synthetic networks [48,49],
although whether bending or thermal effects dominate can
be expected to depend on the thermal persistence length �p

and network mesh size, as discussed above. It would also be
interesting to explore whether other nonthermal fluctuation
phenomena, such as active stress fluctuations due to molec-
ular motors in cytoskeletal networks [50–54], may also lead
to qualitatively similar fluctuation stabilization and possibly
even a phase diagram similar to Fig. 1(a).
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APPENDIX A: DETAILS OF MC SIMULATIONS

Because we aim to explore thermal fluctuations as a sta-
bilization effect, the network’s elastic energy is limited to
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FIG. 6. (a) Showing multiple snapshots (corresponding to dif-
ferent shades of gray) of MC configurations of a diluted triangular
network under a shear strain γ < γc at a finite T = 10−2 during
equilibration step. (b) Instantaneous value of elastic energy density
vs MC moves at T = 10−2 for a diluted triangular model at z = 3.3
and under a shear strain γ < γc.

central force interactions only, i.e., there is no bending energy
in our models. The energy is given by

E = μ

2

∑
〈i j〉

(li j − li j,0)2

li j,0
, (A1)

where li j,0 and li j are the initial and current bond length
between nodes i and j, respectively, and μ is the stretching
stiffness of the bonds. The summation is over all nodes in
the network. We note that there is no nonbonded interactions
such as excluded volume effects in our model, i.e., the springs
can potentially overlap during simulation. The macroscopic
volume-preserving shear strain γ is applied in the x direction
using the following deformation tensor:

�(γ ) =
[

1 γ

0 1

]
. (A2)

To minimize the edge effects, we use periodic boundary
conditions in all directions. Furthermore, we utilize Lees-
Edwards boundary conditions [55] in order to shear our
systems. The stress components are calculated as following
[56],

σαβ = 1

2V

∑
i j

fi j,αri j,β , (A3)

where V is the volume (area) of the system, fi j,α is the α

component of the force exerted on node i by node j, and ri j,β is
the β component of the displacement vector connecting nodes
i and j. The summation is taken over all nodes in the network.

At every shear strain γ for a network at temperature T , we
calculate the pressure as

P = NT

V
− 1

d

(∑
i

σii

)
, (A4)

where N is the number of nodes, T is temperature in reduced
units, V is the volume of the system, d is dimensionality, and
σii are the normal components of the stress tensor in Eq. (A3)
that are averaged over MC simulations. The first term in this
equation is due to the ideal gas contributions of the nodes, and
the second part comes from the potential interactions.

For a system with N nodes in a volume V , the MC sim-
ulations are performed in the canonical (NVT ) ensemble.
We fix the stretching stiffness μ = 1 in our simulations and

FIG. 7. Shear stress vs strain for diluted triangular networks at
z = 3.3 and at various temperature. Inset shows the scaling behavior
of shear stress vs temperature in the linear regime γ = 0.04 < γc.

vary the reduced temperature T ≡ kBT/μl2
c , where kB is the

Boltzmann constant and lc = 〈li j,0〉 is the average initial bond
length in networks, which is 1.0 in our triangular lattice.
After applying a shear strain, we use FIRE [39] to find the
minimum energy configuration at zero temperature. We then
let the system reach equilibrium at the desired temperature by
performing MC steps.

We use the standard Metropolis algorithm [40,41] to per-
form MC moves. At every MC step, we randomly displace all
nodes in our elastic network with a magnitude δ. The move
is accepted with a probability min(1, exp(−β[Enew − Eold])),
where β = 1/T (note that T ≡ kBT/μl2

c ), Eold and Enew are
the energy values calculated from Eq. (A1) in the main text
before and after the MC move, respectively. The parameter δ

plays a crucial role in the efficiency of sampling the configu-
ration space. If the value of δ is too large, the newly generated
configurations are likely to have very high energy, and hence,
the trial move will likely be rejected. Conversely, if the value
of δ is too small, the newly generated configurations will have
a similar elastic energy to the previous configuration, and most

FIG. 8. Ratio of entropic stress to overall stress in diluted trian-
gular networks at z = 3.3.
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FIG. 9. Regular honeycomb lattice network. Note that this is the
undeformed state of our mode. We use a parallelogram to simulate
our network due to its simplicity.

moves will be accepted. Therefore, finding an appropriate
value for δ is essential for efficient sampling of the configu-
ration space. During the simulations, we track the acceptance
ratio of Monte Carlo (MC) moves and dynamically adjust the
value of δ to maintain an acceptance ratio of around 50%.

To ensure that the system is in equilibrium, we track the
elastic energy and shear stress as a function of the number of
Monte Carlo moves. We have determined that our models are
well equilibrated after running MC for τeq = 107 moves [see
Fig. 6(b)]. After this equilibration step, we perform ensemble
averaging for a duration of τrun = 108 MC moves. Figure 6(a)
shows some snapshots of our MC simulations.

APPENDIX B: SHEAR STRESS BEHAVIOR OF DILUTED
TRIANGULAR NETWORKS

The shear stress σ vs shear strain γ behavior for randomly
diluted triangular networks at z = 3.3 is presented in Fig. 7.
At zero temperature, the network is floppy and does not ex-
hibit any shear stress until it reaches the critical strain γc. As
the temperature increases, the network becomes stable and
a finite shear stress emerges below the critical strain γc. In

FIG. 10. (a) Shear stress vs strain for a regular honeycomb lattice
with no distortion at various T values. (b) Scaling behavior of shear
stress data in (a) in the small strain regime [the arrow in (a) shows the
strain level] vs T . The data are obtained for a lateral size of W = 90
and averaged over 108 MC steps.

FIG. 11. (a) Differential shear modulus vs strain for a regular
honeycomb lattice with no distortion at various T values. (b) Scaling
behavior of K data in (a) in the small strain regime [the arrow in
(a) shows the strain level] vs T . Data are obtained for a lateral size of
W = 90 and averaged over 108 MC steps.

the linear regime γ < γc, we find an anomalous temperature
dependence σ ∼ T 0.8 (see the inset).

The total shear stress σ can be decomposed into energetic
and entropic contributions by differentiating the free energy
of the system F = E − TS with respect to the shear strain γ

[28]

σ = 1

V

∂F

∂γ
= 1

V

∂E

∂γ
− T

V

∂S

∂γ
, (B1)

where V , E , T , and S denote the volume (area), energy,
temperature, and entropy of the system, respectively. The
energetic stress, represented by σE = 1

V
∂E
∂γ

, and the entropic

stress, represented by σS = − T
V

∂S
∂γ

, can thus be obtained. In
our Monte Carlo simulations, we can easily compute the en-
semble average of the energy, which provides direct access
to the energetic stress σE . The entropic stress can then be
computed by subtracting the energetic contributions from the
ensemble-averaged total stress, i.e., σS = σ − σE [28]. The
entropic part of shear stress σS dominates the response in
the small strain regime (as shown in Fig. 8). However, at the
critical strain,σS decreases significantly and eventually disap-
pears in the large strain regime because the system becomes
predominantly stretching-dominated.

APPENDIX C: HONEYCOMB LATTICE MODEL RESULTS

The regular honeycomb (hexagonal) lattice is an ideal
option for studying the anomalous temperature-dependent be-
havior of the shear modulus. This is because the lattice’s
symmetry ensures its stability under any finite strain [14].
Figure 9 shows an example of a small honeycomb structure at
its undeformed state. At T = 0, the shear stress of this model
exhibits a finite value in the small strain regime, as expected
[see Fig. 10(a)]. As temperature increases, the shear stress
displays a power-law scaling relationship with T , character-
ized by an exponent of 0.5 [as depicted in Fig. 10(b)]. This
behavior is also evident from the analysis of the differential
shear modulus, as shown in Fig. 11.
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