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A novel in vivo system to study
coral biomineralization in the starlet
sea anemone, Nematostella vectensis

Brent Foster,’* Fredrik Hugosson," Federica Scucchia,” Camille Enjolras,’? Leslie S. Babonis,’-® William Hoaen,*
and Mark Q. Martindale’>*

SUMMARY

Coral conservation requires a mechanistic understanding of how environmental stresses disrupt biomin-
eralization, but progress has been slow, primarily because corals are not easily amenable to laboratory
research. Here, we highlight how the starlet sea anemone, Nematostella vectensis, can serve as a model
to interrogate the cellular mechanisms of coral biomineralization. We have developed transgenic con-
structs using biomineralizing genes that can be injected into Nematostella zygotes and designed such
that translated proteins may be purified for physicochemical characterization. Using fluorescent tags,
we confirm the ectopic expression of the coral biomineralizing protein, SpCARP1, in Nematostella. We
demonstrate via calcein staining that SpCARP1 concentrates calcium ions in Nematostella, likely initiating
the formation of mineral precursors, consistent with its suspected role in corals. These results lay a funda-
mental groundwork for establishing Nematostella as an in vivo system to explore the evolutionary and
cellular mechanisms of coral biomineralization, improve coral conservation efforts, and even develop
novel biomaterials.

INTRODUCTION

Coral reefs represent some of the most biodiverse ecosystems on Earth'~ and are necessary for maintaining healthy coastlines.*” The back-
bone of these marine ecosystems are stony corals that, due to increased environmental stresses, are rapidly in decline.® Conservation efforts
have been hampered, at least in part, by our limited understanding of the basic biology of corals and their ability to biomineralize and
generate a diverse array of calcium carbonate skeletons that are susceptible to demineralization from changing ocean temperatures and acid-
ification. Any meaningful effort to reverse the decline of corals requires a mechanistic understanding of 1) the molecular and biochemical
processes of coral biomineralization and 2) how biomineralization is disrupted by environmental stresses. Unfortunately, efforts to probe
the molecular basis of biomineralization in corals have proven difficult because of a general lack of genetic tools and difficulties culturing
corals in laboratory settings.

Biomineralization is the production of inorganic minerals through biological mechanisms. This ability has evolved independently many
times, resulting in unique structures such as bivalve shells,”'® sea urchin spicules,®"*
most studied mineralization pathways involve the absorption of Ca?*'®'” into cells expressing membrane-associated alpha carbonic anhy-
drases that convert CO, to bicarbonate.””?* This results in the production of amorphous calcium carbonate (ACC) precursors that are sta-
bilized to form crystal structures secreted into the extracellular microenvironment.”?” ACC precursors attach to the growing surface of
the coral skeleton and crystallize into aragonite under the control of highly acidic biomineralization proteins.”’*® The acid-rich regions localize
calcium ions, increasing the ionic strength within the calcification microenvironment.”’ These proteins, together with other molecules, behave
as organic substrate that appears to serve as a nucleation site."”

Energetically favorable conditions for biomineralization can arise spontaneously and rapidly, suggestive of a mechanism by which ACC
biomineralization could have evolved independently through the use of non-homologous proteins with similar physicochemical characteris-
tics that result in similar mineralized materials.”**’*° Secreted proteins within mineralizing cells have been shown to catalyze nucleation”””'
and/or interact with ACC precursors to provide stability as mineralizing tissue becomes more structured and complex.'*?”-*~*" These pro-
teins are considered to be “intrinsically disordered” (IDP) because they have no set tertiary structures.*~* Although biomineralizing species

and coral skeletons.”>™" In marine organisms, the
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may not share homologous IDPs, many of these proteins contain similar properties such as highly acidic residues
modifications that modify their folding and biomineralizing activity.**"4=%

Existing biomineralization models have distinct advantages and disadvantages.®*“**> Bacterial expression systems help clarify the role of
carbonic anhydrases in biomineralization,”*° yet they are unable to modify proteins endogenously after translation and therefore cannot be
used for elucidating the role of post-translational modifications in biomineralization. Eukaryotic cell cultures may be useful for testing the func-
tional role of post-translational modifications of marine proteins, with the most success coming from mollusk nacre proteins expressed in in-
sect lines.””"*® However, to our knowledge, few groups have been able to establish stable cell cultures derived from marine invertebrates."”*°
Existing cell lines rely on media that are not compatible with marine ecosystems, meaning any inferred insight into the evolutionary and bio-
logical mechanisms of biomineralization would need to be validated in vivo within a marine system. Marine invertebrates offer several advan-
tages to in vivo assays of biomineralization. Sea urchins are useful as developmental models to understand the dynamics of spicule growth
during embryonic skeleton formation®*°" and syncytial mineralization.”” Mollusks can be used to test the effects of novel, taxon-specific pro-
teins on shell formation.*”*° Corals are useful for characterizing how matrix proteins stabilize biominerals in extracellular microenviron-
ments.'>?’ In each of these in vivo systems, mechanistic studies of the dynamic processes of biomineralization can be difficult to interpret
due to the complexity of the interacting biomineralizing processes.>

Here, we present the starlet sea anemone (Nematostella vectensis) as a model for studying the dynamic processes of biomineralization.
Despite being in the same class (Anthozoa) as scleractinian corals, N. vectensis does not naturally mineralize, eliminating potential confound-
ing factors of interacting mineralization reactions.”® Comparative genomics reveals that N. vectensis retains much of the molecular machinery
believed to be necessary for biomineralization, including carbonic anhydrases as well as SpCARP1-related proteins such as Calumenin.?”>*
N. vectensis is a powerful developmental model that can easily produce thousands of embryos on demand with simple light and temperature
cues. Many techniques for manipulating gene expression are already well established in N. vectensis, including CRISPR/Cas9 genome edit-
ing,>> 8 7762 and various forms of gene knockdown techniques (e.g., antisense morpho-
linos, RNAI, shRNA, dominant-negative approaches).®>**¢* Together, these attributes make N. vectensis well-suited for investigating gene

stable and transient cell-type-specific transgenesis,

function during biomineralization.

In this article, we show that N. vectensis can express transgenic proteins involved in biomineralization in other taxa and present a novel
in vivo system to evaluate the ability of IDPs to self-assemble into hierarchical structures to interact with calcium ions to further understand
biomineralization.

RESULTS

Plasmid constructs are adaptable for targeted and stable transgenesis

N. vectensis embryos grow into swimming planulae within 48 h postfertilization (hpf), settle, then develop into small polyps in about a week
when kept at room temperature (25°C) (Figure 1A). We also injected zygotes with a putative ubiquitin promoter driving the mCherry fluores-
cent signal and showed broad expression in planulae (Figures 1B and 1B’) and small polyps (Figures 1C and 1C’). We also designed plasmid
vectors to incorporate other putative promoters endogenous to N. vectensis, as well as native signal sequences, driving the expression of
IDPs involved in biomineralization (Figure 1D). We could not detect any visible difference between plasmid constructs containing signal se-
quences (SS) native to N. vectensis or those present in non-native cloned constructs. As such, the remainder of our data makes no distinction
between whether constructs contain SS endogenous to N. vectensis or cloned sequences.

Animals injected with the constructs containing the ubiquitin promoter driving the expression of SpCARP1 exhibit transient expression as
early as 24 hpf. Early developmental stages show higher expression of mCherry signal compared to later stages (Figure STA). Calcein and
mCherry signals appear to be most intense in primary polyps incubated in carbonate-enriched water (Figures S1B and S1C). By the planula
stage, mCherry signal is broadly detected in both endoderm and ectoderm (Figure 2A). Expression expands into the body column and ten-
tacles of developing small polyps (Figure 2B), with the strongest signal in scattered ectodermal cells (see arrows in Figures 2A and 2B, Figures
S2A, S2B, S2C, and S2D). SpCARP1::mCherry signal persists when cells are dissociated (Figures S3A and S2B). Within 24 h of dissociation, cells
form aggregate clumps and maintain fluorescent signal (Figures S3C and $2D). The mucin promoter drives the expression of SpCARP1 within
48 hpfin the aboral ectoderm of developing planulae in characteristic scattered secretory gland cells (Figure 2C). A strong mosaic signal ex-
pands into the body column and tentacles of small polyps in what appears to be glandular cells (Figure 2D; see arrows).

SpCARP1 preferentially co-localizes with calcein in the tentacles of polyps
We imaged live transgenic polyps to observe the pattern of expression of Sp CARP1 and the potential co-localization of the protein with calcium
ions, suggestive of biomineralization-related activity. A limited calcein signal is also present in WT controls (Figures 3A=3F’), indicating that the
fluorescent dye binds to calcium ions naturally present in the organism. In transgenic polyps, noticeable mCherry fluorescence is localized pri-
marily at the tip of the tentacles and sparse regions along the tentacle cavity (Figures 3G-3I"; see white arrows). The mCherry signal is also present
around the oral pole. Co-localization of calcein and mCherry fluorescence in the tentacles is evident in the endoderm of the tentacle cavity
(Figures 3G=3l') and in sparse regions surrounding the mouth (Figure 3H). Along the body and in the aboral end, the mCherry fluorescence
is prevalent in the endoderm and the gastrovascular cavity, whereas the calcein signal is mostly localized to the ectoderm (Figures 3J-3L).
This pattern suggests that the calcium-binding activity of SoCARP1 is mostly concentrated in the tentacles of N. vectensis polyps.
Nematostella also harbors SoCARP1-related proteins such as Calumenins.””“° Previous phylogenetic analysis identified three protein se-
quences from the Nematostella genome that are closely related to SpCARP1.? These are partial protein sequences with a shared origin from
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Figure 1. Putative promoters are sufficient to drive the stable expression of mCherry

Life cycle of N. vectensis (A). Brightfield and Max projections showing the ubiquitin promoter driving the expression of mCherry in live planula (B-B’) and small
polyps (C-C’). Plasmid construct containing native promoters, signal sequences (SS), and proteins involved in the biomineralization of coral (SpCARP1), sea urchin
spicule (SpSM30), and mouse tooth enamel (MmMAMBN), as well as the general workflow including microinjections, rearing of animals with incorporated
transgene and evaluation of fluorescent mCherry signal with confocal microscopy (D). Asterisk = oral pole.

98,65 (see Figure S3).

the full-length protein encoded by one gene, NVE221, which has been referred to as Calumenin F in previous literature
Here, we denote this SpCARP1-like protein as NvCaluF. The partial protein sequences included in Mass et al.?” lack the N-terminal part of the
full length NvCaluF protein encoded by NVE221 and were therefore not considered acidic such as SoCARP1. Our analysis of the full length
NvCaluF protein sequence shows that it contains an exceptionally acidic N-terminal domain (see Figure S3; Table S1) characteristic of

SpCARPs.”’

Artificially enriching seawater with carbonate enhances the SpCARP1 sequestration of calcium ions

We artificially enriched our seawater with carbonate and/or calcium ions to mimic the concentrated ionic conditions created by coral calci-
fying cells as they prepare for skeleton deposition. Incubation in carbonate-enriched seawater appears to increase expression in polyp ten-
tacles, as indicated by the expanded expression of mCherry fluorescence in both the endoderm and ectoderm (Figures 4A-4C’). Such higher
expression seems to be accompanied by a significant sequestration of calcium ions (pink reflects the overlap between mCherry and calcein
signals in Figures 4A-4C’; see arrowheads). The body and aboral ends show a similar expression pattern to non-enriched conditions (see
Figures 3J-3L'), with higher mCherry fluorescence in the endoderm and gastrovascular cavity and higher calcein signal in the ectoderm
(Figures 4D-4F’), although some regions of overlapping mCherry-calcein fluorescence are present (see arrowhead in Figures 4E-4E’). A
similar pattern can be observed in polyps with calcium-enriched seawater (Figures 5A-5F'), although the mCherry signal appears to be dim-
mer in these conditions compared to carbonate-only-enriched sea water (particularly in the tentacles; see Figures 5A-C’). When calcium ions
are enriched, mCherry fluorescence is also observable in the ectoderm of the aboral region (Figures 5D-5F') compared to just the endoderm
of animals in non-enriched solutions (see Figures 3K-3K'). In addition, compared to the non-enriched conditions (Figures 3H-3I'), the
mCherry signal along the endoderm of the tentacle is less sparse and more homogeneous when calcium ions are enriched (Figures 5B—
5C'). Enriching seawater with both calcium and carbonate did not appear to affect the ability of So)CARP1 to sequester and concentrate cal-
cium (Figure S4).

DISCUSSION

We have demonstrated how N. vectensis, a soft-bodied anthozoan, may be utilized to study biomineralization in vivo.

iScience 27, 109131, March 15, 2024 3
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Figure 2. SpCARP1::mCherry expression can be driven by endogenous Nv promoters

Ubiquitin promoter drives broad expression in ectoderm in live planulae (A) and small polyps (B), with the strongest signal in scattered ectodermal cells (see white
arrowheads). Mucin promoter drives expression in secretory cells in fixed planula aboral ectoderm (C) and throughout the body column and tentacles of small
polyps (D). Asterisk = oral pole. All scale bars = 100um. See also Figures S1 and S2.

The putative promoters presented here were selected for optimizing the quantity and secretion of target biomineralization IDPs. Ubiqui-
tin, as a regulatory protein that is highly conserved across eukaryotes, should be found in virtually every animal cell. Indeed, the cis-regulatory
sequence we identified as a ubiquitin promoter appears to drive the broad expression of mCherry in a variety of cell types by 24 hpf
(Figures 2A and 2B). Such selective expression could be due to an incomplete regulatory sequence or selective protein degradation. Our
data shows the putative mucin promoter drives the expression of SpCARP1::mCherry within 48 hpf in secretory cells of the aboral ectoderm,
with strong mosaic expression throughout the body column and into the tentacles of unfed polyps (Figures 2C and 2D), consistent with the
expression of mucin.®® Mucin-secreting cells are extremely abundant in the aboral ectoderm, and because these animals are excellent regen-
erators a stable transgenic line with the mucin promoter driving the expression of SpCARP1::mCherry should provide abundant material for
future analyses of the interactions between SpCARP1 and putative IDPs.

Corals have specialized cells that control the chemistry of seawater in a confined space where skeleton deposition occurs, otherwise
defined as the “calcifying space.” Corals concentrate calcium and carbonate ions in this calcifying space, and IDPs such as SpCARP proteins
control the nucleation of aragonite.”” N. vectensis, as a non-calcifying organism, does not possess such specialized calcifying cells. By simu-
lating the biomineralization-favorable conditions of high calcium and high carbonate concentrations, we were able to assess the responsive-
ness of SpCARP1 and detect regions within N. vectensis polyps where biomineralization may be most likely to occur. Analysis of the full length
NvCaluF shows that it contains the characteristic acidic domain extension seen in SpCARP1 (Figure S3; Table S1). NvCaluF mRNA has been
shown to be exclusively expressed in stinging cells in late planulae and early primary polyps via in situ hybridization.”® This expression pattern
is consistent with reports of So.CARP1 being located in the oral epidermis and in association with stinging cells in S. pistillata tentacles.”” By
supplementing our 1/3X FSW with calcium- and/or carbonate-rich solutions and evaluating calcium sequestration with calcein staining (Fig-
ures 3, 4, and 5; see also Figure S4), we show that the calcium-binding activity of SpCARP1 is primarily concentrated in the tentacles of
N. vectensis polyps and seems to be enhanced with increased concentrations of carbonate ions in seawater (Figure 4), a critical requirement
for biomineral nucleation. Our results are consistent with the initial stages of the formation of amorphous calcium carbonate and suggestive of
a gradual self-assembly mechanism that concentrates calcium as a function of exogenous expression of SpCARP1 in N. vectensis. Future
studies can further assess the presence of mineral structures in N. vectensis tentacles using scanning electron microscopy or polarized light
optical microscopy.

We demonstrate that our experimental system is versatile and may be adapted to other forms of biomineralization. We show that
N. vectensis can express IDPs involved in the CaCOj3 biomineralization of sea urchin spicules and CaPO, precipitation in vertebrate tooth
enamel (Figure S5). The persistence of fluorescent signal in dissociated cells (Figure S3) suggests it should be possible to investigate the ma-
trix-mediated polarization of IDPs and to test the role of intercellular interactions by taking advantage of 3D sculpting of dissociated trans-
genic N. vectensis cells. Given the amount of embryonic material provided in a single spawning cycle and the ease of injections, N. vectensis
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Figure 3. Calcein co-localizes with SpCARP1 in live polyp tentacles (unenriched seawater)
Live uninjected polyps show limited calcein signal in tentacular (A-C’) and aboral (D-F') regions. Live polyps injected with Ubi>SpCARP1::mCherry plasmid show
the co-localization of calcein and mCherry signal in tentacular (G-I') but not aboral (J-L') regions. Arrowheads indicate co-localization of Sp CARP1 with calcein

stain. All scale bars = 50 pm. See also Figure S4.

may be used as an expression system to generate large amounts of cells expressing biomineralizing IDPs that can be isolated, purified, and
assayed in controlled in vitro crystallization environments. In all, our results hint at the possibility to expand the use of the N. vectensis system
to other forms of biomineralization and perhaps even develop novel biomineralized materials for biomedical research.

The primary focus of this study was to show how N. vectensis may be utilized to understand the molecular mechanisms that drive coral
biomineralization to assist future conservation efforts. This study is the first to attempt to induce biological mineralization in a novel in vivo
system. We chose the coral acidic protein SoCARP1 because it has been shown to induce rapid mineralization in vitro,”” and to concentrate
calcium ions leading to the formation of aragonite crystals in coral proto-polyps derived from cell cultures.®® However, the calcium ion-con-
centration activity of such a protein has never been reported in live adult organisms, like we show here in Nematostella small polyps.

We demonstrate that N. vectensis can both tolerate the transgenic expression of intrinsically disordered proteins involved in biomineralization
from a range of taxa that can sequester and concentrate calcium ions in a carbonate-enriched seawater solution, providing compelling evidence
for the initiation of the biomineralizing process in a non-mineralizing organism. These results highlight the potential of N. vectensis in examining
the capacity of various cell types to secrete biominerals, opening up opportunities to understand the capacity of cells to acquire novel functions.
Our model system may be used as a proxy to coral systems in the lab to test the molecular components of biomineralization that may improve
stress tolerance and resilience to native coral populations, thereby filling a much-needed gap in coral research and aiding restoration efforts.

Limitations of the study

A single transgenic IDP is likely insufficient to lead to the formation of a mature skeleton. Nevertheless, this study lays the groundwork to
establish N. vectensis as a tool to interrogate other coral IDPs, transporters, ion pumps, and so forth that are implicated in coral biominer-
alization and that can be co-expressed in the same or adjacent cell types in vivo. For example, another coral acid-rich protein, SpoCARP4,

iScience 27, 109131, March 15, 2024 5
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Figure 4. Carbonate-enriched seawater enhances the calcium sequestration of SpCARP1 in live polyps
Tentacular (A—C’) and aboral (D-F’) views of live polyps following the incubation of carbonate-enriched seawater. White arrowheads indicate the co-localization of

SpCARP1 with calcein stain. All scale bars = 50pm. See also Figure S4.

is of particular interest because it is one of the most abundant proteins in the coral skeleton and has been suggested to guide the formation of
calcium carbonate crystals to specific orientations.®” SpCARP4 is the most abundant protein in the coral skeletal organic matrix>* that localizes
with mineral nanoparticles in early mineralization zones, desmocytes (modified cells that anchor tissue to the skeleton), and oral epidermis.é’/
The expression of SOCARP4 has also been detected in calicoblasts, the cells involved in the production of calcium carbonate.”” We predict
that N. vectensis will be able to tolerate SpCARP4 transgenesis and, if expressed together with SpCARP1, reveal new insights into the inter-
action between different IDPs and their respective functions in biomineralization. Future studies should evaluate whether N. vectensis pro-
duces the post-translational modifications on SpCARP1 believed to promote biomineralizing activity. Such experiments may be

Calcium enriched

LBrightfieId | Single optical section Max projection

Tentacles

Ubi > CARP1 :: mCherry

E E =
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Y

mEmCherry mcalcein

Figure 5. Calcium-enriched seawater does not improve the calcium-sequestration of SpCARP1 in live polyps
Tentacular (A-C') and aboral (D-F') views of live transgenic polyps following the incubation of calcium-enriched seawater. White arrowheads show the co-

localization of SpCARP1 with calcein stain. All scale bars = 50um. See also Figure S4.
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cross-checked with site-directed mutagenesis and biochemical analyses of modified proteins to clarify position-specific roles of post-trans-
lational modifications on biomineralizing activities. These studies may help delineate the mechanisms that led calcifying cells to evolve inde-
pendently in many organisms from a patchwork of nonhomologous proteins and cellular pathways. Such mechanistic studies are necessary to
understand how biomineralizing organisms have responded to environmental changes in the past and how they may respond in the future,
thereby elucidating how CaCQs biomineralization shapes Earth’s surface environment.”*/%~2

STARXxMETHODS

Detailed methods are provided in the online version of this paper and include the following:

o KEY RESOURCES TABLE
o RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
o METHOD DETAILS
Animal culture
Molecular cloning and in vitro mRNA transcription
Isolation of promoter DNA sequences
Generation of expression constructs for transgenesis
Microinjection
Fixation and confocal microscopy
Water enrichment and calcein incubation
Fluorescence intensity
Single cell dissociations
Analysis of protein sequences and their amino acid composition
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SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/].isci.2024.109131.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Oligonucleotides

Primers for transgenes, see Table S2 This study N/A

Primers for promoter sequences, see Table S3 This study N/A

Recombinant DNA

SpCARP1 IDT DNA NCBI: KC148537
SpSM30 IDT DNA NCBI: NP_999766.1
MmAMBN Genscript NCBI: NM_001303431.1
pCS2+8CmCherry Addgene RRID:Addgene_34935
pNVT-MHC:mCherry Addgene RRID:Addgene_67943
pKHR4 Addgene RRID:Addgene_74592
Other

Ascl NEB #R0558

Clal NEB #R0197

Pacl NEB #R0547

Spel NEB #R3133

Notl NEB #R0189

I-Scel NEB #R0694

mMessage mMachine SPé Transcription Kit Invitrogen AM1340

MEGAclear Transcription Clean-Up Kit Invitrogen AM1908

GeneJET Miniprep Kit ThermoFisher Cat# K0503

Calcein Blue Sigma M1255

CellMask Fisher Scientific C37608
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents will be fulfilled by the lead contact, Mark Q. Martindale (mgmartin@whitney.ufl.edu).

Materials availability

Animals, reagents, and plasmids generated in this study are available by request from the lead contact.

Data and code availability

e All data reported in this paper will be shared by the lead contact upon request.
e This paper does not report original code.
e Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS
Animal culture

Adult Nematostella vectensis were maintained in 1/3X filtered seawater (FSW) diluted in deionized water and spawned following protocols as
described previously.®%/47®

Molecular cloning and in vitro mRNA transcription

As a proof-of-principle, we focused on a Coral Acid-Rich Protein (CARP) from a stony coral (Stylophora pistillata). SpoCARP1 is a membrane-
associated IDP that binds Ca®* ions to induce CaCQOj precipitation and is believed to initiate biomineralization in S. pistillata.”” To highlight
the potential and versatility of our system for studying other forms of biomineralization, we also developed transgenic constructs for
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expressing proteins involved in the formation of sea urchin spicules (Strongylocentrotus purpuratus: SpSM30) and mice teeth (Mus musculus:
Ameloblastin, MmAMBN).

SpCARP1 (NCBI: KC148537) cDNA was synthesized by IDTDNA Inc. (idtdna.com). SpSM30 (NCBI: NP_999766.1) cDNA was first codon
optimized using Codon Optimization OnlLine (COOLY® and synthesized by IDTDNA Inc. (idtdna.com). MmAMBN cDNA (NCBI:
NM_001303431.1) was ordered from Genscript (New Jersey, USA; clone ID: OMué7099). Primers for SpSM30 and MmAMBN (Table S2)
were designed with Primer3.”” All cDNA was cloned in frame into the pCS2+8CmCherry vector (RRID:Addgene_34935) using Ascl (NEB
#R0558) and Clal (NEB #R0197) cut sites. The SpCARP1 insert was synthesized as a gene fragment by Twistbioscience (Twistbioscience.
com) and consisted of flanking restriction sites, a Kozak sequence optimized for invertebrates (AAAAAA),”® putative signal sequences native
to N. vectensis (Calumenin: v1g117044 or Laminin A: v1g248148) replacing the predicted signal sequence in the SpCARP1 cDNA. A linker
sequence (GGATCCGCTGGCTCCGCTGCTGGTTCTGGCGAATTC)? and TEV protease recognition site were included in SpCARP1 and
SpSM30 inserts. Nematostella signal sequences were predicted using SignalP.®> mRNA was in vitro transcribed from linearized plasmids
following the protocols for the Invitrogen mMessage mMachine SP6 Transcription Kit (Invitrogen AM1340) and purified using the
MEGACclear Transcription Clean-Up Kit (Invitrogen AM1908). See also Table S2.

Isolation of promoter DNA sequences

In order to express engineered proteins at distinct times and in specific cell types, we cloned putative promoter sequences upstream of the
transcriptional start sites for Nematostella Ubiquitin (v1g217964) and Mucin (v1g203270) genes (see Table S3 for coordinates and primers
used for cloning promoter sequences). Sequences were identified using the Nematostella vectensis genome 1.0°" and amplified from
gDNA extracted from whole embryos or adult tentacle clips using standard PCR procedures. To initially test for promoter activity, DNA frag-
ments were cloned into the pNvT-MHCmCherry vector (RRID:Addgene_67943) using Pacl (NEB #R0547) and Ascl (NEB #R0558) sites, thereby
replacing the myosin heavy chain (MHC) promoter. Confirmed plasmids were prepared following the protocol for the GeneJET Miniprep kit
(ThermoFisher cat. #K0503). Sequences were confirmed via standard Sanger sequencing (Psomagen.com). When later cloned into pCS2+8-
CmCherry vector (see next section), the promoter sequences were cut out using Spel (NEB #R3133) and Ascl (NEB #R0558) sites (see
Figure S6é).

Generation of expression constructs for transgenesis

The software programs Serial Cloner V2.6 and Geneious Prime 2021.2.2 (https://www.geneious.com) were used to design transgenic con-
structs. The inserts were first cloned in frame into a pCS2+8CmCherry vector ( RRID:Addgene_34935) using Ascl (NEB #R0558) and Clal
(NEB #R0197) sites. Promoter sequences were then inserted upstream using Spel (NEB #R3133) and Ascl (NEB #R0558) sites. Finally, frag-
ments containing promoter and fusion protein segments were digested and cloned into the pKHR4 vector (RRID:Addgene_74592) using
Spel (NEB #R3133) and Notl (NEB #R0189) sites. The pKHR4 vector contains I-Scel (NEB #R0694) endonuclease recognition sites flanking
the multiple cloning site that was replaced with our inserts.

Microinjection

Fertilized eggs were prepared for microinjection as described previously.® Plasmids were incubated with 10X Cutsmart buffer and yeast
|-Scel endonuclease (NEB #R0694) at 37°C for approximately 30 min prior to injection and then mixed with either Rodamine Green or Alexa
488 conjugated Dextran (0.2 mg/mL final concentration). Plasmids were injected in a final concentration of approximately 25 ng/uL. mRNA

was diluted in nuclease-free water and mixed with nuclease-free Rodamine Green Dextran (0.2 mg/mL) and injected in final concentrations
between 100 and 300 ng/pL.

Fixation and confocal microscopy

Animals were either live-imaged or fixed 24 h postfertilization (hpf), 96 hpf, or 1-week post-injection as previously described.®*® Live animals
were mounted in 1/3X FSW. Fixed animals were then washed in PBS-Tween, stained for DAPI and Alexa 488 Phalloidin, and mounted on glass
slides in either 80% glycerol or PBS. All animals were imaged on a Zeiss Imager. Z2 or a Zeiss 710 laser scanning confocal microscope. Confocal
images were Z-stacked with max intensity in FIJI®* to show fluorescent signal.

Water enrichment and calcein incubation

For both the non-enriched and enriched 1/3X FSW, temperature and pH (NBS scale) were measured using a pH/ATC electrode (Thermo
Fisher Scientific, Waltham, USA), calibrated using pH 4, pH 7, and pH 10 buffer solutions (Thermo Fisher Scientific, Waltham, USA). Measure-
ments of pH were conducted once on each solution used to incubate polyps for 1 h inside petri dishes. Salinity was measured using a digital
refractometer (Milwaukee Instruments, Rocky Mount, USA). Measurements of total alkalinity (TA) were performed using an alkalinity test kit
based on drop count titration (sulfuric acid) (Hach, Loveland, USA). Parameters of seawater carbonate system were calculated from pH, TA,
temperature, and salinity using the CO2SYS package® with constants from Merbach et al.? as refit by Dickson and Millero® (see Table S4).

The concentration of calcium and carbonate ions regulate the thermodynamic driving force that determines the precipitation of calcium
carbonate in biomineralizing animals.”>’" To replicate biomineralization-favorable conditions, we incubated 1-month-old N. vectensis in-
jected with transgenic SpCARP1 constructs in either 10mM CaCl,, 10 mM NaHCOg, or 10mM CaCl, + 10mM NaHCO3 in 1/3X FSW for 1 h
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in a cell culture Petri dish (5 mL). Polyps were then transferred to a new dish and incubated for another hour in a Calcein Blue solution (2.6 uM;
Sigma 54375-42-2). Polyps were rinsed for 30 min in 1/3X FSW, then immobilized by adding 7.14% MgCI2 before imaging with a Zeiss 710
confocal microscope. Samples were observed with the mCherry red fluorescent filter (range 415-735nm) and the DAPI blue fluorescence filter
(range 410-495nm) using 40x magnification. All imaging settings were kept constant between the samples. Images were acquired with the
ZEN 2011 software (v14.0.0.0; Zeiss, United States) and processed in FlJI.2*

Fluorescence intensity

Mean mCherry fluorescence intensities per pm? of imaged individual were determined for a subset of planulae and primary polyps using the
mean gray value in Fiji®* and computing the volume using the Fiji plugin ‘voxel counter.’ Fluorescence intensity measurements were tested for
normality (Shapiro-Wilk test) and homogeneity of variance (Levene’s test). Statistical significance (p < 0.05) was assessed with parametric un-
paired t-test (calcein and mCherry fluorescence in tentacles) and non-parametric Mann-Whitney test (mCherry fluorescence in entire planulae
and polyps) using the GraphPad Prism software (v9.0.0) (GraphPad Inc., San Diego, CA, USA).

Single cell dissociations

Injected embryos were dissociated 24 h post injection in 1/3X Ca2+/Mg2+-free and EDTA-free artificial seawater as previously described.®
Dissociated cells were incubated for 1 h in 1:5000 CellMask (Fisher Scientific C37608), then washed two times in the dissociation media. Cells
were water-immersed and imaged on a Zeiss Imager.Z2 at 40X magnification.

Analysis of protein sequences and their amino acid composition

The partial protein sequences of NvCaluF used in Mass et al.”” were retrieved from NCBI GenBank and Nematostella genome 1.0 (https://
mycocosm.jgi.doe.gov/Nemve1/) while the full length protein sequence of NvCaluF (XP_001641982) encoded by NVE221 was found using the
Nematostella genome 2.0 (https://simrbase stowers.org/starletseaanemone)®” and NCBI protein server (https://www.ncbi.nlm.nih.gov/
Protein). Predictions of signal sequence in NvCaluF (XP_001641982) and SpCARP1 (NCBI: KC148537) were performed by SignalP 6.0 (https://
services.healthtech.dtu.dk/services/SignalP-6.0/). Molecular weight, Theoretical pl and amino acids composition for NvCaluF and SpCARP1 pro-
tein sequences was calculated using ProtParam (https://web.expasy.org/protparam/).”® SpCARP1 protein sequence from Mass et al.?” was used
for this comparison.
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