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Abstract

For each fully commutative permutation, we construct a “boolean core,” which

is the maximal boolean permutation in its principal order ideal under the right weak

order. We partition the set of fully commutative permutations into the recently

defined crowded and uncrowded elements, distinguished by whether or not their RSK

insertion tableaux satisfy a sparsity condition. We show that a fully commutative

element is uncrowded exactly when it shares the RSK insertion tableau with its

boolean core. We present the dynamics of the right weak order on fully commutative

permutations, with particular interest in when they change from uncrowded to

crowded. In particular, we use consecutive permutation patterns and descents to

characterize the minimal crowded elements under the right weak order.

Keywords: boolean permutation, fully commutative permutation, permutation pat-

tern, Robinson-Schensted-Knuth correspondence, reduced word, weak order

Mathematics Subject Classifications: 05A05, 06A07

1 Introduction

First introduced in [Ste96a], the fully commutative elements of a Coxeter group have
the property that every pair of reduced words are related by a sequence of commutation
relations. This set of objects is combinatorially rich and has been studied extensively (see,
for example, [MPPS20, Nad15, Ste98]). A permutation is fully commutative if and only if
it avoids the pattern 321 [BJS93], and the fully commutative permutations are exactly
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those with fewer than three rows in their Robinson–Schensted–Knuth (RSK) tableaux
[Sch61]. In this paper, following up on recent work in [GPRT22], we examine the interplay
between reduced words and RSK tableaux for fully commutative permutations and analyze
the set of fully commutative permutations under the weak order.

Our previous work, which is a companion to this paper, proves that the RSK insertion
tableaux for boolean permutations satisfy a certain sparsity condition that we call un-
crowded [GPRT22]. Boolean permutations are an important subset of fully commutative
permutations, characterized by the fact that their principal order ideals in the Bruhat
order are isomorphic to boolean algebras. Motivated by those results, we call a fully
commutative permutation with an uncrowded insertion tableau an uncrowded permutation.
In other words, an uncrowded fully commutative permutation shares its insertion tableau
with some boolean element. A fully commutative permutation that is not uncrowded
is called crowded. Central to this paper is the partition of the set of fully commutative
permutations into crowded and uncrowded elements.

For each fully commutative element w, we identify a particular boolean element ŵ

that is below w in the weak order and has the same support as w; we call this ŵ the
boolean core of w (Theorem 18). We then view the fully commutative permutation w as
an “elongation” of its boolean core, and we investigate the evolution of RSK insertion
tableaux along chains of fully commutative elements in the right weak order. We prove
that the second rows of insertion tableaux obey a containment property along covering
relations in the right weak order (Theorem 20).

Applying this containment property, we show that if two fully commutative elements
with the same support satisfy a covering relation in the right weak order and have di↵erent
insertion tableaux then the larger one is necessarily crowded (Theorem 37). This has two
important implications. First, a fully commutative element is uncrowded exactly when it
has the same insertion tableau as its boolean core (Corollary 38). Second, within the set of
fully commutative permutations under the right weak order, the uncrowded permutations
form an order ideal and the crowded permutations form a dual order ideal (Lemma 40).
Thus, knowing the minimal crowded elements in the poset is, in fact, enough information
to identify each fully commutative element as being either crowded or uncrowded. Our
final result, Theorem 54, proves a set of necessary and su�cient conditions for a fully
commutative permutation to be minimal in the dual order ideal of crowded permutations.

This paper is organized as follows. Section 2 provides necessary background information
and notation including several results from our companion paper on boolean RSK tableaux.
Section 3 defines the boolean core of a fully commutative element and proves a containment
property for RSK tableaux under the right weak order. Section 4 explores covering relations
between fully commutative elements in the right weak order when the two permutations
have the same support but di↵erent insertion tableaux. Finally, Section 5 characterizes the
minimal elements of the dual order ideal of crowded fully commutative permutations in the
right weak order, thus providing the key to classifying each fully commutative permutation
as being either crowded or uncrowded.

Several relevant open questions are mentioned throughout the paper.
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2 Background and notation

Denote the symmetric group on n elements by Sn. For a permutation w 2 Sn, we use
the one-line notation w = w(1)w(2) · · ·w(n) to represent w. For each i 2 {1, . . . , n� 1},
we write si 2 Sn to denote the simple reflection (or adjacent transposition) that swaps i
and i+ 1 and fixes all other letters. Every permutation can be expressed as a product of
simple reflections. Given w 2 Sn, the minimum number of simple reflections among all
such expressions for w is called the (Coxeter) length of w, and is denoted by `(w). An
inversion in the one-line notation for w is a pair of positions i < j such that w(i) > w(j).
It is often convenient to recognize that `(w) is the number of inversions in the one-line
notation for w. A reduced decomposition of w is an expression w = si1 · · · si`(w)

realizing
the Coxeter length of w. To simplify notation, we refer to such a decomposition via its
reduced word

⇥
i1 · · · i`(w)

⇤
. Let R(w) denote the set of reduced words for w.

The set of letters appearing in reduced words of a permutation w is the support supp(w)
of w. For example, consider w = 51342 = s4s2s3s2s4s1 2 S5. Then supp(w) = {1, 2, 3, 4}.
Because w has six inversions, we see that `(w) = 6 and [423241] 2 R(w).

The following technical lemma is related to the support of a permutation. It introduces
a pair of values M and m which depend on the choice of v 2 Sn and i 2 {1, . . . , n� 1}.
These values play a central role in the arguments in Section 4.

Lemma 1. [Ten12, Lemma 2.8] Fix a permutation v 2 Sn and i 2 {1, . . . , n� 1}, and let
M := max{v(j) : j 6 i} and m := min{v(j) : j > i+ 1}. Then the following statements
are equivalent:

• i 2 supp(v),

• {v(1), . . . , v(i)} 6= {1, 2, . . . , i},

• {v(i+ 1), . . . , v(n)} 6= {i+ 1, i+ 2, . . . , n},

• M > i,

• m < i+ 1,

• M > m.

The right weak order, denoted by 6, is a partial order on Sn obtained by taking the
transitive closure of the cover relation w < wsi whenever `(w) < `(wsi). We use w < w

0

to denote when w 6 w
0 and w 6= w

0. The left weak order is defined analogously, with left
multiplication by si instead of right. In each order, the minimum element is the identity
permutation and the maximum element is the long element n(n� 1) · · · 21. More details
on the weak order can be found in, for example, [BB05, Section 3.1].

An order ideal of a poset is a subset C such that if y 2 C and x 6 y, then x 2 C. A
dual order ideal (or order filter, or upper order ideal) of a poset is a subset C such that if
x 2 C and x 6 y, then y 2 C.
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2.1 Fully commutative permutations and boolean permutations

Let m 6 n. The permutation w 2 Sn is said to contain the pattern � 2 Sm if w has a (not
necessarily contiguous) subsequence whose elements are in the same relative order as �. In
the case that w does not contain �, we say w avoids �. For instance, the permutation w =
314592687 contains the pattern 1423 because the subsequence 1927 (among others) has the
same relative order as 1423. On the other hand, w avoids 3241 since it has no subsequences
that follow the pattern 3241. We note also that the inversions of a permutation are exactly
the instances of 21-patterns.

For |i� j| > 1, simple reflections satisfy commutation relations of the form sisj = sjsi.
An application of a commutation relation to a product of simple reflections is called a
commutation move. In the context of reduced words, we will say adjacent letters i and j

in a reduced word commute when |i� j| > 1. For a reduced word [u] of a permutation,
the equivalence class of all words obtained from [u] by sequences of commutation moves is
called the commutation class of [u]. A permutation is called fully commutative if all of its
reduced words form a single commutation class. As the following proposition shows, fully
commutative permutations can be characterized in terms of pattern avoidance.

Proposition 2 ([BJS93]). Let w be a permutation. The following are equivalent:

• w is fully commutative,

• w avoids the pattern 321,

• no reduced word of w contains i(i+ 1)i or (i+ 1)i(i+ 1) as a factor, for any i.

Boolean permutations are an important subset of the set of fully commutative permu-
tations. The following result gives a description of boolean permutations analogous to
that of Proposition 2.

Proposition 3 ([Ten07]). Let w be a permutation. The following are equivalent:

• w is boolean,

• w avoids the pattern 321 and 3412,

• there exists a reduced word of w consisting of all distinct letters, and

• every reduced word of w consists of all distinct letters.

2.2 Heaps and commutation class

In this section, we review the classical theory of heaps, which was used in [Ste96b] to
study fully commutative elements of a Coxeter group. For a detailed list of attributions
on the theory of heaps, see [Sta12, Solutions to Exercise 3.123(ab)].

Given a reduced word [u] of a permutation, we can associate to [u] a heap, a poset
whose elements are labeled by the simple reflections in [u]. A heap diagram is the Hasse
diagram for a heap in which poset elements are replaced by their labels.
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Definition 4. Given an arbitrary reduced word [u] = [u1 · · · u`] of a permutation, consider
the partial order 4 on the set {1, . . . , `} obtained via the transitive closure of the relations

x � y

for x < y such that |ux � uy| 6 1. For each 1 6 x 6 `, the label of the poset element x is
ux. This labeled poset is called the heap for [u]. The Hasse diagram for this poset with
elements {1, . . . , `} replaced by their labels is called the heap diagram for [u].

The following lemma follows directly from this definition.

Lemma 5. Let [u] be an arbitrary reduced word for a permutation, and let x < y be
elements of the heap for [u]. If y covers x, then the labels of x and y di↵er by exactly one.

Note that a heap is, in some sense, a partial ordering on the multiset of simple reflections
occurring in a reduced word. For a fully commutative permutation, the heap structure on
this multiset is, in fact, independent of the choice of reduced word (see Proposition 7).
Throughout this paper, for a fully commutative permutation w, we will use Hw to denote
both the heap diagram for w and the poset of simple reflections of any reduced word [u]
of w. The context should make it clear to which object Hw refers.

From a linear extension of the heap, one can define a labeled linear extension essentially
by replacing elements of the heap with their labels.

Definition 6. A labeled linear extension of the heap of a reduced word [u] = [u1 · · · u`]
is a word

⇥
u⇡(1) · · · u⇡(`)

⇤
, where ⇡ = ⇡(1) · · · ⇡(`) is a total order on {1, . . . , `} that is

consistent with the structure of the heap. That is, x � y implies ⇡(x) < ⇡(y).

As the next proposition illustrates, labeled linear extensions are related to reduced
words and commutation classes.

Proposition 7 ([Ste96b, Proof of Proposition 2.2] and [Sta12, Solutions to Exercise
3.123(ab)]). Given a reduced word [u], the set of labeled linear extensions of the heap for
[u] is the commutation class of [u].

By definition, a fully commutative permutation has exactly one commutation class.
Hence Proposition 7 implies that given any reduced word [u] for a fully commutative
permutation w, the set of labeled linear extensions of the heap for [u] is exactly R(w), the
set of reduced words of w.

Example 8. The heap diagramHw of the fully commutative permutation w = 345619278 2
S9 is depicted in Figure 1. Two of the labeled linear extensions correspond to the reduced
words [87234561234] and [23451234876].

Proposition 3 states that a boolean permutation is a fully commutative permutation
with no repeated letters in any of its reduced words. In the sense of heaps, this means that
there are no two elements corresponding to the same simple reflection. For boolean-specific
descriptions of heaps, see [GPRT22, Section 2.2].
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Figure 1: The heap diagram for the fully commutative permutation 345619278 2 S9.
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Figure 2: The heap diagram for the boolean permutation 314569278 2 S9.

2.3 Robinson–Schensted–Knuth tableaux

The well-known Robinson–Schensted–Knuth (RSK) insertion algorithm, as described
in [Sch61], is a bijection

w 7! (P(w),Q(w))

from Sn onto pairs of standard tableaux of size n having identical shape. The tableau
P(w) is called the insertion tableau of w, and the tableau Q(w) is the recording tableau
of w. The shape of these tableaux is the RSK partition of w. We will also write Pi(w)
to denote the partial insertion tableau constructed by the first i letters in the one-line
notation for w. For more details, see for example [Sta99, Section 7.11].

The following symmetry result is an important feature of the algorithm, and one that
will simplify our own work.

Proposition 9 ([Sch63]). For any permutation w,

P(w�1) = Q(w).

Schensted’s theorem [Sch61, Theorem 1], presented here as Theorem 10, articulates an
important relationship between the RSK partition shape and the one-line notation for w.
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Theorem 10. Given a permutation w, the length of the longest increasing (resp., decreas-
ing) subsequence in the one-line notation of w is the size of the first row (resp., column)
of P(w).

Due to Schensted’s theorem, we can see that a permutation is fully commutative if and
only if its RSK partition has at most two rows. We denote the set of values in the second
row of the RSK insertion tableau of a permutation w by Row2(P(w)). More generally, we
denote the set of values in the second row (resp., first row) of any tableau T by

Row2(T ) (resp., Row1(T )).

Next we list some basic features of RSK insertion, which we may use without specific
mention in the future. The following lemma is a consequence of the definition of RSK
insertion.

Lemma 11. Let w 2 Sn, and suppose b bumps z in the RSK insertion process for w.
Then b < z and b appears to the right of z in the one-line notation of w.

For permutation v 2 Sn and value q 2 {1, . . . , n}, let cv(q) be the column of P(v) into
which q is first inserted. Let LISv(q) be the length of a longest increasing subsequence of
v that ends with q. The following is a key result we will reference in our analysis.

Lemma 12 ([Sag01, Lemma 3.3.3]). For v 2 Sn and q 2 {1, . . . , n}, we have cv(q) =
LISv(q).

One consequence of Lemma 12 is that certain values must be part of every longest
increasing subsequence of a permutation.

Corollary 13. For a permutation v, if q is the only value in v first inserted into column
cv(q) of P(v), then q is in every longest increasing subsequence in v.

The last result in this subsection highlights basic properties of RSK tableaux for fully
commutative permutations.

Lemma 14. Let w be a fully commutative permutation with Row2(P(w)) = {z1 < z2 <

· · · < zt}. For each i 2 {1, . . . , t}, let bi be the value that bumps zi from the first row to
the second row during the construction of P(w). Then we have the following.

(a) The sequence z1z2 · · · zt is an (increasing) subsequence of w. In other words, the
values z1, z2, . . . , zt appear from left to right in the one-line notation of w.

(b) The sets {z1, . . . , zt} and {b1, . . . , bt} are disjoint. In other words, during RSK
insertion, no value can both bump something and be bumped by something.

(c) The sequence b1b2 . . . bt is an increasing subsequence of w.

(d) Let 1 6 i < j 6 t. During RSK insertion, the value zi is bumped before zj.
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Proof.

(a) Suppose, to the contrary, that zi appears to the right of zi+1 for some i. Since bi

bumps zi during the insertion algorithm, we know bi < zi, and the value bi occurs
to the right of zi in the one-line notation of w. This means zi+1zibi is a 321-pattern
in w, which is a contradiction.

(b) By (a), we have that z1 · · · zt is an increasing subsequence of w. Hence, there are
no i and j such that zi bumps zj, and the sets {z1, . . . , zt} and {b1, . . . , bt} are
therefore disjoint.

(c) First, we show that b1 < · · · < bt. Suppose, to the contrary, that bi > bi+1 for
some i. Since zi appears to the left of bi in the one-line notation for w and zi > bi,
the value bi+1 must appear to the left of bi in order to avoid a 321-pattern in w.
We also know zi+1 appears to the left of bi+1 in the one-line notation for w and
zi+1 > bi+1. From (a), we know zizi+1 is a subsequence of the one-line notation for
w. Combining all of these observations, we conclude that

zizi+1bi+1bi

is a subsequence of the one-line notation of w. So, since zi is bumped by bi,
immediately before bi+1 is inserted, the value zi is still in the first row. This means
that bi+1 must bump a number no larger than zi, which contradicts the assumption
that bi+1 bumps zi+1. Therefore b1 < · · · < bt.

Now say for some i that bi+1 occurs to the left of bi in the one-line notation for
w. Since bi < bi+1, we would have the 321-pattern zi+1bi+1bi in w, which is a
contradiction. Hence b1, . . . , bt occur from left to right in w.

(d) This follows from (c).

2.4 Characterization of boolean RSK tableaux

While Schensted’s Theorem (Theorem 10) guarantees the insertion tableau of a boolean
permutation has at most two rows, not every 2-row standard tableau is the insertion
tableau of some boolean permutation. For example, the tableau T1 below is the insertion
tableau of the boolean permutation w = 315264 = [21435] 2 S6, but T2 cannot be obtained
as the insertion tableau of any boolean permutation.

T1 =
1 2 4

3 5 6
, T2 =

1 2 3

4 5 6

We review the characterization of these tableaux from [GPRT22]. First we need to
define when a set of integers is “uncrowded.”
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Definition 15. Let L be a set of integers. If, for all integers x and y, with x > 0, we have

|[y, y + 2x] \ L| 6 x+ 1,

then we will say that L is uncrowded. Otherwise, we say that L is crowded.

Let T be a standard tableau with at most two rows. When Row2(T ) is uncrowded, we
also call the tableau T an uncrowded tableau, and T is a crowded tableau otherwise. In
the example above, we can see that T1 is an uncrowded tableau because its second row
{3, 5, 6} is an uncrowded set, while T2 is a crowded tableau because

|[4, 4 + 2 · 1] \ {4, 5, 6}| = 3 > 1 + 1 .

The following proposition, which is the combination of several results in [GPRT22],
provides a characterization of RSK tableaux coming from boolean permutations.

Proposition 16. A standard tableau T with at most two rows is the insertion (or recording)
tableau of a boolean permutation if and only if T is uncrowded.

We define an uncrowded (respectively, crowded) permutation to be a permutation with
an uncrowded (respectively, crowded) insertion tableau. By Proposition 16, a permutation
is uncrowded exactly when it shares an insertion tableau with some boolean permutation.

3 Fully commutative elements and the weak order

From Theorem 10, we know that the RSK partition for a permutation has at most two rows
if and only if the permutation is 321-avoiding; that is, if and only if it is fully commutative.
Boolean permutations, which avoid patterns 321 and 3412, are a special class of fully
commutative permutations, and Proposition 16 fully characterized their RSK tableaux.
In this section, we build upon Proposition 16 to study the insertion tableaux of fully
commutative, but not necessarily boolean, permutations.

3.1 Boolean core

We set the stage using the following lemma, which is little more than a restatement of the
definition of fully commutative element.

Lemma 17. Let w be a fully commutative permutation and [u] 2 R(w). If j is a repeated
letter in [u], then each pair of copies of j must be separated by both j + 1 and j � 1 in [u].
Put another way, if x � y are elements of the heap Hw both with label j (i.e., ux = uy = j),
then Hw contains elements p and p̃ with labels k + 1 and k � 1 such that x � p � y and
x � p̃ � y.

A key feature of boolean permutations is that their reduced words contain no repeated
letters. This property fails to hold for arbitrary fully commutative permutations, but, as
we will show in the next result, every fully commutative permutation can be thought of as
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having a “boolean core.” More precisely, we can write any fully commutative permutation
as the product of two permutations, one of which is boolean with the same support as the
original permutation. As a result, every fully commutative permutation has a reduced
word in which any repetition of letters occurs only after every letter in the support has
appeared.

Theorem 18. Let w be a fully commutative permutation. Then we can uniquely write
w = ŵw

0, where `(w) = `(ŵ)+`(w0), the permutation ŵ is boolean, and supp(ŵ) = supp(w).

Proof. Fix a fully commutative permutation w and [u] = [u1 · · · u`] 2 R(w). Because w is
fully commutative, it has a unique heap Hw. Elements with the same label are comparable
in Hw. Thus, for each i 2 supp(w), we can take the smallest element x in Hw such that
ux = i. Let C denote the set of all such smallest elements, for i 2 supp(w).

We claim that C is an order ideal of Hw, and we will show that this is true using a proof
by contradiction. Suppose x, y 2 Hw such that y 2 C and x is covered by y. Let ux = j,
and so by Lemma 5 uy = j± 1. Suppose, for the purpose of obtaining a contradiction, that
x 62 C. Thus there exists x̃ � x with ux̃ = j. Then, by Lemma 17, there exist p, p̃ 2 Hw

such that x̃ � p � x, x̃ � p̃ � x, up = j + 1, and up̃ = j � 1. But then we would have
y 62 C, which is a contradiction.

Because C is an order ideal of Hw, we can choose a labeled linear extension of Hw

whose first |C| letters are precisely supp(w). This produces a reduced word for w whose
leftmost |C| letters are precisely supp(w).

Finally we show that this ŵ is also unique. Recall that any prefix of a reduced word
for w corresponds to an order ideal of Hw. The condition supp(ŵ) = supp(w) requires that
we pick an order ideal of Hw having |supp(w)| elements of distinct labels. Elements with
the same label are comparable in Hw, meaning that we are forced to select the smallest
one for each label.

We refer to the boolean permutation ŵ in Theorem 18 as the (right) boolean core of a
fully commutative permutation, where “right” refers to the fact that ŵ is the maximal
boolean permutation that is less than w in the right weak order.

Example 19. The heap of the permutation w = 345619278 in Example 8 is given in
Figure 1. The boolean core of w is ŵ = 314569278, and its heap is given in Figure 2. Note
that the reduced word [21873456] 2 R(ŵ) appears as the left prefix of the reduced word
[21873456234] 2 R(w).

Theorem 18 can also be proved without the language of heaps, by inducting on the
length of a permutation.

3.2 Containment under the weak order

Theorem 18 identifies the boolean core of a fully commutative permutation, which gives
some sense of how fully commutative permutations can be viewed as “elongations” of
boolean permutations. We can similarly consider lengthening a fully commutative permu-
tation. This leads to an important property about insertion tableaux.
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Theorem 20. Let v and w be fully commutative permutations such that w = vsi with
`(w) = `(v)+1. Then Row1(P(v)) ◆ Row1(P(w)); equivalently, Row2(P(v)) ✓ Row2(P(w)).

Proof. Let v and w be as in the statement of the result. So

w = v(1) · · · v(i� 1) v(i+ 1) v(i) v(i+ 2) · · · v(n),

with v(i) < v(i + 1). The permutation w is fully commutative by assumption, so it is
321-avoiding. Therefore, in fact, we have

v(j) < v(i+ 1) for all 1 6 j 6 i, and

v(j) > v(i) for all i+ 1 6 j 6 n.
(3.1)

Set Pi�1 := Pi�1(v) = Pi�1(w) to be the insertion tableau for the shared prefix
v(1) · · · v(i � 1) in the two permutations. To compute Pi+1(v), we insert v(i) first and
then v(i+ 1); to compute Pi+1(w), we insert v(i+ 1) first and then v(i).

Consider first what happens when we insert v(i) into Pi�1. There are two cases to
consider: either v(i) bumps something out of the first row of Pi�1, or v(i) gets appended
to the end of the first row of Pi�1.

Suppose first that v(i) bumps some z out of the first row of Pi�1. For v(i) to do
this, the value z must have been the smallest number in that row larger than v(i). To
create Pi+1(v) from Pi(v), the value v(i+ 1) must be appended to the first row of Pi(v),
because v(i+ 1) > v(j) for all 1 6 j 6 i, by (3.1). To construct Pi(w), we again have that
w(i) = v(i+ 1) gets appended to the end of the first row of Pi�1. When w(i+ 1) = v(i)
is inserted into Pi(w), it must bump the smallest value in Row1(Pi�1) [ {v(i+ 1)} that
is larger than v(i); this value must be z, as above, because z < v(i + 1). Therefore,
Pi+1(v) = Pi+1(w), with {v(i), v(i+ 1)} in the top row and z in the second row.

Because the rest of the entries in the one-line notations of v and w are identical, we
can conclude from here that P(v) = P(w).

Now suppose, for the remainder of the proof, that when v(i) is inserted into Pi�1 it is
appended to the end of the first row of Pi�1. In other words, v(i) is larger than all values
in Row1(Pi�1). Then, when v(i+ 1) is inserted into Pi(v), this new value is also appended
to the end of the first row because v(i+ 1) > v(i). In other words, Pi+1(v) is created by
appending both v(i) and v(i+ 1) to the first row of Pi�1.

To construct Pi(w), on the other hand, we first insert v(i+ 1). This gets appended
to the end of the first row of Pi�1 because v(i+ 1) is larger than all other values seen so
far, by (3.1). In contrast, v(i) < v(i+ 1), so v(i) will bump something out of the first row
of Pi(w) in order to form Pi+1(w). Everything in Row1(Pi�1) is greater than v(i), so v(i)
must bump v(i+ 1) itself. Therefore, Row1(Pi+1(v)) = Row1(Pi+1(w)) [ {v(i+ 1)}. And
more to the point, Row1(Pi+1(v)) � Row1(Pi+1(w)).

Combining (3.1) with the fact that v(i) is larger than every letter in Row1(Pi�1), we
have that v(i+ 1), . . . , v(n) must each be larger than every letter in Row1(Pi�1) [ {v(i)}.
Therefore, all future insertions performed during the computation of both P(v) and P(w)
will not bump any letter of Row1(Pi�1) [ {v(i)} out of the first row. That is, everything
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in the first row from v(i) leftward will remain unchanged during the remaining steps of
the insertion algorithm.

We will prove that Row1(P(v)) contains all of Row1(P(w)), using an inductive argument
with Pk(v) and Pk(w), for i+ 1 6 k 6 n. We have shown the base case: Row1(Pi+1(v)) �
Row1(Pi+1(w)). Assume, inductively, that for some k > i + 1, we have Row1(Pk(v)) ◆
Row1(Pk(w)). There are two ways for v(k + 1) to be inserted into Pk(v): either it gets
appended to the end of the top row of the tableau, or it bumps some value z.

• If v(k+1) gets appended to Row1(Pk(v)), then everything in Row1(Pk(v)) is less than
v(k + 1). Because Row1(Pk(v)) ◆ Row1(Pk(w)), all numbers in Row1(Pk(w)) must
also be less than v(k + 1). Therefore, Pk+1(w) is formed from Pk(w) by appending
v(k+1) to the end of the first row as well, and thus Row1(Pk+1(v)) ◆ Row1(Pk+1(w)).

• If v(k+1) bumps some z 2 Row1(Pk(v)), then z is the smallest value in Row1(Pk(v))
that is larger than v(k + 1). We must now consider whether or not z was in
Row1(Pk(w)). If not, then there is nothing to worry about and we are done. On the
other hand, if z 2 Row1(Pk(w)), then, because Row1(Pk(w)) ✓ Row1(Pk(v)), this
z must also be the smallest number in Row1(Pk(w)) that is larger than v(k + 1).
Therefore, when we insert v(k + 1) into Pk(w), we will also bump z.

Thus the induction holds at all stages of the insertion algorithm, and hence
Row1(P(v)) ◆ Row1(P(w)). The tableaux have height at most 2, and so Row2(P(v)) ✓
Row2(P(w)), as well.

We highlight several facts relevant to upcoming arguments in Section 4.

Remark 21. For v and w fully commutative permutations with w = vsi, `(w) = `(v) + 1,
and P(v) 6= P(w), the following are established within the proof of Theorem 20:

(a) v(k) < v(i+ 1) for k < i, and v(k) > v(i) for k > i;

(b) the value v(i) does not bump anything in P(v), and v(i) 2 Row1(P(v));

(c) v(i) bumps v(i+ 1) in P(w), and v(i) 2 Row1(P(w));

(d) Row1(P(v)) \ [1, v(i)] = Row1(Pi(v)) = Row1(Pi+1(w)) = Row1(P(w)) \ [1, v(i)].

Because the length of the first row of a permutation’s shape is determined by the
length of a longest increasing subsequence in the permutation, we can use Theorem 20 to
characterize when the insertion tableaux of v and vsi are unequal.

Corollary 22. Let v and w be fully commutative permutations such that w = vsi, with
`(w) = `(v) + 1. Then P(v) 6= P(w) if and only if every longest increasing subsequence in
v uses both v(i) and v(i+ 1). In particular, when P(v) 6= P(w), we have |Row2(P(w))| =
|Row2(P(v))|+ 1.
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Proof. Note that |Row2(P(w)) \ Row2(P(v))| 6 1, because the length of the longest
increasing subsequence changes by at most one after swapping adjacent values in a position.
Since Row2(P(v)) ✓ Row2(P(w)) by Theorem 20, we have that Row2(P(v)) ( Row2(P(w))
if and only if the size of the first row of P(v) is one more than the size of the first row
of P(w). By Schensted’s theorem (Theorem 10), this holds if and only if the length of a
longest increasing subsequence of v is one more than the length of a longest increasing
subsequence of w. Swapping v(i) and v(i + 1) changes this length if and only if every
longest increasing subsequence in v uses both v(i) and v(i + 1). It follows that when
Row2(P(v)) ( Row2(P(w)), the set Row2(P(w)) contains exactly one more element than
Row2(P(v)).

Theorem 20 has other implications for the weak order on fully commutative elements.

Corollary 23. Let v and w be fully commutative permutations.

(a) If v is less than w in the right weak order, then Row2(P(v)) ✓ Row2(P(w)).

(b) If v is less than w in the left weak order, then Row2(Q(v)) ✓ Row2(Q(w)).

Proof. Statement (a) follows immediately from Theorem 20. Statement (b) follows from
(a) and Proposition 9.

There is another important implication of Theorem 20, in conjunction with Theo-
rem 18. This allows us to show the relationship between the insertion tableaux of a fully
commutative element and that of its boolean core.

Corollary 24. Let w be a fully commutative permutation and ŵ its boolean core. Then

Row1(P(ŵ)) ◆ Row1(P(w)) and Row2(P(ŵ)) ✓ Row2(P(w)).

The following example illustrates this result.

Example 25. Let v = 41623785 = [32154673], w = vs5 = 41627385 = [321546735],
and let v̂ = 41263785 = [3215467] denote their common boolean core. We can see that
v̂ < v < w in the right weak order. The RSK insertion algorithm produces

P(v̂) = P(v) = 1 2 3 5 8
4 6 7

and P(w) = 1 2 3 5
4 6 7 8

.

We have Row1(P(v̂)) ◆ Row1(P(v)) ◆ Row1(P(w)) and Row2(P(v̂)) ✓ Row2(P(v)) ✓
Row2(P(w)).

These results suggest a natural next step of research.

Question 26. The set of 4321-avoiding permutations are exactly those whose RSK
tableaux have fewer than 4 rows. What is an analog of Theorem 20 for 4321-avoiding
permutations?
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4 Insertion tableaux dynamics

Throughout this section, we will restrict our attention to certain important scenarios, and
we will highlight our assumptions for the reader in centered boxed text. To begin, we will
assume throughout this section that

v and w are fully commutative permutations with w = vsi and `(w) = `(v) + 1.

In Theorem 20, we learned that

Row2(P(v)) ✓ Row2(P(w)).

Corollary 22 gave conditions that determine exactly when P(v) 6= P(w) in terms of the
longest increasing subsequences of v. We next want to understand the entries of these
tableaux when they are unequal. In particular, if P(v) 6= P(w), is it possible for P(w) to
be uncrowded? Said another way, if the insertion tableau changes along a covering relation
in the right weak order, can the covering permutation be uncrowded? If i 62 supp(v), then
this could certainly be the case. Consider, for example, when v is the identity. On the
other hand, if i 2 supp(v), then, as we shall see, the answer to the question is no.

Recall our assumptions in this section: v and w are fully commutative permutations
(that is, they avoid 321) with w = vsi and `(w) = `(v) + 1. Let M and m be the values
defined in Lemma 1:

M := max{v(j) : j 6 i} and m := min{v(j) : j > i+ 1}.

Our first lemma shows these values are part of a 3142-pattern in v whenever i 2 supp(v).

Lemma 27. Suppose i 2 supp(v). Then v has a 3142-pattern formed by M v(i) v(i+1)m.

Proof. Because i 2 supp(v), it follows from Lemma 1 that m < M , and M > v(i) and
m 6 v(i+1) by definition. Because w = vsi and `(w) > `(v), we must have v(i) < v(i+1).

Next we argue that M > v(i). Suppose M = v(i). Then m < M = v(i) < v(i+ 1), so
v(i+ 1) v(i)m will form a 321-pattern in w, which is a contradiction. Therefore M > v(i).
Similarly we can show that m < v(i+ 1).

Since w cannot have a 321-pattern, we also must have M < v(i + 1) and m > v(i).
Therefore the subsequence M v(i) v(i+ 1)m is a 3142-pattern in v.

In fact, 321-avoidance, the maximality of M , and the minimality of m force even more
structure upon v.

Corollary 28. Suppose i 2 supp(v). Then

v = · · ·M a1 · · · ah v(i) v(i+ 1) e1 · · · ej m · · · ,

where
a1 < a2 < · · · < ah < v(i) < m < M < v(i+ 1) < e1 < e2 < · · · < ej. (4.1)
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Let us now further suppose, for the remainder of this section, that

i 2 supp(v) and P(v) 6= P(w).

Furthermore, we will

maintain the notation established in Corollary 28.

Example 29. Consider v = 41623785 = [32154673], w = vs5 = 41627385 = [321546735]
from Example 25, where we have i = 5 2 supp(v) and P(w) 6= P(v). We now verify that
M = max{4, 1, 6, 2, 3} = 6 and m = min{7, 8, 5} = 5. Furthermore, the value immediately
to the right of M in the one-line notation of v is a1 = 2, and the value immediately to the
right of v(5 + 1) is e1 = 8, satisfying the inequalities in Corollary 28.

Corollary 22 tells us that every longest increasing subsequence in v must use both v(i)
and v(i+ 1). In particular, this means that h > 1 and j > 1.

Since Row2(P(v)) ( Row2(P(w)), it also follows from Corollary 22 that there is a
unique value

e 2 Row1(P(v)) \ Row2(P(w)).

We will show that e occurs after v(i+ 1) in v, that e > M , and, finally, that Row2(P(w))
is crowded as it contains too many integers in the interval {M, . . . , e}.

The next sequence of lemmas describe certain values in the rows of P(v) and P(w).
Recall for a permutation v 2 Sn and value q 2 {1, . . . , n}, we define cv(q) to be the column
of P(v) into which q is first inserted.

Lemma 30. In the construction of P(v) and P(w), the value M is bumped to the second
row by one of a1, . . . , ah.

Proof. By Remark 21(b), v(i) does not bump anything in P(v), so we have that cv(M) <
cv(v(i)). Since v(i) < M , this means some value that occurs between M and v(i) in v

must bump M in P(v). Because the values prior to v(i) are unchanged in w, M will be
bumped by that same value in P(w).

Just as we can track M in the RSK insertion algorithm, we can determine the role of
m in the construction of P(v).

Lemma 31. The value v(i+ 1) is bumped by m in P(v).

Proof. Corollary 28 and Remark 21(b) tell us that, just before m is inserted in the process
of constructing P(v), the first row contains v(i) < v(i+1) < e1 < · · · < ej with no element
between v(i) and v(i+ 1). By Lemma 27, v(i) < m < v(i+ 1), so m will bump v(i+ 1) in
P(v).

Next, we apply Remark 21 and Lemma 31 to determine the position of e in the one-line
notation for v.

Lemma 32. The value e occurs after v(i+ 1) in v.
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Proof. By Remark 21(d), we have

Row1(P(v)) \ [1, v(i)] = Row1(P(w)) \ [1, v(i)].

Since e 2 Row1(P(v)) and e /2 Row1(P(w)), we know e > v(i). By Remark 21(c), v(i) does
not bump anything in P(v) and v(i) 2 Row1(P(v)). Thus we have cv(e) > cv(v(i)), and
e occurs after v(i) in v. By Lemma 31, v(i+ 1) 2 Row2(P(v)), so e 6= v(i+ 1). Hence e

occurs after v(i+ 1) in v.

Using Lemma 32, we can show that e does not bump anything during the construction
of P(v).

Lemma 33. The value e does not bump anything in P(v).

Proof. Suppose, for the purpose of obtaining a contradiction, that e bumps something in
P(v). Then there exists a value q such that e < q and q occurs before e in v. By Lemma 32,
e occurs after v(i+ 1) in v, so q occurs before e in w as well. However, e is bumped in w,
so there is a value q

0 with q
0
< e and q

0 occurring after e in w. This yields a 321-pattern
in both v and w, which is not possible. Hence e does not bump anything in P(v).

Define e0 := v(i+1). By Corollary 28, we see that cv(ek) = cv(v(i+1))+k for 0 6 k 6 j.
For k > j, we can then define (if any) ek to be the first value in the one-line notation for
v with cv(ek) = cv(v(i+ 1)) + k. Let r be maximal so that {e0, e1, . . . , er} ✓ Row2(P(v)).
For all 0 6 k 6 r, let t0 := m, t1, . . . , tr be the values such that tk bumps ek in P(v). By
Lemma 14(c) we have t0 < t1 < · · · < tr, and these values appear from left to right in the
one-line notation of v.

For a permutation v 2 Sn and a value q 2 {1, . . . , n}, recall that we define LISv(q) to
be the length of a longest increasing subsequence of v that ends with q. The next lemma
shows that the columns into which the values tk are first inserted are the same in P(v)
and P(w), for 0 6 k 6 r.

Lemma 34. For all 0 6 k 6 r, cv(tk) = cw(tk).

Proof. By construction, we have cv(tk+1) = cv(tk) + 1 and cw(tk+1) > cw(tk) for 0 6 k < r.
Furthermore, since LISw(tk) 6 LISv(tk), we know by Lemma 12 that cw(tk) 6 cv(tk) for
0 6 k 6 r. We prove the statement by induction on k.

First we show cv(t0) = cw(t0). By Corollary 28 and Remark 21(c), the first row of
Pi+j+1(w) contains v(i) and e1, with no element between them. Because v(i) < m < e1,
we know that m = t0 bumps e1 in P(w). Since cw(e1) = cv(v(i+ 1)) and t0 bumps v(i+ 1)
in P(v), we have cw(t0) = cw(e1) = cv(v(i+ 1)) = cv(t0).

Next assume for some 0 6 k < r that cv(tk) = cw(tk). Then we have

cw(tk) + 1 6 cw(tk+1) 6 cv(tk+1) = cv(tk) + 1.

Therefore cw(tk+1) = cv(tk+1), proving the statement.
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Since e 2 Row1(P(v)) occurs after v(i+1) in v and does not bump anything in P(v), it
follows that e = ek for some k > r. Therefore the value er+1 exists, and by the definition
of r, we have er+1 2 Row1(P(v)) with er+1 6 e. In fact, as a corollary to Lemma 34, we
can show that er+1 = e.

Corollary 35. We have er+1 2 Row2(P (w)), and so er+1 = e.

Proof. Since er+1 is the only value in v inserted into column cv(er+1) of P(v), we can apply
Corollary 13 to conclude that er+1 is in every longest increasing subsequence in v. By
Corollary 22, this implies that every longest increasing subsequence in v ending with er+1

must use both v(i) and v(i+ 1). As a result, LISw(er+1) = LISv(er+1)� 1. By Lemma 12,
cw(er+1) = cv(er+1)� 1. We know cv(er+1)� 1 = cv(tr) by definition, and by Lemma 34,
cv(tr) = cw(tr). Hence cw(er+1) = cw(tr). Since tr < er+1, we conclude that tr bumps er+1

in P(w). Since er+1 2 Row1(P(v)), it follows that er+1 = e.

Next we show that er and e are consecutive values.

Lemma 36. With notation as above, e = er + 1.

Proof. Since e occurs after er and er, e 2 Row2(P(w)), Lemma 14(c) shows that er < e.
Suppose, for the purpose of obtaining a contradiction, that e 6= er + 1, and so e > er + 1.
We analyze where er+1 could occur in the one-line notation of v. First we argue that er+1
cannot occur after e. Suppose it occurs after e. Before er + 1 is inserted into P(v), e is in
the first row and the element to the left of e is either er or tr. Since tr < er < er + 1 < e,
the value er + 1 will bump e, which contradicts the fact that e 2 Row1(P(v)).

Next we argue that er + 1 cannot occur prior to er. Suppose er + 1 is to the left of
er. Before er is inserted into P(v), if er + 1 is in the first row, then er will bump er + 1,
which contradicts Lemma 14(b). This forces er +1 2 Row2(P(v)), which, then, contradicts
Lemma 14(d).

Therefore er + 1 must occur after er and before e, which implies cv(er) < cv(er + 1) <
cv(e). However, this is impossible since cv(er) + 1 = cv(e). Hence e = er + 1.

The maximality of M means that M + 1 appears to the right of v(i) in the one-line
notation of v. Consider the set

[M + 1, er] \ {v(i+ 1) = e0, e1, . . . , er},

which has er � (M + 1) + 1� (r + 1) elements. These elements occur after v(i) and are in
Row1(P(v)), so they must bump (some of) the r elements {e1, . . . , er} and nothing else,
by definition of r. Therefore we get

er �M � (r + 1) 6 r,

and hence
er �M 6 2r + 1. (4.2)

Now consider the interval
I := [M, e].
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This is a set of size e�M + 1, and we can use Lemma 36 and Equation (4.2) to get

��I
�� = e�M + 1 = er + 1�M + 1 6 2r + 3.

Moreover, the (r + 2)-element set

{M, v(i+ 1) = e0, e1, . . . , er}

is a subset of Row2(P(v)).
We are now able to state the main result.

Theorem 37. Suppose that v and w are fully commutative permutations with w = vsi,
`(w) = `(v) + 1, and i 2 supp(v). Suppose, moreover, that P(v) 6= P(w). Then w is a
crowded permutation.

Proof. As discussed above, there are r + 2 elements of the interval I in Row2(P(v)), and
the interval I contains at most (2r + 3) elements. By Theorem 20, Corollary 35, and
Lemma 36, there are r + 3 elements of the interval I in Row2(P(w)), which means that w
must be crowded.

A corollary of this result is an alternate characterization of uncrowded permutations

Corollary 38. Let w be a fully commutative permutation with boolean core ŵ. Then w is
uncrowded if and only if P(ŵ) = P(w).

Theorem 37 addresses the case i 2 supp(v), and it is unclear how that result would
change when i 62 supp(v).

Question 39. What can we say about P(vsi) and P(v) for i /2 supp(v), when v is
a fully commutative permutation? For example, consider v = [3243] = 14523 and
w = vs1 = [32431] = 41523. Now 1 /2 supp(v), and we get that both of their insertion
tableaux are the following tableau.

1 2 3

4 5
.

5 Minimal crowded permutations under the weak order

Consider the poset of fully commutative (that is, 321-avoiding) permutations in Sn under
the right weak order. The RSK partitions of such permutations have at most two rows,
and we saw in Theorem 20 that the content of their second rows obeys a subset relation
along covering relations in the weak order. We also saw, in Proposition 16, that a 2-row
tableau is an insertion tableau for a boolean permutation if and only if it is an uncrowded
tableau.
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Figure 3: The dual order ideal of all crowded permutations in S6 (in bold blue).

Recall that a fully commutative permutation w is called “uncrowded” if its insertion
tableau is an uncrowded tableau. Otherwise a permutation is “crowded.” Set

uncrowdedn := {w 2 Sn | w is fully commutative and uncrowded}, and

crowdedn := {w 2 Sn | w is fully commutative and crowded}.

The subset relation in Theorem 20 allows us to conveniently partition the fully com-
mutative elements into two sets: uncrowded and crowded permutations.

Lemma 40. Consider the fully commutative elements of Sn, partially ordered according
to the right weak order. The uncrowded permutations form an order ideal of this poset,
and the crowded permutations form a dual order ideal of this poset.

See Figure 3 for the dual order ideal of all crowded permutations in S6.

Proof of Lemma 40. This follows from Theorem 20 and Proposition 16.

Thus we can identify this partition of the fully commutative permutations in Sn by
characterizing the maximal elements of the set uncrowdedn or, equivalently, the minimal
elements of the set crowdedn. The minimal elements of this latter set satisfy a pattern
containment condition. Before we state and prove that property, consider what it means
for w to be a minimal element of crowdedn: the fully commutative permutation w is
crowded, while every fully commutative permutation wsi that it covers is uncrowded.

For the remainder of this section, we will assume that

w is fully commutative; i.e., w is 321-avoiding.

We begin by recalling a standard definition: an integer d 2 {1, . . . , n� 1} is a descent of
w 2 Sn if w(d) > w(d+ 1).
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Lemma 41. Suppose that d is a descent of w, and that w(d + 1) does not bump w(d)
during RSK insertion. Then P(w) = P(wsd). In other words, if P(w) 6= P(wsd), then
either d is not a descent of w, or w(d+ 1) bumps w(d) during RSK insertion.

Proof. Set v := wsd, and P0 := Pd�1(w) = Pd�1(v). Because w is 321-avoiding and d is
a descent of w, the value w(d) must be larger than everything to its left in the one-line
notation of w. Thus, in forming Pd(w), this w(d) gets appended to the end of the first
row of P0, without bumping anything. In forming Pd+1(w), the value w(d+ 1), which is
less than w(d) because d is a descent, will bump something. Let z be the value that it
bumps; i.e., z is the smallest value in Row1(Pd(w)) that is larger than w(d+ 1). We know
by assumption that z 6= w(d). In particular, z < w(d) and z appears to the left of w(d) in
w. This last fact means that z 2 Row1(P0).

In forming Pd(v), the value v(d) = w(d+ 1) bumps z from the first row of P0 to the
second row. In forming Pd+1(v), the value v(d+ 1) = w(d) is the largest value we have
seen so far, so it gets appended to the end of the first row of Pd(v), without bumping
anything. Therefore Pd+1(w) = Pd+1(v), and hence P(w) = P(v).

Somewhat akin to Lemma 41, we can make the following additional statement, which
we phrase in terms of Knuth relations.

Definition 42. Two permutations w and v di↵er by one Knuth relation if w is the result
of replacing a consecutive 312-pattern in v by a consecutive 132-pattern (or vice versa), or
replacing a consecutive 231-pattern in v by a consecutive 213-pattern (or vice versa).

Lemma 43. Let d be a descent of w. If w(d+ 2) < w(d), then P(w) = P(wsd).

Proof. The permutation w is 321-avoiding, so w(d)w(d+1)w(d+2) must be a 312-pattern.
Knuth’s theorem [Knu70] says that the insertion tableau is preserved under a Knuth
relation, so P(w) = P(wsd).

We now return to the characterization motivated by Lemma 40: identification of the
minimal elements of crowdedn in the poset of fully commutative permutations of Sn.

5.1 Consequences of minimality in crowdedn

As it turns out, knowing that a permutation is minimal in the dual order ideal crowdedn
imposes substantial structure on the permutation. In this subsection, we will collect many
of these consequences of minimality, with the ultimate goal of proving a characterization
of minimality in Section 5.2.

Throughout this subsection we will consider permutations that are minimal elements
of the dual order ideal crowdedn, and we will identify features of the permutations that
follow from that property.

We begin with an immediate corollary of Lemma 41.

Corollary 44. Let w be a minimal crowded permutation.
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(a) Then d is a descent of w if and only if w(d + 1) bumps w(d) to the second row
during RSK insertion.

(b) Furthermore, every w(d) 2 Row2(P(w)) is bumped by w(d+ 1).

Proof. It remains to prove Part (b). Suppose w(d) is an element of Row2(P(w)), bumped
by w(j) with j > d+1. Part (a) tells us that d is not a descent of w. Because w(d) > w(j),
there exists a descent d0 2 [d+ 1, j � 1]. Lemma 41 implies that w(d0 + 1) bumps w(d0)
during RSK insertion. The values w(j) and w(d0 + 1) cannot be equal, so d

0 is in fact in
[d + 1, j � 2]. However, the fact that w(j)w(d0 + 1) is not a subsequence of w violates
Lemma 14(c), and so in fact we must have j = d+ 1.

Lemma 43 and Corollary 44 impose rules on the values that are una↵ected by bumping
during RSK insertion.

Corollary 45. Let w be a minimal crowded permutation, with first descent d and last
descent d0. Then the permutation w fixes all i 2 [1, d� 1] [ [d0 + 2, n].

Proof. Suppose, first, that some i < d is not fixed by w. Let i be minimal with this
property, and let j be such that w(j) = i. Minimality of i means that j > i, and that j� 1
is a descent of w. By Corollary 44, the value i must bump w(j�1) to the second row during
RSK insertion. Moreover, this minimality means that w(d+1) > i. To avoid w(d)w(d+1)i
forming a 321-pattern in w, we must have that w(d+ 1) = i. Minimality of i and the fact
that d is the first descent mean that w(d+ 1) = i < w(i) < w(i+ 1) < · · · < w(d), and so
i will actually bump w(i) during RSK insertion, contradicting the assumption that i < d

and Corollary 44.
Now suppose that some i > d

0 + 1 is not fixed by w. Let i be maximal with this
property, and let j be such that w(j) = i. Maximality of i means that j < i, and that
j is a descent of w. And, by Corollary 44, this i must be bumped by w(j + 1) during
RSK insertion. To avoid w(j)w(d0)w(d0 + 1) forming a 321-pattern in w, we must have
that j = d

0. Moreover, maximality of i > d
0 means that w(j + 2) < i, and so Lemma 43

contradicts the minimality of w.

At this point, we have established several properties about the one-line representation
of minimal elements of crowdedn. In fact, we can go even further, showing that values in
the interval [d, d0 + 1], in the language of Corollary 45 must be, in a sense, interwoven.

For the remainder of this subsection, define:

Row2(P(w)) = {z1 < · · · < zt}, and bi is the value that bumps zi to
Row2(P(w)) during the construction of P(w), for each i = 1, . . . , t.

We will also want to be able to refer to “minimally crowded sets,” and so for positive
integers x and y, we will write

Sx,y := {y, y + 1, y + 3, y + 5, . . . , y + 2x� 1, y + 2x}
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Lemma 46. Let w be minimal in crowdedn. Then

z1b1z2b2 · · · ztbt
is a consecutive subsequence of the one-line notation for w.

Proof. By Corollary 44, each zibi is a consecutive subsequence. From Lemmas 11 and 14,
we know that z1z2z3 · · · zt and b1b2b3 · · · bt, are subsequences of the one-line notation for w.
We next prove that bjzj+1 is a subsequence of w for all 1 6 j < t.

Suppose, for the sake of contradiction, there is some j such that bj appears to the right
of zj+1, as in

w = · · · zj · · · zj+1 · · · bj · · · bj+1 · · · .
But zj+1 > zj > bj by Lemma 11, hence there exists a descent d such that w(d) occurs
at or after zj+1, and before bj. By Corollary 44, this is impossible. Therefore, for all
1 6 j < t, we must have bj appearing to the left of zj+1 in the one-line notation for w.

We now prove that this subsequence is consecutive. Suppose that some value q 6= zi+1

follows bi. To avoid 321-patterns, we must have that q < zi+1. If q < zi, then Lemma 43
would produce a contradiction with the fact that w is minimal in crowdedn. Thus it
remains only to consider when q > zi.

Because q is necessarily in Row1(P(w)) and bi+1 bumps zi+1, we have q < bi+1 < zi+1.
We have assumed q > zi, so, in fact, zi+1 > zi + 3. The set Row2(P(w)) = {z1 < z2 <

· · · < zt} is crowded, so there exist positive integers x and y such that Sx,y ✓ Row2(P(w)).
Since zi+1 > zi + 3, the values zi and zi+1 cannot both be in Sx,y. Define j and j

0 so that
w(j) = zi and w(j0) = zi+1, and there are two options.

• If y + 2x < zi+1, set w̃ := wsj0 :

w̃ = · · · zibiq · · · bi+1zi+1 · · · .

Thus Sx,y ✓ {z1 < · · · < zi} ✓ Row2(P(w̃)). Therefore w̃ < w, and w̃ is crowded,
contradicting the minimality of w.

• If zi < y, then construct w̃ := wsj:

w̃ = · · · biziq · · · zi+1bi+1 · · · .

Then Sx,y ✓ {zi+1 < · · · < zt} ✓ Row2(P(w̃)). Therefore w̃ < w and w̃ is crowded,
again contradicting the minimality of w.

Thus there can be no such q, and the subsequence z1b1z2b2 · · · ztbt is consecutive in w.

Recall from Section 2.4 that a fully commutative permutation w is crowded if and only
if Row2(P(w)) is a crowded set. This means that there exist positive integers x and y such
that

|[y, y + 2x] \ Row2(P(w))| > x+ 1.

In fact, we can choose x and y so that

Sx,y = [y, y + 2x] \ Row2(P(w)).

Note that the set Sx,y contains at least three elements.
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Lemma 47. Let w be a crowded permutation, and let Sx,y ✓ Row2(P(w)) be as described
above. The value that bumps the third smallest element of Sx,y during RSK insertion is
less than y.

Proof. Let c be the value that bumps the third smallest element of Sx,y. By Lemma 14(b),
we know c /2 Row2(P(w)). We will prove our result in two cases: x = 1 and x > 1. First
consider x = 1. Since S1,y ✓ Row2(P(w)) and c < y + 2, we see that c < y.

Now consider the case x > 1, so c = y + 2. By Lemma 14, this implies y + 2k will
bump y + 2k + 1 for all 1 6 k 6 x� 1. However, if y + 2x� 2 bumps y + 2x� 1, there is
no value in Row1(P(w)) both smaller than y + 2x and larger than y + 2x� 2 that could
have bumped y + 2x, and yet Sx,y ✓ Row2(P(w)). Thus c < y.

Corollary 48. Let w be a minimal element of crowdedn. Then w contains a consecutive
occurrence of the pattern 415263. Moreover, w has an occurrence w(i) · · ·w(i+ 5) of the
pattern 415263 in which

{w(i), . . . , w(i+ 5)} \ Row2(P(w)) = {w(i), w(i+ 2), w(i+ 4)}.

Proof. The permutation w is crowded, so there exist integers x and y such that

{y, y + 1, y + 3, . . . , y + 2x� 1, y + 2x} = [y, y + 2x] \ Row2(P(w)).

Since Row2(P(w)) = {z1 < · · · < zt}, there is some 1 6 r 6 t� 2 such that y = zr.
Lemma 46 tells us that

zrbrzr+1br+1zr+2br+2

is a consecutive subsequence of w. By Lemma 47, we know that br+2 < zr. By Lemma 14,
we have zr < zr+1 < zr+2 and br < br+1 < br+2. Combining these with the fact that bi < zi

for each i, the consecutive subsequence that zrbrzr+1br+1zr+2br+2 is a 415263-pattern. By
Lemma 14, the values br, br+1, and br+2 are not in Row2(P(w)).

In fact, we can say more about this set Sx,y.

Lemma 49. Let w be minimal in crowdedn. Any crowded subset of Row2(P(w)) must
include the largest element of Row2(P(w)).

Proof. Recall that zt = max{Row2(P(w))}, and let j be such that w(j) = zt. The set
Row2(P(w)) is crowded, so there are positive integers x and y such that Sx,y ✓ Row2(P(w)).
If zt /2 Sx,y, then Sx,y ✓ Row2(P(w)) \ {zt} and the permutation w̃ := wsj < w would
be crowded because Row2(P(w̃)) = Row2(P(w)) \ {zt}, contradicting the minimality of w.
Thus every crowded subset Sx,y ✓ Row2(P(w)) must have y + 2x = zt.

This property about crowded subsets implies that when w is minimal in crowdedn,
there is, in fact, a unique crowded subset of the second row of P(w) that is inclusion-wise
minimal.

Corollary 50. Let w be minimal in crowdedn. Then Row2(P(w)) contains exactly one
inclusion-wise minimal crowded subset.
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Proof. By Lemma 49, every crowded subset of Row2(P(w)) includes the maximal element
zt 2 Row2(P(w)). Let Sx,y be the crowded subset for which y is maximal. Then {y, y +
1} 2 Row2(P(w)). To avoid {y � 1, y, y + 1} contradicting Lemma 49, we must have
y � 1 62 Row2(P(w)). This means that there are no crowded sets Sx0,y0 for y0 < y.

In Lemma 46, we proved the consecutivity of the subsequence z1b1 · · · ztbt in w. We
already know several inequalities among these letters, and there is now one more that we
can establish.

Lemma 51. Let w be minimal in crowdedn. For all i 2 [1, t� 3], we have zi < bi+3.

Proof. By Corollary 45, we can assume, without loss of generality, that b1 = 1 and zt = n.
Furthermore, Corollary 50 forces zt�1 = n� 1. Now suppose, for the purpose of obtaining
a contradiction, that there exists i 2 [1, t� 3] such that zi > bi+3.

The set {zi, . . . , zt�1} contains t� i elements. Because zi < zi+1 < · · · , we have

{zi, . . . , zt�1} ✓ [zi, n� 1].

The interval [zi, n� 1] can be partitioned into

{zi, . . . , zt�1} t {bj : bj > zi},

meaning that the cardinality of [zi, n� 1] is at most (t� i) + (t� (i+ 3)) = 2(t� i)� 3.
Therefore {zi, . . . , zt�1} is crowded, contradicting Corollary 49.

From this property, we learn how 415263-patterns can appear in a minimal element of
crowdedn.

Corollary 52. Let w be minimal in crowdedn. Every 415263-pattern in w is consecutive.

Proof. Lemma 14, Corollary 45, and Lemma 51 mean that w(i) < w(j) for all j > i+ 6,
and so it is impossible to find a non-consecutive 415263-pattern in w.

In fact, any consecutive subsequence of a minimal element of crowdedn that both begins
and ends with a descent must have one of two forms.

Lemma 53. Let w be a minimal element in crowdedn, with descent set {d, d+2, . . . , d+2k}.
For every i 2 [0, k � 2], the consecutive subsequence

w(d+ 2i) · · ·w(d+ 2i+ 5)

is either a 415263- or a 315264-pattern.

Proof. From Lemmas 14 and 46, it remains to show that in any such sequence

zibizi+1bi+1zi+2bi+2,

we have that zi is greater than bi+1. Suppose, for the sake of contradiction, that zi < bi+1,
with j defined so that w(j) = zi. In other words, {w(1), . . . , w(j + 1)} = [1, j + 1]. The
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permutation w is crowded, so let Sx,y ✓ Row2(P(w)) be the unique containment-wise
minimal crowded set guaranteed by Corollary 50. If zi+1 62 Sx,y, then zi 62 Sx,y, by
Lemma 49. Moreover, Row2(wsj) = Row2(w) \ {zi}, so Sx,y ✓ Row2(wsj), and wsj < w is
an element of crowdedn, contradicting the assumption of minimality.

Now suppose, on the other hand, that zi+1 2 Sx,y. Then zi+1 + 1 62 Sx,y, so it must
be that zi+1 + 2 2 Sx,y, and this can only happen if zi+1 + 1 bumps zi+1 + 2 to Row2(w).
In fact, a similar argument shows that zi+1 + 2i might be bumped by zi+1 + 2i� 1, but
zi+1 + 2i+ 1 cannot then also be bumped, contradicting the fact that Sx,y is crowded.

5.2 Characterization of minimality in crowdedn.

Having established a variety of properties of minimal elements of crowdedn in Section 5.1,
we are now able to completely characterize those elements.

Theorem 54. A permutation w is a minimal element of crowdedn if and only if it satisfies
the conditions below.

(a) The set of descents of w has the form {d, d+ 2, d+ 4, . . . , d+ 2k} for some k > 2.

(b) The set {w(d), w(d+ 2), . . . , w(d+ 2k)} is crowded.

(c) The permutation fixes all i 2 [1, n] \ [d, d+ 2k + 1].

(d) The pattern 415263 occurs in w, and every occurrence of 415263 is consecutive.

(e) For each i 2 [0, k � 2], the consecutive subsequence

w(d+ 2i) · · ·w(d+ 2i+ 5)

is either a 415263- or a 315264-pattern.

Proof. First suppose that w is a minimal element of crowdedn. Then Corollary 44 and
Lemma 46 establish Properties (a) and (b). Property (c) is proved in Corollary 45, and
Property (d) is a result of Corollaries 48 and 52. Finally, Property (e) follows from
Lemma 53. Finally, we know from Property (a) and Corollary 44 that Row2(P(w)) =
{w(d), w(d+ 2), . . . , w(d+ 2k)}.

Now suppose that a permutation w has Properties (a)–(e) in the statement of the
theorem. It follows from (a) and (c) and the fact that w is 321-avoiding that Row2(P(w)) =
{w(d), w(d+ 2), . . . , w(d+ 2k)}.

This and Property (b) mean that w 2 crowdedn. It remains, now, to prove that w is
minimal in that set.

Suppose, for the purpose of obtaining a contradiction, that w is not minimal in crowdedn.
In fact, suppose that w is minimal with this property, meaning that anything covered by
w is either not crowded, or minimal in crowdedn. In particular, there must be at least one
v = wsi in the latter category, by our assumption about w. Given Property (c), let us
assume, without loss of generality, that d = 1 and d+2k = n� 1. Because v < w, we have
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that w(i) > w(i+ 1). Moreover, our assumptions about w mean that w(2j � 1) > w(2j)
for all j, and each w(2j) bumps w(2j � 1) to Row2(P(w)). In particular, w(n � 1) = n

and w(n � 3) = n � 1. On the other hand, Properties (a), (d), and (e) mean that in v,
those bumping rules are no longer the case when 2j � 1 > i. Indeed, in v, it is w(2j + 2)
that bumps w(2j � 1) to Row2(P(v)) when 2j � 1 > i. Thus

Row2(P(v)) = Row2(P(w)) \ {w(n� 1)}.

Since we have assumed that v 2 crowdedn is minimal, we know from previous results that
Row2(P(v)) contains n� 1, n� 2 (which would have been w(n� 5), and either n� 3 or
n� 4 (which would have been w(n� 7).

• If n� 3 2 Row2(P(v)), then w(n) < n� 3, and so w(n� 7)w(n� 6)w(n� 5)w(n�
4)w(n� 1)w(n) would be a non-consecutive 415263-pattern, violating Property (d).

• If, instead, n � 4 2 Row2(P(v)), then n � 4 = w(n � 7) and hence n � 3 = w(n).
If we try to understand the rest of w while satisfying Property (d), we find that
n� 5 = w(n� 2), n� 6 = w(n� 9), n� 7 = w(n� 4), n� 8 = w(n� 11), and so
on, meaning that the set Row2(P(v)) will never actually be crowded.

Thus there can be no such v < w, and so w 2 crowdedn is minimal.

Remark 55. Continuing the notation of Theorem 54, it followed immediately that if w is a
minimal element of crowdedn then Row2(P(w)) = {w(d), w(d+ 2), . . . , w(d+ 2k)}.
Example 56. The permutation w = 41627385 is a minimal element of crowded8. We
check each of the conditions to confirm this.

(a) The descents of w are {1, 3, 5, 7}, so d = 1 and k = 3.

(b) The set {w(1), w(3), w(5), w(7)} is {4, 6, 7, 8}, which is crowded due to {6, 7, 8}.

(c) The third condition holds vacuously.

(d) The permutation w contains two occurrences of the 415263 pattern: 416273 and
627385. Both are consecutive subsequences of w.

(e) We check i = 0, 1: the subsequence 416273 is a 415263-pattern and the subsequence
627385 is a 415263-pattern.

The insertion tableau in this case is

P(w) = 1 2 3 5
4 6 7 8

,

and indeed Row2(P(w)) = {w(1), w(3), w(5), w(7)}.
The analyses of uncrowded and crowded permutations throughout this section suggest

several possible areas of future research.

Question 57. How can the maximal elements of uncrowdedn be characterized?

Question 58. How many uncrowded permutations are there? How many crowded
permutations?
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