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PARTIAL HYPERBOLICITY AND PSEUDO-ANOSOV
DYNAMICS

SERGIO R. FENLEY AND RAFAEL POTRIE

ABSTRACT. We show that if a hyperbolic 3-manifold admits a partially hy-
perbolic diffeomorphism then it also admits an Anosov flow. Moreover, we
give a complete classification of partially hyperbolic diffeomorphisms in hy-
perbolic 3-manifolds as well as partially hyperbolic diffeomorphisms in Seifert
manifolds inducing pseudo-Anosov dynamics in the base. This classification
is given in terms of the structure of their center (branching) foliations and the
notion of collapsed Anosov flows.

1. INTRODUCTION

A diffeomorphism f : M — M of a closed 3-manifold is partially hyperbolic
if its tangent bundle T'M splits as a D f-invariant sum TM = E° @ E°@® E* of
one-dimensional continuous subbundles and there exists £ > 0 so that if v%, v¢, v*
are unit vectors in E*(x), E¢(z) and E%(x) respectively, then:

|Df°| <min{l, [Df%[}  and  |Df%"| > max{l, [Df%°}.

This paper is concerned with the classification problem of partially hyperbolic
diffeomorphisms in dimension 3.

It has become apparent that there is a strong link between partially hyperbolic
diffeomorphisms and Anosov flows in dimension 3, at least when the manifold is
“sufficiently large”. This goes back at least to Pujals’ conjecture [BW] — which
roughly states that under certain very general conditions, the diffeomorphism is
a variable time map of a topological Anosov flow. Recently new examples | ,

, | have been constructed which fail Pujals’ conjecture, for instance
in Seifert manifolds. This has challenged our understanding of the topological
structure of these systems. This paper aims to solve the classification problem
(as formulated in | , Question 1]) completely for some particularly relevant
classes of manifolds and isotopy classes of maps.

The first result concerns the problem of finding topological obstructions, or in
other words to determine exactly when a manifold admits a partially hyperbolic
diffeomorphism. This problem is well understood when the manifold has (virtu-
ally solvable) fundamental group [HP], or when it is Seifert fibered under some
assumptions [ ]. It is always possible to construct a partially hyperbolic dif-
feomorphism from an Anosov flow (in any manifold) by taking its time-one map.
However it is expected that partially hyperbolic diffeomorphisms are much more
abundant amongst manifolds than Anosov flows. For example the 3 torus T°
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or nil manifolds admit partially hyperbolic diffeomorphisms, but do not admit
Anosov flows. In fact in T2 there are infinitely many essentially distinct partially
hyperbolic diffeomorphisms. The reason these manifolds do not admit Anosov
flows is because the fundamental group does not have exponential growth, a nec-
essary condition for the existence of an Anosov flow, by work of Margulis [Mar].

One big focus of this paper is the case of hyperbolic 3-manifolds, that is, those
homeomorphic to a quotient of H? by a cocompact group of isometries. These
3-manifolds are by far the most abundant in the class of closed, irreducible 3-
manifolds with infinite fundamental group, by the famous work of Thurston and
Perelman. Our first result is the following;:

Theorem A. Let M be a closed hyperbolic 3-manifold admitting a partially hy-
perbolic diffeomorphism. Then, M admits an Anosov flow.

One consequence of Theorem A is that it gives a complete set of obstructions
up to the problem of determining which hyperbolic 3-manifolds admit Anosov
flows. It is unknown which hyperbolic 3-manifolds admit Anosov flows, though
some obstructions and examples are known [Cas] (see §1.6 for more discussion).

The results that follow, of which Theorem A is a consequence, pertain the
topological classification of partially hyperbolic diffeomorphisms. More specif-
ically we analyze the structure of a partially hyperbolic diffeomorphism in a
closed hyperbolic 3-manifold and we show that the structure we obtain allows
us to construct a topological Anosov flow in the manifold. We obtain this even
if the diffeomorphism is not at all the time one (or variable time) map of a
flow. The classification in hyperbolic 3-manifolds is built upon our previous work
[ , | which deals, amongst many other things, with general
part1ally hyperbolic diffeomorphisms in hyperbolic 3-manifolds; and in addition
[ | which considers partially hyperbolic diffeomorphisms in certain isotopy
classes of diffeomorphisms of Seifert manifolds. Our presentation aims to give
a unified framework for both hyperbolic and Seifert 3-manifolds, which can also
be applied in other situations (see §1.5). Note that while the previous work
was mostly reliant on the homotopic to the identity hypothesis, the ideas and
tools here as well as the overall strategy for classification that we introduce are
applicable to wider situations.

Motivated by the present work, in [ ] we propose a notion of collapsed
Anosov flows. This relates partially hyperbolic diffeomorphisms with Anosov
flows and their self-orbit equivalences. The class of collapsed Anosov flows covers
all known examples of partially hyperbolic diffeomorphisms in manifolds with
non solvable fundamental group | ]. The concept of collapsed Anosov flow
generalizes the notion of leaf conjugacy to the case when f may not be dynam-
ically coherent'. In other words f may not admit f-invariant foliations tangent
to the center stable and center unstable bundles. The dynamically incoherent
situation is unavoidable and very common, as shown for example in Seifert mani-
folds | ] (see also | , , Pot]). These works show that one needs
new tools and models to attack a complete classification of partially hyperbolic
diffeomorphisms. Our results provide a complete topological classification of par-
tially hyperbolic diffeomorphisms up to the center direction in both hyperbolic
3-manifolds and some isotopy classes of partially hyperbolic diffeomorphisms in
Seifert manifolds.

1Dynamical coherence means that there exist f-invariant foliations F°° and F°“ tangent
respectively to £ = E°@ E° and E°* = E°@ E". This notion has been used in several works.
In this paper we obtain more precise integrability or non-integrability statements, so we will not
need to use this notion.
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1.1. Collapsed Anosov flows. Recall that an Anosov flow is a C'-flow ¢ :
M — M whose time one map is a partially hyperbolic diffeomorphism (see §11.2
for the standard definition and other properties). A self orbit equivalence of ¢
is a homeomorphism 8 : M — M such that sends orbits of ¢; to orbits of ¢;
preserving orientation. These notions are discussed in more detail in | ] (see
§2.6 of this article).

Definition 1.1 (Collapsed Anosov flow). A partially hyperbolic diffeomorphism
f: M — M is a collapsed Anosov flow if there is a topological Anosov flow
¢r - M — M, a self orbit equivalence f : M — M of ¢, and a continuous map
h: M — M homotopic to the identity such that:

(i) h maps orbits of the flow injectively onto C! curves tangent” to the center
direction E° of f,
(ii) one has that foh =ho f.

For a precise definition of a topological Anosov flow, see § 2.6. It is a general-
ization of an Anosov flow.

In [ | we studied Definition 1.1, and many of its possible variants. We
showed that there are many examples of partially hyperbolic diffeomorphisms
in 3-manifolds verifying this definition. We also studied different equivalent for-
mulations and conditions that ensure that a partially hyperbolic diffeomorphism
verifies this property. As we already remarked the conception of the idea of a
collapsed Anosov flow originated directly from the results and properties proved
in this article.

1.2. Statements. In this paper we will show the following result:

Theorem B. Let f : M — M be a partially hyperbolic diffeomorphism on a
hyperbolic 3-manifold. Then, it is a collapsed Anosov flow.

Theorem B builds on | | where a dichotomy is given for partially hy-
perbolic diffeomorphisms in a closed hyperbolic 3-manifold: an iterate of f is
either a discretized Anosov flow (cf. §2.6), or is virtually a double translation (cf.
§11.1). In a hyperbolic 3-manifold any homeomorphism has a finite iterate which
is homotopic to the identity, so if needed we consider an iterate of the original
map. A discretized Anosov flow is a map f = ¢y (x) where ¢; is a topolog-
ical Anosov flow. This is a generalization of the time one map of an Anosov
flow. In particular, partially hyperbolic diffeomorphisms in dimension 3 which
are discretized Anosov flows are collapsed Anosov flows. In this paper we further
study the other possibility. In other words we study the double translation case
to obtain that in this case it must also be a collapsed Anosov flow. We remark
that in the double translation case f cannot be dynamically coherent and the
topological Anosov flow we will construct is R-covered | ].

Any topological Anosov flow in an atoroidal manifold is transitive | ]. Shan-
non [Sha] showed that any transitive topological Anosov flow is orbitally equiv-
alent to an Anosov flow. This implies that Theorem A is a direct consequence
of Theorem B. Two flows are orbitally equivalent if there is a homeomorphim
sending orbits of the first into orbits of the second and preserving flow direction.

It is important to emphasize here that among the difficulties in showing The-
orem B is the need to show that one does not need to take a finite cover or an
iterate of f to obtain the result. In order to deal with this problem, we need to

2With the results in this article we also prove that the map h maps weak stable and weak
unstable leaves of ¢; into C* surfaces tangent respectively to E°* and E°“. See the discussion
in | ]. For the purposes of this introduction, this definition will be ok.
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obtain strong uniqueness properties of the curves tangent to the center direction.
More specifically, the results are obtained using branching foliations. The funda-
mental results of Burago and Ivanov [B1] show that these exist for an iterate of
f lifted to a finite cover. The finite cover has to do with orienting the bundles
of the partially hyperbolic diffeomorphism and so that D f preserves orientation.
So a priori we obtain our results on a finite cover of M and for a lift of an iterate
of f. We show uniqueness of branching foliations in this context, and this allows
us to go back to M to obtain the announced result in M and for f itself.

In | , Theorem A] we got a complete classification of partially hyperbolic
diffeomorphisms on Seifert manifolds homotopic to the identity. Further results
in this class of manifolds were obtained in | | and will be used here. Here
we treat new isotopy classes:

Theorem C. Let f : M — M be a partially hyperbolic diffeomorphism on a
Seifert manifold with hyperbolic (and orientable) base, so that f acts as a pseudo-
Anosov in the base, then, it is a collapsed Anosov flow.

We note that the class of diffeomorphisms in this result is non-empty [ 1,
and indeed some of the results, in particular the fact that center curves are
quasigeodesics in their center stable or center unstable leaves was known to be
true for some open sets of examples (see’ [ , §5]) but unknown for general
partially hyperbolic diffeomorphisms in these isotopy classes.

As a consequence of these results we see that these partially hyperbolic diffeo-
morphisms must admit branching foliations (regardless of any a priori orientabil-
ity assumptions) and we will prove uniqueness results for branching foliations in
some settings, cf. §10. These results provide a complete classification of partially
hyperbolic diffeomorphisms in these isotopy classes.

One interesting point is that Theorems B and C admit mostly a unified proof,
and we made an effort in presenting the unified point of view. We also show that
this unified approach is helpful to study partially hyperbolic diffeomorphisms in
other 3-dimensional manifolds. The difference between the proofs of Theorems
B and C has to do with how we show that certain general assumptions are met.
Under these assumptions, we will get some even stronger results about classifica-
tion (see §11 and §12). We also direct the reader to Theorem 5.6 for statements
that include some surprising information about the strong stable and unstable
foliations for certain examples (in contrast with the case of discretized Anosov
flows, the stable and unstable foliations cannot look like horocycle foliations).

Remark 1.2. In fact, for both Theorem B and C we obtain a stronger prop-
erty which we called strong collapsed Anosov flow in [ ]. See § 8 for more
discussion.

1.3. Tools developed in this article. The main technical result we obtain in
this paper is the following: under certain assumptions on the branching folia-
tions W W preserved by a partially hyperbolic diffeomorphism f of a closed
3-manifold, we show that the leaves of the center foliation lifted to M are quasi-
geodesics in the respective leaves of the foliations Wes, Weu, In [ | we call a
partially hyperbolic diffeomorphim which satisfies this quasigeodesic property a
quasigeodesic partially hyperbolic diffeomorphism. Under orientability conditions

3In [ , §10] it is shown that not only small perturbations have this property but all
partially hyperbolic diffeomorphisms that can be connected to the examples by a path of partially
hyperbolic diffeomorphisms. It is unknown if the space of partially hyperbolic diffeomorphisms
is connected in this isotopy class.
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this is one of the several equivalent definitions of forms of collapsed Anosov flows,
as proved in | ].

This eventually leads to the creation of a topological Anosov flow which is
associated with f. We note that this strategy is quite divergent with the strategy
followed in | , | which aimed to construct the topological Anosov flow

by showing that a good lift in the universal cover would fix all leaves of VVCJS, Weu
and their intersections and then using partial hyperbolicity to conclude that the
intersections should support a topologlcal Anosov flow. In this paper we cannot
assume that a lift of f fixes leaves of Wes or WC“ so, even if f may be homotopic
to the identity, we are forced to use the action of all lifts of f in order to make our
analysis. Also, we cannot rely on bounded deviations inside a leaf for the same
reason, so we are forced to understand better the coarse geometry of the foliations
and produce techniques to understand the behavior of their intersections. We
point out that while very powerful, the strategy in | , ], relying
heavily on the existence of lifts of f with special properties (fixing leaves), is
unlikely to extend to other contexts. The strategy here is way more general, as
shown for instance by the fact that we are able to obtain Theorem C.

The quasigeodesic property for center curves in leaves of W%,W‘, and also
ideas and constructions of this article are what lead to the definition of a collapsed
Anosov flow (in its various forms), which is done in | |. In addition what
is done in this paper is a general recipe to prove that a partially hyperbolic
diffeomorphism in any type of 3-manifold, but admitting branching foliations with
Gromov hyperbolic leaves is a collapsed Anosov flow (that is, it is a quasigeodesic
partially hyperbolic diffeomorphism). This establishes a program to study the
structure of general partially hyperbolic diffeomorphisms in dimension 3. This

is detailed in the next section (see also [FP, | for recent progress in this
program).
In [ | we explain that all known examples of partially hyperbolic diffeomor-

phisms with branching foliations having Gromov hyperbolic leaves are collapsed
Anosov flows.

1.4. Idea of proof. Let us discuss a bit the main difficulties we need to address
and the new tools we develop to take care of them.

We focus on Theorem A and forget at first about the orientability issues men-
tioned above which involve a different kind of problems that are discussed in §9
and §10. In other words we assume the necessary orientability conditions. As ex-
plained, from the work of [ | we can reduce to the double translation case:
this means that the partially hyperbolic diffeomorphism preserves two (branch-
ing) foliations in M that are uniform and R-covered. In addition the lift f of
the homotopy of f to the identity translates both such foliations. However, in
principle we know nothing about how these foliations intersect, nor how they look
at a big scale. The main driving goal we pursued in this project was the attempt
to obtain geometric properties of the intersection of these (branching) foliations
by showing that the intersected leaves are quasigeodesics in the leaves of each
branching foliation when lifted to the universal cover.

This strong geometric property is proved in steps. We consider the center
foliations in (say) center stable leaves lifted to the universal cover. Each such
center stable leaf is Gromov hyperbolic and is compactified to a closed disk with
an ideal circle.

(i) We first show that for each ray in a center stable leaf L, the ray accumu-
lates on a single point in the ideal circle of L in §4 . We call this property
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landing of rays. To show this we exploit the pseudo-Anosov behavior at
infinity, introducing the notion of pseudo-Anosov pairs ( § 3). This works
in quite some generality, not even partial hyperbolicity is used, only that
a one-dimensional subfoliation is preserved by the map. The notion of
pseudo-Anosov pair extends and subsumes some similar phenomena al-
ready appearing in | , §8] and [ .

(ii) Then we show that given a center leaf ¢ in L, the ideal points of the two
rays of ¢ are distinct ideal points of L. This has several steps, the main
of which is to establish a small visual measure property for the invariant
foliations. Here, partial hyperbolicity is used in a crucial way, but also
a precise description of the obstruction is obtained (see §5). This part
requires some pseudo-Anosov pairs, but it is quite flexible (see §13).

(iii) Finally we show that for any center stable leaf L in the universal cover,
then the leaf space of the center foliation in L is Hausdorff in §6. Here is
the main point where the full strength of the fact that we are working in
hyperbolic 3-manifolds (or in the context of Theorem C) is crucial. This
motivates the notion of full pseudo-Anosov pair and is related to specific
properties of the laminations associated to the pseudo-Anosov elements
that appear in these contexts.

(iv) Together these properties then imply that the centers are uniform quasi-
geodesics in the center stable leaves as proved in §7.

It is worth mentioning that sections 2 and 3 are quite heavy and are used to
construct an abstract setting which is used to establish our results. The reader
may find simpler to accept Proposition 3.14 in a first read (and applying it to
either Example 3.3 or 3.4) and come back to those sections for specific definitions.
For the specific results in hyperbolic 3-manifolds, what is needed from Proposition
3.14 follows from | , §8].

We would like to mention another technical tool introduced here, which is
the notion of super attracting fixed points for actions on the universal circle
in Subsection 2.5. This notion was first introduced in the setting of lifts of
homeomorphisms of closed surfaces in | |. Here we generalize this notion
to the case of R-covered, uniform foliations with Gromov hyperbolic leaves. This
notion plays a fundamental role in the definition of pseudo-Anosov pairs and the
properties that can be proved from pseudo-Anosov pairs. We expect that it will
also be useful in other contexts.

We mention that while showing the Hausdorff property relies very strongly
on our topological assumptions (the ones in Theorem B and C), it is natural
to expect it can be obtained by other means in other contexts (see for instance
[F'P3]). We also mention that the last step, that is step (iv) in the strategy above,
has been recently extended to more generality [ ]

Finally we consider orientability issues: the results above use branching folia-
tions, which assume taking an iterate of f lifted to a finite cover of M. We then
prove invariance of these branching foliations under deck transformations of the
finite cover. To obtain this we strongly use the quasigeodesic behavior we prove
in the cover. The result is that the branching foliations descend to M and an
iterate of f satisfies all the orientability conditions. Then using additional results
of Burago and Ivanov [BI] we approximate the center stable and center unstable
foliations by foliations & and G which intersect along a one dimensional oriented
foliation, generating a flow. We show that this flow is expansive, generating a
topological Anosov flow. By the result of Shannon [Sha] the flow is orbitally
equivalent to an Anosov flow finishing the proof of Theorem A. We note that
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additional arguments are needed to obtain the proof of Theorem B. This can be
achieved for instance using the equivalence of the different definitions of collapsed
Anosov flows which is proved in | ]

1.5. More general results. One consequence of our results is that we are able
to solve the plaque expansivity conjecture (see [ ]) in hyperbolic 3-manifolds.
See Corollary 11.10.

Also, some of the results in this work hold under weaker assumptions and
these will be stated precisely in §13. For the interest of putting these results in
value, we state some consequences of these results here. Note that some terms are
undefined, but have been explained in the previous section. We refer the reader
to 13 for precise statements in some greater generality.

Theorem D. Let f : M — M be a transitive partially hyperbolic diffeomorphism
homotopic to the identity in a closed manifold M with some atoroidal piece in
its JSJ decomposition. Then, the branching foliation 'W¢ has the small visual
measure property in both W and W. Moreover, either an iterate of f is a
discretized Anosof flow, or one of the foliations W* or W* has the small visual
measure property on W (resp. W ).

‘We note that a similar result in the context of Seifert manifolds also holds:

Theorem E. Let f : M — M be a transitive partially hyperbolic in a Seifert
3-manifold so that the action of f in the base has a pseudo-Anosov component.
Then, the branching foliation W€ has the small visual measure property in both
W and W, Moreover, both W® and W* have the small visual measure property
on W and W respectively.

In particular, let us mention a suprising consequence of our techniques, stating
that under the assumptions of these theorems, the strong stable and strong un-
stable foliations may have a behavior very different from the horocycle foliation
of an Anosov flow (see Remark 5.7). As we mentioned, the missing step to have
the collapsed Anosov flow property is the need to show the Hausdorff property
for the center branching foliation in center stable and center unstable leaves in
the universal cover. This requires new ideas, but let us mention that recently, in
[['P3] this was achieved for unit tangent bundles of higher genus surfaces.

1.6. Context and comments. The problem of the topological classification of
Anosov flows in 3-manifolds goes back to the seminal work of Margulis [\Mar] and
Plante-Thurston [’'T] showing that a 3-manifold admitting an Anosov flow must
have exponential growth of fundamental group. It is noteworthy that when these
results appeared, the only known examples were orbitally equivalent to geodesic
flows in the unit tangent bundle of negatively curved manifolds and suspension of
toral automorphisms. Since then, a myriad of new very different examples have
appeared starting with the ones constructed by Franks-Williams | | and those
by Handel-Thurston | | and Goodman [Go] with somewhat different meth-
ods (we refer the reader to the introduction of | | for a list of known examples
and constructions). This was just the beginning. In hyperbolic manifolds starting
with the fundamental work of Goodman [(Go], new examples have continued to ap-
pear until very recently (see for instance | , F'H, BM]). Questions about which
3-manifolds support Anosov flows and how many orbitally inequivalent ones such
manifolds admit are still abundant. There has been considerable progress on the
classification of Anosov flows in manifolds with non-trivial JSJ decomposition,
we mention the recent work of Barbot and the first author in particular which
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gives a rather complete classification of what they call totally periodic Anosov
flows in graph manifolds as well as other classes, see | , , ]. We
refer the reader to [Bao, ] for surveys about Anosov flows in dimension 3.

The case of hyperbolic 3-manifolds is certainly the most mysterious. There are
some known obstructions for hyperbolic manifolds to admit Anosov flows, and
several constructions of such flows. Recently, some hyperbolic 3-manifolds have
been shown to admit an arbitrary large number of orbitally inequivalent Anosov
flows [BM]. All these results make our results somewhat more interesting, since it
implies that we cannot compare our systems with some model (Anosov) systems
in the manifold, as is the case for example in solvable manifolds (see for instance
[HP]). We point out in particular that the known topological obstructions to
admit Anosov flows in hyperbolic 3-manifolds are very sensitive to taking finite
covers (see | , CDJ). Hence it is very important for us to obtain the results in
Theorem A without need to take finite covers (which introduces a big challenge,
since our starting point is the existence of branching foliations from [BI] which
requires some orientablity assumptions).

Let us first comment on our Theorems A and B. The first important thing to
point out is that they both rely heavily on our previous work with Barthelmé
and Frankel | |: In that paper we showed that a partially hyperbolic dif-
feomorphism of a hyperbolic 3-manifold (up to iterate so that it is homotopic to
the identity) is either a discretized Anosov flow or up to finite cover admits two
transverse taut (branching) foliations which were translated by the lift of the dy-
namics to the universal cover. We point out that the existence of two transverse
taut foliations (even with all possible orientability assumptions) in a hyperbolic
manifold does not imply the existence of an Anosov flow, at least not one related
to those foliations (see | ]). Here, we analyze the second case, and describe it
completely. A posteriori this leads to the existence of an Anosov flow in M.

We mention that the proof of Theorem B is very similar to the proof of Theorem
C and we present it in a way that the only difference is in how one shows that
certain conditions are met, that we do at the very end. On the other hand,
Theorem C is mostly self contained, since in the isotopy class under analysis, we
only need to deal with that case. (The analogy would be that the discretized
Anosov flow case is when f is homotopic to the identity in a Seifert manifold,
which is the case we treated in | 1)

Our results fit well in the program of classification of partially hyperbolic
diffeomorphisms in dimension 3 and have motivated the definition of collapsed
Anosov flows which we believe may play an important role in this program. We
refer the reader to [Pot, HP] for recent surveys on the classification of partially
hyperbolic diffeomorphisms in dimension 3. In [ ], with Barthelmé, we have
developed the notion of a collapsed Anosov flow that was suggested by this work
and which provides a platform for classification.

1.7. Organization of the paper. After giving some preliminaries in §2 we
introduce the notion of super attracting fixed points in the universal circle in
Subsection 2.5. In §3 we give a unified presentation of [ , §8] and | )
§11] as well as | |, in particular using the notion of super attracting fixed
points, and which also works in other settings. Part of section §3 is an extension
of previous work of | , , , | to a more general setting.

In §4 and §5 we introduce new arguments that are presented in an abstract
setting that has wider applicability and applications are given in §13. This serves
two purposes, on the one hand it allows to obtain both results almost simultane-
ously; on the other hand, it also intends to express precisely what properties we
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use and where and allows to follow the arguments without prior knowledge on
fine properties of hyperbolic 3-manifolds (the properties we will use only appear
ing§11).

We use these results in §6 and §7 to make the key steps for our main results
under more restricted assumptions that will be checked for our examples in §11
and §12 (Theorems A and B are proved in §11 and Theorem C is proved in
§12). In §8 we explain how the work done in sections §4-§7 implies that certain
partially hyperbolic diffeomorphisms are collapsed Anosov flows and in §9 and 10
we obtain some uniqueness results that will allow us to show our results without
need to take finite covers and iterates.

1.8. Intersection and dependence on previous works. This article inter-
sects with [ , | and | |, so we expand on the interactions. Sections
3 through 7 here are completely independent from previous works and stand on
their own (the setup in §3 is strongly motivated by the works [ , ,
]). Tt is in these sections that we prove the quasigeodesic behavior of center

leaves in center stable and center unstable leaves under certain conditions.

Section 8 uses the property obtained in Section 7 to prove that certain partially
hyperbolic diffeomorphisms are collapsed Anosov flows. Here we directly quote a
result from [ ]. But the setup in this article is much simpler in certain aspects
than the general setup of | ], so in addition we provide a short sketch and
explanation of the proof in our more restricted setting.

Sections 9 and 10 are completely independent of | , , ] and
stand on their own. The same applies to Section 12, where we prove Theorem C.

In Section 11 we prove Theorems A and B. Here we rely on | | which
describes the two possibilities for a partially hyperbolic diffeomorphism in a closed
hyperbolic manifold: discretized Anosov flow and double translation. The first
type is completely understood in | ]. It is the second type we study here,
and prove that it satisfies the quasigeodesic behavior, in order to obtain the
collapsed Anosov flow property. This section’s goal is to further understand what
was known in | |, and how our general results can complete the picture when
M is hyperbolic.

Finally in Section 13 we provide some extra consequences of our results, some
of which rely in part on | , ].

In particular the whole strategy of proving that center leaves are uniform quasi-
geodesics (and all its steps) is completely new and introduced in this article.

Acknowledgements: We would like to thank the referee for very useful feedback that
helped us improve the presentation.

2. PRELIMINARIES AND DISCUSSIONS ON SOME NOTIONS

In this paper M denotes a closed aspherical 3-manifold, and 7 : M —> M
the universal covering map. We will assume that the manifold does not have
(virtually) solvable fundamental group. This allows to simplify some statements,
and the case of (virtually) solvable fundamental group for partially hyperbolic
diffeomorphisms is already well understood (see [[HP]). In some sections at the
end of the paper we will restrict further to M being either Seifert or hyperbolic.

Our results and statements will be independent of the chosen Riemannian
metric, but we will fix one first for which the definition of partial hyperbolicity is
given, and later we will change the metric so that the leaves of the (branching)
foliations are negatively curved: this only changes definitions by bounded factors.
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In this section we introduce some preliminaries and fix notations which will
be used later and relate with the objects introduced in the previous section.
The reader familiar with | , ] can safely skip this section, except for
Subsection 2.5 where the notion of super attracting fixed point in the universal
circle is introduced.

2.1. Branching foliations. We will give a brief account on what we need about
branching foliations introduced in [31] in our context. For a more detailed account
we refer the reader to | , §3] or | ].

Our definition will be a bit more restrictive (what we will define would be a
Reebless branching foliation) which is more than enough for our purposes and
makes the definition easier to give.

A branching (2-dimensional) foliation on a closed 3-manifold M is a collection
of immersed surfaces F tangent to a 2-dimensional continuous distribution E of
TM such that if we consider J the lift of the collection to M we have the following
properties:

(i) Every leaf L € Fis a properly embedded plane separating M into two
open connected components L® and L® depending on a fixed transverse
orientation to E lifted to M. Denote LT = L u L® and L™ = L u L°.

(ii) Every point = € M belongs to at least one leaf L € 7.

(i) For every two leaves L, F € J we have that cither F « Lt or F < L™.
This is the no topological crossings condition.

(iv) If z, > = and L,, € F so that Zp € Ly. Then every limit of L, in the
compact-open topology belongs to 7.

We will add an additional condition in the case that the distribution F is
transversely oriented, which is that every diffeomorphism preserving E and its
transverse orientation preserves the branching foliation in the sense that the image
under f of a leaf of J is a leaf of F.

A branching foliation is well approzimated by foliations if for every € > 0 there
is a true foliation &, tangent to a bundle E. and continuous maps he : M — M
so that:

e The angle between F. and F is smaller than €.

e The map h. is e-C%-close to the identity (in particular, it is homotopic to
the identity and therefore surjective) sending leaves of F. to leaves of F.

e For every L € F there is a unique leaf L. € F. so that he : L. — L is
a local C'-diffeomorphism so that 1 — ¢ < |DhZ!|™ < |Dhe| < 1+¢

(therefore, in M it lifts to a diffeomorphism).

Note that when a branching foliation is well approximated by foliations we can
define a leaf space Lg, for example by identifying with the leaf space of some of
the approximating foliations L4, = M/ 7 - This uses the uniqueness result in the

third item above, so there is a bijection between the leaf spaces of F and f;'"g.
We will use the following result (the uniqueness statement for the approximat-
ing foliation is explained in | , Appendix Al):

Theorem 2.1 ([Bl]). Let f : M — M be a partially hyperbolic diffeomorphism
of a closed 3-dimensional manifold so that the bundles E°, E¢, E" are oriented
and Df preserves their orientation. Then, there exist branching foliations W
and W tangent to E“° and E respectively. These branching foliations are well
approximated by foliations.
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We will denote by £ and L the leaf spaces respectively of the lifts W‘”, Weu
of the branching foliations. In our setting, we will be considering a special class
of foliations where leaf spaces are easier to define. See | , §3.2.2] for the
general case.

We remark also that the intersection of W& and Weu gives rise to a one-
dimensional branching foliation We which also has a well defined leaf space (see
[ , §2.3]). By one dimensional branching foliation T which subfoliates a foli-
ation F we mean a collection of C'-curves such that in the universal cover, for
every L € F the curves of T contained in L have the same properties (i)-(iv) defin-
ing two dimensional branching foliations (of course, in (i) one needs to change
properly embedded plane to properly embedded line).

2.2. R-covered foliations and hyperbolic metrics. A celebrated result of
Candel [Can] states that under quite general conditions, given a foliation in a
3-manifold, there is a metric on M that makes every leaf a hyperbolic surface.
In particular, it follows from [P, Theorem 5.1 that this is the case for every
minimal foliation in manifolds with exponential growth of 71 (M) as we will con-
sider here. Here is why: If there are no holonomy invariant transverse measures,
then this result follows directly from Candel’s theorem [Can]. If there is a holo-
nomy invariant transverse measure, then this result follows from ['P, Theorem
5.1]. Since we will be mainly concerned with minimal R-covered foliations we will
consider such a metric for some approximating foliations F¢ F to \WCJS,W\;“
and this will induce a (coarsely) negatively curved metric on each leaf of both
branching foliations, see the next subsection.

We will say that the branching foliation F is R-covered if for every pair of
leaves L, F € F we have that either LT < F* or F* < L*. This allows to
induce an order between leaves and therefore it is equivalent to having that the
approximating foliation is R-covered, that is, the leaf space L4 is homeomorphic
to R. Compare with [ , §11.1, §11.2].

Most of our study will take place for uniform and R-covered branching fo-
liations. A branching foliation F is uniform if given two leaves L, F € F the
Hausdorff distance between them in M is finite. It follows from [F'P5, Theorem
1.1] (see also [F']’5, §6]) that a uniform branching foliation is R-covered (here we
use the hypothesis that the approximating foliations are Reebless). We will say
that a branching foliation is by hyperbolic leaves if the metric on M makes all
leaves uniformly Gromov hyperbolic (see [ , §A.3)).

2.3. Boundary at infinity and visual metric. Let L be a complete simply
connected surface which is Gromov hyperbolic. We can define S(L) its visual (or
Gromov) boundary as the set of geodesic rays on L identified by being equivalent
if they are a finite Hausdorff distance from each other in L. An oriented bi-infinite
geodesic £ € L has therefore two endpoints ¢* corresponding to the positively and
negatively oriented rays of ¢\{z} for some x € ¢. This is clearly independent of
the point = € /4.

One can compactify L to L = L u S(L) making it homeomorphic to the
closed disk (see [BH, §III.H.3] or [ ]). Given a geodesic ¢ in L and a point
¢ in SY(L)\{¢*} we can define an open set Oy(£) containing ¢ € SY(L) as the
union of the open interval of S'(L) whose endpoints are /™ and ¢~ and contains
¢ and the connected component of L\¢ containing completely a geodesic ray r
representing &. Note that for every &\{¢*} there are rays in L\/ representing it,
and the definition of the open set Oy(§) is independent of this choice. The open
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sets Oy(&) with ¢ being geodesics in ¢ together with the open sets in L give a
topology in L making it homeomorphic to a closed disk.

For several reasons, we will choose a metric in M whose restriction to leaves
of ¥ is CAT(k) for some k < 0 which can be done using the Candel metric,
where we approximate by an actual foliation, as opposed to a branching foliation
(see | , Proposition A.5]). This is not so important, since there are canonical
ways to define visual metrics, but it is convenient to have a geometric sense of
what is happening. Scaling the metric, we can always assume that all leaves
are CAT(—1). This property implies uniqueness of geodesic segments, rays, or
full geodesics given the endpoints or ideal points. In particular the CAT(—1)
property implies that for any x in a leaf L there is exactly one such ray starting
at z for every ¢ € S1(L) so one can identify S'(L) with T1L. This defines, for
each x € L a visual metric on S'(L) given by measuring intervals in S'(L) by
the angle in 7} L measured with the Riemannian metric on L. A very important
fact for us is the following:

Remark 2.2. The visual metric in S1(L) is well defined up to Hélder equivalence
[BH, §ITI.H.3].

These metrics in the leaves vary continuously with the points in M. Then
SY(L) is canonically identified with T} L. Also when x varies, the sets T} L, vary
continuously. It follows that the visual metrics in S'(L) vary continuously with
the points.

We refer the reader to | , , , ] for more general statements.

2.4. The universal circle. In this subsection we describe what we need of the
universal circle of the foliation which allows us to determine the dynamics at
infinity of a good pair. What is described here is done with much more detail
and richer properties in [1h,, , ]. Our construction is from scratch with
only the properties we will need, see also [P, §2.5].

Let F be a uniform R-covered branching foliation on M by hyperbolic leaves
and F its lift to M. For each L € F we consider its visual boundary S*(L) as in
§2.3.

Let A =], 5 SY(L) which can be given a topology from the collection of T1§’|T

where 7 is a transversal compact segment to F. Then if L, — Lin £ = M /§
then S'(L,) — S'(L). With this topology A is an open annulus since it is a
circle bundle over the leaf space £ of 7.

Recall that a quasi-isometry between two metric spaces (X, dx) and (Y, dy) is
amap ¢q: X — Y such that there exists C' > 1 such that for every z,2' € X we
have:

O~ ldx(z,2') — C < dy(q(2),q(z")) < Cdx (z,2") + C.

We do not require g to be continuous, the constant C' is called a quasi-isometry
constant for q. A quasigeodesic in (X, dx) is a quasi-isometric map from R with
its usual distance into X and a quasigeodesic ray is a quasigeodesic map from
[0,00) to X. The Morse Lemma (see eg. [BH, Theorem III.H.1.7]) states that
if L is a Gromov hyperbolic simply connected surface then for every C' there is
some K such that if r is a C-quasigeodesic (resp. C-quasigeodesic ray), then
there exists a true geodesic (resp. geodesic ray) at Hausdorff distance less than
K from r. This also holds with the same constants for quasigeodesic segments
and the geodesic joining the endpoints.
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Proposition 2.3. Let f : M — M be a homeomorphism preserving F, it follows
that any lift f extends naturally to a homeomorphism of A that we still call f
and preserves the fibers (i.e. it is a homeomorphism from SY(L) to S*(f(L)).

Note that, by taking f = id this includes action by deck transformations in
M.
Pmof Since f is a homeomorphlsm of M which is compact, then any given lift
f induces quasi-isometries* from L to f (L) for every L € F so it maps geodesic
rays into quasigeodesic rays. The Morse Lemma implies that these are bounded
distance away from a well defined geodesic ray up to bounded distance. This
induces a continuous map from S'(L) to S*(f(L)) and f~* induces its inverse so
it is a homeomorphism. O

It is many times useful to collate all circles in S*(L) by constructing a universal
circle, introduced by Thurston. There are standard constructions, which in the
setting of R-covered uniform foliations gets simplified [Th-, §5] (see | , ,

| for more details and more general constructions).

To do this for R-covered uniform foliations, it is important to construct a
natural way to identify leaves of 7. Intuitively, one can think as if there is a flow
®; in M which is transverse and regulating to F: this means that if one considers
two leaves L1, Lo € F then the time it takes the flow ®; to take a point of L;
to a leaf in Lo is bounded above by a constant only depending on L; and L.
This flow can be extended to A and gives a way to identify fibers. Such a flow
exists for general transversely oriented, uniform R-covered foliations [ . To
construct the identification between distinct circles at infinity, less is needed:

Proposition 2.4. There is a family {r : L v SY(L) — L' v SY (L")} for
L L'e F with the following properties:
(i) the map T, 1/ : L — L’ is a quasi-isometry whose constant depends only
on the Hausdorff distance between L and L',
(ii) the map 7 1/|s1(ry : ST(L) — SY(L') is a homeomorphism,
(iii) one has that

TL’,L”|Sl(L’) © TL,L”,S’l(L) = TL,L”\Sl(L)

This statement can be found in [Th,, §5], [Ca,, Corollary 5.3.16] or | ,
Proposition 3.4] and the proof works exactly the same for branching foliations®.
The quasi-isometries 77,7/ : L — L’ are coarsely well defined, in the sense that
given L, L’ there is a constant b which depends only on the Hausdorff distance
between L, L' so that for any = in L, then dg;(x,7z,r/(7)) < b. For R-covered
foliations this implies that if Ti’ ;, is another such map then

dp(tp, (%), 77 () < b,
for a constant by that depends only on b. So 77, 1/ is coarsely defined.
We can now define S}mw, the universal circle of the foliation F, as A/. where
we identify the circles S'(L) and S(L’) via the maps 77, 1/ from the proposi-

tion. It is important to remark that the universal circle depends on the foliation,

4One can cover the manifold by finitely many sufficiently small foliations charts. A homeo-
morphism verifies that the image of a plaque in a foliation chart can intersect only finitely many
(uniformly bounded number of) foliation charts. Since plaques in the chart have size uniformly
bounded from above and below, one deduces that f must be a uniform quasi-isometry between
leaves of the foliation.

50r can be deduced for them by using approximating foliations.
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and so, when several foliations are involved (as is the case of partially hyper-
bolic diffeomorphisms) we will make an effort to make clear which circle we are

considering. For any L in F define

Or: S11Lmv s (L)
the map that associates to a point in S} . its representative in S'(L). Notice
that for any leaves L, E' of & then

Op = TL,ECOL
A useful property for us is that the following extension of Proposition 2.3 holds:

Proposition 2.5. Let f: M — M be a homeomorphism preserving an R-covered
uniform branching foliation I by hyperbolic leaves and f a lift to M. Then, there
1s a well defined action fOO off on Sllmw given by fOc = Ll ° Ty © f O :
sl . —s!

wniv univ: Where L is an arbitrary leaf of F. In other words the map foo 18
independent of the choice of L.

Proof. We sketch the proof, for more details see the proof of | , Proposition
3.4]. Let pin S} Choose an arbitrary leaf L of F to start with. The point p in

univ”*
St .. is associated with a point ¢ in S*(L), ¢ = ©L(p). Let r be a geodesic ray in
L with ideal point ¢. Then since f is a quasi-isometry from L to f (L ) it follows
that f (r) is a quasigeodesic ray and has a unique ideal point g in S*( f (L)). Any
other geodesic ray 7’ in L with ideal point ¢ in L, r’ is asymptotic to r, hence
f(r') is a finite distance from f(r) and defines the same ideal point in f(L).
Finally we need to show that the map is independent of the choice of L, that

is, that

forrmlsiw) = Thuy jm © flsiw):

for any leaf E of 7.

For this, let E be another leaf of F. The map 77 g : L — E is a quasi-isometry
so that for any x in L, then dg; (v, 71 g(2)) < b for b which depends only on the
Hausdorff distance between L, E. It follows that 77, g(r) is a quasigeodesic ray
in E which is a bounded distance in M from r. The quasigeodesic ray 7z, g(r) is
also a bounded distance in E from a geodesic ray in E (this bound only depends
on the quasi-isometry constant of 77, ). Hence there is a geodesic ray 7’ in E
which is a bounded distance in M from r. If q' is the ideal point of r’ in E,
then by definition 77, g(q) = ¢ Taking the image of both r,r’ by f we obtain
quasigeodesic rays f(r), f(') in f(L), f(E) respectively, which are a bounded
distance from each other in M. The ideal point of f(r) is f(¢q). The ideal
point of the second is f o 71,1(q). Since these qua&geodesm rays in f(L), f(E)
respectively are a bounded distance from each other in M , they define the same
point in the universal circle, in other words

Tf(L),f(E)(f(Q)) = flr.5(q),

which is exactly what we wanted to prove. (|

2.5. Visual metrics on the universal circle S;mv In the previous section

we described visual metrics in individual leaves of . It will be useful to have
metrics on S! . to talk about super attracting fixed points of homeomorphisms

unv
acting on S . .
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Consider first a leaf L of F. There is a well defined bijection O : Sl
SY(L). The ideal circle S'(L) has visual metrics: given xg in L there is a bijection
between the unit tangent vectors to T at z and the points in L. The angle metric
in T, 9}05’ induces a metric on S'(L). When one changes the basepoint in L the

visual metric in S'(L) changes by a Holder homemorphism as noted in Remark
2.2, see [BH, §II1.H.3].
A map g: (A,d) — (B,d) between metric spaces is quasisymmetric if

e g is an embedding,
e there is a homeomorphism 7 : [0, 00) — [0, o0) so that if =, y, z are distinct
points in A, then

d'(g(2), 9(x))  _ (d(zaﬂ«“))
d(g(y),9(x)) d(y, x)

See [IHa, Definition 2.1].

When one changes from one leaf L to other leaf F, one needs to understand
the metric properties of the map 77, i restricted to S Y(L). Tt is the identification
associated with the universal circle S}miv.

Recall from Proposition 2.4 that 77, g is a quasi-isometry from L to E. Quasi-
isometries between Gromov hyperbolic spaces induce quasi-symmetric homeo-

morphisms of the boundaries.

One can obtain this from the proofs of [GH, Propositions 5.15 and 6.6]. How-
ever they only explicitly talk about quasiconformal behavior, which in dimension
1 does not provide much information. In [[{a, Theorem 3.1] there is an explicit

proof that a C-quasi-isometry between Gromov hyperbolic spaces induces an ideal
map g which is quasisymmetric with constants related to C, the quasi-isometry
constant. He proves that it is quasi-Mobius (which we do not define here), which
implies quasisymmetric. We note that the quasi-isometry constant C' depends
on the Hausdorff distance between leaves but we do not have much control on
it. However, some metric properties make sense. We can now introduce super
attracting fixed points.

First we choose a metric in S . : let d be a visual metric in S . given say

by identification with S'(L) using a point in L for some L of J.
Definition 2.6. Let f be a homeomorphism of S}

univ Which fixes a point £ in

Sl .- We say that ¢ is a super attracting fixed point for f if
i AE@.O
z—¢ d($a 5)

where h is the expression of f using the identification of S! . with S*(L) for

o UnNIv
some leaf L of &F.

Compare with the definition given in | , Appendix A] which is done in a
special situation. The name is inspired in complex dynamics where super attract-
ing points are those whose derivative vanishes. Here, even if we cannot define the
derivative since maps are only continuous, the quasi-symmetric structure allows
‘zero derivative’ as in Definition 2.6 to make sense as we will prove next.

Lemma 2.7. The property of & being a super attracting fixed point for a homeo-
morphism f:SL .+ Sl . s independent of the leaf L in .

univ univ

Proof. Let h be the expression of the homeomorphism f using the identification
O :S. . — SYL). If SL . is identitifed with S*(E) for another leaf E of F,

univ univ



16 S. FENLEY AND R. POTRIE

1 . coming from identification with S'(L) and d’
from identification with S!(E) are quasisymmetric using the map g which is 77 g
restricted to S'(L). Let 1 be the quasisymmetric function associated to g. Then

d'(g(h(z), 9(€)) _ (d(h(l‘)@))
d(g(x),9(&) '

d(z, §)
Here d’ is the metric in S}, coming from identification with S*(E). As 7 is a

homeomorphism with 7(0) = 0, it follows that

d'(g(h
i 7001(2). )
vt d'(g(x),9(£))
Let z = g(x). Since g is a homeomorphism, then z limits to £ if and only if z
limits to g(§). So we obtain

lim d'(g(h(g~"'(2))), 9(£))
2—g(€) d'(z,9(£))

But g o h o g7 is the expression of f using F instead of L. This proves the
lemma. O

then the visual metrics d in St

= 0.

= 0.

1

2.6. Discretized and collapsed Anosov flows. We refer the reader to the
paper | | which discusses in detail these concepts, as well as equivalences,
examples and properties. Here we just give some quick definitions and properties
that we will use to prove our results. Let M be a closed 3-manifold. A non-
singular flow ¢; : M — M generated by a vector field X is said to be Anosov if
there is a D¢¢-invariant splitting TM = E* @RX @ E* and tg > 0 such that if
v? € E? is a unit vector (o = s,u) then:

1
[Doe v’ < 5 <2< | Doty

It is easy to show that a flow on M is Anosov if and only if its time 1 map (and
therefore its time t-map for every t) is partially hyperbolic. We refer the reader
to [ , , ] for generalities on the topological properties of Anosov flows.

We also have to consider the topological versions of these objects. A topological
Anosov flow ¢y : M — M is an expansive flow tangent to a continuous vector
field X which preserves two transverse foliations so that orbits of one of the foli-
ations get contracted under forward flowing while orbits of the other foliation are
contracted by backward flowing. See | , Appendix G] for more discussions.

It has recently been established by Shannon that transitive topologically Anosov
flows are orbit equivalent to true Anosov flows [Sha].

More generally, a pseudo-Anosov flow is a flow ¢y : M — M preserving two
transverse singular foliations which is locally modelled in a topological Anosov
flow away from finitely many periodic orbits on which it has singularities of prong
type. See [Cas] for more details. We note that every expansive flow is pseudo-
Anosov [IM, Pat].

In this paper we will be mostly interested in what is called R-covered Anosov
flows: that is, topological Anosov flows whose stable foliation ¢ and unstable
foliations F¥ lifted to M are R-covered. There are two important classes of
R-covered foliations: suspensions and skewed Anosov flows. A fundamental early
result on Anosov flows is the following:

Theorem 2.8 (] , ). The orbit space of the lift &1 of an arbitrary Anosov
flow to M is homeomorphic to R%. The flow is R-covered if and only if one
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of the foliations F*5 or F** is R-covered. The foliations g”ws,g‘“’“ induce one-
dimensional foliations on R? and ¢; is a suspension if and only if the foliations
have a global product structure. If ¢; is R-covered and not orbitally equivalent
to a suspension, then ¢; is skewed. Moreover, every R-covered Anosov flow is
transitive.

Notice that the previous theorem is shown for topological Anosov flows, so,
combined with [Sha] it says that if a topological Anosov flow is R-covered, then
it is orbit equivalent to a true Anosov flow. Also, it follows from [Bru] that
topological Anosov flows in atoroidal 3-manifolds are always transitive.

3. PSEUDO-ANOSOV GOOD PAIRS

Let F be a Reebless branching foliation of a closed 3-manifold M which is
R-covered and uniform and by hyperbolic leaves. Denote by F to the lift of F to
M. We choose a transverse orientation for J and for L € F we denote by LT and
L~ the closed half spaces determined by L in M.

By the definition of branching foliation it follows that given L € F , every leaf
L' € F is contained in either LT or L~ (and if it is contained in both, it must be
L). We will denote by S! . the universal circle of F (cf. §2.4).

univ

3.1. Good pairs. We will be interested in certain lifts of maps that preserve the
foliation F.

Definition 3.1. leen f, g : M — M diffeomorphisms of M preserving &, a pair
( f g) where f g: M — M are lifts of f, g is called a good pair if they commute,

neither fixes a leaf of F and one of them acts as the identity on S}mw

Notice that this implies that both f and g act as a translation on the leaf space
Lg ~ R.

Remark 3.2. If (f,g) is a good pair, then we can consider the quotient Mf =

M /- > which is a solid torus trivially foliated by the leaves of the induced folia-
tion &F i The leaf space® L;}rf =M f/g“f is a circle where n > the action induced by

f in the quotient, acts as a homeomorphism. The same can be done to produce

We will mostly have in mind the following two examples on which our results
will be applied and eventually specialize to these cases:

Ezample 3.3. Let M be a closed 3-manifold and F be a minimal foliation in M
preserved by a diffeomorphism f: M — M homotopic to the identity. It follows
from | , Corollary 4.7] that if we consider fto be a good lift of f (i.e. the
lift obtained by lifting a homotopy to the identity, cf. | , Definition 2. 3])
then either every leaf of F is fixed by f or F is R-covered and uniform and f
acts as a translation on the leaf space £ of F. Since f is a bounded distance
from the identity, one can easﬂy show that f acts as the identity on Sunw, when
F is R-covered. Moreover, as f commutes with all deck transformations (which
are lifts of the identity that clearly preserves ), it is enough to find a deck
transformation v which does not fix any leaf of F to obtain a good pair (f,v).
Note that such deck transformations are quite abundant (see for instance | ,

6Formally, we need to take the approximating foliation to define the leaf space, but one can
also define Lgf by using the action of f in L.
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§8] and | , §10] for the case where M is a hyperbolic 3-manifold). In this
paper we will later consider this setting when J acting as a translation and M is
a hyperbolic 3-manifold to prove Theorem B.

Ezample 3.4. Let f : M — M be a diffeomorphism of a Seifert manifold M with
hyperbolic base and preserving a horizontal (branching) foliation F. Horizontal
means that the Seifert foliation is isotopic to one which is transverse to F. In
particular F is R-covered and uniform. (Since M has hyperbolic base, it follows
that it has a unique Seifert fibration up to isotopy, see eg. [ , Appendix
A].) Suppose now that the Seifert fibration is orientable. Then (M) has non
trivial center, which is infinite cyclic, and we can take v to be a generator of the
center. The center corresponds to the regular circle fibers, « picks an orientation
on these.

In that case f preserves the center of m(M), and up to taking a square f

preserves the conjugacy class of v Note that « acts as the identity on S . . 1

addition, if F is the lift of F to M it follows that ~v does not fix any leaf of fF
because F is horizontal. Moreover, again takmg the square of f if necessary, any
lift f of f commutes with . If one fixes a lift f it follows that for large enough
m > 0 the pair (7™ f ,7) is a good pair. This setting will be considered when the
action in the base is pseudo-Anosov to prove Theorem C.

Notation 3.5. Given a good palr (f g) and m, n integers we denote the by P to
the diffeomorphism P = ¢ o f” of M and by P the induced homeomorphism

of SL . (cf. Proposition 2.5). The values of m,n will be clear in the context.

3.2. Super attracting points. In this subsection we study what happens when
a good pair has a super attracting fixed point in the universal circle (cf. Defini-

tion 2.6) and how this forces some behavior in M. We remark that such useful

information in M from the action at infinity cannot in general be obtained from
a merely attracting fixed point in S! . .

We first need to describe some natural ‘neighborhoods’ of points of S}mw inside

M adapted to a good pair (f, §). We will assume in all this subsection that (f, )
is a good pair preserving JF and that g is the ‘clement of the pair which acts as the
Recall that for any L in F, we denote by O : S} — SY(L)

identity on Sl unv
the map that associates to a point in S!

univ* 1
univ 1tS Tepresentative in S*(L).

We will need to introduce some notations. Given an interval I of S} . con-
taining & in its interior and L € F , we denote by E% the geodesic in L joining the
endpoints of ©,(I). Given a leaf L € F we denote by LY to the closure of the con-
nected component of L\¢¥ whose closure in LU S(L) contains ©(I). Given b > 0
we denote as L;rb c L (resp. Ll_b) to the union of LY with the b-neighborhood of

(% (vesp. the points in LY at distance larger than b from ¢£).

Definition 3.6. Given{ € S we say that an open set U of Misa netghborhood

of £ if it is ¢ invariant and for every L € F we have that U n L contains L(}( L)

unw

for some I(L) = S} . open interval containing &, and I(L) varying continuously

with L In addition we say that an unbounded sequence x, € M converges to
¢ e Sl . if for every U neighborhood of ¢ there is ng such that if n > ng then
zn €U.

There is a lot of freedom in the definition of these neighborhoods of points £ in

Sinw Notice in particular that we require that the neighborhood is ¢ invariant

(where go is the identity). This requirement is necessary for some technical
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results later on to hold. Heuristically, what it allows to do is to think about
neighborhoods of points at infinity in the quotient M /<g>, if § were a deck
transformation (thus an isometry) one could define the neighborhoods by looking
at the geodesic joining the points in the interval at infinity, but since this is not
necessarily the case, we need to work some more to produce useful neighborhoods.

Proposition 3.7. Let (f,§) be a good pair and P = §™ o f™ so that £ in sl
is a super attracting fived point of Po. There is a neighborhood U of § in M so
that P(U) < U and for any x in U then P'(x) converges to & when i — .

niv

We will first construct a family of neighborhoods of ¢ depending on open
intervals I so that ¢ € I < S}

univ, and a given leaf L € J it satisfies the conditions
on the next lemma:

Lemma 3.8. Fiz a leaf L € f;'", then, for every open interval Iy Slltm-v and
e > 0 there is I < Iy open interval whose closure is contained in Iy and Iy is
contained in its e-neighborhood in S}miv satisfying the following: we can define

an open set Ur which is a neighborhood of any o € I (cf. Definition 5.6) and such
that LUy = LY. Moreover, there exists by > 0 such that for every E € [L, §(L)]

we have that EI_bO cUrnFEC E;”bo

Proof. Since the result is in the universal cover, we can assume by taking a
double cover that & is transversely orientable. Then Theorem 2.1 implies that F
is approximated by an actual foliation F.. The universal circles of F and F. are
canonically homeomorphic, under an equivariant homeomorphism. Given a leaf
E of F there is an associated leaf E of g"g.

The foliation F, has leaves with curvature arbitrarily close to —1. A contracting
direction in a leaf of E of f;'} is an ideal point y of E so that a geodesic ray r
from a basepoint zg in E to the ideal point y satisfies that all nearby leaves in
one side of E contracts towards E along . Thurston proved (see | , §3]) that
either there is a holonomy invariant transverse measure or for every leaf E of f;'}
the set of contracting points from E is dense in S'(E). In the first case for every
d > 0 there is also a dense set of directions in every leaf E so that nearby leaves
stay always less than § from FE in these directions. The contracting points or
points which are § close to nearby leaves project down to similar points of the
branching foliation F. These contracting directions will allow us to ‘interpolate’
between curves in closeby leaves to produce the desired neighborhoods.

N There is k1 > 0 so that the image under g of any geodesic £ in a leaf F of
F is a k1 quasigeodesic in g(F). Let by be a global constant so that if £ is a ky
quasigeodesic in a leaf E of f;'“? then £ is at most by/2 distant from the geodesic
in E with same ideal points as £. Fix § > 0 which is much smaller than the local
product size of the foliation F. Now let g > 0, dg << 0 so that if two leaves
Ey, Es of F are within dg of each other along a geodesic 8 of Fy, then Fy, Ey are
within & of each other in a neighborhood of size by of 5. This is why we use the
approximating foliation, rather than the branching foliation.

So fix the leaf L as in the statement of the lemma. Given g(L) we find ideal
points z1, 22 in S!(g(L)) arbitrarily close to the endpoints © (1) (01p) so that rays

in §(L) in the direction of z; are 8 close to all nearby leaves E of F in [L, §(L)].
Let yi = (Oy(1)) " (2i)-

Consider /¢ the geodesic in L with ideal points ©r(y;). Consider in §(L) the
geodesic § with same ideal points as §(¢). Then S, §(¢) are at most by/2 distant
from each other in §(L). Choose E in [L,§(L)] which is at most dy from §(L)
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along 8. One can do this for some rays of § in either direction by the choice of I.
Then by choosing E closer to (L) if necessary, one can choose this for the whole
geodesic 3. Let B be the by/2 neighborhood of 8 in g(L). Then B is § near F’
for any E' in [E, g(L)).

In E let {5 be the geodesic with ideal points ©g(y;). The foliation F is a
product in the § neighborhood of B, hence one can continuously chooose curves
lq for G in [E, g(L)] so that:

(i) £¢ is a quasigeodesic in G,
(ii) 4 has ideal points Og(y;),
(iii) £ is within by of the geodesic S in G with ideal points Og(y;).
(iv) £g is the geodesic with ideal points O g(y;).
(V) Loy =9(lL).

Now for G in [L, E] let {g be the geodesic with ideal points O¢(y;).

This defines the neighborhood U; for G in [L,§(L)]. Then iterate by g to
construct all of Ur. By construction U; satisfies the last property of the lemma.
In addition L n Uy = L(}.

Finally we check the first property of the lemma. For any G leaf of F , there is
a unique n so that £ = ¢7"(G) isin [L, g(L)). Then Uy n G is g"(E n Uy). The
set E n Uy is bounded by a uniform quasigeodesic in E, with endpoints ©g(0I).
Hence §"(EnU;) = G Uy are also bounded by uniform quasigeodesics with ideal
points ©¢(0I), because " is a quasi-isometry between leaves. Hence for any o
in I, there is J open subinterval of I containing ¢ so that the set Ur n G contains
GY for all G in [L,§(L)]. Now fix o in I, then the interval J above depends on
G, and one can chooose J(G) varying continuously with G, by decreasing it if
necessary.

This finishes the proof of Lemma 3.8. 0

Remark 3.9. Note that if F ¢ [L,§(L)] one cannot ensure the containment and
inclusion with the same constant by: this is because one applies iterates of the
quasi-isometry g, whose quasi-isometry constants get worse with iteration.
This means that given o € I it is not a priori true that there is a fixed interval
J with o € J and J < I with G% < Uy n G for all G in T,
Proof of Proposition 3.7. Given I < S} .
lemma, and F € .’;’, we denote AIE =EnUj.
We claim that if I as above is a sufficiently small interval around &, then there
are smaller intervals J around &£ such that

¥ oP(ALY < Al

for all F in [L,g(L)]. We explain what E’ and k are in this formula. They are
uniquely defined so that E’ € [L,§(L)) is the image of E by ¢* o P, and k € Z
is defined uniquely so that §¥ o P(E) € [L,§(L)). This will complete the proof
of the first statement of the Proposition because the formula above shows that
P(AL) « Uy for all E in [L,§(L)]. The fact that P(U) < U then follows from
the facts below: N

1) [L,g(L)] is a fundamental for the action of g on M,

2) P commutes with g,

3) Both Uy and U are ¢ invariant.

To get the property above, first note that the value of k is uniformly bounded
in [L, §(L)] and so one gets that the quasi-isometric constants of the map §¥o P :
E — E' are uniformly bounded independently on E € [L,§(L)] (where the k

Ur as constructed in the previous
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depends on the particular leaf F). It follows that there exists by > 0 such that
for every J = Sl . if we denote by Z = Py (J) we have that

univ
§" o P(EJ™) = (B

for every E in [L, g(L)], where by was defined in the previous Lemma..

Now we use the property of £ being super-attracting for the map P.,. Since g
acts as the identity on S! . = then & is super attracting for (g% o P).

For each fixed k one has that (§* o P)o, = Py. Therefore one gets that for
small enough intervals I around & the image Z = P, (1) verifies that the distance
between the geodesics (¥ and (£ are much larger than 2by + by for every E €
[L,g(L)]. Here again we use that [L, §(L)] is a compact interval in the leaf space
of F. Hence we can choose .J interval in Sl . around ¢ and Uy as defined in the
previous lemma, so that 55 separates 5% from E%, and

(E)}b1 c (B)}Y ¢ UnE

for all E'in [L,g(L)]. Let U = U;. This proves that P(U) c U.

In addition one can choose the starting I small enough, so that in the proof
above the distance from any point in EIE to any point in E;é is bigger than a
constant by >> 2bg + by for all Ein [L, §(L)].

This holds for smaller I as well. In particular it holds for J. Hence the distance
in E (for any F in [L,§(L)]) from any point in ¢ to any point in P2(U;) n E
is at least 2bg, and similarly for any positive P? iterate it is at least iby. This
implies that for any neighborhood V' of £ there is ¢ > 0 so

PiU; n[L,g(L)]) < V.

The g invariance of the sets Uy and V' then implies that Pi{(U;) = V. Hence for
any x in U then P’(x) converges to & when i > 00. This completes the proof of
Proposition 3.7. U

Definition 3.10. Given a good pair (f,§) so that & € Sl
(resp. super repelling) for P = g™ o f™. We define the basin of attraction (resp.

basin of repulsion) of £ to be the set of points z in M such that PF(z) — ¢ as
k — +o0 (resp. k — —o0) understood as in Definition 3.6.

is super attracting

Proposition 3.7 says that a super attracting point (which is defined only by
the action on Simv) has a non-trivial basin of attracting which is a neighborhood

of the super attracting point.
Remark 3.11. Let ( f ,g) be a good pair and assume that § act as the identity on
Sl ... Tt follows that if a point £ € S} .

univ*
then n # 0 and then & will be super-attracting for every lift g% o £ if £ > 0 and
super-repelling if £ < 0.

is super-attracting for a lift P = §™o ",

3.3. Pseudo-Anosov pairs. We can now define a technical object that will be
central in our proofs:

Definition 3.12. A good pair (f,g) is a pseudo-Anosov pair (or pA-pair) if
there is n,m € Z such that if P = g™ o f” then the homeomorphism P, in the
universal circle S. . (cf. Notation 3.5) has exactly 2p fixed points, all of which
are alternatingly super-attracting and super-repelling. Here p is an integer > 2.
If p = 2 the pair will be called a reqular pA-pair and if p > 3 it will be called a

prong pA-pair. We denote by I(P) = 1 — p the index of the pseudo-Anosov pair.
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@

FIGURE 1. A pseudo-Anosov pair with p = 3.

, Proposition 8.1] and |

We next state a result which extends

§3):

e a pseudo-Anosov pair with
g acting as the identity on S, > o fk as in Definition 3.12. Let
{ai,...,ap} and {ry,...,rp} be the super attracting and super repelling points of
Py, on St ... We define T7 (resp. Tp) as the set of points which is not in the
basin of attraction of any of the points ai,...a, € SL . (resp. not in the basis

of repulsion of any of the points r1,...,r, € SL . ). Let
Tp = T ATy

Proposition 3.13 follows from applying the following consequence of Proposi-
tion 3.7 that we state precisely for future use and prove below.

Proposition 3.14. Let (f,g) be a pseudo-Anosov pair with § acting as the iden-
tity on SL .. and let P = §™ o f* as in Definition 3.12. Then:
(i) The set L\T} (resp. L\Tp ) is non empty and open.
(ii) For each L in F, L~ Tp # .
(iii) For any L in F, then L n Tp is compact. In addition Tp/<g>, Tp/<f>
are compact.
(iv) For every & € S . \{r1,...rp} (resp. €€ SL . \{a1,...,ap}) if we denote
a; (resp. a;) to be the point such that P™(§) — a; (resp. P™"(§) — 1)
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then, there exists a neighborhood Ug of & in M contained in the basin of
attraction of a; (resp. basin of repulsion of r;).

Proof. Ttem (i) follows directly from Proposition 3.7 because it proves that the
basins of attraction and repulsion of each point in {a1, ..., ap, 1, ...,rp} are open,

non empty sets in M.

Next we prove item (iv). Fix L in F. Let ¢ not one of the r;. Then ¢ is in
the basin of attraction of some attracting point under P.,, assume without loss
of generality it is a;. Let U = U; be a neighborhood of ay constructed as in
Proposition Lemma 3.7. Let i > 0 so that P} (&) is in the interior of I. Then
as in the proof of Proposition 3.7, there is .JJ open interval containing P%(£) so
that E?]b“bl c U for all E in [L,§(L)]. We can construct a set Uy in [L, §(L)]
as in Proposition 3.7 so that Uy n E < U for all E in [L, §(L)]. Then iterate by
g to produce Uj. It is a neighborhood of P?(¢) which is contained in the basis
of attraction of a;. Then P~%(Uy) is the desired neighborhood of ¢ contained in
the basis of attraction of a;. This proves (iv).

To obtain item (iii) we do the following. Let € in S. . not one of {r;}. There is
a1 an attracting point of Py, so that £ is in the basis of attraction of a; under Py,.
Fix a neighborhood U of a; contained in the basis of attraction of a; under P
as provided in item (iv). There is i so that P (¢) € I. Fix L in F, let 7 = Or(§).
The above shows that P¥(7) is an interior point of © pi(r)(I). In particular there
is a neighborhood V of 7 in L U SY(L) so that P{(V n L) = (U; n P(L)). This
is because of the definition of the neighborhoods U;. Similarly there is j so that
Pi(¢)isin J where Uy is contained in a repelling neighborhood of a repelling point
r1 of Py. Both of these facts together imply that L n Tp is compact for any L in
F. In the argument above one can take the neighborhood in Ugez(E U SYE)),
where Z is any compact interval in the leaf space with L in the interior. This
shows that Tp/4~,Tp/_ j~ are compact.

Finally we prove item (ii). Fix L in F. Fix a union V of neighborhoods of the
points r1, ..., 7, so that P~1(V) < V. For any n > 0, the set

Ay = (T =V) A PT(L)

is non empty. Otherwise the basins of attraction of different a;, a; intersect, which
is impossible. Choose z,, in A,, and let y,, = P"(x,) which is in L. In addition
Yn is not in V and y, is in T; . Therefore y,, is in a compact set of L. Take a
subsequence y,, converging to y in L. If y is not in T}, then there is ng > 0 so
that P~"0(y) is in V, so a neighborhood W of y so that P~"(W) < V for any
n > ng. Assume all y,,, are in W. But this contradicts that P~"i(y,,) = =, are
never in V.

This contradiction shows that y is in T . Since z,, is in T;; then y, is also in
T; and y is in T;. It follows that y is in Tp so Tp N L = . This finishes the
proof of (ii).

This finishes the proof of the proposition. O

Since for pA pairs (and appropriate choices of integers n,m with P = g™ o f”)
all fixed of Py in S&mv are super attracting and super repelling, we will dispose
the use of the word super when it is clear that we are considering a pA pair and

call the points attracting and repelling.

Addendum 3.15. In the setting of Proposition 5.1/ we have the following: for
every family of attracting neighborhoods U,, of the attracting points a; and L
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x>
e

FIGURE 2. The core of the pA pair.

n f;", there is some R > 0 such that outside a ball of radius R in E we have
that T, n E is contained in those neighborhoods, for any E in [L,g(L)]. The
symmetric statement holds for the repelling points and TIJ;. In particular, Tp N L
is contained in a ball of radius R inside L.

The second statement is obvious because the quotient Tp/ 4~ is compact. To
obtain the first statement: for each individual E in [L, g(L)] this is true for some
R(L) by item (iv) of the previous proposition. Then since [L, §(L)] is a compact
interval of leaves, the result follows.

An argument very similar to the proof of item (ii) of the previous proposition
yields the following result which will be useful in the future. The map ¢ acts freely
and properly discontinuously in M , hence M /<> is a manifold N (cf. Remark
3.2). The foliation F induces a foliation F n in N, whose leaves are homeomorphic
to planes and the leaf space of Fy is the circle. Let my : M — N be the projection
map. We say that a sequence x, in M converges to Tp if wn(x,) converges to
Tp/<4~, in the sense that for any neighborhood Z of Tp/4~ in N then 7y (x,)
is eventually in Z.

Lemma 3.16. Under the hypothesis of Proposition 3.7 let y in T;. Then P™(y)
converges to Tp as n — 0.

Proof. We use the setup in the proof of item (ii) of the previous proposition. In
particular let V' be a union of neighborhoods of the repelling points of Py, so that
P YV)cV.

Let Py be the induced map by P in N. Let z = my(y). Assume that P"(y)
does not converge to Tp. Then there is a neighborhood Z of Tp/§ and n; — oo,
with Py (z) always not in Z. There is ng > 0 so that if n > ng then P"(y) is not
in V, hence Py (z) is not in V/.4~. By the addendum, Pf(2) is in a compact set
in N for n > ny. Hence up to another subsequence we may assume that Py’(z)
converges to zg. Notice that zg is not in Tp/ <g>-

Lift zg to g in M. Then xo is not in T’p, but since y is in T; , it follows that
To is in T; , 50 it follows that g is not in T’ .
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Hence as in the proof of item (ii) of the previous proposition there is a neigh-
borhood W of xg and jy integer so that if j < jo then P’(w) is in V for any
w in W. For any i big Py(z) is in W/_4~, hence Py *7°(2) is in V/_4~. This
contradicts the fact that Py (z) is not in V /.4~ for n > ny. This contradiction
finishes the proof. O

3.4. Abundance of pseudo-Anosov pairs. In this section we specialize to the
cases described in examples 3.3 and 3.4: That is, we say that (f,F) verifies the
commuting property if f : M — M is a diffeomorphism preserving an R-covered
uniform foliation F by hyperbolic leaves and if one of the following conditions
holds:

(i) There is a lift f to M which commutes with all deck transformations’

and does not fix any leaf of 7.
(ii) There is a deck transformation v which commutes with all deck transfor-

mations © and does not fix any leaf of 7.

The assumption that (f,F) has the commuting property implies on the one
hand that it admits good pairs of the form (f, ) with faliftof fand e 1 (M)
a deck transformation (i.e. a lift of id : M — M) and on the other that one can
construct new good pairs out of others.

Definition 3.17. A good pair (f,'y) for a (f,F) with the commuting property
will be said to be admissible if either f commutes with all deck transformations,
or 7 is in the center of m (M).

In the first case, the good pair property is verified since f acts as the identity
on S . and in the latter, it is v that acts as the identity on S. . . In both cases
this happens because if a map commutes with all deck transformations then this

map is a bounded distance from the identity in M (see also | D).

Definition 3.18. Let (f,J) have the commuting property and let (f,'y) be an
admissible good pair. We say that (f',~') is conjugate to (f,~) by n € w1 (M) if
we have that”

(', )= o fonntoyon).

Note that if ( f ,7) is a pA pair (resp. regular pA pair) then every good pair
conjugate to ( f ,7) also is a pA pair (resp. regular pA pair).

The following result shows that there are plenty of pA-pairs with good prop-
erties. In our specific settings, we could obtain this directly, but here we give a
unified proof.

Proposition 3.19. Let (f,F) with the commuting property, (f, v) be an ad-

missible pA-pair and let J < Sl . be an open interval. Then, there exists an

admissible pA-pair (f',4') conjugate to (f,~) such that it has all its fived points
in the interior of J.

"In particular, if f is homotopic to the identity.

8In particular, M is Seifert with hyperbolic base (because the leaves of F are hyperbolic)
and vy corresponds to the center of 71 (M) generated by the element corresponding to the fibers.
This in particular implies that F is horizontal, and so S.,;, identifies with the boundary of the

universal cover of the base.

1 1

9INote that by the commuting property we have that either ™" o fo n= for n oyon=-r.
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Proof. We will apply | , Lemma 5.4] stating that for every pair of disjoint open
sets U and V in S. . there is a deck transformation 1 such that the action of n
on S}mw maps the complement of U in the interior of V. Denote by P = vy o f”
with n, m not both equal to 0 and denote P, the action on S}mw.

Now, pick a open interval U disjoint from all fixed points of P, and a deck
transformation 7 which maps the complement of U inside J.

Now, if one considers the map 1o Py on~! it follows that it has all its fixed
points inside J. Since the map is conjugated by a deck transformation, it follows
that the points are super attracting/repelling. This is because deck translations
acts in a Holder way on S} . .

Since (f,F) has the commuting property, then either (f, noyon~!) or (no fo
n~!,7) make an admissible pair for (f,F). O

4. PSEUDO-ANOSOV PAIRS AND SUB-FOLIATIONS

We will assume that there is a one-dimensional branching foliation J subfo-
liating F which is f-invariant (recall the definition at the end of §2.1). Denote
by T the lift of T to the universal cover. Recall from the previous section that
whenever ( f, ) is a pseudo-Anosov pair we will take P to be some P =~ o fr
which has a finite number of fixed points alternatingly super attracting and super
repelling in S}mw. If we do not choose explicitely the values of n,m it will mean

that any choice with this property will work.

4.1. Landing points. Given a leaf ¢ € T we say that ¢ is a ray of ¢ if it is a
connected component of c\{z} for some z € c. Since the leaves of T are properly
embedded in leaves of F then every ray of cc L € F accumulates only in some
connected subset of S*(L).

Using the dynamics of pseudo-Anosov pairs one deduces the following simple
proposition that we will use several times in the paper. In this result we we use
the foliation Fy in N = ]\7/<g>.

Proposition 4.1. Let (f,g) be a pseudo-Anosov pair and let ¢ be a ray in a
leaf of T which accumulates in an interval J < SY(L). Then, J contains the O

images of at most two fixed points of Py in S}miv.

Proof. We assume that § acts as the identity on S}mw. If the interval J intersects
three such points we can assume without loss of generality that two of them (we
call them a1, a2, points in S. . ) are attracting while one (called r) is repelling
and between the two attracting ones there are no other fixed point of Pe.

Fix neighborhoods U,, and U,, of a; and a2 in the respective basins of at-
traction given by Proposition 3.7. For those neighborhoods there is a sequence
l1,..., 0, ... of arcs of ¢ joining the neighborhoods U,, and U,,. Fix a repelling
neighborhood V,. of the form Uj of r so that I has endpoints y1,y2. We assume
that y; is in the interval (a;,7) of S. . . Then P.(y;) converges to a; as i — 0.
Let b; = ©1(y;). For i big ¢; has a subsegment e; in V;, n L connecting a point
very near by in L u S1(L) to a point very near bg in L U S'(L). These points are
in the basins of attraction of a1, as respectively. We claim that e; intersects T]J,r .
If not then e; is contained in the union of basis of attraction of attracting points,
but the endpoints are contained in distinct basis of attraction. Since the basis of
attraction are open sets this contradicts the connectedness of e;.

We consider the manifold N = M /<g> as in Lemma 3.16 (see also Remark

3.2). Let Tn be the foliation induced by T in N. As in Lemma 3.16 consider
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a fixed neighborhood Z of Tp/_4~ in N, but now with compact closure. Cover
the closure of Z by finitely many foliated boxes of Fx and Ty all with compact
support. Since the leaves of Fy are planes, and Fy is a fibration over the circle
the following happens: we can choose the foliated boxes small enough so that a
leaf of Ty can only intersect each of these foliated boxes in a single component.

Since ¢; intersects T; , Lemma 3.16 implies that there is some k; such that if
k > k; the map P* will then map the arc ¢; to a curve intersecting W&I(Z )

We can apply this several times to all the arcs, we find a sufficiently large
number of subarcs of a large iterate of ¢ that when projected to N they all
intersect Z. If there are sufficiently many, then more than two have to intersect
a product box of Ty in Z.

This contradicts the fact that each curve of ‘}N can only intersect a local
product box as above in a unique connected component.

This produces a contradiction and proves the proposition. U

F1GURE 3. Proof of landmg The iterates P™ push the leaves away

JCS1

wniv d0 that J contains three or

4 4.1. But the fact we need
follows from Propositiop 3.19. e U, O

there exists{another pseudngnos

we will fix an orientation.
Given a leaf £ € T in a leak L € F both of whose fays land in a point we denote
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by ¢ and ¢~ in S'(L) the landing points of the positive and negative ray (with
respect to the orientation and a given point x € ¢ which is not relevant for the
definition of ¢+).

4.2. Pseudo-Anosov pairs with periodic leaves. We let (f, ) be a pA-pair
and we will assume that:
(i) There is a leaf L € F which is fixed by P =~™ o f" for some m # 0 and
n > 0.
(ii) The action of Py in S! . has 2p fixed points which are alternatively

super attracting and super repelling (with p > 2).

Let ce T n L be a leaf which is fixed by P and x € c¢. Write ¢ =c¢; U {z} U ¢
where ¢ and co are the two connected rays of ¢ defined by x. Suppose that ¢;
has ideal point ¢t in S'(L) and ¢y has ideal point ¢~. We say that ¢ is coarsely
expanding (resp. coarsely contracting) if there is a compact interval J of ¢ such
that for every compact interval J of ¢; U {z} there is k > 0 such that P~%(J) = J
(resp. P¥(J) = J). These rays already played a prominent role in the arguments
of | ]. The next result should be compared with the results in [ ,
§11.2].

We can show:

Proposition 4.4. Given a center curve c € T A L which is fixed by P, then
0;(ct), O (c™) are fived by Py, in S} Moreover, if ©;*(c*) is an attracting

univ*

(resp. repelling) point of Py, in Sumv then the ray c1 is coarsely expanding (resp.
contracting).

Proof. This is direct from Proposition 3.7. See also | , §11.2]. O

We now give a definition that we will use several times since we will be able
to establish this strong property in the partially hyperbolic setting:

Definition 4.5. A pair (f,F) has the periodic commuting property if it has the
commuting property (cf. §3.4) and for every admissible pA-pair ( f v) for (f,F)
there exists k > 0, m € Z\{0} and a leaf L € F which is fixed by P = 4™ o f*.

Notation 4.6. Whenever (f,F) has the periodic commuting property and (f,’y)
is an admissible pA-pair, the lift P will denote a lift P = 4™ o f* with m € Z\{0}
and k > 0 so that P fixes some leaf L € F and such that P, acting on S} . has
fixed points, all of which are either super attracting or super repelling.

Proposition 4.7. If (f,F) has the periodic commuting property and (f,7) is

any admissible pA-pair, then for every L € F one has that P™(L) converges as
m — +0 to a leaf which is fixed by P.

Pmof The hypothesis implies that P fixes a leaf £ of F. But then it also fixes

7{(E) for any i € Z. For any L leaf of F it is contained in [V'E,y*t1E] for some
i in Z which implies the result. O

The following property will be used several times:

Proposition 4.8. Let (f,F) have the periodic commuting property preserving
a one dimensional branching foliation T that subfoliates F. Let (f, v) be an
admissible reqular pA-pair with attracting points a1, as for a lift P =~™o f” (cf.
Notation 4.6). Assume that there is a leaf £ of‘j‘ N L which has a segment J < {
with the property that both extreme points of J belong to the basin of attraction
of a1 and so that J intersects the basin of attraction of as. Then, there is a
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ayes £1 and £y from J
\cular, {1 and ly are

joining Og(a1) and Og(az)/and 1, Lo ﬁxed bg P

both coarsely expanding for

Proof. Let E be the limit of P*(L) as k‘ =Sroorgiven-hy P
fixed by P.

Call z; and x9 the endpoings of J so that J is oriented from z1 to x3. Take
y € J which belongs to the basin of attraction of as. ItAollows that J = J; U Jg
where J; is the segment oriented ftsq 1 to y and Josthe segment oriented from
Yy to x9.

Let 71,72 be the other fixed points of P, which are both repelling, and
a1,T1,a9,r2 circularly ordered in S&nw Let Vi, Vs be neighborhoods of type
U of r1, 7o respectively so that P~1(V;) = V;, given by Proposition 3.7. Let I;
be the interval of S! . defined by V; and containing ;.

For k > 0 big enough P¥(J;) cannot intersect V; or Va, therefore the sequence

(P%(J1)) cannot escape compact sets in M as k — oo. This is because P*(L)
converges to E and P*(J;) intersects the basis of attraction of both a; and as.

oposition 4.7 which is

Hence the sequence (P¥(J1)) converges to some family of leaves in T in E. The
leaves in the limit have must land. The set of landing points of all such limit
leaves is invariant under P (since E is invariant under P). In addition the set
of landing points of these limit leaves cannot intersect © g(I1) or ©g(I2) because
1y, I> are expanding intervals under the action of P,,. Therefore the only possible
limit points of the landing leaves must be ©g(a1) and Og(ag). See Figure 4 for
a depiction of this situation.

Since Pk (J1) has endpoints in neighborhoods of a; and ay there must be a limit
leaf which has a1 and ay as landing points (as opposed to both landing points
being a1 or ag). In addition this leaf is oriented going from a; to ay. Similarly in
the limit of (P¥(J5)) there must be at least one leaf of T oriented from ay to a.
The family of such limit leaves is closed, ordered, and avoids neighborhoods of
the repellers of P; so we can consider the two outermost of them and these must
be fixed by P. Moreover, since they are oriented in a different direction, these
leaves cannot be close and therefore are disjoint. O

Indeed we get a further property:
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Addeddum 4.9. In the set®pg ofPropositisq 4.8
AY 2n E between ¥

h accuniyulates only i a2y

forny the boundary of an in n: band B in E whi
sohtained in B can oply accunimlate.ir’ theke/ o

consequence the rTeaves of T n E between {1 and fo rorder making
it order isomorphic to an interval. Moreover, each such leaf has an orientation
either from a; to as or from as to ay. Since the orientations of ¢1 and ¢y differ,
this is a contradietion, Therefore it cannot happen tha ery—eaf in between £;
and ¢ ds different e ‘

FIGURE 5. The shadow.

Definition 4.10. We say that T has small visual measure in F if for every € > 0
there is R > 0 such that if 7 € L € F and I is a segment of T A L at distance
larger than R from z, then the shadow of I from z has visual measure smaller
than € in S*(L) = T1L (cf. §2.3).

The distance condition means that dr(z,y) > R for any y in I.

Proposition 4.11. Assume that there is a reqular admissible pA-pair for (f,F)
and that T does not have small visual measure in F. Then, there is a regular
pA-pair (f, v) and a leaf L € F fized by P (cf. Notation J.6) which has at least
two disjoint leaves of‘j' each fixed by P and whose landing points are O images
of distinct attracting fized points of Py in S} T

univ- AN particular, these leaves of T
are both coarsely expanding for P.
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Proof. By assumption there is € > 0, and there are points xy, in leaves Ly € F
such that there are segments I, of leaves of T n L,, at distance bigger than n
from z, and whose shadow in S'(L,,) has visual measure larger than . Deck
transformations act as isometries on leaves of F. Hence up to applying deck
transformations and a subsequence we can assume that x, converges to a point
xg. We can assume that L, converges to L (notice JF is a branching foliation so
a priori all L,, could contain xg).

Let J, be the shadow of I,, on S'(L,). Up to another subsequence we can
also assume that the intervals .J,, in S'(L,,) converge to an interval J, of visual
measure larger than ¢ in S'(L). We can assume without loss of generality that
Jo # SY(L) by taking shorter segments I,.

Using Proposition 3.19 we can consider ( 1, ) an admissible regular pA-pair
such that it has all of its fixed points in the interior of J = ©71(Jy). Call the
attracting points ai,a2 and the repelling ones r1,7r2. Since J # Sim-v we can
order these points in Sim»v up to renumbering so that as is inside the segment
J' < J whose endpoints are r; and ro. Consider neighborhoods U,, and V;, of
cach in M as in Proposition 3.7.

For large enough n we have that the arcs I,, contain subarcs S5, < I, joining
V., with V,,, and intersecting U,,. We can also assume that S, are such that for
some points &1, &, in each connected component of J\J' the segment S,, intersects
the neighborhoods Uy, as in Proposition 3.14 (iv). In particular these points in
Ue, are in the basis of attraction of a; (the other attracting point). Denote as S}
and S? two segments of S,, joining respectively U,, with Ue, and Ug,.

Now the result follows from Proposition 4.8. (]

Remark 4.12. Note that the proposition admits a symmetric statement since it
can be applied to ( 1, ~) which is a regular pA-pair for f~! which also preserves
F and T. So, under those assumptions there also exist a fixed leaf of F with
two distinct leaves of T being fixed and coarsely contracting. Disjointness of the
curves is important since we do not assume that 7 is a true foliation. This will
allow us to rule out such behavior for centers in the partially hyperbolic setting.

5. PSEUDO-ANOSOV PAIRS AND PARTIALLY HYPERBOLIC FOLIATIONS

In this section f : M — M will be a partially hyperbolic diffeomorphism
preserving two transverse branching foliations W and W. We denote by W?*
and W" the strong stable and strong unstable foliations respectively, and by W¢
the center (branching) foliation. We will assume that at least one of W or W
is R-covered and uniform and that some lift f acts as a translation on this leaf
space. Many results will be stated for W but obviously work equally well for
wer,

5.1. Periodic leaves for pseudo-Anosov pairs. Here we restate a result from
[ , ] in the context of pseudo Anosov pairs.

Proposition 5.1. Assume that (f, v) is a pA pair for the foliation W°. Then,
there exists n > 0, m € Z. and a leaf L € W such that ™ o f"(L) = L.

Proof. Under these conditions we proved in Proposition 3.14 (ii) that the set Tp
is non empty. The quotient of Tp in ]\7/7 — that is, Tp/7 is compact. Since 7 is
a deck transformation, the map f projects to a map, which we denote by fp, in
M /~ which is partially hyperbolic and preserves the compact set Tp/7.
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Let z € Tp/vy and let y € Tp/vy be an accumulation point of (fi(z)). Take i, j
big enough, with j much bigger than i, such that fi(z) and fJ(z) are both very
close to y.

Consider a small closed unstable segment 7 containing f¢(z) in its interior.
Since fg increases unstable lengths uniformly, then if j is big enough, every leaf
of Wes /7 intersecting 7 intersects the interior of fJ (7). This set of leaves of

\//\70/5/7 is an interval. This produces a fixed lf/\%/s/v leaf under fgii. Lifting to M

proves the Proposition. O
This is the same proof as in | , Proposition 10.3] (which itself uses
[ , Proposition 9.1]) or | , Proposition 4.1].

Remark 5.2. Notice that once one has this, one immediately deduces that W
cannot be a true foliation (cf. [ , Theorem B] and [ , §5]). This is
related with the fact that partially hyperbolic diffeomorphisms having pA pairs
with respect to the W or W foliation cannot be dynamically coherent and
will force that the map h in the definition of collapsed Anosov flow is not a
homeomorphism.

As a consequence of Proposition 5.1 we deduce immediately that:

Corollary 5.3. If (f, W) has the commuting property and has an admissible
pA-pair, then it has the periodic commuting property.

Remark 5.4. Note that if (f, v) is a pA pair and P = 4™ o f* with n > 0, the
map P is a lift of a positive iterate of f therefore is partially hyperbolic and
the invariant bundles are exactly the lifts of those of f in M to M (the stable
switches with the unstable if we take n < 0).

Remark 5.5. Note that both W¢ and 'W?* are one dimensional (branching) subfo-
liations of W¢. By construction, it holds that W€ is also a subfoliation of W<
(which is also a branching foliation) and therefore we know that in M we have
that a curve of W* cannot intersect the same leaf of We twice.

5.2. Visual measure and distance of curves to geodesics. Here we show
the following result which has validity beyond the context we are working in this
paper as it does not require a full set of pA pairs (defined later).

Theorem 5.6. Let f : M — M be a partially hyperbolic diffeomorphism pre-
serving branching foliations W and W so that (f, W) has the commuting
property (see subsection 3./). Assume moreover that there is an admissible regu-
lar pA pair for (f,W°). Then it follows that both W¢ and W* have small visual
measure in W (cf Definition 4.10). Moreover, there is R > 0 such that gzven
a center leaf £ € We (resp. a stable leaf £ € WS) in L e Wes if we denote by 1
a segment a or ray of £ whose landing is either £~ or {* € L U S*(L) then the
geodesic segment or geodesic ray 7 of L joining either the endpoints of@ or the
starting point of ? with its landing point is contained in the R-neighborhood in L
of L.

Remark 5.7. 1t is important to mention what this Theorem does not say. In
particular, it does not ensure that the ray / is contained in a bounded neigborhood
of the geodesic ray (in particular, it does not say that lisa quasigeodesic). Later,
we will use this result to show that under some more assumptions, all center
curves are quasigeodesics. This cannot hold for stable curves as there may be
some stable curves which have both endpoints being the same (see eg. | D).
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However, the fact that the strong stables have small visual measure is something
quite remarkable as they can be made to have tangent vectors arbitrarily close
to horocycles (see [ 1)-

Note first that the fact that curves from We and W+ land in leaves of We* is
direct from Proposition 4.2. To show that the visual measure of the arcs, rays
or shadows is small we will use the following result about center curves that will
also be useful later:

Lemma 5.8. Let f be a partially hyperbolic diffeomorphism preserving branching
foliations W and W so that (f, W) has the commuting property, and there
is an admissible reqular pA pair (f, 7). Let P as in Notation 4.6 with P(L) = L
for some L € Wes, Then, there cannot be two disjoint center curves ¢y and ca of
We in L which are fixed by P and join the ©f images of distinct attracting fixed
points of Py, in S} . .
Proof. Such center curves should be coarsely expanding by P by Proposition 4.4.
This forces P to have at least one fixed point x in ¢;. We look at s(z) the stable
manifold of z. It cannot intersect ¢y since both s(x) and co are invariant by P
and so is their intersection, which is a single point y. See Figure 6. Since co, c;
are disjoint y would be a fixed point of P in s(x) different from = — impossible,
since s(x) is a stable leaf and P is contracting in stables. Then, the ray of s(x)
in the connected component of L\c; containing ¢y must land in an attracting
point of P in Sim.v. This again is impossible since s(z) is coarsely contracting

(cf. Remark 5.4), and this contradicts Proposition 4.4. O

FIGURE 6. Proof of Lemma 5.8.

We complete the proof of Theorem 5.6 by showing that if geodesics joining
points of centers or stables do not remain boundedly close to the respective curves
in leaves, then one can construct arcs with shadows with large visual measure:

Lemma 5.9. Let F be an R-covered uniform foliation with hyperbolic leaves of
a closed 3-manifold M and let T be a one dimensional branching subfoliation of
F. Assume that for every n > 0 there is a segment £, of a leaf of T such that the
geodesic segment joining the endpoints of £, is not contained in the ball of radius
n of the segment £,,. Then, T does not have small visual measure in F.
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Proof. Just consider the segments ¢,, — L, and the corresponding geodesic seg-
ment 7, < L, joining the endpoints. By assumption, we know that there
is a point x, € 71, at distance larger than n from ¢,, or equivalently, that
Br, (zn,n) 0 by = .

Since the shadow of ¢,, from z,, is connected and #,, intersects both sides of r,,
we know that the shadow of £,, through x,, has at least half of the visual measure
from the point x, while it is completely outside the ball of radius n around x,.
This implies that T cannot have small visual measure in F. U

Now we can complete the proof of Theorem 5.6.

Proof of Theorem 5.6. The statement about visual measure in the case of W? fol-
lows by appliyng Proposition 4.11 using T as the stable foliation.. The statement
follows because strong stable leaves cannot be coarsely expanding under P, if
P:'ymof"Withn>O.

To show that this is also the case for W€ we again apply Proposition 4.11
using T as W¢. If centers did not have small visual measure in W it follows
that there is a regular pA-pair ( f, ) associated to (f, W) and we can find two

disjoint leaves cq, co € W€ contained in a leaf L which are fixed by P as well as
c1,co. Now, Lemma 5.8 gives a contradiction.

The statement about rays or segments of the leaves in the foliations follows
from Lemma 5.9. The statement about segments is strictly contained in that
Lemma. To get the result for rays it is enough to approximate the ray by longer
and longer segments which all have the same property. (|

5.3. Impossible configurations. We show that some configurations of the foli-
ations in leaves of W (or W) are impossible and this will be used to show that

the leaf space of We is Hausdorff inside leaves of We. The next proposition will
combine well with Lemma 5.8 (which together with Proposition 4.8 gives other
impossible configurations). We note that the next result works for a single pA
pair with certain properties and does not need to have the full set of pA pairs
that will be used in next section. In fact, we will need to deal with a case slightly
more general than a pA pair which is when there are only two fixed points in

Sl . one super attracting and one super repelling.

Proposition 5.10. Let f : M — M be a partially hyperbolic diffeomorphism pre-
serving a branching foliation W which is R-covered and uniform with hyperbolic
leaves. Suppose that (f, W) admits an admissible reqular pseudo-Anosov pair.
Let (f, v) be a good pair pair and P = ~™ o f” with n > 0 so that Py has fixed

points in S. . and such that all fived points are either super attracting or r super

repelling. Let L € W be a leaf fized by P. If there is a center curve ¢ in Wen L
with endpoints ¢t and ¢~ in SY(L) such that ¢ = ¢~ then one must have that
@Zl(ﬁ) cannot be an attracting fized point of Py.

Proof. We stress that we do not assume that ( f ,7) is a pA-pair. In particular
P, may have only two fixed points in S’}mw

Since P(L) = L we can reduce the proof to L = LuS'(L). The map P induces
a homeomorphism of L. A point ¢in S} . is a fixed point, attracting or repelling
point of Py, if and only if © (&) is a fixed point, attracting or repelling point of P
in L. We will prove the result by contradiction assuming that ¢t = ¢~ = a is an
attracting fixed point of P in L. We denote by D(c) to the connected component

of L\¢ whose closure in L intersects S'(L) only in a.
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Note that such a center cannot be fixed by P. If it were the case, then it
would be coarsely expanding by Proposition 3.7 and therefore there would be
a fixed point x € ¢ by P. Let s(z) be the stable leaf through z. The ray of
s(x) intersecting D(c) must land in @ = ¢t = ¢~ since a strong stable cannot
intersect a center curve twice (cf. Remark 5.5) and therefore the ray is completely
contained in D(c) and lands in ¢t. That forces that stable curve to be coarsely
expanding by Proposition 3.7 which is impossible. Compare with Lemma 5.8. In
fact the same argument shows that this center cannot be periodic under P as
well.

Up to taking the square of P we assume that P preserves orientation when
acting on L, and hence also on S'(L).

Consider now the iterates ¢, := P¥(c) with k € Z. Denote by D(c;) =
P*(D(c)) which is the connected component of L\¢j, whose closure in L intersects
SYL)onlyina=ct=c".

Consider D = |, D(ck). Note that D is a P invariant, closed set. Let € be
the set of center leaves which make up the boundary of D.

In order to prove the proposition we establish some general claims. The first
one is the place where we use that a is attracting for P. If it were repelling there

would be no a priori contradiction'’.

Claim 5.11. There cannot be a fixed point of P in D.

Proof. Let x € D be fixed by P. If z € D(c) for some k it follows that one
of the rays of s(z) has to land in ¢t which is a contradiction. Otherwise, z is
accumulated by the curves cg, therefore, for large enough k£ we have that one
ray of s(z) intersects ¢j and therefore enters in D(c¢;) and must land in ¢, a

contradiction. This completes the proof. U

To continue the proof of Proposition 5.10 we distinguish two options (see Fig-
ure 7):

FIGURE 7. Option (1) to the left and option (2) to the right.

(1) The sets {D(ck))} are not pairwise disjoint.
(2) The sets {D(ck))} are pairwise disjoint.

1OIndeed, this behavior can happen for the strong stable/unstable foliations of some partially
hyperbolic diffeomorphisms such as the ones constructed in | ]
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In option (1) there is ¢ > 0 so that D(c;) intersects D(c), hence either D(¢;) <
D(c) or D(c) < D(¢;). Hence up to taking a further positive iterate of P we
assume that D(c) < D(c1) or D(c1) < D(c). Since it is a positive iterate, the
point a is still super attracting for P.

Option (1)

We assume first that we are in option (1). This situation is by far the harder
to deal with. The overall strategy in this case is the following: we find a stable
leaf s intersecting D which is fixed by P. This leaf s has one ideal point in a
and this will contradict that a is attracting for P. To find such s we essentially
consider the set of all stables intersecting € plus the stable leaves “in between”.
We show that this set has a linear order, is invariant by P and P fixes a leaf in
this set. The last step is the hardest and depends on understanding the structure
of the boundary of D, how it interacts with the fixed points of P in S1(L). Notice
that a priori the center foliation in L can be very complicated, so there are many
theoretical configurations. !

Therefore, the first goal is to obtain some useful properties about the boundary
of D. There are similar properties in option (2), but not the same, and option
(2) is much easier to deal with.

Claim 5.12. The boundary 0D of D in L is a non empty set saturated by center
curves. FEvery point in 0D belongs to a center curve which is a limit of subintervals
of the curves c. Moreover, the collection C of center leaves are pairwise non
separated in the center leaf space in L.

Proof. Assume first that D = L, then we have that there are compact arcs
converging uniformly to some interval in S*(L) in the topology of L=Lust (L),
these arcs would have large visual measure and escape to infinity contradicting
Theorem 5.6. Therefore 0D # .

Since D is saturated by center curves, then so is 0D. Moreover, if z € 0D
belongs to a certain center leaf e — 0D then we have that every compact subin-
terval I of e must be accumulated by the sets D(c;) with j — +00 or j — —o0.
This implies that there are arcs I; of ¢x; converging uniformly to I.

Finally let e1, eo be two distinct center leaves in €. Non separated means that
in the center leaf space they do not have disjoint neighborhoods. As above the
leaves eg, ex are contained in the limit of ¢; with j — o0 or j — —o0. Therefore
e1, eo are not separated from each other. O

Since P preserves the orientation in L the following happens:, if e is in € then
either P(e) = e or all iterates P"(e) are pairwise disjoint. We can also show:

Claim 5.13. Let e € C a center curve in 0D such that P(e) # e. Then {P"(e)}
cannot accumulate in a point in L when n — o0 or n — —o0.

Proof. Consider G, to be the connected component of L\e which is disjoint from
P(e). Since the curves in C are pairwise non-separated, and P preserves ori-
entation in L, we know that P"(G.) are all disjoint. Assuming that {P"(e)}
accumulates in some point z € L with n — 400, we can fix a local product struc-
ture neighborhood around x for the center foliation and we can see {P"(G)}
accumulating in this point. Since these sets are all disjoint, then this means that
the leaves { P"(e)} accumulate on a local product structure box in more than one
connected component, which is impossible. O

HThe eventual goal, done in Section 6 is to prove that the center foliation in L is actually
fairly simple, that is, its leaf space is Hausdorff and homeomorphic to R.
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Claim 5.14. Let e be a leaf in C. If e has an ideal point & which is a fired
point of P then the other ideal point v of e is different from & and one of them is
attracting and one repelling. In addition the ideal points of e cannot be in distinct
complementary components of the set of fized points of P in S1(L).

Proof. Suppose e is a leaf in € which has an ideal point £ fixed by P. Let v be
the the other ideal point of e. Suppose first that v is distinct from £. Then since
P(e) is non separated from e and ¢, converges to both e and P(e) it follows that
P(e) = e. If both endpoints of e are either attracting or repelling for P then
there is a fixed point of P in e, hence a fixed point of P in D, disallowed in Claim
5.11. So one of the ideal points of e is attracting and the other one is repelling.

Suppose now that v = £. Let G¢ be the component of L — e which accumulates
only in ¢ in S'(L). Since & must be either super attracting or super repelling,
then using Claim 5.11, we deduce that P(e) # e and that all the iterates P*(G.)
are all distinct. Moreover, by Claim 5.13 we know that P?(e) cannot accumulate
on a point x € L which implies that the sets P'(G.) converge as i — 00 to
¢. However, since ¢ is super attracting or super repelling it follows that P?(e)
cannot converge to & as ¢ — —o0 or ¢ — +00. This proves the first assertion of
the claim.

Finally suppose that e has ideal points in two distinct complementary com-
ponents of fixed points of P in S'(L). Up to an iterate these complementary
components are fixed by P. Then since e is a boundary leaf of D this implies
that P(e) = e. In particular the ideal points of e are fixed by P and are not
in complementary of the set of fixed points of P. This finishes the proof of the
claim. O

We now define a set 8 of stable leaves which will produce a P invariant stable
leaf intersecting D. The construction of 8 is geometric and not dynamical. For
simplicity assume that c; converges to € when j — 00. The case when c; converges
to € when j — —o0 is entirely analogous and we address that later.

Let S be the set of stable leaves s in L so that there is jg € Z so that s intersects
c; for any j > jo. Each such stable leaf s intersects some c;. Since c¢; has both
ideal points equal to a, it follow that s has a ray limiting on @ = ¢t = ¢~. Each
stable leaf s intersecting C intersects ¢; for all j > jo (the jo depends on s), so
s is in 8. In addition if sg, sy are in 8 then they intersect ¢; for all j > jo for
some jo (take a jo that works for both). For any stable s intersecting c;, between
50 N ¢j, and s1 N ¢j, then s intersects c¢; for any j > jo, so s is also in 8. This is
because c;,,c; and sg, s1 form a “quadrilateral” in L and s intersects cj,, hence
intersects c¢; also. It follows that s is in 8. Therefore the set 8 is linearly ordered.
Since the subset of 8§ between sy and s; is order isomorphic to an interval then 8
is order isomorphic to the reals. With the quotient topology it is homeomorphic
to the reals. Since we took a square of P if necessary, then the map P preserves
this order.

If on the other hand ¢; converges to € when j — —o0, then in the definition of
§ we require a jp so that s intersects all ¢; for j < jo.

Let I, J be the connected components of S'(L) minus the set of fixed points
of P in S*(L), so that I, J have one endpoint equal to a. We now define a subset
S of 8 associated with I. The definition will depend on whether there is a leaf
of € with an ideal point in I or not. Consider first the case that there is a leaf
e in C with an ideal point in I. By Claim 5.14 the other ideal point of e is also
in I. Let A; be the set of stable leaves in L intersecting Pi(e). Let 8; be the
smallest connected set of § containing all A;. In this case for any s in 87 then s
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has an ideal point in I. In fact for any s in 8 it has an ideal point in a. If the
other ideal point x of s is in I then z is in the closed segment contained in I with
endpoints P!(z) and P**1(z) where z is an ideal point of a stable intersecting e
and 7 is some integer. Hence s separates two elements in 8 and intersects c; for
all 7 = jo (for some jp) hence s is in 8. It follows that in this case 8y is exactly
the set of stables intersecting D which have one ideal point in I. In particular
the definition of S; is independent of the particular leaf e that we start with.

The other possibility is that there is no leaf of € with an ideal point in I. We
deal with this case now. Let x in I. We claim that there is a neighborhood V'
of x in L U S*(L) so that V n L is disjoint from D. Suppose not. If for some
such V' we have that V' n L < D, then we get a sequence of arcs in ¢; (with
¢ limiting to € as k — o) so that they escape compact sets in L and limit
to V.n SY(L). These arcs do not have small visual measure, violating Theorem
5.6. So this cannot happen. Choose V; with ¢ € N a basis neighborhood of x in
LuSY(L), with V; nS'(L) always contained in I. By assumption, for each i there
is a point y; in V; N ¢y, for a suitable choice of k;. If the k; can be chosen constant
equal to k then c; has one ideal point in Vi n S*(L). But this is impossible by
hypothesis as Vi n S1(L) = I. So up to subsequence we can assume that k; are
pairwise distinct. Since the ¢, have both ideal points outside of I then either
they escape compact sets, contradicting Theorem 5.6, or up to subsequence they
keep intersecting a fixed compact set. This is impossible since the elements in
C are pairwise non separated from each other, cf. Claim 5.12. This shows that
there is such V as above, so that (V n L) n D = . In this case let e be the
unique leaf of € which separates V n L from the interior of D. By P invariance
of D and the fact that no ideal point of e is in I, it follows that P(e) = e. In
addition one ideal point of e is a. This is because e separates V n L from the
interior of D and the interior of D has points limiting to a. Since e is fixed by P
the other ideal point of e is a repelling fixed point of P by Claim 5.14, and hence
it is not a. Let now I., be the open interval of S'(L) determined by the ideal
points of e and which contains I. We remark that I, is disjoint from J. In this
case let 8; be the set of stable leaves intersecting e.

Notice that 8 is again a connected subset of 8. In either case we remark that
if s is a leaf in 8; then no ideal point of s is in J.

Notice that in either case 8; is P invariant. In the same way we define a set
Sy.

Claim 5.15. The sets 87, S8y are disjoint.

Proof. Suppose that there is a leaf e in € with an ideal point in either I or J.
For simplicity assume an ideal point in I. Then by construction for every leaf s
in 8; it has an ideal point in /. Since no leaf in §; has an ideal point in I, the
claim is proved in this case.

The remaining case is that we have the intervals I, and J.;, which are defined
by leaves e,e; in C. In this case 8y is the set of stable leaves intersecting e
and 8 is the set of stable leaves intersecting e;. Since e, e; are distinct but non
separated from each other, no stable leaf can intersect both of them. Hence again
8 n 8y = &. This proves the claim. O

Since 8;,8; are disjoint, let s be the stable leaf in 8§ corresponding to the
endpoint of 8; separating it from 87 in 8. Then since both 8;,8; are fixed by
P, so is s. Since s is in 8 then it intersects c¢; for some j and hence has an ideal
point a. This contradicts the fact that a is an attracting fixed point of P.

This finally finishes the proof of Proposition 5.10 assuming option (1).
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Option (2)
We now assume option (2).

Claim 5.16. In option (2) we have that as k — +0o then D(c) can only accu-
mulate in a = ct =c¢™.

Proof. In option (2) the sets D(cg) are pairwise disjoint. An argument entirely
analogous to that of Claim 5.13 shows that D(cy) cannot accumulate anywhere
inLask—oork— —o0.

If the collection D(cy) accumulates in another point of S'(L) besides a, then
since it does not accumulate in L it will have subsegments which limit uniformly
on non empty intervals of S*(L). In particular these segments escape compact sets
in L. This violates that the center foliation has small visual measure, Theorem
5.6. This finishes the proof of the claim. U

Now we can complete the proof in option (2). As k — +o0, the D(c;) cannot
accumulate in L or in any other point of S*(L) besides a. Choose a neighborhood
U of a which is contracting under P as in Proposition 3.7. Choose U sufficiently
small so that Dy is not contained in U. Then for k big negative D(cx) is contained
in U, and applying P~* sends D(c},) inside of U, but also to D(cp) not contained
in U, contradiction. This completes the proof of Proposition 5.10. O

6. HAUSDORFF CENTER LEAF SPACE

NIn this section we show that undea\si)me assumptions the center leaf space of
'We has to be Hausdorff in leaves of W¢s. This is an important step in the proof
of our main theorems and will use all the results on pseudo-Anosov pairs we have
been developing so far. We use the abbreviation pA pairs for pseudo-Anosov
pairs.

To be able to exclude non-Hausdorff leaf space we will need enough pA pairs
to be able to force certain configurations (see Remark 6.3 below). This will be
defined precisely in §6.1.

After we rule out a certain configuration in §6.2, we will show in §6.3 the
following:

Theorem 6.1. Let f : M — M be a partially hyperbolic diffeomorphism pre-
serving branching foliations W and W. Assume that (f, W) has full pseudo-
Anosov behavior (cf Definition 6.7). Assume also that W is R covered. Then,

inside each leaf of WCS the foliation We by center curves has leaf space which is

Hausdorff.

Recall that a one dimensional (branching) foliation T in a complete simply
connected surface L has Hausdorff leaf space if for every pair of curves of T in
L it follows that the positive (closed) half space in L determined by one of the
curves is contained in the positive (closed) half space determined by the other.

Remark 6.2. Definition 6.7 is quite restrictive and asks for the existence of several
pseudo-Anosov pairs for f. We suspect that the only examples which verify these
assumptions are the ones we treat in Theorem B and Theorem C. We note however
that we do not ask that the actions of the good pairs on the universal circle of
Wes and W coincide (this is immediate in the context of Theorem C, but not a
priori obvious for Theorem B).

Remark 6.3. Until now, all arguments used a given pA pair and then found se-
quences of curves that approached the universal circle in certain configurations
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that would ensure that some of their points belong to the basins of attract-
ing/repulsion of the fixed points in S} . of the pA pairs. In this section the
strategy will be different. We will fix a curve and find sequences of pA pairs
whose configurations will force that the curve has some points in basins of at-
traction of different fixed points of the pA pairs (as the configuration required in

Proposition 4.8). Two delicate issues with this approach will appear:

e The curves we will consider already have limit points and approach the
boundary very fast (cf. Theorem 5.6). Therefore we need that the con-
figuration of attracting/repelling points of the pA pairs are very special;

e Also, the core Tp of a pA pair depends somewhat on the particular pA
pair we choose, and that is why it will be important to consider pA pairs
which are related to the same object in M (i.e. different lifts of the same
‘orbit’) so that we get some uniform estimates.

For these reasons, we will need to restrict to a class of diffeomorphisms that
we will later show contains the classes we are studying in this paper to show
Theorems B and C.

6.1. Diffeomorphisms with a full set of pseudo-Anosov pairs. In some
arguments we will need not only one pseudo-Anosov pair, but also that its con-
jugates (cf. Definition 3.18) fill the universal circle in a particular way.

Remark 6.4. In what follows one should have in mind the difference between
a pseudo-Anosov diffeomorphism of a surface and a reducible diffeomorphism
of a surface with a pseudo-Anosov piece. One can also think about regulating
flows for uniform foliations in atoroidal manifold versus manifolds with atoroidal
pieces but non-trivial JSJ decomposition. (Recall Examples 3.3 and 3.4.) When
there is a unique pseudo-Anosov piece, the laminations are minimal, so every
(regular) periodic orbit verifies that its stable/unstable manifold is dense in the
stable/unstable lamination of the pseudo-Anosov map which forms a “full lami-
nation” (see [Ca;] and references therein).

We consider a pair (f,F) with the periodic commuting property (cf. Definition
4.5) and let (f,~) be an admissible regular pA-pair with attracting points ay, as
and repelling points rq, 72 in Sumv (here the action is with respect to a lift P =

™ o fF as in Notation 4.6).

Definition 6.5. The regular pA-pair (f,7) is a full pair (for P = f* o ~™), if
there are ag > 0, dy > 0 satisfying the following: for every geodesic ray 7 in a
leaf L of F, with starting point xq there is:

e a compact non degenerate interval J in the leaf space of F ,

e and for every n > 0, a deck transformation 3,, € w1 (M) such that 5(L) € J

so that:

if we denote by g% the geodesic in L joining O (8,a1) with ©1(8,a2) and g), the
geodesic in L joining O (8,r1) with O (8,r2) then:

o either g2 or g/ intersects n in a point x,, making angle larger than ag,

o dr(xo,zy) >n and dr(zn, 9% N gr) < dp.

We will use this property to obtain the following important result.

Proposition 6.6. Let (f,F) have the periodic commuting property and admitting

a full pair (f, v). Then, given a geodesic ray 1 in a leaf L € S’from a point xy € L
with ideal point O (&) (€ € Sk . ), the following happens: There exists a conjugate
pair (f',7') of (f,v) — with P' the corresponding conjugate of P (cf. Definition
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3.18) such that either x¢ and £ belong to different basins of attraction of the fixed
points of Pl in S. . or they belong to different basins of repulsion of the fived
points of Pl.

Proof. Consider the geodesic ray n in L with starting x¢g € L and ideal point
Or(§). Let a,az be the attracting points of P,. Since (f, v) is a full pair,
without loss of generality we can assume that there is a sequence 7, € 71 (M)
such that the geodesic g, in L with ideal points O (y,a1) and O (vy,a2) makes
angle larger than ag with 7 and intersects 7 in a point z,, at distance larger than
n from xg. In addition if h,, is the geodesic in L with ideal points ©r(v,r1) and
O (ynr2) then dr(gn N hp,xy) < do. Finally ~, (L) is in a fixed compact interval
in the leaf space of F for every n.

Let P! =~,0Pon, L.

Extend n in L beyond xg to a full geodesic still denoted by n and with other
ideal point © (). Now we map back by 7, 1. The fact that 7, (L) is in a compact
interval of the leaf space means that the slithering distance of ~,, is bounded [ 1]
and so is the slithering distance of ~,,; 1. In other words v, (L) is in a compact
interval, which we denote by J.

Suppose that up to subsequence that one of 7, *(£) or v, (v) converges to a;
or ag. Without loss of generality assume that ~, 1(£) converges to a; or az. Up
to another subsequence assume that ,, L(L) converges to Lg. Notice that g, N hy,
is a globally bounded distance from Tp; n L — because of the following:

(i) Tp/<y> is compact, and

(ii) Since deck transformations are isometries of M they induce metrics in
the quotients, and also

Tp/<y>, TP/ omonsl>
are isometric.

Since dr,(gn O hp,xy) is bounded by do, it follows that

d%jl(L) (’Yr:l(xn% Tpn '77:1(1/))

is bounded above. This is because 7, *(gn), 7, ' (hy) are geodesics in 7, ' (L) with
ideal points in S'(v, (L)) which are @751(1—1)(@1),@7;1(11)((12),@7;1(11)(7'1) and
©.,-11) (r2), respectively. Hence the intersection 7, '(g,) n v, !(hs) is a bounded
distance from T,

So we can assume fyzl(xn) also converges to yg. The sequence of geodesics
Y H(gn) in v, 1(L) have ideal points O, (a1), O, -11) (a2), so this sequence of
geodesics converges to the geodesic g in Ly with ideal points O, (a1),©r,(as2).
In addition the sequence 7, (1) converges to a geodesic in Lo through yo and
making an angle with g of at least a as specified in the beginning of this proof.
This is impossible since v, }(¢) converges to either a; or az. Therefore none of
Y 1(€), v (V) converges to either aj or as.

The previous paragraphs show that there are fixed interval neighborhoods
I, J of the repellers r1,79 not containing either ai,as in their closures, so that
Y 1(€), 7 (v) are always in I U J for n sufficiently big. Let Uy, U be neighbhor-
hoods of r1, ry respectively as constructed in Proposition 3.7. Up to subsequence
and without loss of generality assume that ~,1(¢) is in U; for n big. Since
dr(zo, zn) > n, and 7, 1 (gn N hy) is in a fixed compact set in M, then eventually
Yo (o) is in Uy,
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This shows that &, ¢ belong to the basins of repulsion of 4™ (r1),~"(r2) respec-
tively under P’.
This proves the proposition. O

Now we are ready to give the definition we will use to get Theorem 6.1.

Definition 6.7. We say that (f,F) has full pseudo-Anosov behavior if (f,F) has
the periodic commuting property (cf. Definition 4.5) and:
(i) every admissible good pair (cf Definition 3.17) of (f, ), up to iterate, has
only super attracting and super repelling fixed points. and,
(ii) it contains a regular pA-pair which is a full pair (cf. Definition 6.5).

6.2. Distinct landing points. We first need the following auxiliary result. This
is the place where we will use the full pseudo-Anosov behavior on one of the
foliations.

Proposition 6.8. Let f : M — M be a partially hyperbolic diffeomorphism
such that it preserves branching foliations W and W and such that (f, W)
has full pseudo-Anosov behavior. Assume also that W is R-covered. Then, for
every c € We ~ L with L € W we have that the endpoints ¢t and ¢~ of ¢ in
SY(L) are different.

The proof of this statement will require to first iterate in W until we get a
center curve both of whose endpoints land in a single fixed point of a pA pair for
(f, We). If the fixed point is super attracting one can apply Proposition 5.10 to
get a contradiction. If the fixed point is repelling, we need to use Theorem 5.6
and an analysis of the center unstable foliation W to derive a contradiction.

Lemma 6.9. Let f be as in Proposition 6.8 and assume there is a center curve
c€ Wen L for L € Wes so that ¢~ = c¢*. Then, there exists a reqular pA-pair

(f, v) such that P as in Notation /.6 fizes a leaf L' € Wes which has a center
curve ¢ so that both endpoints coincide and so that ¢ is fized by P.

Proof. Pick a point xg € ¢ and consider the geodesic ray 7 from zy to O(&) =
¢~ = c*. Since (f, W) has full pseudo-Anosov behavior it has an admissible full
pair ( f, ) which is a regular pA pair.

We will use Proposition 6.6. By Proposition 6.6 we deduce that, up to con-
jugating ( f ,7), there is a P so that xg, £ are in different basis of attraction of
either Py, or P L

We will apply Proposition 4.8 with T = W€ the center foliation.

We consider the case where the point xg € ¢ is in the basin of repulsion of a
repeller of P and £ in the basin of repulsion of the other repeller of P. Applying
Proposition 4.8 to P~! we obtain that iterating by P~" the leaf L converges to
a leaf L' fixed by P and P fixing disjoint center curves c¢; and co which join the
repelling points. (The other case is symmetric and obtains curves that join the
attracting points of P by iterating forward.)

By Addendum 4.9 one can also see that there is a center curve cs in L' between
c1 and ¢y and so that both endpoints of c¢3 in L’ are equal. Since the curve is
between c; and ¢y it follows that its forward iterates remain in a compact region,
and so the curves converge to at least one curve ¢’ whose endpoints coincide with
the endpoints of c¢3 and which is fixed by P.

The symmetric case is dealt with using P~! instead of P. O

Proof of Proposition 6.5. Let ¢’ given by the previous lemma. By Proposition
5.10 we get that the endpoints of ¢ must correspond to a super repelling point
of Py.
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Since ¢’ is fixed by P, there is a leaf F € Weu containing ¢’ and fixed by P.
Since the action of P on ¢ is coarsely contracting, there is a fixed point z € ¢ by
P. Let c¢1, c2 be the rays of ¢\{z}.

We first consider the situation in L and the foliation W¢. Both ¢y, ¢o limit to
the same point z = O (¢) in S'(L) with ¢ super repelling for P. Theorem 5.6
implies that the geodesic ray in L starting in = and with ideal point z is contained
in uniform neighborhoods in L of ¢; and c¢s. In particular, there are sequences
pn € c1 and ¢" € c3 converging to z in L U S*(L) so that dr,(pn, ) is bounded.
It follows that dg;(pn,¢n) is bounded.

We now look at the center unstable foliation W, and use that it is R-covered.
Since W is R-covered, this implies that in F' the points p,, and ¢, are a bounded
distance apart. This is because F' is uniformly properly embedded in M. Let O,
be the geodesic segment in F' from p,, to ¢,. By trimming ¢, or replacing py, g, if
necessary, we assume that £, intersects ¢ only in p,, g, still keeping the length
of £,, globally bounded.

Since ¢ is super repelling for P, (acting on the universal circle of W) it follows
that d;(pn, P(pn)) converges to infinity and likewise for g,. The length of P(¢)
is uniformly bounded. In particular for n big enough P(¥,) is disjoint from £,,.
Fix one such n. Let D be disk in F' bounded by ¢, and the segment in ¢’ from
Pn 10 qn. By the above P(D) is strictly contained in D. There is a ray of the
unstable leaf of x entering D. This ray intersects 0D. This ray is expanded by
P. This contradicts that P(D) is a subset of D.

This finishes the proof of Proposition 6.8. U

6.3. Proof of Theorem 6.1. The proof of Theorem 6.1 is very similar to pre-
vious arguments.

Proof. Assume by contradiction that there is a leaf L € W on which the leaf
space of We is non Hausdorff. Consider two center leaves ¢, € L which are
non-separated in the sense that there is a sequence ¢, of center leaves such that
¢, converges both to ¢ and ¢ (it may converge to other center leaves too). Up to
changing orientation of the center foliation, we can assume that there are arcs I,
of ¢, which approximate'? the points ¢t and (¢)~ in L = L U S'(L) which may
or may not coincide.

By Proposition 6.8, we have ¢~ # ¢ and also ¢t # (¢/)*. Hence as done in
the proof of Proposition 6.6 we can choose an admissible regular pA pair ( f )
which verifies that in L either the geodesic joining the attracting points or the
repelling points separates ¢t from the ideal points of the center curves c,. As
before, we assume that it is the geodesic joining the attracting ideal points that
makes the separation (as the other case is symmetric).

We can assume by further conjugating ( f ,7) that it verifies that both ideal
points of the curves ¢, belong to the same basin of repulsion of the repeller r; of
P, Since ¢ belongs to the basin of repulsion of the other repeller ry it follows
that for n large enough, the segment I,, intersects the basin of repulsion of rs.
We can then apply Proposition 4.8 to P¥ k < 0 to find a fixed center stable leaf
L' € F such that it contains two center curves which are disjoint and join the
repelling points of P,. Moreover, between these center curves there is a fixed
center curve both of whose points coincide by Addendum 4.9. This contradicts
Proposition 6.8 and concludes the proof of Theorem 6.1. O

12By this we mean that the Haudsorff limit of the arcs I,, in L contains both ¢t and ().
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7. QUASIGEODESIC BEHAVIOR

In this section we want to show that under our assumptions the centers behave
as uniform quasigeodesics in leaves of center stable and center unstable branching
foliations.

Recall that for £ > 1, an embedded rectifiable curve ¢ < L in a complete
Riemannian manifold is called a k-quasigeodesic if one has that for all x,y € ¢

dg($,y) < de(xay) + k.

where dj, denotes the Riemannian distance in L and d; is the length along #.
Note that dy(z,y) > dr(x,y) always.

Definition 7.1. Let F be a (branching) foliation in a closed 3-manifold M. We
say that a one dimensional branching subfoliation T of F by rectifiable curves is
by uniform quasigeodesics if there exists k such that every curve £ of TinLeJ
with the induced path metric is a k-quasigeodesic.

Remark 7.2. The fact that a subfoliation is by uniform quasigeodesics is inde-
pendent of the metric in M since M is compact. Only the constant may change.
In our setting we typically work with (branching) foliations whose induced met-
ric is negatively curved, where quasigeodesics have very meaningful geometric
properties thanks to the classical Morse lemma (see [311, §III.H.1]).

Unless otherwise stated we always assume that the one dimensional (branching)
subfoliations are by rectifiable curves.
Now we can state the main result of this section:

Theorem 7.3. Let f : M — M be a partially hyperbolic diffeomorphism pre-
serving branching foliations W and W such that both (f, W) and (f, W)
have full pseudo Anosov behavior (Definition 6.7). Suppose that there is (f,7) a
reqular full pair for (f, W) which is also a good pair for (f, W*). Then W€ is
by uniform quasigeodesics in both W and W€

Note that uniform quasigeodesics in leaves whose metric vary continuously can
be followed in nearby leaves, so we deduce that:

Corollary 7.4. The endpoint maps ¢ — cE from the leaf space £¢ of the center fo-
liation We to S}mw is continuous and w1 (M )-equivariant. It is also f-equivariant

for f a lift of f to M (see Proposition 2.5).

We explain what we mean by ¢t. Suppose that c is contained in a leaf L of Wes.
Let b be the ideal point of ¢ in the positive center direction. Then ¢t = ©7'(b).
Similarly for ¢

7.1. Tracking geodesics. Consider T a one-dimensional sub-branching foliation
of a branching foliation F of M. We assume that F is R-covered and uniform and
by hyperbolic leaves so that we can apply all what was developed in §2.2-§2.4.
When lifting to the universal cover we get a (branching) foliation F of M which
is subfoliated by a (branching) foliation T and we choose an orientation for both.

We will say that T has efficient behavior in F if the following conditions hold:

(i) the leaf space of T in each leaf L € T is Hausdorf,

(ii) each curve £ € T in a leaf L € F has well defined limit points £~ and £+
in SY(L) which are different
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(iii) there is R > 0 such that for each f € T and z € { < L € F if we denote
by rE the geodesic ray in L joining x with ¢* then we have that 7 is
contained in the R-neighborhood in L of the ray of ¢ from z to ¢*.

(iv) T has small visual measure (cf. Definition 4.10).

Remark 7.5. In the previous sections we have established that if f : M — M
is a partially hyperbolic diffeomorphism in the hypothesis of Theorem 7.3 then
the center (branching) foliation W€ has efficient behavior in both W and W<:
Point (i) is done in §6, point (é¢) in §4.1 and Proposition 6.8 and points (ii7), (iv)
in Theorem 5.6.

The following will be an auxiliary result to show the quasigeodesic behavior.

Lemma 7.6. Let T having efficient behavior in F and let ¢, € T be a sequence
of leaves. Assume that ¢, € Ly € F so that L, — L, ¢, > ce L and there are
points T, € ¢, so that x, — x € c. Assume there is a point y, in the ray of
cn\{Tn} with positive orientation so that y, — £ € SL . (as in Definition 5.6).

Then, the endpoint ¢t of the positively oriented ray of c\{z} is & is O (&).

Proof. Suppose this is not true, let c,, z,,y, failing this condition. Up to sub-
sequence assume that y, converges to &, with cy = Or(£). Let v € S. . with
Or(v) =c .

Since ¢ = O (v) and ¢, converges to ¢ in the center leaf space, then ¢, also has
points z, between x,, and y,, so that z,, converges to ©,(v). Consider the segments
Jn in ¢, from z, to y,. These segments do not have visual measure converging
to zero as n — 0, because O (v) = Or(§). Since T has small visual measure
it follows that these segments cannot escape compact sets M and converge to a
collection of center leaves in L. Let £ be such a center leaf. In particular there are
wy, in J, converging to w in £. If ¢ = ¢, then the the local product structure of
foliations (in the center leaf space) shows that the length of segments in ¢, from
Ty to wy, is bounded, so the length in ¢, from z, to z, would also be bounded
contradiction.

We conclude that ¢, ¢ are distinct center leaves in L. By Theorem 6.1 the
center leaf space restricted to L is Hausdorff. Hence there is a transversal to the
center foliation in L from x to w. This transversal produces in nearby leaves L,
transversals to the center foliation in L,, from z,, to w,. This is a contradiction,
because x, and w, are in the same center leaf in L,,. This finishes the proof. [

Clearly the same statement holds for the negatively oriented ray.

Remark 7.7. We say that the endpoints of curves | in T vary continuously if glven
a sequence of leaves ¢, € ‘T £, in L,, leaves of WCS with endpomts ¢F and £,

S1(L,) and so that ¢, converges to /, in the leaf space of T and ¢ < L, where L
is the limit of L,,, then the sequences

o', er(,) in S,

univ

converge to ©7'(¢*) and ©;'(£7) respectively. It is worth making the remark

that if the sequence of leaves £, converges to £ in the leaf space of T it means
that given a compact part of ¢ it will be well approached'® by the curves £,,. The
proof of the previous Lemma can be adapted to show that the endpoints of the
curves in T vary continuously. Since we will only use the statement above, and

131f we consider a sequence of points x, — x one may choose leaves of T through x,, which
are far from a given curve passing through z due to potential non unique integrability of the
(branching) foliation. Convergence in the leaf space is needed to make this work.



46 S. FENLEY AND R. POTRIE

continuity also follows a posteriori from the fact that 7 is uniformly quasigeodesic
(cf. Corollary 7.4), we do not prove this here.

Now we can use the previous lemma to show the following property which
implies one of the main consequences of being uniform quasigeodesic. This will
allow us to show the quasigeodesic property in the next subsection.

Lemma 7.8. If T has efficient behavior in F then there is R > 0 such that for
every center leaf { € T contained in L leaf of \%, then the geodesic g in L with
ideal points £ and ¢~ is at Hausdorff distance less than R in L from £. The
same results holds for segments or rays in leaves of 7.

Proof. Notice that condition (ii) of a efficient lamination says that £~ = £, so

the geodesic g is defined.

We first prove this for finite segments: there is a uniform constant R > 0 such
that for every L € F, the Hausdorff distance in L between a geodesic segment in
L joining the endpoints of an arc I < £ € T ~ L and I is less than R. Assume
that this is not the case. Then, we can find a sequence I,, of segments of leaves
L, € ‘j’, £, c L, € f?, so that there is a point x, € I,, at distance larger than n in
L,, from the geodesic segment g, in L, joining the endpoints of I,,.

Up to composing with deck transformations we can assume that the points
Ty belong to a fixed compact fundamental domain of M in M and therefore, up
to subsequence, that z, — x € ]\7, that ¢, — ¢ through x, and that L, — L
containing ¢. Up to another subsequence assume that one of the endpoints of g,
converges to a point £ in S}mw.

Since the distance in L,, from x, to g, converges to infinity, and g, are geodesic
segments in L, it follows that visual measure of g, in L, from z, converges to
0. In other words both endpoints of g, in L, converge to the same point & of
St .- Applying Lemma 7.6 it follows that both endpoints of ¢ are O (). This
contradicts condition (ii) of an efficient lamination. This proves the result for
segments.

To get the result for full center leaves, take x € £ and consider a sequence I, of
intervals of ¢ from z, to a point ¥, so that vy, — ¢ and z — £~. Since y,, — ¢*,
Zn >0~ inL=LuSt (L) it follows that the geodesic segments from z, to ys,
converge uniformly on compact sets to the geodesic with ideal points ¢* and ¢~.
Therefore the result holds maybe by taking R slightly larger. A similar proof
holds for rays. g

7.2. The quasigeodesic behavior. Here we show the following result which is
standard. A similar result in a slightly different setting can be found in [FM].

Proposition 7.9. Let T be a one dimensional (branching) foliation of M which
subfoliates F. Assume that there exists R > 0 such that for every L € F and

every finite segment I in a leaf ¢ € T A L there is a geodesic segment in L with
same endpoints as I which is at Hausdorff distance in L less than R — 1 from £.
Then T is by uniform quasigeodesics in F.

Proof. As seen by the proof of the last Lemma the condition implies that full
leaves of T have distinct ideal points and are R distant from the corresponding
geodesics in their respective leaves. This also immediately implies that the leaf
space of T in any leaf of F is Hausdorff.

Let ag > 3R. We first claim that there is a global length a; so that if a segment
I in aleaf £ of T contained in L leaf of F has length more than a; then the distance
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in L between the endpoints of I is more than ag. Otherwise find segments I,, of
length > n with endpoints x,,, y, less than ag in their respective leaves. Up to
deck transformations and subsequences assume that x, — xg,y, — yo both in
L, which is the limit of leaves L, containing I,. The leaves ¢, through x,,y,
converge to a leaf by through x¢ and a leaf b; through yg. This is in the leaf
space of J.If by = by then the lengths of ¢, between x,, and y, are bounded
contradiction. Hence by, by are distinct leaves. There is a trasversal from xg
to yo and this leads to transversals in respective leaves of F from Tn O Yn,
contradiction. This proves the claim.

Given ¢ leaf of T in leaf L of F consider the geodesic g in L with same ideal
points as £ and the orthogonal projection from £ to g. Since ¢ is in a neighborhood
of size R in L from g, then the claim above shows that every time we follow along
¢ a length > a; the projection to g moves forward at least R. This proves the
uniform quasigeodesic behavior of leaves of 7. O

Proof of Theorem 7.3. As observed in Remark 7.5 we know that under our as-
sumptions the center foliation T has efficient behavior in W, ‘W, Properties
(73) and (4i7) of efficient behavior plus Lemma 7.8 imply that W¢ is in the hy-
pothesis of Proposition 7.9 with respect to both W and W. The result then
follows. (]

8. THE COLLAPSED ANOSOV FLOW PROPERTY
In view of the previous section we can deduce:

Theorem 8.1. Let f : M — M be a partially hyperbolic diffeomorphism preserv-
ing branching foliations W and W which are uniform, R-covered, and such
that both (f, W) and (f, W) have full pseudo-Anosov behavior. Suppose that
WES W are transversely orientable. Then, f is a collapsed Anosov flow.

Proof. The orientation hypothesis are equivalent to E%, E° being orientable re-
spectively. Theorem 7.3 shows that centers are quasigeodesics in the respective
leaves of V%,W\CJ“ This is what is called a quasigeodesic partially hyperbolic
diffeomorphism, see | , Definition 2.15]. Under the orientation hypothesis of
E* E", | , Theorem D] implies that f is leaf space collapsed Anosov flow,
which we do not define here. Again using the orientation hypothesis, | , The-
orem B] then implies that f is a strong collapsed Anosov flow. The Definition of
a strong collapsed Anosov flow | , Definition 2.9] immediately implies that f
is a collapsed Anosov flow as we have defined here. Items (i) and (iv) of [ ,
Definition 2.9] are the exact conditions defining a collapsed Anosov flow. O

The situations we analyze in this article are simpler than the general situation
analyzed in | ]. In particular the branching foliations W, W here are R-
covered. We give here a detailed sketch of a proof of Theorem 8.1 in our simpler
setting. The reason for this sketch is twofold: on the one hand some arguments
can be simplified and we will point to some of these simplifications that make
the paper more self contained. On the other hand we also will use some of the
notions to get uniqueness of branching foliations, in particular we will use the
following notion:

Definition 8.2. A one dimensional branching foliation 7 in an R-covered uniform
foliation & by hyperbolic leaves is said to be a quasigeodesic fan foliation if the
following happens: For every L € F there is a point p = p(L) € S*(L) called the
funnel point, such that there is a bijection from the leaf space of T AL and points
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in S*(L)\p, and so that the leaf of T n L corresponding to the point ¢ € $*(L) is
a quasigeodesic joining ¢ and p.

The key point of the proof of Theorem 8.1 is to show that the center branching
foliation W€ is a quasigeodesic fan foliation in both W and W since this allows
to produce a (topological) Anosov flow rather easily (in fact, an expansive flow
preserving transverse foliations, which is equivalent to being a topological Anosov
flow). We refer the reader to | | for details on this, we will concentrate here
in explaining how to obtain that centers form a quasigeodesic fan folzatzon just
by knowing that the leaves of We are uniform quasigeodesics in Wes and Weu (cf.
Theorem 7.3).

To prove this, we follow a path which is somewhat more direct than the one
taken in [ | since the R-covered property simplifies the arguments.

First, we notice that the branching foliations W and W must be minimal.
Recall that being minimal means that there is no closed (M) invariant set in
the leaf space of the (branching) foliation in the universal cover. See [ ,
Appendix F] for more discussion.

Proposition 8.3. Let f : M — M be a partially hyperbolic diffeomorphism
preserving branching foliations W and W which are uniform and R-covered
and such that the center foliation W€ is a quasigeodesic foliation both in W and
We, Then W and W are minimal.

Proof. We argue for W since W is symmetric. To see this, we use the fact
that since they are foliated by quasigeodesics then every leaf of We has cyclic
stabilizer in 71 (M), and is either a plane, annulus or M6bius band. Note that up
to finite cover we can assume that all foliations are orientable and transversally
orientable. In addition, minimality in a finite cover implies minimality in M,
S0 it is no loss of generality to assume these orientability assumptions. Given
the orientation hypothesis the leaves can only be planes and annuli. If there
was a proper minimal set one arrives at a contradiction using a volume versus
length argument, exactly as is done in the proof of | , Proposition 6.1]. We
explain a bit more: suppose there is a a proper minimal set of say W€, then one
can construct a region contained in the complement of the minimal set which is
either a ball or solid torus, and such that the region is mapped inside itself by
an iterate of f. The ball or solid torus is obtained by looking at a connected
components of the set of points that are > ¢ away from the minimal set for a
suitably small €. Using that leaves of W are planes or annuli, and W is R-
covered, one shows this complementary region has to be contained in either a ball
or a solid torus. This contradicts | , Proposition 5.2]. O

Now, we close this section with a sketch of the proof of Theorem 8.1 pointing
to some results from | ] when the arguments cannot be simplified.

Sketch of proof of Theorem §.1. One can first argue similar to what is done in
[Cas, 85] to see that the set of leaves of We on which the foliation We is a
(weak)-quasigeodesic fan is a m (M) and f-invariant closed set of the leaf space
of Wes which is non-empty. Therefore this set is everything because of minimality.
By weak quasigeodesic fan we mean that all center leaves share a common ideal
point, but we allow several curves of the foliation in a leaf of Wes to joint the
same pair of points.

One gets the less powerful weak quasigeodesic fan property because to apply
arguments similar to those in [Ca,, §5] one needs to tighten up the foliation to an
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equivariant geodesic foliation on leaves. The arguments in [C'a,] are for geodesic
and not quasigeodesic leaves.

After this is done, it is however possible to show that the subset of the leaf
space of Weu corresponding to the interval of centers in a Wes leaf that join
the same pair of points produces an open and m (M )-invariant sublamination
that cannot be the whole leaf space. So again using minimality we exclude this
possibility. We refer to detailed proofs, which work with much more generality,
in | , Proposition 6.19].

Once the center (branching) foliation W€ is a quasigeodesic fan foliation in W
and W we apply the approximation foliation result (Theorem 2.1) to obtain a
true foliation W¢ which subfoliates the approximating foliations W¢* and Wg*
with the same quasigeodesic fan property (this is where we use the transverse
orientability assumption). One can then show that this gives an expansive flow
in M which, by virtue of preserving a pair of foliations, is topologically Anosov
[ , Theorem 5.9]. Since the foliation is R-covered, the flow is transitive and
therefore orbit equivalent to a true Anosov flow thanks to Shannon’s result (cf.
§ 2.6) . This already proves the existence of an Anosov flow in M and the notion
called leaf space collapsed Anosov flow in | |. In addition the maps given by
the approximating foliation allow one to construct the collapsing map h, which
must then be intertwining the action of f with a self orbit equivalence associated
to how it permutes the orbits of the flow. The construction of the semiconjugacy
hin | ] is fairly complex due to the possibility of branching in the foliations
and it is done in detail in | , §9]. O

9. FUNNEL DIRECTIONS

In this section we obtain a couple of technical properties.

Let f be a partially hyperbolic diffeomorphism satisfying the hypothesis of
Theorem 8.1. In particular in every leaf L of either Wes or \7\7\5“, the center
foliation is a fan. The stable funnel direction of a center c in a leaf L of Wes s
given by the orientation in ¢ towards the funnel point in L. Similarly one defines
the unstable funnel direction. By Corollary 7.4 the stable funnel direction varies
continuously and clearly it is invariant by deck transformations. Notice that the
stable funnel direction is defined a priori for points in center leaves contained in
center stable leaves and not just on points. However any two center leaves through
a point x in M are connected by a continuous path of center leaves through .
Since the stable directions on these centers — verified at x vary continuously, they
all define the same direction at x. Therefore the stable funnel direction depends
only on the point.

Let V be the universal circle of the center unstable foliation W. For each U
leaf of Weu let 7y : V — S*(U) be the canonical identification.

Lemma 9.1. The stable and unstable funnel directions disagree everywhere.

Proof. Since the stable and unstable funnel directions vary continuously they
either coincide everywhere or disagree everywhere. Let us assume they coincide
everywhere. Let J be the leaf space of Weu,

We consider a map 7 : J — 'V defined as follows. Given U in \7\7\;“, let qu €
S1(U) be the unstable funnel point of U. Let n(U) = (1v7) ' (qu).

Let L be a leaf of Wes and e1, e distinct centers in L. Let I be the interval of

d of Weu leaves intersecting L in a center between e, eo including the boundary
leaves. Let U, U’ be leaves in I intersecting L in centers ¢, ¢’. Rays of ¢, ¢ in the
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stable funnel direction are a bounded distance from each other in L, hence in
M. By the definition of the universal circle of the center unstable foliation, these
rays define the same point in V. By hypothesis in this proof the stable funnel
direction is also the unstable funnel direction in the center leaves. This implies
that 7 is constant in 1.

By Proposition 8.3 for every U leaf of W< there is a deck translate ~(U)
contained in the interior of I. Hence the union of deck translates of I is all of
the leaf space J. This shows that 7 is constant. But then 7 would be m (M)
invariant. This contradicts | , Proposition 5.2]. This finishes the proof. O

Lemma 9.2. Let f be a partially hyperbolic diffeomorphism satisfying the hy-
pothesis of Theorem 8.1. Let L be a leaf of Wes. Then any two centers c,c in
L are asymptotic in L in the stable funnel direction. In addition if two distinct
center leaves c,c in L intersect in a point x, the following happens: if c1,co are
the rays of c,c respectively starting in x and in the stable funnel direction then
€1 = ca.

Proof. Suppose that the first statement is not true. Then there are L,c,c’, and
e > 0 so that there are points z,, (say in ¢) converging to the funnel point of L
so that dr(zn,c’) > €. Up to subsequence there are 7, in m1(M) so that v, (x,)
converges to . Then up to subsequence =, (L) converges to E, v, (c) converges to
a center e in F, and 7, (c’) converges to a center ¢’ in E. Since dr,(pn,c’) > € then
e, e are distinct centers in E. By construction and the uniform quasigeodesic
property, the centers e, e’ have the same pair of ideal points in S*(E). This
contradicts Theorem 8.1 that the center foliation in E is a quasigeodesic fan.
This proves the second statement.

To prove the second statement, suppose that there are ¢, ¢’ center leaves in some
leaf L which intersect in x but so that the rays ¢y, ¢o in the stable funnel direction
in L are not the same. We already know that the rays c1,cy are asymptotic in
L. Let V be a component of L — (¢; U c2) which is between ¢; and ¢3. Then it
contains a stable segment sg through a point yo in V. As usual let f be a lift of f.
Take deck translates v; of a subsequence f”l (yo) converging to y with n; — —oo,
so the stable lengths increase. Up to another subsequence suppose that ~; f’“(cl)
converges to curves dj, ds which are contained in center leaves e, ez in the limit
center stable leaf E. Let W be the limit of ; f”Z(V) which is a region between
dy1,ds. The limit of ~; f”i(SQ) is at least the full stable leaf s through y which is
contained in W.

It could be that di,ds have an endpoint, which then would be the limit z of
%f”i (). In this case dy,dy are rays in eq, e5. Otherwise dy, dy are the full leaves
e1, ez. In the first case the two rays of s limit to the same point in S*(E) which
is the common ideal point of dq,ds in S'(E). But the two rays of s have to be
at least some distance apart from each other or else they would intersect the
same foliated box of the center foliation, a contradiction. The rays are in the
region between e; and ey. This would imply that ej,es are not asymptotic in
the stable funnel direction. This contradicts the first statement that has already
been proved. In the second case di, do are the full leaves eq, eo. But then the two
distinct center leaves eq, es in E have both endpoints which are the same. This
is impossible because the center foliation is a quasigeodesic funnel in F. This
finishes the proof of the second statement. O

10. UNIQUENESS OF THE BRANCHING FOLIATIONS

In this section we show:
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Theorem 10.1. Let f : M — M be a partially hyperbolic diffeomorphism pre-
serving branching foliations W and W such that both (f, W) and (f, W)
have full pseudo Anosov behavior (Definition 6.7). Then, if WS® is another
branching foliation such that (f, W$®) has full pseudo-Anosov behavior then W =
Wss.

Some parts will require less assumptions, but whenever shorter we will choose
to give a direct proof in our specific setting. Of course there is a symmetric state-
ment to show uniqueness of W. One should compare this result to [ , §12]
were we get some uniqueness results for branching foliations in a different setting.
Later, we will put these results together to get very strong unique integrability
properties for partially hyperbolic diffeomorphisms of hyperbolic 3-manifolds.

We start by showing that the induced center foliations W¢ (by intersection
between W and W) and W§ (by intersection between W$* and W) coincide.

10.1. Limit behavior. In this section f : M — M will be a partially hyperbolic
diffeomorphism preserving a branching foliation W tangent to £* so that W
is subfoliated by two f-invariant one dimensional branching foliations W{ and W§
tangent to E° which are quasigeodesic fan foliations (cf. Definition 8.2) obtained
by intersecting with f-invariant branching foliations W{* and W$*. In the proof
of Theorem 10.1, W{* = W<,

Notice that a priori we have four choices for funnel directions on center leaves:
two stable funnel directions (the pairs W, 'W$* and W, W5*) and likewise two
unstable funnel directions (for the same pairs). Lemma 9.1 shows that for the
same pair, the stable and unstable funnel directions are opposite.

Here we show that a particular configuration holds if the foliations W§, W§ do
not coincide. In the next section we will show that this is impossible.

For the next few results we only consider unstable funnel directions or points.
So for simplicity, unless otherwise stated we refer to them as funnel directions
or funnel points. In addition the universal circle, still denoted by Sl . s the
universal circle of W. Similarly, we use the previous notation for the maps
Or: 8L . — SHL) for Le Weu,

We need to show the following:
Lemma 10.2. The funnel points of W{ and W5 coincide.

Proof. By Corollary 7.4 we have that the set of leaves L € Weu where the funnel
points of \’/\\7% and \/’\75 coincide is closed and m (M) invariant. Therefore, by
minimality (Proposition 8.3) we just need to show that there exist some leaf
where they coincide.

To do this, take a leaf L where the funnel points differ (if there is no such leaf,

there is nothing to prove). Denote by p; to the funnel point of \/\75 in L (with
i =1,2) and consider a point £ € SI . with ©(£) not in {py,pa}.

Choose a sequence z,, € L such that z,, — O,(£) in LUS(L). Now, composing
with deck transformations v, € m (M) sending z,, to a given bounded set, and
up to extracting a subsequence we have that ~v,z, — = € M. Let Ly € Weu
be the limit of the leaves ~y,L which is a leaf through xz. The funnel points of
oL are given by v,p1 and ~v,p2. These converge to the funnel points in L.
Since the visual measure from z,, of the interval between p; and py in S*(L) that
does not contain Op(§) goes to zero with n we deduce that the endpoint of the
quasigeodesic fans in Lo, must coincide. This completes the proof. O

Finally we show the following result which is important to get a contradiction
in our case, but we note that the proof may work in more generality.
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Lemma 10.3. Assume that (f, W) has full pseudo-Anosov behavior. If W§ #
WS then there exists a regular pzii pair (f,'y) and a leaf L € W which is fized
by a conjugate P of Py = ™ o f* (cf. Notation /.6) such that it contains two
disjoint curves c1 € W§ and co € WS whose endpoints in SY(L) are ©r, images of
super-attracting points of Py in S} In addition P(c;) = ¢;.

unw*
Proof. It W§ # W$, using Lemma 10.2 we know that there is a leaf E' € F
such that there are center curves e; € W§ and ez € W§ in E’ which share both
endpoints and so that e; # e3. Denote by p,q € S'(E’) the ideal points of the
curves e; (i = 1,2). One can then define the region Z between e; and eg as the
union of connected components of E’\(e1 U e3) whose closure in B/ = E' U S'(E')
is contained in E’ U {p,¢}. This is an open and non-empty set and we can then
consider an unstable interval I < E’ (i.e. tangent to E*) which is contained in
Z.

Fix z in the interior of I. Consider a lift f; of f to M. Up to subsequence
there are y; in m (M) so that v, ;7 (z) converges to y in a leaf Ey, where FEj is
the limit of ~; f,” (E'). We can assume that v, ;" (e;),i = 1,2 also converge to
centers e, i = 1,2 in Ey. This is because the curves

vifi? (), ifi” (e2)

have the same pair of ideal points in S'(v;f;” (E’)) and hence are a bounded
Hausdorff distance from each other in v;f;” (E’). Finally v;f,” () is between
them in 7, f,” (E'). The limit of ~}”(I) contains the full unstable leaf u’ of g,
which is then betweeen €], €}, in Ej.

If the ideal points of v are distinct in S'(Ep), let u1 =/, e} = e}, E = Ej.

If the ideal points of u’ are the same point z in S'(Ep) consider y, in v’
converging to z in Ey u S*(Ep) so that 7(y,) converges in M. There are (3, in
m1(M) so that f,(y,) converges to qo, [n(Fo) converges, and we let the limit
of B,(Ep) be E. We can also assume that f,(e}),7 = 1,2 converge, and we let
the limits be el. Then S, (u’) converges to at least one unstable leaf u; in F
which separates e} from e} in E. So in any case we obtain a leaf E of Wet with

two centers e%, e% of Wci respectively so that e%, e% have the same ideal points in
SY(E) and there is an unstable leaf u; in L separating el from e3.

We assumed that (f, W) has full pseudo Anosov behavior (cf. Definition 6.7).
So there is a conjugate P of the full regular pair so that points in disjoint rays of
e% are either in distinct basins of attraction of P or distinct basins of repulsion
of P. To get this use the last two bullet points of Definition 6.5. In the case of
attraction (repulsion) use iterates P™ as n — o0 (as n — —o0). In either case
we get L is the limit of P"(E), and up to subsequence P"(e}) converges to ¢;
center leaves in L which are invariant by P and there is an unstable leaf v in F
separating ¢; from ¢y and u invariant by P. Since P(u) = u the ideal points can
only be super attracting.

This finishes the proof of the Lemma. U

10.2. Orientability of the center foliation. Even if the funnel points coincide
(cf. Lemma 10.2), the orientation may be different in both. This will play a
crucial role in the proof, so we introduce the following definition:

Definition 10.4. Let T be a quasigeodesic fan foliation of F (cf. Definition 8.2)
and consider an orientation of the tangent space to 7. We say that T is oriented

towards the funnel point if every curve of T n L is oriented in the direction of the
funnel point. Otherwise, we say that T is oriented against the funnel direction.
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Remark 10.5. Notice that the definition makes sense. First of all, the fact that T
is a quasigeodesic fan foliation implies that 7 is orientable. Secondly, the funnel
point varies continuously (cf. Corollary 7.4), therefore, either T A L is oriented
in the direction of the funnel point everywhere or nowhere.

We will choose from now on an orientation in £ making that W{ is oriented
towards the funnel point. As remarked before we are always considering the
unstable funnel point and the direction in the center unstable leaves.

Lemma 10.6. Assume that (f, W) has full pseudo-Anosov behavior. If W§ #
W5 then WS is oriented against the funnel point.

Proof. We work in the leaf L given by Lemma 10.3 where we have disjoint centers
c; € \X?;C fixed by P which join the attracting points a1, a2 of P in S}miv and which
are separated by a fixed unstable leaf u which also joins those points. Let x € u
be the unique fixed point. Note that since both W{ and W§ share their funnel
points, we can assume that aq is the funnel point for both.

Let e; be a curve of \/7;3 through the point x € v and fixed by P. Note that x
may belong to many curves in Vv’g but at least one must be fixed by P, we choose
any such fixed curve. It is important to remark that e; # ¢; since ¢; does not
intersect .

Consider the ray of e; from = pointing to the region between u and ¢;. This
region has limit points only a; and as. We claim that the endpoint of the ray
must be ai: if it were ao this is different than a; and so the other endpoint of e;
would be a;. Hence e; is another curve in WJS from a1 to ay (besides ¢;) and this
is inconsistent with being a quasigeodesic fan foliation.

Since the regions between u and ¢; and w and ¢y are oriented differently from
x, we deduce that the orientation of es has to be against the funnel point. Since
orientations coincide or disagree everywhere, this concludes. U

ai

ag
FIGURE 8. Proof of Lemma 10.6.

10.3. Proof of Theorem 10.1. We first show:

Lemma 10.7. If W{* = W # W5® then there is a leaf U € Wet such that the
foliations W§ and W$ are different.



54 S. FENLEY AND R. POTRIE

Proof. We show that if We = Vm\% in every leaf U of \7\7\;“, then W = W$*. Let

L in W§* and U in W intersecting L in a center c leaf of {/\\ff Since W¢ = Ws,
then there is F leaf of W5® intersecting U also in c¢. We will show that £ = L,
hence every leaf of W{* is also a leaf of W5® and vice versa, proving the result.
Let W be the union of the stable leaves intersecting c. The foliations W{*, Wg*
have leaves which are stable saturated, hence W is contained in both L and FE.
Let p be the (stable) funnel point of L. Lemma 9.2 shows that for any other
center c1 in L then ¢, c; are asymptotic in the direction of p. Hence c¢; has a ray

towards p contained in W (so contained in E). This ray defines direction 1 in ¢;.

Let V be a leaf of Wt so that V n L = c1. Let co =V n E. Then c¢;,cy share
a ray in direction 1. The unstable funnel direction in V induces the opposite
direction (direction 2) in ¢; by Lemma 9.1. It follows that in V' the rays of ¢, co
corresponding to direction 2 have the same ideal point ¢ in S'(V).

Notice that ¢; is a leaf of Vf\\f‘f and ¢y is a leaf of \ng Since these foliations are

the same in V, then ¢, is also a leaf of Vf\\ff in V. But then c1, co are leaves of %
with same pair of ideal points in V' (in direction 1 they share a ray, in direction 2

they both limit to ¢). Since \7\7§ is a quasigeodesic fan in V' it follows that ¢; = cs.
In other words c; is contained in E. Since this is true for any center in L then
L c FE. Since L is properly embedded this implies that L = E. This finishes the
proof. O

Now we can apply what we showed before to prove uniqueness:

Proof of Theorem 10.1. By the previous Lemma it is enough to show that W{ =
W3, so assume by way of contradiction that W{ # W5. Now use Lemma 10.3,

which provides a P and a leaf L of Weu fixed by P, containing two leaves c¢; of
W¢ invariant by P and an unstable leaf u in L fixed by P separating c; from
cg in L. This is the setup of Lemma 10.6 and we use the same center curves e;
through a fixed point x € u as in that lemma.

a

a2

FIGURE 9. Proof of uniqueness.



PARTIAL HYPERBOLICITY AND PSEUDOANOSOV DYNAMICS 55

Recall the setup of Lemma 10.6: there are 4 fixed points of P on S'(L), which
are a1, ag (attracting) and r1, 7 (repelling). Since eg is fixed by P its ideal points
are fixed points of P in S'(L). One of them is a;. The other ideal point z of es
cannot be ry as co separates ro from es. The point z cannot be ao either since
co already has ideal point 9. It follows that z = rq, see figure 9. Here 71 is the
repelling fixed point of P acting on L u S'(L) which is not separated by u from
co. In particular, e, must intersect cy.

Let y € ¢1 N ey be the last point of intersection (when following es towards the
point 71 or ¢; towards a; which are the positive orientations). The point y must
be fixed by P. Let I; be the ray of ¢; from y to the ideal point as, and let Iy
be the ray of eo from y to the ideal point r1. It follows that I; U I separates L
in two components, one of which, that we call Z has its closure in L containing
the segment in S'(L) from r; to as (and not intersecting any other of the fixed
points of P in S*(L)). Notice that I is in a leaf ¢; of \ﬁf and at y the orientation

in ¢; is pointing away from I;. Conversely s is contained in a leaf Fy of Wg and
at y its orientation is pointing into Io — in other words pointing away from I;.
This is because Lemma 10.6. Since both I; and I, are oriented coherently at y
it follows that the unstable manifold u(y) of y has one ray J inside Z. But J is
invariant under P and it is expanding under P, hence J must have ideal point
ag. Consider the region V of L bounded by the union of I; and the ray J.

Ifd e W{ is a curve intersecting V' it follows that it must intersect u(y) twice,
contradicting the fact that an unstable manifold cannot intersect the same leaf
of Wes twice (cf. §2.1). This completes the proof. O

11. HYPERBOLIC MANIFOLDS: PROOF OF THEOREMS A AND B

In this section f : M — M will be a partially hyperbolic diffeomorphism of
a hyperbolic 3-manifold. Recall that a hyperbolic manifold is one obtained as
a compact quotient of H3 by isometries. By Perelman’s proof of Thurston’s ge-
ometrization conjecture this is equivalent to being aespherical (i.e. m2(M) = {0})
and homotopically atoroidal (i.e. no mj-injective torus) with infinite fundamen-
tal group (see [ , Appendix A]). Note that we will only use the atoroidal
condition plus generalities about foliations.

11.1. Dichotomy: Discretized Anosov or double translation. Here we
explain how the main results of | | allow us to reduce the proof of Theorem
B to what we did so far.

Up to finite cover and iterate, we have that f must preserve branching foliations
and be homotopic to the identity (this is because of Mostow rigidity, see e.g.
[ , Proposition A.3]). We will lift these assumptions in §11.4 to prove the
full theorem.

This is the main statement of | | we will use. See [ , Theorem 2.4].

Theorem 11.1. Let f : M — M be a partially hyperbolic diffeomorphism ho-
motopic to the identity of a hyperbolic 3-manifold M which preserves branching
foliations W and W. Then,

(i) either f is a discretized Anosov flow, or,
(i) the pairs (f, W) and (f, W*) have the commuting property (cf. §5.4).
Notice that in case (ii) of this theorem we are in option (i) of §3.4. In particular
there is a lift f of f to M which commutes with all deck transformations and f

acts freely on the leaf space of Wes. This global commuting property of fimme—
diately implies that for any v deck transformation, then = preserves transversal
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orientations to W% and We. Hence the orientation conditions of Theorem 8.1
are satisfied.

We need to make some comments to explain how this follows d1rectly from
[ |. When f is homotopic to the identity we call a lift f M — M a good
lift if it commutes with all deck transformations. Such a lift can be obtained by
lifting a homotopy to the identity. See | , Definition 2.3]. The good lift
has the property required for (f, W), (f, W) to have the commuting property
(the fact that W and W are R-covered and uniform are direct consequences
of | , Theorem 2.4]).

Notice that if f is a discretized Anosov flow then it is a collapsed Anosov flow,
so we need to analyse only the second situation which we call double translation.

11.2. Regulating pseudo-Anosov flows. We state here the results that follow
from | , , ]. We remark that these results depend only on the fact that
M is atoroidal and not on its geometry (said otherwise, they depend on the coarse
geometry and not on the precise hyperbolic metric).

See | , Proposition 10.1] for the adaptation to branching foliations:

Theorem 11.2. Let F be a R-covered, transversely oriented and uniform branch-
ing foliation of a hyperbolic 8-manifold M. Then, there exists a pseudo-Anosov
flow @ : M — M transverse and requlating to F.

Recall that the condition of belng regulating means that in the universal cover
M, given two leaves L, L' € F there is a uniform time o := to(L, L') such that
for every x € L it holds that ®4(x) € L' for some |t| < ty9. We state the following
relevant properties about pseudo-Anosov flows in hyperbolic 3-manifolds that
follow from previous work by several authors (we give a very short sketch of the
proof pointing to some references for more details):

Theorem 11.3. Let &, : M — M be a pseudo-Anosov flow in a hyperbolic 3-
manifold. Then, ®; is transitive and therefore both the weak stable and weak
unstable (singular) foliations are minimal. Moreover, if ®; is requlating to an
R-covered foliation it cannot be an Anosov flow.

Proof. If a pseudo-Anosov flow in a 3-manifold is not transitive, then it has an
incompressible torus (or Klein bottle) transverse to the flow (see [Mos]). Since
M is hyperbolic then this is impossible.

Once that a pseudo-Anosov flow is transitive, the minimality of the singular
foliations follows, since a closed set saturated by unstable (resp. stable) leaves
is an attractor (resp. repeller). Finally, in [ , Proposition D.4] we explain
how the fact that pseudo-Anosov flows transverse and regulating to R-covered
foliations in hyperbolic 3-manifolds cannot be Anosov follows from previous work
by Barbot and the first author. O

We note that this will provide pA-pairs for (f, W) and (f, W) in case (ii)
of Theorem 11.1 since for every periodic orbit of the transverse and regulating
pseudo-Anosov flow one can construct a pA-pair associated to it using the deck
transformation associated to the orbit. Note that f acts trivially in the universal
circle, so one needs only to care about the action of the deck transformation (see
[ , Proposition 10.2]). Using Corollary 5.3 one deduces that both (f, W)
and (f, W) have the periodic commuting property. In Lemma 11.5 we show
how this produces the announced pA pairs.

Remark 11.4. Let v be a deck transformation. A point p € S! . issuperattracting

unLv

for v, (the induced action on S ., if and only if for some (and hence for any)
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Lin 7 if ~r, is an expression in L of the action of 7, then the following happens:
there is a neighborhood basis of ©(p) in L U S (L) defined by geodesics ¢; in L so
that the minimum distance in L between points in ¢; and v (¢;) goes to infinity
with ¢. See also proof of Proposition 3.7.

Lemma 11.5. Let &, be a pseudo-Anosov flow transverse to F as in Theorem
11.5. Let v be a deck transformation associated with a periodic orbit of ®,. Then
some power of v has fized points in Stlaniv and so that all fixed points are either
super attracting or super repelling.

Proof. We follow the setup in | |. Fix L in F. Let G7,5% be the singular
one dimensional foliations in L induced by intersecting the stable and unstable
2-dimensional singular foliations of ®; lifted to M with L. The non singular
leaves are uniform quasigeodesics | , Fact 8.3]. Let B®, B" be the geodesic
laminations in L obtained by pulling tight the leaves of G, G} respectively. Each
non singular leaf of G7 is a uniformly bounded Hausdorff distance in L from a
unique leaf of B®. A p-prong leaf of G} generates p leaves of B?.

The deck transformation + is associated with a periodic orbit « of ®; and fixes
a lift & to M. Up to taking a power assume that v fixes all prongs of &. Assume
that v is associated with the negative direction of a.. As in | , Section 8]
let 712 : L — 7~ 1(L) be the map obtained by flowing z in L along its &, flow line
until it hits 4y~ (L). Notice that

dyp(w,12()), €L

is bounded. Then yoTi4 is a representative in L of the action of . Let h = yorys.

Let © = & n L, which is the only fixed point of h = « o 75. Fix an unstable
prong 7 of x with ideal point p in S*(L). We will prove that p is a super attracting
fixed point of . For a stable prong we get a super repelling fixed point. Up to
applying a power of v we can assume that the Hausdorff distance between L and
v(L) is very big. This is okay since the lemma claims the result for a power of
. Then by [ , Fact 8.4] the map h expands length along G} exponentially
and contracts length along G7 exponentially (see also | ]). This means that
length along n from y to h(y) goes to infinity as y escapes in . We consider a
basis neighborhood of p defined by leaves of §7 intersecting n: given y in 7 let £,
the leaf of G through y.

Given y in 7 let g, be the geodesic associated with £,: it is a bounded Haus-
dorff distance in L from ¢,. Let v be the geodesic in L associated with ¥ (x) (for
simplicity assume x is non singular, otherwise there are 2 such geodesics associ-
ated with the ray n). Then the angle between v and any g, is bounded below by
ap > 0. Also the point y is a bounded distance from the intersection between v
and g, .

These facts imply that the minimum distance between points in ¢, and h(¢y)
goes to infinity as y escapes in 7).

This proves that p is a superattracting point. This finishes the proof. O

Remark 11.6. Note that the pseudo-Anosov flows associated to W and W<
given by Theorem 11.2 may be different and not even share the same homotopy
classes of periodic orbits. This will not be an issue, and we will obtain a posteriori,
that both pseudo-Anosov flows are orbit equivalent since this is the case always
for the weak stable and unstable foliations of an R-covered Anosov flow in a
hyperbolic 3-manifold.

11.3. Existence of full pseudo-Anosov pairs. Here we show:
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Proposition 11.7. Let f : M — M be a partially hyperbolic diffeomorphism of
a hyperbolic 3-manifold with f homotopic to the identity and preserving trans-
versely oriented branching foliations W and W. Suppose that both (f, W)
and (f, W) have the periodic commuting property. Then, both pairs have full
pseudo-Anosov behavior (cf. Definition 6.7). In particular, f is a collapsed
Anosov flow.

Proof. This follows from the existence of a regulating pseudo-Anosov flow. We
discuss the arguments to get the statements in our current framework. The fact
that (f, W) and (f, W*) have the periodic commuting property follows from
Corollary 5.3 and | , Proposition 10.2] as explained in the previous section.

Let ®§° be the pseudo-Anosov flow given by Theorem 11.2 for the branching
foliation W (the same arguments apply for W). To obtain the existence of
a full pA pair (cf. Definition 6.5) we use the fact that the singular foliations of
the pseudo-Anosov flow are minimal. The good pairs we will be using are (f, v)
where v is a deck transformation associated with a regular periodic orbit of ®¢*
and f is the good lift of f to M. Since ®7® is regulating for W, then v acts
freely on the leaf space of Wes. Hence (f, ) is a good pair. Up to a power assume
that ~ preserves all the prongs of the periodic orbit when lifted to the universal
cover. Lemma 11.5 any P = f”W” (n non zero) has periodic points when acting
on the universal circle of W, If there are fixed points then they are all either
super attracting or super repelling if |n| is sufficiently big. This is achievable,
because any power of v satisfies this, and f moves points a bounded distance.
Hence (f,~) is a regular pA-pair for (f, W).

Now we explain why this provides a full pair. For each leaf L of Wes let BT, BY
be the geodesic laminations in L obtained by pulling tight in L the leaves of the
stable and unstable foliations of %fs intersected with L. The complementary
regions of each of these geodesic laminations in L are finite sided ideal polygons,
and the complementary regions of the union are relatively compact polygons with
bounded diameter. The union of these over L projects to transverse laminations
in M — for details on these laminations see | ]'4. These laminations are
minimal. For each ¢ > 0 there is a diameter dy > 0 so that disks or annuli of size
do in any of these laminations are € dense in M. Choose ¢ much smaller than
the product foliation size of all the foliations or laminations involved. Given the
deck transformation v associated to a regular periodic orbit u, then the stable
and unstable leaves of i are annuli or Mobius bands producing like sets in the
leafwise geodesic laminations. A fixed compact annulus or Mébius band (denoted
by A%, A") band near the blow up of the periodic orbit is € dense in M. The A%, A“
intersect in a core closed curve corresponding to the blow up (or pre-image) of
the periodic orbit u.

Let now 7 be a geodesic ray in L. By the above there is a length d; > 0 so
that any segment of length > d; in 7 intersects one of the laminations B} or BY.
There is oy > 0 so that the intersection with at least one of Bf or B} has angle
> . This implies that 7 intersects either a lift of A® or A* making an angle
> «y. This lift is given by a deck translate S~! of a fixed lift of either A% or A™.
This implies that the conditions of Definition 6.5 are satisfied.

gy [ | the leafwise geodesic laminations are constructed first, before the pseudo-Anosov
flow, via an analysis of the action of 71 (M) on the universal circle of the foliation W. Then
these laminations blow down to singular foliations producing a pseudo-Anosov flow. In | ]
this is worked out for (non branching) foliations. The case of W a branching foliation is worked
out in [ ]
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After we showed that both pairs have full pseudo-Anosov behavior, the fact
that f is a collapsed Anosov flow follows from Theorem 8.1. O

11.4. Proof of Theorems A and B. Theorem A follows immediately from
Theorem B since the existence of a collapsed Anosov flow in M explicitely asks
for the existence of a (topological) Anosov flow in M. Notice that in hyperbolic
manifolds every topological Anosov flow is transitive, and therefore the existence
of a topological Anosov flow implies the existence of an Anosov flow (cf. §2.6).
To show Theorem B we need to be careful since the existence of branching
foliations is ensured by Theorem 2.1 only after some iterate and finite lift.

Proof of Theorem B. As explained we can assume that if f : M — M is a par-
tially hyperbolic diffeomorphism in a hyperbolic 3-manifold, then Theorem B
holds for the lift of some iterate of f to a finite cover (see Theorem 11.1 and
Proposition 11.7). We denote the finite cover of M as My and fy to the lift of
the finite iterate of f to My. The lift fy is chosen so that it is a lift of an iterate
of f which is homotopic to the identity in M. We emphasize that the finite cover
is considered so that all bundles are orientable. In the double translation case we
will show a posteriori that this finite cover is indeed not necessary as the bundles
were orientable in the first place. Up to taking a further cover and lift of further
of iterate we may assume that My is a regular cover of M.

We want to show that f preserves branching foliations so that Theorem 11.1
applies and this completes the proof together with Proposition 11.7.

For this, we lift the branching foliations W, W preserved by fo to M which
is the common universal cover « of M and My and denote the lifts as Wes and Weu,
Let fo the good hft of fo to M. We need to show first that deck transformations
m1(M) preserve Wes and Weu (we know that the subgroup 71 (M) < w1 (M) does
preserve them).

We first assume that we are in the situation of Theorem 11.1 (ii).

We consider then the pair of foliations W§* and WS* in My obtained by pro-
jecting to My the foliations 7\7\755 and 7\7\7\@ for some v € w1 (M). The reason
why these project to My is because 7r1(M0) is a normal subgroup of 71 (M) so
m1(Mp) preserves WWCS, 'yWC“ Since fo commutes with all deck transformations,
then fy preserves W5, W5*. By Theorem 10.1 it is enough to show that the pairs
(fo, W5?) and (fo, Wg“) have full pseudo-Anosov behavior. But this follows as in
Proposition 11.7 once we show that fo acts as a translation on 7\7\75/5 and 7\7\7\‘27a
which is direct since ]?0 commutes with ~.

Since the foliations are invariant by deck transformations of M, and fo acts
as a translation and commutes with deck transformations, it follows that deck
transformations of 7; (M) must preserve the orientation transverse to both Wes
and Weu, Since the center direction is orientable because of the existence of a
funnel point (that must also be preserved by deck transformations) we deduce
that all bundles were orientable in M and therefore the finite lift was not necessary
to make the bundles orientable.

Finally, in this case, taking the iterate is not necessary. For this it is enough to
show that the foliations f(W<) and f(W) are equal to W and W, but this
follows by the same argument applying Theorem 10.1. (See also [ , Theorem
BJ.) R

This finishes the analysis of the case when fjy acts as a translation in the leaf
spaces of \7\7;5, We,
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We now deal with the case that fo fixes every leaf of We and of Weu, Here we
use | , Theorem 12.1]. It shows that f is dynamically coherent preserving
actual foliations, center stable and center unstable. The center foliation is the
intersection of these, and hence it is preserved by f as well. In addition [ ,
Theorem 12.1] shows that a finite iterate of f is a discretized Anosov flow pre-
serving each leaf of the center foliation. In this case let h be the identity. The
self orbit equivalence 3 is f itself since it preserves the center foliation. Orbits of
the flow are tangent to the center direction, showing that f is a collapsed Anosov
flow.

This completes the proof of Theorem B. O

11.5. Unique integrability properties. We state here a strong geometric con-
sequence of our study:

Theorem 11.8. Let f : M — M be a partially hyperbolic diffeomorphism in a
hyperbolic 3-manifold. Then, f admits a unique pair W, W of f-invariant
branching foliations tangent respectively to E° and E*. Moreover, every curve
c tangent to E€ in M is contained in the intersection of aleaf L € W and a leaf
F e Weu (which is connected).

Proof. Suppose that f* is a positive iterate homotopic to the identity and let
g = f¥. Let § be the good lift to M. We start by proving uniqueness of the
branching foliations.

Suppose first g, W, W is a double translation and suppose that f preserves
another branching foliation W¢*. Then ¢ also preserves W5*. Mixed behavior in
general means that g fixes leaves of one foliation (of the pair \7\7\07‘, \f/\7§/5), but not
the other. But mixed behavior is impossible in hyperbolic 3-manifolds [ ,

§12]. Since g acts as a translation on \7\7\@, then g also acts as a translation on V/\E/s
so W§*, W is a double translation pair. Then (g, W5®), (g, W) have the periodic
commuting property (cf Def. 4.5). Theorem 10.1 implies that W§® = W,
Suppose now that g, W, W is a discretized Anosov flow and let W$* pre-
served by f. Then g also preserves W5°. Again mixed behavior cannot occur,

and now g fixes every leaf of \7\7\5‘, so it fixes every leaf of \/Vgs It follows that
g9, W5, W is also a discretized Anosov flow. Then W5 = W< follows from
[ , Lemma 7.6].

The statement about curves tangent to £€ is proved from uniqueness of branch-
ing foliations [ , Proposition 10.6] as follows: Let ¢ be a curve tangent to E°.
Following previous notation let fy be a lift of a a finite iterate of f to a finite
lift My of M so that all bundles are orientable in My and fy preserves the ori-
entability of the bundles. In addition suppose the original finite iterate of f is
homotopic to the identity. Then c lifts to ¢’ in M tangent to the center bundle.
[ , Proposition 10.6] requires the orientability of the bundles which is attained
by fo in My, hence ¢ is obtained as the intersection of a leaf of the center stable
foliation and a leaf of the center unstable foliation in M. But we proved that
these foliations in My project to W<, W in M. This proves the result for curves
tangent to E°. U

Immediate consequences are the following:

Corollary 11.9. Let f : M — M be a partially hyperbolic diffeomorphism in
a hyperbolic 3-manifold. Then f is a discretized Anosov flow if and only if the
bundle E° is (uniquely) integrable.
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This follows because in | , Theorem B] we prove that for double trans-
lations E¢ cannot integrate to a foliation. By the uniqueness properties given by
Theorem 11.8 the result follows.

One can also get a result in the direction of the plaque expansivity conjecture
[ ] in a concrete setting.

Corollary 11.10. Let f : M — M be a diffeomorphism of a hyperbolic 3-
manifold so that T is a one-dimensional normally hyperbolic foliation preserved
by f. Then f is dynamically coherent and plaque expansive.

We refer the reader to [ | for a definition of T being a one-dimensional
normally hyperbolic foliation, which in particular implies that f is partially hy-
perbolic, and that the tangent space of the foliation T is the center bundle.

Proof. Theorem 11.8 shows that f preserves a unique pair of branching foliations
WeES W and any curve tangent to E€ is contained in the intersection of a leaf of
W and a leaf of W, Tt follows that T has to be the center foliation associated
with these branching foliations. Since T is a foliation (as opposed to a branching
one dimensional foliation) it follows that W W< are also foliations, and do not
have branching. This shows that f is dynamically coherent.

Using Theorem B we get that an iterate of f is a discretized Anosov flow.
These are plaque expansive | ] O

12. SEIFERT MANIFOLDS: PROOF OF THEOREM C

In this section we consider a partially hyperbolic diffeomorphism f: M — M
where M is a Seifert manifold and such that the induced action of f in the base
is pseudo-Anosov. As in the statement of Theorem C, we will assume that M
is Seifert over a hyperbolic orientable orbifold 3. We note that in contrast with

the hyperbolic case (Theorem B) the arguments here do not rely on | | and
this result can be considered self contained.
In | , §7] it is shown that under these hypothesis, the manifold M is ori-

entable and the bundles E*, E¢, E* of f are also orientable. Moreover, up to
considering an iterate, f* it follows that f* preserves orientation of all bundles
and thus we can apply Theorem 2.1 to get branching foliations W and W€
invariant under f*. (Note that one can take k = 2.)

Using | , §5.3] we get that the branching foliations are horizontal, in partic-
ular, they are R-covered, uniform and by hyperbolic leaves. Moreover, it follows
that in ]\7, the universal cover of M the action of 6 € w1 (M) associated to the

fiber of the circle bundle acts freely on the leaf space of both Wes and We, Using
Thurston’s classification of surface diffeomorphisms [1h,] one deduces:

Proposition 12.1. The pairs (f*, W) and (f*, W) have full pseudo-Anosov
behavior.

Proof. Since W is horizontal, § acts freely on Wes, As explained in Remark 3.4,
for any lift f of f* to ]\7, and for large enough |m/|, then (6™ f,6) is a good pair
(cf.Definition 3.1). Notice that § acts as the identity on the universal circle of
Wes. Any pair obtained is an admissible pair (cf. Definition 3.17). It is easy to
see they have the periodic commuting property (Definition 4.5).

Finally one can check the full pseudo-Anosov behavior of (f*, W) (cf. Defi-
nition 6.7) using [C'B, Lemmas 6.2 and 6.4] the same way as in Proposition 11.7.
The same argument applies to W<, O

We deduce from Theorem 8.1:
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Corollary 12.2. The diffeomorphism f is a collapsed Anosov flow.

Proof. Tt follows from Theorem 8.1 and the analysis above that f* is a collapsed
Anosov flow with respect to the branching foliations W W, We must show
that these branching foliations are also f invariant and this concludes. But since
f(W®) is also fk-invariant and the argument of Proposition 12.1 applies, we can
invoque Theorem 10.1 to deduce that f(W) = W€, The same argument applies
to W and this completes the proof of the Corollary. 0

Remark 12.3. One also obtains unique integrability results analogous to those of
Theorem 11.8. We remark that since the argument in Proposition 12.1 applies
to any branching foliation invariant under f*, we can use the results of [ ,
Proposition 10.6] in order to deduce that the curves in the branching foliation

obtained as intersection of W and W are all the complete curves tangent to
E-.

13. FURTHER RESULTS

In this section we give a couple of applications of pseudo-Anosov pairs to
partially hyperbolic diffeomorphisms in other 3-manifolds or isotopy classes to
show the flexibility of the tools developed here. We hope other applications can
be found.

13.1. General partially hyperbolic diffeomorphisms homotopic to the
identity. Theorem 11.2 in [Ca;, | for atoroidal manifolds has been extended
recently by the first author to more general manifolds | |. In particular, it will
allow us to extract the following result that holds in a larger class of 3-manifolds:

Theorem 13.1. Let F be a transversely oriented, R-covered, uniform foliation
on a 3-manifold with an atoroidal piece. Then, there exists a dgck transformation
~v € m (M) which acts as a translation on the leaf space of F and the induced
action in the universal circle Sim-v of F has exactly exactly 4 fixed points: two
super attracting and two super repelling fized points.

As a consequence, we get:

Theorem 13.2. Let f : M — M s a partially hyperbolic diffeomorphism ho-
motopic to the identity on a 3-manifold having some atoroidal piece in the JSJ
decomposition preserving a branching foliation W€ so that the good lift f of f is
a translation on the leaf space ochs. Then both the center (branching) foliation
and the strong stable foliation have small visual measure inside the leaves of W€
(cf. Theorem 5.6). In particular for any ray r of a center leaf ¢ in a leaf L of

Wes | then r accumulates in a single point in SY(L).

Proof. By translation we mean it has no fixed points on the leaf space of Wes,
This was analyzed in | , Proposition 4.6], where it is proved that this implies
that W is R-covered and uniform. The translation of f also implies that W<*
is transversely orientable. We can apply Theorem 13.1 and we get that (f, W)
has the periodic commuting property and it has at least one (regular) pA pair.
Therefore, Theorem 5.6 applies and we get the statement. O

We note that for discretized Anosov flows the center foliation also has small
visual measure in center stable leaves, but the strong stable foliation does not,
which looks as something quite remarkable about Theorem 13.2 that needs to be

better understood. The previous result complements well with [ , Theorem
1.2].
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We now explain the proof of Theorem 13.1. This is proved in | , Proposition
5.2]. We give an alternate proof of super attracting/repelling behavior which uses
less of the transverse regulating flow and the transverse lamination and relies only
on large scale geometry. We put this alternate proof here as it may be useful in
other contexts. In particular the proofs of Claim 13.3 and Claim 13.4 work even
when the deck transformation v has two fixed points in the universal circle S . .
The super attracting property proved in | , Proposition 5.2] only works for
associated with an orbit of the flow which necessarily has (up to finite iterate) at

least four fixed points in S . .

Proof of Theorem 15.1. For simplicity we assume that M is orientable, which
can be accomplished by taking a double cover. We will divide the proof in three
steps. We assume some background on 3-manifolds, see [ , Appendix A]
and | , Appendix A]. First we show the following claim reminiscent of
[ , Lemma 8.5]. Recall that for leaves L, F € F we have a quasi-isometry
71,k : L — E given by Proposition 2.4.

Claim 13.3. Let v € m (M) be a deck transformation of M acting increasingly
in the leaf space of F and such that v fizes an atoroidal piece P and does not
fix the lLift of a JSJ tori. Then for every R > 0 there is K > 0 such that if
L e T is some leaf and we denote g : L — L to be the quasi-isometry given by
Yo Tr -1 L — L then there is a disk D of radius R in L such that if y ¢ D
then d(y,g(y)) > K.

Proof. Notice that « is in 71 (P) and does not represent a peripheral curve in
P. The proof is the same as [ , Lemma 8.5] once one notices that the
hypothesis on ~ forces the existence of an axis for the action on the atoroidal
piece (which admits a hyperbolic structure). This also follows from an argument
similar to Lemma 11.5 using the laminations constructed in | ] O

Now, using some hyperbolic geometry on the leaves we can show:

Claim 13.4. If v is a deck transformation as in the previous claim, then every
fized point of v acting on SL . s either super attracting or super repelling.
Proof. Take £ € S} .

a leaf L € F and a geodesic ray ro whose endpoint is & = ©1(¢) in S*(L). Let
g=70TL,1(r)- It extends to a homeomorphism of L u SY(L) still denoted by

and assume that it is fixed by the action of . Consider

g. Since the action of « in S}mw is given by the action of g as defined above in
S1(L) via the identification of O we get that g(rg) is a quasi-geodesic ray that
also lands in f . Let r; be the geodesic with same starting point and ideal point
as g(rp). Notice that 7 is asymptotic with r.

Fix a sequence of neighborhoods of £ in S 1(L) given by intervals [a,,b,] in
S1(L) so that the geodesics ay, joining a,,, b, converge to ¢ and are orthogonal to
ro. It follows that g(a,) is a quasigeodesic which makes a uniform (coarse) angle
with g(79). In other words if ¢, is the geodesic in L with same ideal points as g(a,)
then the angle between ¢, and rg is bounded below by ag > 0. This is because
if the angle goes to 0, then one gets points x,, y, in 71, £, respectively which are
very close in L and very far away from the intersection of r1,£,. In addition x,,
converging to Or(£). Pulling back by g~! (using that 71,y are asymptotic) one
gets points in rg, o, which are boundedly close in L but the points in «,, very far
from rg. This is a contradiction to g being a quasi-isometry..

Using the previous claim we obtain the desired result. See [ , Lemma
A.10] for a similar argument in a slightly different setting. O
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Finally, | , Proposition 5.2] gives a deck transformation fixing an atoroidal
piece and with at least four fixed points at infinity. This completes the proof of
Theorem 13.1. O

Remark 13.5. Note that in the setting of the Theorem 13.2 we also get that f
cannot be dynamically coherent (see Remark 5.2).

Let us now prove Theorem D (we assume familiarity with some arguments
from | , D).

Proof of Theorem D. Under the assumptions of Theorem D, it is shown in [

that if f is not a discretized Anosov flow, then f is not dynamically coherent and
one of the two branching foliations is R-covered, uniform and the good lift f of
f acts as a translation in the leaf space. This implies as in Example 3.3 that we
have a good pseudo-Anosov pair. Therefore, we can apply Theorem 5.6 to the
corresponding foliation to deduce Theorem D. (|

13.2. Results in Seifert manifolds with only one pseudo-Anosov compo-
nent. There is also a partial statement similar to Theorem 13.2 where we replace
Theorem 13.1 with the results in [ , Appendix A].

Theorem 13.6. Let f : M — M be a partially hyperbolic diffeomorphism of a
Seifert manifold so that the induced action on the base has some pseudo-Anosov
component preserving branching foliations W and W, which are horizontal.
Then, both the center (branching) foliation and the strong stable foliation have
small visual measure inside the leaves of W (cf. Theorem 5.6). Similarly for
the center and unstable foliations in center unstable leaves.

We remark that the desired properties are independent of taking a finite cover
and lift of iterate, so we can assume orientation properties. We note that this
result is new even for the examples of | | where this behavior of the strong
foliations was unknown. The horizontality condition implies in particular that
Wes W are R-covered, which is needed to apply the results in this article (see
[ | for conditions under which the assumption is met). Note that incoherence
in this setting (cf. Remark 13.5) was shown in | ]. Theorem E is a direct
consequence of Theorem 13.6.
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