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Abstract. We show that if a hyperbolic 3-manifold admits a partially hy-
perbolic diffeomorphism then it also admits an Anosov flow. Moreover, we
give a complete classification of partially hyperbolic diffeomorphisms in hy-
perbolic 3-manifolds as well as partially hyperbolic diffeomorphisms in Seifert
manifolds inducing pseudo-Anosov dynamics in the base. This classification
is given in terms of the structure of their center (branching) foliations and the
notion of collapsed Anosov flows.

1. Introduction

A diffeomorphism f : M Ñ M of a closed 3-manifold is partially hyperbolic
if its tangent bundle TM splits as a Df -invariant sum TM “ Es ‘ Ec ‘ Eu of
one-dimensional continuous subbundles and there exists ℓ ą 0 so that if vs, vc, vu

are unit vectors in Espxq, Ecpxq and Eupxq respectively, then:

}Df ℓvs} ă mint1, }Df ℓvc}u and }Df ℓvu} ą maxt1, }Df ℓvc}u.

This paper is concerned with the classification problem of partially hyperbolic
diffeomorphisms in dimension 3.

It has become apparent that there is a strong link between partially hyperbolic
diffeomorphisms and Anosov flows in dimension 3, at least when the manifold is
“sufficiently large”. This goes back at least to Pujals’ conjecture [BW] ´ which
roughly states that under certain very general conditions, the diffeomorphism is
a variable time map of a topological Anosov flow. Recently new examples [BPP,
BGP, BGHP] have been constructed which fail Pujals’ conjecture, for instance
in Seifert manifolds. This has challenged our understanding of the topological
structure of these systems. This paper aims to solve the classification problem
(as formulated in [BFP, Question 1]) completely for some particularly relevant
classes of manifolds and isotopy classes of maps.

The first result concerns the problem of finding topological obstructions, or in
other words to determine exactly when a manifold admits a partially hyperbolic
diffeomorphism. This problem is well understood when the manifold has (virtu-
ally solvable) fundamental group [HP], or when it is Seifert fibered under some
assumptions [HaPS]. It is always possible to construct a partially hyperbolic dif-
feomorphism from an Anosov flow (in any manifold) by taking its time-one map.
However it is expected that partially hyperbolic diffeomorphisms are much more
abundant amongst manifolds than Anosov flows. For example the 3 torus T3
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or nil manifolds admit partially hyperbolic diffeomorphisms, but do not admit
Anosov flows. In fact in T3 there are infinitely many essentially distinct partially
hyperbolic diffeomorphisms. The reason these manifolds do not admit Anosov
flows is because the fundamental group does not have exponential growth, a nec-
essary condition for the existence of an Anosov flow, by work of Margulis [Mar].

One big focus of this paper is the case of hyperbolic 3-manifolds, that is, those
homeomorphic to a quotient of H3 by a cocompact group of isometries. These
3-manifolds are by far the most abundant in the class of closed, irreducible 3-
manifolds with infinite fundamental group, by the famous work of Thurston and
Perelman. Our first result is the following:

Theorem A. Let M be a closed hyperbolic 3-manifold admitting a partially hy-
perbolic diffeomorphism. Then, M admits an Anosov flow.

One consequence of Theorem A is that it gives a complete set of obstructions
up to the problem of determining which hyperbolic 3-manifolds admit Anosov
flows. It is unknown which hyperbolic 3-manifolds admit Anosov flows, though
some obstructions and examples are known [Ca3] (see §1.6 for more discussion).

The results that follow, of which Theorem A is a consequence, pertain the
topological classification of partially hyperbolic diffeomorphisms. More specif-
ically we analyze the structure of a partially hyperbolic diffeomorphism in a
closed hyperbolic 3-manifold and we show that the structure we obtain allows
us to construct a topological Anosov flow in the manifold. We obtain this even
if the diffeomorphism is not at all the time one (or variable time) map of a
flow. The classification in hyperbolic 3-manifolds is built upon our previous work
[BFFP, BFFP2, BFFP3] which deals, amongst many other things, with general
partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds; and in addition
[BFFP4] which considers partially hyperbolic diffeomorphisms in certain isotopy
classes of diffeomorphisms of Seifert manifolds. Our presentation aims to give
a unified framework for both hyperbolic and Seifert 3-manifolds, which can also
be applied in other situations (see §1.5). Note that while the previous work
was mostly reliant on the homotopic to the identity hypothesis, the ideas and
tools here as well as the overall strategy for classification that we introduce are
applicable to wider situations.

Motivated by the present work, in [BFP] we propose a notion of collapsed
Anosov flows. This relates partially hyperbolic diffeomorphisms with Anosov
flows and their self-orbit equivalences. The class of collapsed Anosov flows covers
all known examples of partially hyperbolic diffeomorphisms in manifolds with
non solvable fundamental group [BFP]. The concept of collapsed Anosov flow
generalizes the notion of leaf conjugacy to the case when f may not be dynam-
ically coherent1. In other words f may not admit f -invariant foliations tangent
to the center stable and center unstable bundles. The dynamically incoherent
situation is unavoidable and very common, as shown for example in Seifert mani-
folds [BGHP] (see also [BFFP2, BFFP3, Pot]). These works show that one needs
new tools and models to attack a complete classification of partially hyperbolic
diffeomorphisms. Our results provide a complete topological classification of par-
tially hyperbolic diffeomorphisms up to the center direction in both hyperbolic
3-manifolds and some isotopy classes of partially hyperbolic diffeomorphisms in
Seifert manifolds.

1Dynamical coherence means that there exist f -invariant foliations Fcs and Fcu tangent
respectively to Ecs

“ Es
‘Ec and Ecu

“ Ec
‘Eu. This notion has been used in several works.

In this paper we obtain more precise integrability or non-integrability statements, so we will not
need to use this notion.
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1.1. Collapsed Anosov flows. Recall that an Anosov flow is a C1-flow ϕt :
M Ñ M whose time one map is a partially hyperbolic diffeomorphism (see §11.2
for the standard definition and other properties). A self orbit equivalence of ϕt

is a homeomorphism β : M Ñ M such that sends orbits of ϕt to orbits of ϕt

preserving orientation. These notions are discussed in more detail in [BFP] (see
§2.6 of this article).

Definition 1.1 (Collapsed Anosov flow). A partially hyperbolic diffeomorphism
f : M Ñ M is a collapsed Anosov flow if there is a topological Anosov flow
ϕt : M Ñ M , a self orbit equivalence β : M Ñ M of ϕt and a continuous map
h : M Ñ M homotopic to the identity such that:

(i) h maps orbits of the flow injectively onto C1 curves tangent2 to the center
direction Ec of f ,

(ii) one has that f ˝ h “ h ˝ β.

For a precise definition of a topological Anosov flow, see § 2.6. It is a general-
ization of an Anosov flow.

In [BFP] we studied Definition 1.1, and many of its possible variants. We
showed that there are many examples of partially hyperbolic diffeomorphisms
in 3-manifolds verifying this definition. We also studied different equivalent for-
mulations and conditions that ensure that a partially hyperbolic diffeomorphism
verifies this property. As we already remarked the conception of the idea of a
collapsed Anosov flow originated directly from the results and properties proved
in this article.

1.2. Statements. In this paper we will show the following result:

Theorem B. Let f : M Ñ M be a partially hyperbolic diffeomorphism on a
hyperbolic 3-manifold. Then, it is a collapsed Anosov flow.

Theorem B builds on [BFFP3] where a dichotomy is given for partially hy-
perbolic diffeomorphisms in a closed hyperbolic 3-manifold: an iterate of f is
either a discretized Anosov flow (cf. §2.6), or is virtually a double translation (cf.
§11.1). In a hyperbolic 3-manifold any homeomorphism has a finite iterate which
is homotopic to the identity, so if needed we consider an iterate of the original
map. A discretized Anosov flow is a map f “ ϕtpxqpxq where ϕt is a topolog-
ical Anosov flow. This is a generalization of the time one map of an Anosov
flow. In particular, partially hyperbolic diffeomorphisms in dimension 3 which
are discretized Anosov flows are collapsed Anosov flows. In this paper we further
study the other possibility. In other words we study the double translation case
to obtain that in this case it must also be a collapsed Anosov flow. We remark
that in the double translation case f cannot be dynamically coherent and the
topological Anosov flow we will construct is R-covered [BFFP3].

Any topological Anosov flow in an atoroidal manifold is transitive [Mos]. Shan-
non [Sha] showed that any transitive topological Anosov flow is orbitally equiv-
alent to an Anosov flow. This implies that Theorem A is a direct consequence
of Theorem B. Two flows are orbitally equivalent if there is a homeomorphim
sending orbits of the first into orbits of the second and preserving flow direction.

It is important to emphasize here that among the difficulties in showing The-
orem B is the need to show that one does not need to take a finite cover or an
iterate of f to obtain the result. In order to deal with this problem, we need to

2With the results in this article we also prove that the map h maps weak stable and weak
unstable leaves of ϕt into C1 surfaces tangent respectively to Ecs and Ecu. See the discussion
in [BFP]. For the purposes of this introduction, this definition will be ok.
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obtain strong uniqueness properties of the curves tangent to the center direction.
More specifically, the results are obtained using branching foliations. The funda-
mental results of Burago and Ivanov [BI] show that these exist for an iterate of
f lifted to a finite cover. The finite cover has to do with orienting the bundles
of the partially hyperbolic diffeomorphism and so that Df preserves orientation.
So a priori we obtain our results on a finite cover of M and for a lift of an iterate
of f . We show uniqueness of branching foliations in this context, and this allows
us to go back to M to obtain the announced result in M and for f itself.

In [BFFP3, Theorem A] we got a complete classification of partially hyperbolic
diffeomorphisms on Seifert manifolds homotopic to the identity. Further results
in this class of manifolds were obtained in [BFFP4] and will be used here. Here
we treat new isotopy classes:

Theorem C. Let f : M Ñ M be a partially hyperbolic diffeomorphism on a
Seifert manifold with hyperbolic (and orientable) base, so that f acts as a pseudo-
Anosov in the base, then, it is a collapsed Anosov flow.

We note that the class of diffeomorphisms in this result is non-empty [BGHP],
and indeed some of the results, in particular the fact that center curves are
quasigeodesics in their center stable or center unstable leaves was known to be
true for some open sets of examples (see3 [BGHP, §5]) but unknown for general
partially hyperbolic diffeomorphisms in these isotopy classes.

As a consequence of these results we see that these partially hyperbolic diffeo-
morphisms must admit branching foliations (regardless of any a priori orientabil-
ity assumptions) and we will prove uniqueness results for branching foliations in
some settings, cf. §10. These results provide a complete classification of partially
hyperbolic diffeomorphisms in these isotopy classes.

One interesting point is that Theorems B and C admit mostly a unified proof,
and we made an effort in presenting the unified point of view. We also show that
this unified approach is helpful to study partially hyperbolic diffeomorphisms in
other 3-dimensional manifolds. The difference between the proofs of Theorems
B and C has to do with how we show that certain general assumptions are met.
Under these assumptions, we will get some even stronger results about classifica-
tion (see §11 and §12). We also direct the reader to Theorem 5.6 for statements
that include some surprising information about the strong stable and unstable
foliations for certain examples (in contrast with the case of discretized Anosov
flows, the stable and unstable foliations cannot look like horocycle foliations).

Remark 1.2. In fact, for both Theorem B and C we obtain a stronger prop-
erty which we called strong collapsed Anosov flow in [BFP]. See § 8 for more
discussion.

1.3. Tools developed in this article. The main technical result we obtain in
this paper is the following: under certain assumptions on the branching folia-
tions Wcs,Wcu preserved by a partially hyperbolic diffeomorphism f of a closed

3-manifold, we show that the leaves of the center foliation lifted to ĂM are quasi-

geodesics in the respective leaves of the foliations ĄWcs, ĄWcu. In [BFP] we call a
partially hyperbolic diffeomorphim which satisfies this quasigeodesic property a
quasigeodesic partially hyperbolic diffeomorphism. Under orientability conditions

3In [BFP, §10] it is shown that not only small perturbations have this property but all
partially hyperbolic diffeomorphisms that can be connected to the examples by a path of partially
hyperbolic diffeomorphisms. It is unknown if the space of partially hyperbolic diffeomorphisms
is connected in this isotopy class.
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this is one of the several equivalent definitions of forms of collapsed Anosov flows,
as proved in [BFP].

This eventually leads to the creation of a topological Anosov flow which is
associated with f . We note that this strategy is quite divergent with the strategy
followed in [BFFP2, BFFP3] which aimed to construct the topological Anosov flow

by showing that a good lift in the universal cover would fix all leaves of ĄWcs, ĄWcu

and their intersections and then using partial hyperbolicity to conclude that the
intersections should support a topological Anosov flow. In this paper we cannot

assume that a lift of f fixes leaves of ĄWcs or ĄWcu, so, even if f may be homotopic
to the identity, we are forced to use the action of all lifts of f in order to make our
analysis. Also, we cannot rely on bounded deviations inside a leaf for the same
reason, so we are forced to understand better the coarse geometry of the foliations
and produce techniques to understand the behavior of their intersections. We
point out that while very powerful, the strategy in [BFFP2, BFFP3], relying
heavily on the existence of lifts of f with special properties (fixing leaves), is
unlikely to extend to other contexts. The strategy here is way more general, as
shown for instance by the fact that we are able to obtain Theorem C.

The quasigeodesic property for center curves in leaves of ĄWcs, ĄWcu, and also
ideas and constructions of this article are what lead to the definition of a collapsed
Anosov flow (in its various forms), which is done in [BFP]. In addition what
is done in this paper is a general recipe to prove that a partially hyperbolic
diffeomorphism in any type of 3-manifold, but admitting branching foliations with
Gromov hyperbolic leaves is a collapsed Anosov flow (that is, it is a quasigeodesic
partially hyperbolic diffeomorphism). This establishes a program to study the
structure of general partially hyperbolic diffeomorphisms in dimension 3. This
is detailed in the next section (see also [FP3, FP4] for recent progress in this
program).

In [BFP] we explain that all known examples of partially hyperbolic diffeomor-
phisms with branching foliations having Gromov hyperbolic leaves are collapsed
Anosov flows.

1.4. Idea of proof. Let us discuss a bit the main difficulties we need to address
and the new tools we develop to take care of them.

We focus on Theorem A and forget at first about the orientability issues men-
tioned above which involve a different kind of problems that are discussed in §9
and §10. In other words we assume the necessary orientability conditions. As ex-
plained, from the work of [BFFP3] we can reduce to the double translation case:
this means that the partially hyperbolic diffeomorphism preserves two (branch-

ing) foliations in M that are uniform and R-covered. In addition the lift rf of
the homotopy of f to the identity translates both such foliations. However, in
principle we know nothing about how these foliations intersect, nor how they look
at a big scale. The main driving goal we pursued in this project was the attempt
to obtain geometric properties of the intersection of these (branching) foliations
by showing that the intersected leaves are quasigeodesics in the leaves of each
branching foliation when lifted to the universal cover.

This strong geometric property is proved in steps. We consider the center
foliations in (say) center stable leaves lifted to the universal cover. Each such
center stable leaf is Gromov hyperbolic and is compactified to a closed disk with
an ideal circle.

(i) We first show that for each ray in a center stable leaf L, the ray accumu-
lates on a single point in the ideal circle of L in §4 . We call this property
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landing of rays. To show this we exploit the pseudo-Anosov behavior at
infinity, introducing the notion of pseudo-Anosov pairs ( § 3). This works
in quite some generality, not even partial hyperbolicity is used, only that
a one-dimensional subfoliation is preserved by the map. The notion of
pseudo-Anosov pair extends and subsumes some similar phenomena al-
ready appearing in [BFFP2, §8] and [BFFP4].

(ii) Then we show that given a center leaf c in L, the ideal points of the two
rays of c are distinct ideal points of L. This has several steps, the main
of which is to establish a small visual measure property for the invariant
foliations. Here, partial hyperbolicity is used in a crucial way, but also
a precise description of the obstruction is obtained (see §5). This part
requires some pseudo-Anosov pairs, but it is quite flexible (see §13).

(iii) Finally we show that for any center stable leaf L in the universal cover,
then the leaf space of the center foliation in L is Hausdorff in §6. Here is
the main point where the full strength of the fact that we are working in
hyperbolic 3-manifolds (or in the context of Theorem C) is crucial. This
motivates the notion of full pseudo-Anosov pair and is related to specific
properties of the laminations associated to the pseudo-Anosov elements
that appear in these contexts.

(iv) Together these properties then imply that the centers are uniform quasi-
geodesics in the center stable leaves as proved in §7.

It is worth mentioning that sections 2 and 3 are quite heavy and are used to
construct an abstract setting which is used to establish our results. The reader
may find simpler to accept Proposition 3.14 in a first read (and applying it to
either Example 3.3 or 3.4) and come back to those sections for specific definitions.
For the specific results in hyperbolic 3-manifolds, what is needed from Proposition
3.14 follows from [BFFP2, §8].

We would like to mention another technical tool introduced here, which is
the notion of super attracting fixed points for actions on the universal circle
in Subsection 2.5. This notion was first introduced in the setting of lifts of
homeomorphisms of closed surfaces in [BFFP4]. Here we generalize this notion
to the case of R-covered, uniform foliations with Gromov hyperbolic leaves. This
notion plays a fundamental role in the definition of pseudo-Anosov pairs and the
properties that can be proved from pseudo-Anosov pairs. We expect that it will
also be useful in other contexts.

We mention that while showing the Hausdorff property relies very strongly
on our topological assumptions (the ones in Theorem B and C), it is natural
to expect it can be obtained by other means in other contexts (see for instance
[FP3]). We also mention that the last step, that is step (iv) in the strategy above,
has been recently extended to more generality [FP4].

Finally we consider orientability issues: the results above use branching folia-
tions, which assume taking an iterate of f lifted to a finite cover of M . We then
prove invariance of these branching foliations under deck transformations of the
finite cover. To obtain this we strongly use the quasigeodesic behavior we prove
in the cover. The result is that the branching foliations descend to M and an
iterate of f satisfies all the orientability conditions. Then using additional results
of Burago and Ivanov [BI] we approximate the center stable and center unstable
foliations by foliations F and G which intersect along a one dimensional oriented
foliation, generating a flow. We show that this flow is expansive, generating a
topological Anosov flow. By the result of Shannon [Sha] the flow is orbitally
equivalent to an Anosov flow finishing the proof of Theorem A. We note that
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additional arguments are needed to obtain the proof of Theorem B. This can be
achieved for instance using the equivalence of the different definitions of collapsed
Anosov flows which is proved in [BFP].

1.5. More general results. One consequence of our results is that we are able
to solve the plaque expansivity conjecture (see [HPS]) in hyperbolic 3-manifolds.
See Corollary 11.10.

Also, some of the results in this work hold under weaker assumptions and
these will be stated precisely in §13. For the interest of putting these results in
value, we state some consequences of these results here. Note that some terms are
undefined, but have been explained in the previous section. We refer the reader
to 13 for precise statements in some greater generality.

Theorem D. Let f : M Ñ M be a transitive partially hyperbolic diffeomorphism
homotopic to the identity in a closed manifold M with some atoroidal piece in
its JSJ decomposition. Then, the branching foliation Wc has the small visual
measure property in both Wcs and Wcu. Moreover, either an iterate of f is a
discretized Anosof flow, or one of the foliations Ws or Wu has the small visual
measure property on Wcs (resp. Wcu).

We note that a similar result in the context of Seifert manifolds also holds:

Theorem E. Let f : M Ñ M be a transitive partially hyperbolic in a Seifert
3-manifold so that the action of f in the base has a pseudo-Anosov component.
Then, the branching foliation Wc has the small visual measure property in both
Wcs and Wcu. Moreover, both Ws and Wu have the small visual measure property
on Wcs and Wcu respectively.

In particular, let us mention a suprising consequence of our techniques, stating
that under the assumptions of these theorems, the strong stable and strong un-
stable foliations may have a behavior very different from the horocycle foliation
of an Anosov flow (see Remark 5.7). As we mentioned, the missing step to have
the collapsed Anosov flow property is the need to show the Hausdorff property
for the center branching foliation in center stable and center unstable leaves in
the universal cover. This requires new ideas, but let us mention that recently, in
[FP3] this was achieved for unit tangent bundles of higher genus surfaces.

1.6. Context and comments. The problem of the topological classification of
Anosov flows in 3-manifolds goes back to the seminal work of Margulis [Mar] and
Plante-Thurston [PT] showing that a 3-manifold admitting an Anosov flow must
have exponential growth of fundamental group. It is noteworthy that when these
results appeared, the only known examples were orbitally equivalent to geodesic
flows in the unit tangent bundle of negatively curved manifolds and suspension of
toral automorphisms. Since then, a myriad of new very different examples have
appeared starting with the ones constructed by Franks-Williams [FrWi] and those
by Handel-Thurston [HaTh] and Goodman [Go] with somewhat different meth-
ods (we refer the reader to the introduction of [BBY] for a list of known examples
and constructions). This was just the beginning. In hyperbolic manifolds starting
with the fundamental work of Goodman [Go], new examples have continued to ap-
pear until very recently (see for instance [Fen2, FH, BM]). Questions about which
3-manifolds support Anosov flows and how many orbitally inequivalent ones such
manifolds admit are still abundant. There has been considerable progress on the
classification of Anosov flows in manifolds with non-trivial JSJ decomposition,
we mention the recent work of Barbot and the first author in particular which
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gives a rather complete classification of what they call totally periodic Anosov
flows in graph manifolds as well as other classes, see [BaFe1, BaFe2, BaFe3]. We
refer the reader to [Ba2, Bart] for surveys about Anosov flows in dimension 3.

The case of hyperbolic 3-manifolds is certainly the most mysterious. There are
some known obstructions for hyperbolic manifolds to admit Anosov flows, and
several constructions of such flows. Recently, some hyperbolic 3-manifolds have
been shown to admit an arbitrary large number of orbitally inequivalent Anosov
flows [BM]. All these results make our results somewhat more interesting, since it
implies that we cannot compare our systems with some model (Anosov) systems
in the manifold, as is the case for example in solvable manifolds (see for instance
[HP]). We point out in particular that the known topological obstructions to
admit Anosov flows in hyperbolic 3-manifolds are very sensitive to taking finite
covers (see [RRS, CD]). Hence it is very important for us to obtain the results in
Theorem A without need to take finite covers (which introduces a big challenge,
since our starting point is the existence of branching foliations from [BI] which
requires some orientablity assumptions).

Let us first comment on our Theorems A and B. The first important thing to
point out is that they both rely heavily on our previous work with Barthelmé
and Frankel [BFFP3]: In that paper we showed that a partially hyperbolic dif-
feomorphism of a hyperbolic 3-manifold (up to iterate so that it is homotopic to
the identity) is either a discretized Anosov flow or up to finite cover admits two
transverse taut (branching) foliations which were translated by the lift of the dy-
namics to the universal cover. We point out that the existence of two transverse
taut foliations (even with all possible orientability assumptions) in a hyperbolic
manifold does not imply the existence of an Anosov flow, at least not one related
to those foliations (see [BBP]). Here, we analyze the second case, and describe it
completely. A posteriori this leads to the existence of an Anosov flow in M .

We mention that the proof of Theorem B is very similar to the proof of Theorem
C and we present it in a way that the only difference is in how one shows that
certain conditions are met, that we do at the very end. On the other hand,
Theorem C is mostly self contained, since in the isotopy class under analysis, we
only need to deal with that case. (The analogy would be that the discretized
Anosov flow case is when f is homotopic to the identity in a Seifert manifold,
which is the case we treated in [BFFP3].)

Our results fit well in the program of classification of partially hyperbolic
diffeomorphisms in dimension 3 and have motivated the definition of collapsed
Anosov flows which we believe may play an important role in this program. We
refer the reader to [Pot, HP] for recent surveys on the classification of partially
hyperbolic diffeomorphisms in dimension 3. In [BFP], with Barthelmé, we have
developed the notion of a collapsed Anosov flow that was suggested by this work
and which provides a platform for classification.

1.7. Organization of the paper. After giving some preliminaries in §2 we
introduce the notion of super attracting fixed points in the universal circle in
Subsection 2.5. In §3 we give a unified presentation of [BFFP2, §8] and [BFFP3,
§11] as well as [BFFP4], in particular using the notion of super attracting fixed
points, and which also works in other settings. Part of section §3 is an extension
of previous work of [BFFP, BFFP2, BFFP3, BFFP4] to a more general setting.

In §4 and §5 we introduce new arguments that are presented in an abstract
setting that has wider applicability and applications are given in §13. This serves
two purposes, on the one hand it allows to obtain both results almost simultane-
ously; on the other hand, it also intends to express precisely what properties we
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use and where and allows to follow the arguments without prior knowledge on
fine properties of hyperbolic 3-manifolds (the properties we will use only appear
in § 11).

We use these results in §6 and §7 to make the key steps for our main results
under more restricted assumptions that will be checked for our examples in §11
and §12 (Theorems A and B are proved in §11 and Theorem C is proved in
§12). In §8 we explain how the work done in sections §4-§7 implies that certain
partially hyperbolic diffeomorphisms are collapsed Anosov flows and in §9 and 10
we obtain some uniqueness results that will allow us to show our results without
need to take finite covers and iterates.

1.8. Intersection and dependence on previous works. This article inter-
sects with [BFFP2, BFFP3] and [BFP], so we expand on the interactions. Sections
3 through 7 here are completely independent from previous works and stand on
their own (the setup in §3 is strongly motivated by the works [BFFP2, BFFP3,
BFFP4]). It is in these sections that we prove the quasigeodesic behavior of center
leaves in center stable and center unstable leaves under certain conditions.

Section 8 uses the property obtained in Section 7 to prove that certain partially
hyperbolic diffeomorphisms are collapsed Anosov flows. Here we directly quote a
result from [BFP]. But the setup in this article is much simpler in certain aspects
than the general setup of [BFP], so in addition we provide a short sketch and
explanation of the proof in our more restricted setting.

Sections 9 and 10 are completely independent of [BFFP2, BFFP3, BFP] and
stand on their own. The same applies to Section 12, where we prove Theorem C.

In Section 11 we prove Theorems A and B. Here we rely on [BFFP3] which
describes the two possibilities for a partially hyperbolic diffeomorphism in a closed
hyperbolic manifold: discretized Anosov flow and double translation. The first
type is completely understood in [BFFP3]. It is the second type we study here,
and prove that it satisfies the quasigeodesic behavior, in order to obtain the
collapsed Anosov flow property. This section’s goal is to further understand what
was known in [BFFP3], and how our general results can complete the picture when
M is hyperbolic.

Finally in Section 13 we provide some extra consequences of our results, some
of which rely in part on [BFFP3, BFFP2].

In particular the whole strategy of proving that center leaves are uniform quasi-
geodesics (and all its steps) is completely new and introduced in this article.

Acknowledgements: We would like to thank the referee for very useful feedback that

helped us improve the presentation.

2. Preliminaries and discussions on some notions

In this paper M denotes a closed aspherical 3-manifold, and π : ĂM Ñ M
the universal covering map. We will assume that the manifold does not have
(virtually) solvable fundamental group. This allows to simplify some statements,
and the case of (virtually) solvable fundamental group for partially hyperbolic
diffeomorphisms is already well understood (see [HP]). In some sections at the
end of the paper we will restrict further to M being either Seifert or hyperbolic.

Our results and statements will be independent of the chosen Riemannian
metric, but we will fix one first for which the definition of partial hyperbolicity is
given, and later we will change the metric so that the leaves of the (branching)
foliations are negatively curved: this only changes definitions by bounded factors.
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In this section we introduce some preliminaries and fix notations which will
be used later and relate with the objects introduced in the previous section.
The reader familiar with [BFFP3, BFP] can safely skip this section, except for
Subsection 2.5 where the notion of super attracting fixed point in the universal
circle is introduced.

2.1. Branching foliations. We will give a brief account on what we need about
branching foliations introduced in [BI] in our context. For a more detailed account
we refer the reader to [BFFP3, §3] or [BFP].

Our definition will be a bit more restrictive (what we will define would be a
Reebless branching foliation) which is more than enough for our purposes and
makes the definition easier to give.

A branching (2-dimensional) foliation on a closed 3-manifold M is a collection
of immersed surfaces F tangent to a 2-dimensional continuous distribution E of

TM such that if we consider rF the lift of the collection to ĂM we have the following
properties:

(i) Every leaf L P rF is a properly embedded plane separating ĂM into two
open connected components L‘ and La depending on a fixed transverse

orientation to E lifted to ĂM . Denote L` “ L Y L‘ and L´ “ L Y La.
(ii) Every point x P ĂM belongs to at least one leaf L P rF.

(iii) For every two leaves L,F P rF we have that either F Ă L` or F Ă L´.
This is the no topological crossings condition.

(iv) If xn Ñ x and Ln P rF so that xn P Ln. Then every limit of Ln in the

compact-open topology belongs to rF.

We will add an additional condition in the case that the distribution E is
transversely oriented, which is that every diffeomorphism preserving E and its
transverse orientation preserves the branching foliation in the sense that the image
under f of a leaf of F is a leaf of F.

A branching foliation is well approximated by foliations if for every ε ą 0 there
is a true foliation Fε tangent to a bundle Eε and continuous maps hε : M Ñ M
so that:

‚ The angle between Eε and E is smaller than ε.
‚ The map hε is ε-C

0-close to the identity (in particular, it is homotopic to
the identity and therefore surjective) sending leaves of Fε to leaves of F.

‚ For every L P F there is a unique leaf Lε P Fε so that hε : Lε Ñ L is
a local C1-diffeomorphism so that 1 ´ ε ă }Dh´1

ε }´1 ď }Dhε} ă 1 ` ε

(therefore, in ĂM it lifts to a diffeomorphism).

Note that when a branching foliation is well approximated by foliations we can
define a leaf space LF, for example by identifying with the leaf space of some of

the approximating foliations LFε “ ĂM{
ĂFε
. This uses the uniqueness result in the

third item above, so there is a bijection between the leaf spaces of rF and rFε.
We will use the following result (the uniqueness statement for the approximat-

ing foliation is explained in [BFP, Appendix A]):

Theorem 2.1 ([BI]). Let f : M Ñ M be a partially hyperbolic diffeomorphism
of a closed 3-dimensional manifold so that the bundles Es, Ec, Eu are oriented
and Df preserves their orientation. Then, there exist branching foliations Wcs

and Wcu tangent to Ecs and Ecu respectively. These branching foliations are well
approximated by foliations.
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We will denote by Lcs and Lcu the leaf spaces respectively of the lifts ĄWcs, ĄWcu

of the branching foliations. In our setting, we will be considering a special class
of foliations where leaf spaces are easier to define. See [BFFP3, §3.2.2] for the
general case.

We remark also that the intersection of ĄWcs and ĄWcu gives rise to a one-

dimensional branching foliation ĂWc which also has a well defined leaf space (see
[BFP, §2.3]). By one dimensional branching foliation T which subfoliates a foli-
ation F we mean a collection of C1-curves such that in the universal cover, for

every L P rF the curves of rT contained in L have the same properties (i)-(iv) defin-
ing two dimensional branching foliations (of course, in (i) one needs to change
properly embedded plane to properly embedded line).

2.2. R-covered foliations and hyperbolic metrics. A celebrated result of
Candel [Can] states that under quite general conditions, given a foliation in a
3-manifold, there is a metric on M that makes every leaf a hyperbolic surface.
In particular, it follows from [FP, Theorem 5.1] that this is the case for every
minimal foliation in manifolds with exponential growth of π1pMq as we will con-
sider here. Here is why: If there are no holonomy invariant transverse measures,
then this result follows directly from Candel’s theorem [Can]. If there is a holo-
nomy invariant transverse measure, then this result follows from [FP, Theorem
5.1]. Since we will be mainly concerned with minimal R-covered foliations we will

consider such a metric for some approximating foliations Fcs,Fcu to ĄWcs, ĄWcu

and this will induce a (coarsely) negatively curved metric on each leaf of both
branching foliations, see the next subsection.

We will say that the branching foliation F is R-covered if for every pair of

leaves L,F P rF we have that either L` Ă F` or F` Ă L`. This allows to
induce an order between leaves and therefore it is equivalent to having that the
approximating foliation is R-covered, that is, the leaf space LF is homeomorphic
to R. Compare with [BFFP3, §11.1, §11.2].

Most of our study will take place for uniform and R-covered branching fo-

liations. A branching foliation F is uniform if given two leaves L,F P rF the

Hausdorff distance between them in ĂM is finite. It follows from [FP2, Theorem
1.1] (see also [FP2, §6]) that a uniform branching foliation is R-covered (here we
use the hypothesis that the approximating foliations are Reebless). We will say
that a branching foliation is by hyperbolic leaves if the metric on M makes all
leaves uniformly Gromov hyperbolic (see [BFP, §A.3]).

2.3. Boundary at infinity and visual metric. Let L be a complete simply
connected surface which is Gromov hyperbolic. We can define S1pLq its visual (or
Gromov) boundary as the set of geodesic rays on L identified by being equivalent
if they are a finite Hausdorff distance from each other in L. An oriented bi-infinite
geodesic ℓ P L has therefore two endpoints ℓ˘ corresponding to the positively and
negatively oriented rays of ℓztxu for some x P ℓ. This is clearly independent of
the point x P ℓ.

One can compactify L to L̂ “ L Y S1pLq making it homeomorphic to the
closed disk (see [BH, §III.H.3] or [Fen1]). Given a geodesic ℓ in L and a point
ξ in S1pLqztℓ˘u we can define an open set Oℓpξq containing ξ P S1pLq as the
union of the open interval of S1pLq whose endpoints are ℓ` and ℓ´ and contains
ξ and the connected component of Lzℓ containing completely a geodesic ray r
representing ξ. Note that for every ξztℓ˘u there are rays in Lzℓ representing it,
and the definition of the open set Oℓpξq is independent of this choice. The open
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sets Oℓpξq with ℓ being geodesics in ℓ together with the open sets in L give a

topology in L̂ making it homeomorphic to a closed disk.
For several reasons, we will choose a metric in M whose restriction to leaves

of F is CATpκq for some κ ă 0 which can be done using the Candel metric,
where we approximate by an actual foliation, as opposed to a branching foliation
(see [BFP, Proposition A.5]). This is not so important, since there are canonical
ways to define visual metrics, but it is convenient to have a geometric sense of
what is happening. Scaling the metric, we can always assume that all leaves
are CATp´1q. This property implies uniqueness of geodesic segments, rays, or
full geodesics given the endpoints or ideal points. In particular the CATp´1q

property implies that for any x in a leaf L there is exactly one such ray starting
at x for every ξ P S1pLq so one can identify S1pLq with T 1

xL. This defines, for
each x P L a visual metric on S1pLq given by measuring intervals in S1pLq by
the angle in T 1

xL measured with the Riemannian metric on L. A very important
fact for us is the following:

Remark 2.2. The visual metric in S1pLq is well defined up to Hölder equivalence
[BH, §III.H.3].

These metrics in the leaves vary continuously with the points in M . Then
S1pLq is canonically identified with T 1

xL. Also when x varies, the sets T 1
xLx vary

continuously. It follows that the visual metrics in S1pLq vary continuously with
the points.

We refer the reader to [Th2, Fen3, Ca1, Ca3] for more general statements.

2.4. The universal circle. In this subsection we describe what we need of the
universal circle of the foliation which allows us to determine the dynamics at
infinity of a good pair. What is described here is done with much more detail
and richer properties in [Th2, Fen3, Ca1]. Our construction is from scratch with
only the properties we will need, see also [FP2, §2.5].

Let F be a uniform R-covered branching foliation on M by hyperbolic leaves

and rF its lift to ĂM . For each L P rF we consider its visual boundary S1pLq as in
§2.3.

Let A “
Ů

LPrF
S1pLq which can be given a topology from the collection of T 1

rF|τ

where τ is a transversal compact segment to rF. Then if Ln Ñ L in L “ ĂM{
rF

then S1pLnq Ñ S1pLq. With this topology A is an open annulus since it is a

circle bundle over the leaf space L of rF.
Recall that a quasi-isometry between two metric spaces pX, dXq and pY, dY q is

a map q : X Ñ Y such that there exists C ą 1 such that for every x, x1 P X we
have:

C´1dXpx, x1q ´ C ď dY pqpxq, qpx1qq ď CdXpx, x1q ` C.

We do not require q to be continuous, the constant C is called a quasi-isometry
constant for q. A quasigeodesic in pX, dXq is a quasi-isometric map from R with
its usual distance into X and a quasigeodesic ray is a quasigeodesic map from
r0,8q to X. The Morse Lemma (see eg. [BH, Theorem III.H.1.7]) states that
if L is a Gromov hyperbolic simply connected surface then for every C there is
some K such that if r is a C-quasigeodesic (resp. C-quasigeodesic ray), then
there exists a true geodesic (resp. geodesic ray) at Hausdorff distance less than
K from r. This also holds with the same constants for quasigeodesic segments
and the geodesic joining the endpoints.
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Proposition 2.3. Let f : M Ñ M be a homeomorphism preserving F, it follows
that any lift f̂ extends naturally to a homeomorphism of A that we still call f̂
and preserves the fibers (i.e. it is a homeomorphism from S1pLq to S1pf̂pLqq.

Note that, by taking f “ id this includes action by deck transformations in
ĂM .

Proof. Since f is a homeomorphism of M which is compact, then any given lift

f̂ induces quasi-isometries4 from L to f̂pLq for every L P rF so it maps geodesic
rays into quasigeodesic rays. The Morse Lemma implies that these are bounded
distance away from a well defined geodesic ray up to bounded distance. This
induces a continuous map from S1pLq to S1pf̂pLqq and f̂´1 induces its inverse so
it is a homeomorphism. □

It is many times useful to collate all circles in S1pLq by constructing a universal
circle, introduced by Thurston. There are standard constructions, which in the
setting of R-covered uniform foliations gets simplified [Th2, §5] (see [Fen3, Ca1,
Ca3] for more details and more general constructions).

To do this for R-covered uniform foliations, it is important to construct a

natural way to identify leaves of rF. Intuitively, one can think as if there is a flow
Φt in M which is transverse and regulating to F: this means that if one considers

two leaves L1, L2 P rF then the time it takes the flow Φt to take a point of L1

to a leaf in L2 is bounded above by a constant only depending on L1 and L2.
This flow can be extended to A and gives a way to identify fibers. Such a flow
exists for general transversely oriented, uniform R-covered foliations [Fen4]. To
construct the identification between distinct circles at infinity, less is needed:

Proposition 2.4. There is a family tτL,L1 : L Y S1pLq Ñ L1 Y S1pL1qu for

L,L1 P rF with the following properties:

(i) the map τL,L1 |L : L Ñ L1 is a quasi-isometry whose constant depends only
on the Hausdorff distance between L and L1,

(ii) the map τL,L1 |S1pLq : S
1pLq Ñ S1pL1q is a homeomorphism,

(iii) one has that

τL1,L2 |S1pL1q ˝ τL,L1 |S1pLq “ τL,L2 |S1pLq.

This statement can be found in [Th2, §5], [Ca1, Corollary 5.3.16] or [Fen3,
Proposition 3.4] and the proof works exactly the same for branching foliations5.
The quasi-isometries τL,L1 : L ÞÑ L1 are coarsely well defined, in the sense that
given L,L1 there is a constant b which depends only on the Hausdorff distance
between L,L1 so that for any x in L, then d

ĂM
px, τL,L1pxqq ă b. For R-covered

foliations this implies that if τ 1
L,L1 is another such map then

dL1pτL,L1pxq, τ 1
L,L1pxqq ă b1,

for a constant b1 that depends only on b. So τL,L1 is coarsely defined.
We can now define S1

univ, the universal circle of the foliation F, as A{„ where
we identify the circles S1pLq and S1pL1q via the maps τL,L1 from the proposi-
tion. It is important to remark that the universal circle depends on the foliation,

4One can cover the manifold by finitely many sufficiently small foliations charts. A homeo-
morphism verifies that the image of a plaque in a foliation chart can intersect only finitely many
(uniformly bounded number of) foliation charts. Since plaques in the chart have size uniformly

bounded from above and below, one deduces that f̂ must be a uniform quasi-isometry between
leaves of the foliation.

5Or can be deduced for them by using approximating foliations.
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and so, when several foliations are involved (as is the case of partially hyper-
bolic diffeomorphisms) we will make an effort to make clear which circle we are

considering. For any L in rF define

ΘL : S1
univ ÞÑ S1pLq

the map that associates to a point in S1
univ its representative in S1pLq. Notice

that for any leaves L,E of rF then

ΘE “ τL,E ˝ ΘL

A useful property for us is that the following extension of Proposition 2.3 holds:

Proposition 2.5. Let f : M Ñ M be a homeomorphism preserving an R-covered

uniform branching foliation F by hyperbolic leaves and f̂ a lift to ĂM . Then, there
is a well defined action f̂8 of f̂ on S1

univ given by f̂8 “ Θ´1
L ˝ τf̂pLq,L ˝ f̂ ˝ ΘL :

S1
univ Ñ S1

univ, where L is an arbitrary leaf of rF. In other words the map f̂8 is
independent of the choice of L.

Proof. We sketch the proof, for more details see the proof of [Fen3, Proposition

3.4]. Let p in S1
univ. Choose an arbitrary leaf L of rF to start with. The point p in

S1
univ is associated with a point q in S1pLq, q “ ΘLppq. Let r be a geodesic ray in

L with ideal point q. Then since f̂ is a quasi-isometry from L to f̂pLq, it follows

that f̂prq is a quasigeodesic ray and has a unique ideal point q0 in S1pf̂pLqq. Any
other geodesic ray r1 in L with ideal point q in L, r1 is asymptotic to r, hence
f̂pr1q is a finite distance from f̂prq and defines the same ideal point in f̂pLq.

Finally we need to show that the map is independent of the choice of L, that
is, that

f̂ ˝ τL,E |S1pLq “ τf̂pLq,f̂pEq
˝ f̂ |S1pLq.

for any leaf E of rF.

For this, let E be another leaf of rF. The map τL,E : L ÞÑ E is a quasi-isometry
so that for any x in L, then d

ĂM
px, τL,Epxqq ă b for b which depends only on the

Hausdorff distance between L,E. It follows that τL,Eprq is a quasigeodesic ray

in E which is a bounded distance in ĂM from r. The quasigeodesic ray τL,Eprq is
also a bounded distance in E from a geodesic ray in E (this bound only depends
on the quasi-isometry constant of τL,E). Hence there is a geodesic ray r1 in E

which is a bounded distance in ĂM from r. If q1 is the ideal point of r1 in E,
then by definition τL,Epqq “ q1. Taking the image of both r, r1 by f̂ we obtain

quasigeodesic rays f̂prq, f̂pr1q in f̂pLq, f̂pEq respectively, which are a bounded

distance from each other in ĂM . The ideal point of f̂prq is f̂pqq. The ideal

point of the second is f̂ ˝ τL,Epqq. Since these quasigeodesic rays in f̂pLq, f̂pEq

respectively are a bounded distance from each other in ĂM , they define the same
point in the universal circle, in other words

τf̂pLq,f̂pEq
pf̂pqqq “ f̂pτL,Epqqq,

which is exactly what we wanted to prove. □

2.5. Visual metrics on the universal circle S1
univ. In the previous section

we described visual metrics in individual leaves of rF. It will be useful to have
metrics on S1

univ to talk about super attracting fixed points of homeomorphisms
acting on S1

univ.
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Consider first a leaf L of rF. There is a well defined bijection ΘL : S1
univ Ñ

S1pLq. The ideal circle S1pLq has visual metrics: given x0 in L there is a bijection

between the unit tangent vectors to T rF at x and the points in L. The angle metric

in T 1
x0

rF induces a metric on S1pLq. When one changes the basepoint in L the

visual metric in S1pLq changes by a Hölder homemorphism as noted in Remark
2.2, see [BH, §III.H.3].

A map g : pA, dq ÞÑ pB, d1q between metric spaces is quasisymmetric if

‚ g is an embedding,
‚ there is a homeomorphism η : r0,8q ÞÑ r0,8q so that if x, y, z are distinct
points in A, then

d1pgpzq, gpxqq

d1pgpyq, gpxqq
ď η

ˆ

dpz, xq

dpy, xq

˙

See [Ha, Definition 2.1].
When one changes from one leaf L to other leaf E, one needs to understand

the metric properties of the map τL,E restricted to S1pLq. It is the identification
associated with the universal circle S1

univ.
Recall from Proposition 2.4 that τL,E is a quasi-isometry from L to E. Quasi-

isometries between Gromov hyperbolic spaces induce quasi-symmetric homeo-
morphisms of the boundaries.

One can obtain this from the proofs of [GH, Propositions 5.15 and 6.6]. How-
ever they only explicitly talk about quasiconformal behavior, which in dimension
1 does not provide much information. In [Ha, Theorem 3.1] there is an explicit
proof that a C-quasi-isometry between Gromov hyperbolic spaces induces an ideal
map g which is quasisymmetric with constants related to C, the quasi-isometry
constant. He proves that it is quasi-Möbius (which we do not define here), which
implies quasisymmetric. We note that the quasi-isometry constant C depends
on the Hausdorff distance between leaves but we do not have much control on
it. However, some metric properties make sense. We can now introduce super
attracting fixed points.

First we choose a metric in S1
univ: let d be a visual metric in S1

univ given say

by identification with S1pLq using a point in L for some L of rF.

Definition 2.6. Let f be a homeomorphism of S1
univ which fixes a point ξ in

S1
univ. We say that ξ is a super attracting fixed point for f if

lim
xÑξ

dphpxq, ξq

dpx, ξq
“ 0,

where h is the expression of f using the identification of S1
univ with S1pLq for

some leaf L of rF.

Compare with the definition given in [BFFP4, Appendix A] which is done in a
special situation. The name is inspired in complex dynamics where super attract-
ing points are those whose derivative vanishes. Here, even if we cannot define the
derivative since maps are only continuous, the quasi-symmetric structure allows
‘zero derivative’ as in Definition 2.6 to make sense as we will prove next.

Lemma 2.7. The property of ξ being a super attracting fixed point for a homeo-

morphism f : S1
univ ÞÑ S1

univ is independent of the leaf L in rF.

Proof. Let h be the expression of the homeomorphism f using the identification

ΘL : S1
univ Ñ S1pLq. If S1

univ is identitifed with S1pEq for another leaf E of rF,
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then the visual metrics d in S1
univ coming from identification with S1pLq and d1

from identification with S1pEq are quasisymmetric using the map g which is τL,E
restricted to S1pLq. Let η be the quasisymmetric function associated to g. Then

d1pgphpxq, gpξqq

d1pgpxq, gpξqq
ď η

ˆ

dphpxq, ξq

dpx, ξq

˙

.

Here d1 is the metric in S1
univ coming from identification with S1pEq. As η is a

homeomorphism with ηp0q “ 0, it follows that

lim
xÑξ

d1pgphpxq, gpξqq

d1pgpxq, gpξqq
“ 0.

Let z “ gpxq. Since g is a homeomorphism, then x limits to ξ if and only if z
limits to gpξq. So we obtain

lim
zÑgpξq

d1pgphpg´1pzqqq, gpξqq

d1pz, gpξqq
“ 0.

But g ˝ h ˝ g´1 is the expression of f using E instead of L. This proves the
lemma. □

2.6. Discretized and collapsed Anosov flows. We refer the reader to the
paper [BFP] which discusses in detail these concepts, as well as equivalences,
examples and properties. Here we just give some quick definitions and properties
that we will use to prove our results. Let M be a closed 3-manifold. A non-
singular flow ϕt : M Ñ M generated by a vector field X is said to be Anosov if
there is a Dϕt-invariant splitting TM “ Es ‘ RX ‘ Eu and t0 ą 0 such that if
vσ P Eσ is a unit vector (σ “ s, u) then:

}Dϕt0v
s} ă

1

2
ă 2 ă }Dϕt0v

u}.

It is easy to show that a flow on M is Anosov if and only if its time 1 map (and
therefore its time t-map for every t) is partially hyperbolic. We refer the reader
to [Fen2, Ba2, Bart] for generalities on the topological properties of Anosov flows.

We also have to consider the topological versions of these objects. A topological
Anosov flow ϕt : M Ñ M is an expansive flow tangent to a continuous vector
field X which preserves two transverse foliations so that orbits of one of the foli-
ations get contracted under forward flowing while orbits of the other foliation are
contracted by backward flowing. See [BFFP2, Appendix G] for more discussions.

It has recently been established by Shannon that transitive topologically Anosov
flows are orbit equivalent to true Anosov flows [Sha].

More generally, a pseudo-Anosov flow is a flow ϕt : M Ñ M preserving two
transverse singular foliations which is locally modelled in a topological Anosov
flow away from finitely many periodic orbits on which it has singularities of prong
type. See [Ca3] for more details. We note that every expansive flow is pseudo-
Anosov [IM, Pat].

In this paper we will be mostly interested in what is called R-covered Anosov
flows : that is, topological Anosov flows whose stable foliation Fws and unstable

foliations Fwu lifted to ĂM are R-covered. There are two important classes of
R-covered foliations: suspensions and skewed Anosov flows. A fundamental early
result on Anosov flows is the following:

Theorem 2.8 ([Fen2, Ba1]). The orbit space of the lift rϕt of an arbitrary Anosov

flow to ĂM is homeomorphic to R2. The flow is R-covered if and only if one
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of the foliations Fws or Fwu is R-covered. The foliations rFws, rFwu induce one-
dimensional foliations on R2 and ϕt is a suspension if and only if the foliations
have a global product structure. If ϕt is R-covered and not orbitally equivalent
to a suspension, then ϕt is skewed. Moreover, every R-covered Anosov flow is
transitive.

Notice that the previous theorem is shown for topological Anosov flows, so,
combined with [Sha] it says that if a topological Anosov flow is R-covered, then
it is orbit equivalent to a true Anosov flow. Also, it follows from [Bru] that
topological Anosov flows in atoroidal 3-manifolds are always transitive.

3. Pseudo-Anosov good pairs

Let F be a Reebless branching foliation of a closed 3-manifold M which is

R-covered and uniform and by hyperbolic leaves. Denote by rF to the lift of F to
ĂM . We choose a transverse orientation for rF and for L P rF we denote by L` and

L´ the closed half spaces determined by L in ĂM .

By the definition of branching foliation it follows that given L P rF, every leaf

L1 P rF is contained in either L` or L´ (and if it is contained in both, it must be
L). We will denote by S1

univ the universal circle of F (cf. §2.4).

3.1. Good pairs. We will be interested in certain lifts of maps that preserve the
foliation F.

Definition 3.1. Given f, g : M Ñ M diffeomorphisms of M preserving F, a pair

pf̂ , ĝq where f̂ , ĝ : ĂM Ñ ĂM are lifts of f, g is called a good pair if they commute,

neither fixes a leaf of rF and one of them acts as the identity on S1
univ.

Notice that this implies that both f̂ and ĝ act as a translation on the leaf space
LF – R.

Remark 3.2. If pf̂ , ĝq is a good pair, then we can consider the quotient Mf̂ “

ĂM{
ăf̂ą

which is a solid torus trivially foliated by the leaves of the induced folia-

tion Ff̂ . The leaf space
6 LFf̂

“ Mf̂{Ff̂
is a circle where ηf̂ , the action induced by

f̂ in the quotient, acts as a homeomorphism. The same can be done to produce

Mĝ “ ĂM{ăĝą.

We will mostly have in mind the following two examples on which our results
will be applied and eventually specialize to these cases:

Example 3.3. Let M be a closed 3-manifold and F be a minimal foliation in M
preserved by a diffeomorphism f : M Ñ M homotopic to the identity. It follows

from [BFFP3, Corollary 4.7] that if we consider rf to be a good lift of f (i.e. the
lift obtained by lifting a homotopy to the identity, cf. [BFFP2, Definition 2.3])

then either every leaf of rF is fixed by rf or F is R-covered and uniform and rf

acts as a translation on the leaf space L of rF. Since rf is a bounded distance

from the identity, one can easily show that rf acts as the identity on S1
univ, when

F is R-covered. Moreover, as rf commutes with all deck transformations (which
are lifts of the identity that clearly preserves F), it is enough to find a deck

transformation γ which does not fix any leaf of rF to obtain a good pair p rf, γq.
Note that such deck transformations are quite abundant (see for instance [BFFP2,

6Formally, we need to take the approximating foliation to define the leaf space, but one can

also define LF
f̂
by using the action of f̂ in LF.



18 S. FENLEY AND R. POTRIE

§8] and [BFFP3, §10] for the case where M is a hyperbolic 3-manifold). In this

paper we will later consider this setting when rF acting as a translation and M is
a hyperbolic 3-manifold to prove Theorem B.

Example 3.4. Let f : M Ñ M be a diffeomorphism of a Seifert manifold M with
hyperbolic base and preserving a horizontal (branching) foliation F. Horizontal
means that the Seifert foliation is isotopic to one which is transverse to F. In
particular F is R-covered and uniform. (Since M has hyperbolic base, it follows
that it has a unique Seifert fibration up to isotopy, see eg. [BFFP2, Appendix
A].) Suppose now that the Seifert fibration is orientable. Then π1pMq has non
trivial center, which is infinite cyclic, and we can take γ to be a generator of the
center. The center corresponds to the regular circle fibers, γ picks an orientation
on these.

In that case f preserves the center of π1pMq, and up to taking a square f
preserves the conjugacy class of γ. Note that γ acts as the identity on S1

univ. In

addition, if rF is the lift of F to ĂM it follows that γ does not fix any leaf of rF

because F is horizontal. Moreover, again taking the square of f if necessary, any

lift rf of f commutes with γ. If one fixes a lift rf , it follows that for large enough

m ą 0 the pair pγm rf, γq is a good pair. This setting will be considered when the
action in the base is pseudo-Anosov to prove Theorem C.

Notation 3.5. Given a good pair pf̂ , ĝq and m,n integers we denote the by P to

the diffeomorphism P “ ĝm ˝ f̂n of ĂM and by P8 the induced homeomorphism
of S1

univ (cf. Proposition 2.5). The values of m,n will be clear in the context.

3.2. Super attracting points. In this subsection we study what happens when
a good pair has a super attracting fixed point in the universal circle (cf. Defini-

tion 2.6) and how this forces some behavior in ĂM . We remark that such useful

information in ĂM from the action at infinity cannot in general be obtained from
a merely attracting fixed point in S1

univ.
We first need to describe some natural ‘neighborhoods’ of points of S1

univ inside
ĂM adapted to a good pair pf̂ , ĝq. We will assume in all this subsection that pf̂ , ĝq

is a good pair preserving F and that ĝ is the element of the pair which acts as the

identity on S1
univ. Recall that for any L in rF, we denote by ΘL : S1

univ ÞÑ S1pLq

the map that associates to a point in S1
univ its representative in S1pLq.

We will need to introduce some notations. Given an interval I of S1
univ con-

taining ξ in its interior and L P rF, we denote by ℓLI the geodesic in L joining the

endpoints of ΘLpIq. Given a leaf L P rF we denote by L0
I to the closure of the con-

nected component of LzℓLI whose closure in LYS1pLq contains ΘpIq. Given b ą 0

we denote as L`b
I Ă L (resp. L´b

I ) to the union of L0
I with the b-neighborhood of

ℓLI (resp. the points in L0
I at distance larger than b from ℓLI ).

Definition 3.6. Given ξ P S1
univ we say that an open set U of ĂM is a neighborhood

of ξ if it is ĝ invariant and for every L P rF we have that U X L contains L0
IpLq

for some IpLq Ă S1
univ open interval containing ξ, and IpLq varying continuously

with L. In addition we say that an unbounded sequence xn P ĂM converges to
ξ P S1

univ if for every U neighborhood of ξ there is n0 such that if n ą n0 then
xn P U .

There is a lot of freedom in the definition of these neighborhoods of points ξ in
S1
univ. Notice in particular that we require that the neighborhood is ĝ invariant

(where g8 is the identity). This requirement is necessary for some technical
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results later on to hold. Heuristically, what it allows to do is to think about

neighborhoods of points at infinity in the quotient ĂM{ăĝą, if ĝ were a deck
transformation (thus an isometry) one could define the neighborhoods by looking
at the geodesic joining the points in the interval at infinity, but since this is not
necessarily the case, we need to work some more to produce useful neighborhoods.

Proposition 3.7. Let pf̂ , ĝq be a good pair and P “ ĝm ˝ f̂n so that ξ in S1
univ

is a super attracting fixed point of P8. There is a neighborhood U of ξ in ĂM so
that P pUq Ă U and for any x in U then P ipxq converges to ξ when i Ñ 8.

We will first construct a family of neighborhoods of ξ depending on open

intervals I so that ξ P I Ă S1
univ, and a given leaf L P rF it satisfies the conditions

on the next lemma:

Lemma 3.8. Fix a leaf L P rF, then, for every open interval I0 Ă S1
univ and

ε ą 0 there is I Ă I0 open interval whose closure is contained in I0 and I0 is
contained in its ε-neighborhood in S1

univ satisfying the following: we can define
an open set UI which is a neighborhood of any σ P I (cf. Definition 3.6) and such
that LXUI “ L0

I . Moreover, there exists b0 ą 0 such that for every E P rL, ĝpLqs

we have that E´b0
I Ă UI X E Ă E`b0

I

Proof. Since the result is in the universal cover, we can assume by taking a
double cover that F is transversely orientable. Then Theorem 2.1 implies that F
is approximated by an actual foliation Fε. The universal circles of F and Fε are
canonically homeomorphic, under an equivariant homeomorphism. Given a leaf

E of rF there is an associated leaf E1 of rFε.
The foliation Fε has leaves with curvature arbitrarily close to ´1. A contracting

direction in a leaf of E of rFε is an ideal point y of E so that a geodesic ray r
from a basepoint x0 in E to the ideal point y satisfies that all nearby leaves in
one side of E contracts towards E along r. Thurston proved (see [Fen3, §3]) that
either there is a holonomy invariant transverse measure or for every leaf E of rFε

the set of contracting points from E is dense in S1pEq. In the first case for every
δ ą 0 there is also a dense set of directions in every leaf E so that nearby leaves
stay always less than δ from E in these directions. The contracting points or
points which are δ close to nearby leaves project down to similar points of the
branching foliation F. These contracting directions will allow us to ‘interpolate’
between curves in closeby leaves to produce the desired neighborhoods.

There is k1 ą 0 so that the image under ĝ of any geodesic ℓ in a leaf E of
rF is a k1 quasigeodesic in ĝpEq. Let b0 be a global constant so that if ℓ is a k1
quasigeodesic in a leaf E of rF, then ℓ is at most b0{2 distant from the geodesic
in E with same ideal points as ℓ. Fix δ ą 0 which is much smaller than the local
product size of the foliation F. Now let δ0 ą 0, δ0 ăă δ so that if two leaves

E1, E2 of rF are within δ0 of each other along a geodesic β of E1, then E1, E2 are
within δ of each other in a neighborhood of size b0 of β. This is why we use the
approximating foliation, rather than the branching foliation.

So fix the leaf L as in the statement of the lemma. Given ĝpLq we find ideal
points z1, z2 in S1pĝpLqq arbitrarily close to the endpoints ΘĝpLqpBI0q so that rays

in ĝpLq in the direction of zi are δ0 close to all nearby leaves E of rF in rL, ĝpLqs.
Let yi “ pΘĝpLqq

´1pziq.
Consider ℓ the geodesic in L with ideal points ΘLpyiq. Consider in ĝpLq the

geodesic β with same ideal points as ĝpℓq. Then β, ĝpℓq are at most b0{2 distant
from each other in ĝpLq. Choose E in rL, ĝpLqs which is at most δ0 from ĝpLq
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along β. One can do this for some rays of β in either direction by the choice of I.
Then by choosing E closer to ĝpLq if necessary, one can choose this for the whole
geodesic β. Let B be the b0{2 neighborhood of β in ĝpLq. Then B is δ near E1

for any E1 in rE, ĝpLqq.

In E let ℓE be the geodesic with ideal points ΘEpyiq. The foliation rF is a
product in the δ neighborhood of B, hence one can continuously chooose curves
ℓG for G in rE, ĝpLqs so that:

(i) ℓG is a quasigeodesic in G,
(ii) ℓG has ideal points ΘGpyiq,
(iii) ℓG is within b0 of the geodesic βG in G with ideal points ΘGpyiq.
(iv) ℓE is the geodesic with ideal points ΘEpyiq.
(v) ℓĝpLq “ ĝpℓLq.

Now for G in rL,Es let ℓG be the geodesic with ideal points ΘGpyiq.
This defines the neighborhood UI for G in rL, ĝpLqs. Then iterate by ĝ to

construct all of UI . By construction UI satisfies the last property of the lemma.
In addition L X UI “ L0

I .

Finally we check the first property of the lemma. For any G leaf of rF, there is
a unique n so that E “ ĝ´npGq is in rL, ĝpLqq. Then UI X G is ĝnpE X UIq. The
set E X UI is bounded by a uniform quasigeodesic in E, with endpoints ΘEpBIq.
Hence ĝnpEXUIq “ GXUI are also bounded by uniform quasigeodesics with ideal
points ΘGpBIq, because ĝn is a quasi-isometry between leaves. Hence for any σ
in I, there is J open subinterval of I containing σ so that the set UI XG contains
G0

J for all G in rL, ĝpLqs. Now fix σ in I, then the interval J above depends on
G, and one can chooose JpGq varying continuously with G, by decreasing it if
necessary.

This finishes the proof of Lemma 3.8. □

Remark 3.9. Note that if E R rL, ĝpLqs one cannot ensure the containment and
inclusion with the same constant b0: this is because one applies iterates of the
quasi-isometry ĝ, whose quasi-isometry constants get worse with iteration.

This means that given σ P I it is not a priori true that there is a fixed interval

J with σ P J̊ and J Ă I with G0
J Ă UI X G for all G in rF.

Proof of Proposition 3.7. Given I Ă S1
univ, UI as constructed in the previous

lemma, and E P rF, we denote AI
E “ E X UI .

We claim that if I as above is a sufficiently small interval around ξ, then there
are smaller intervals J around ξ such that

ĝk ˝ P pAI
Eq Ă AJ

E1

for all E in rL, ĝpLqs. We explain what E1 and k are in this formula. They are
uniquely defined so that E1 P rL, ĝpLqq is the image of E by ĝk ˝ P , and k P Z

is defined uniquely so that ĝk ˝ P pEq P rL, ĝpLqq. This will complete the proof
of the first statement of the Proposition because the formula above shows that

P pAI
Eq Ă UJ for all E in rL, ĝpLqs. The fact that P pUq Ă U then follows from

the facts below:
1) rL, ĝpLqs is a fundamental for the action of ĝ on ĂM ,
2) P commutes with ĝ,
3) Both UI and UJ are ĝ invariant.
To get the property above, first note that the value of k is uniformly bounded

in rL, ĝpLqs and so one gets that the quasi-isometric constants of the map ĝk ˝P :
E Ñ E1 are uniformly bounded independently on E P rL, ĝpLqs (where the k
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depends on the particular leaf E). It follows that there exists b1 ą 0 such that
for every J Ă S1

univ if we denote by Z “ P8pJq we have that

ĝk ˝ P pE`b0
J q Ă pE1q

`b1
Z

for every E in rL, ĝpLqs, where b0 was defined in the previous Lemma..
Now we use the property of ξ being super-attracting for the map P8. Since ĝ

acts as the identity on S1
univ, then ξ is super attracting for pĝk ˝ P q8.

For each fixed k one has that pĝk ˝ P q8 “ P8. Therefore one gets that for
small enough intervals I around ξ the image Z “ P8pIq verifies that the distance
between the geodesics ℓEI and ℓEZ are much larger than 2b0 ` b1 for every E P

rL, ĝpLqs. Here again we use that rL, ĝpLqs is a compact interval in the leaf space

of rF. Hence we can choose J interval in S1
univ around ξ and UJ as defined in the

previous lemma, so that ℓLJ separates ℓLI from ℓLZ , and

pEq
`b1
Z Ă pEq

`0
J Ă UI X E

for all E in rL, ĝpLqs. Let U “ UI . This proves that P pUq Ă U .
In addition one can choose the starting I small enough, so that in the proof

above the distance from any point in ℓIE to any point in ℓJE is bigger than a
constant b2 ąą 2b0 ` b1 for all E in rL, ĝpLqs.

This holds for smaller I as well. In particular it holds for J . Hence the distance
in E (for any E in rL, ĝpLqs) from any point in ℓIE to any point in P 2pUIq X E
is at least 2b2, and similarly for any positive P i iterate it is at least ib2. This
implies that for any neighborhood V of ξ there is i ą 0 so

P ipUI X rL, ĝpLqsq Ă V.

The ĝ invariance of the sets UI and V then implies that P ipUIq Ă V . Hence for
any x in U then P ipxq converges to ξ when i ÞÑ 8. This completes the proof of
Proposition 3.7. □

Definition 3.10. Given a good pair pf̂ , ĝq so that ξ P S1
univ is super attracting

(resp. super repelling) for P “ ĝm ˝ f̂n. We define the basin of attraction (resp.

basin of repulsion) of ξ to be the set of points x in ĂM such that P kpxq Ñ ξ as
k Ñ `8 (resp. k Ñ ´8) understood as in Definition 3.6.

Proposition 3.7 says that a super attracting point (which is defined only by
the action on S1

univ) has a non-trivial basin of attracting which is a neighborhood
of the super attracting point.

Remark 3.11. Let pf̂ , ĝq be a good pair and assume that ĝ act as the identity on

S1
univ. It follows that if a point ξ P S1

univ is super-attracting for a lift P “ ĝm ˝ f̂n,

then n ‰ 0 and then ξ will be super-attracting for every lift ĝk ˝ f̂ ℓn if ℓ ą 0 and
super-repelling if ℓ ă 0.

3.3. Pseudo-Anosov pairs. We can now define a technical object that will be
central in our proofs:

Definition 3.12. A good pair pf̂ , ĝq is a pseudo-Anosov pair (or pA-pair) if

there is n,m P Z such that if P “ ĝm ˝ f̂n then the homeomorphism P8 in the
universal circle S1

univ (cf. Notation 3.5) has exactly 2p fixed points, all of which
are alternatingly super-attracting and super-repelling. Here p is an integer ě 2.
If p “ 2 the pair will be called a regular pA-pair and if p ě 3 it will be called a
prong pA-pair. We denote by IpP q “ 1 ´ p the index of the pseudo-Anosov pair.
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Figure 1. A pseudo-Anosov pair with p “ 3.

We next state a result which extends [BFFP3, Proposition 8.1] and [BFFP4,
§3]:

Proposition 3.13. Let pf̂ , ĝq be a pseudo-Anosov pair and P “ ĝm ˝ f̂n be a lift
with m,n ‰ 0, satisfying the conditions of Definition 3.12.

Then there exists a closed set TP Ă ĂM which is invariant under f̂ and ĝ. The

set TP intersects every leaf L of rF in a compact set TP X L which consists of the
set of points which are not in the basin of attraction of any attracting point of
P8 or the basin of repulsion of any repelling point of P8.

Moreover, if there is a leaf L P rF such that P pLq “ L, then the total Lefschetz
index of the compact invariant set TP X L is IpP q the index of P .

The set TP is called the core of the pair. It is the complement in ĂM of what
one detects by looking at the action at infinity.

We first define the basins of attraction. Let pf̂ , ĝq be a pseudo-Anosov pair with

ĝ acting as the identity on S1
univ, and let P “ ĝm ˝ f̂k as in Definition 3.12. Let

ta1, . . . , apu and tr1, . . . , rpu be the super attracting and super repelling points of
P8 on S1

univ. We define T`
P (resp. T´

P ) as the set of points which is not in the
basin of attraction of any of the points a1, . . . ap P S1

univ (resp. not in the basis
of repulsion of any of the points r1, . . . , rp P S1

univ). Let

TP “ T`
P X T´

P .

Proposition 3.13 follows from applying the following consequence of Proposi-
tion 3.7 that we state precisely for future use and prove below.

Proposition 3.14. Let pf̂ , ĝq be a pseudo-Anosov pair with ĝ acting as the iden-

tity on S1
univ, and let P “ ĝm ˝ f̂k as in Definition 3.12. Then:

(i) The set LzT`
P (resp. LzT´

P ) is non empty and open.

(ii) For each L in rF, L X TP ‰ H.

(iii) For any L in rF, then L X TP is compact. In addition TP {ăĝą, TP {
ăf̂ą

are compact.
(iv) For every ξ P S1

univztr1, . . . rpu (resp. ξ P S1
univzta1, . . . , apu) if we denote

ai (resp. ai) to be the point such that Pnpξq Ñ ai (resp. P´npξq Ñ ri)



PARTIAL HYPERBOLICITY AND PSEUDOANOSOV DYNAMICS 23

then, there exists a neighborhood Uξ of ξ in ĂM contained in the basin of
attraction of ai (resp. basin of repulsion of ri).

Proof. Item (i) follows directly from Proposition 3.7 because it proves that the
basins of attraction and repulsion of each point in ta1, ..., ap, r1, ..., rpu are open,

non empty sets in ĂM .

Next we prove item (iv). Fix L in rF. Let ξ not one of the ri. Then ξ is in
the basin of attraction of some attracting point under P8, assume without loss
of generality it is a1. Let U “ UI be a neighborhood of a1 constructed as in
Proposition Lemma 3.7. Let i ą 0 so that Pn

8pξq is in the interior of I. Then
as in the proof of Proposition 3.7, there is J open interval containing P ipξq so

that E2b0`b1
J Ă U for all E in rL, ĝpLqs. We can construct a set UJ in rL, ĝpLqs

as in Proposition 3.7 so that UJ X E Ă U for all E in rL, ĝpLqs. Then iterate by
ĝ to produce UJ . It is a neighborhood of P ipξq which is contained in the basis
of attraction of a1. Then P´ipUJq is the desired neighborhood of ξ contained in
the basis of attraction of a1. This proves (iv).

To obtain item (iii) we do the following. Let ξ in S1
univ not one of triu. There is

a1 an attracting point of P8 so that ξ is in the basis of attraction of a1 under P8.
Fix a neighborhood UI of a1 contained in the basis of attraction of a1 under P

as provided in item (iv). There is i so that P i
8pξq P I. Fix L in rF, let τ “ ΘLpξq.

The above shows that P ipτq is an interior point of ΘP ipLqpIq. In particular there

is a neighborhood V of τ in L Y S1pLq so that P ipV X Lq Ă pUI X P ipLqq. This
is because of the definition of the neighborhoods UI . Similarly there is j so that
P jpξq is in J where UJ is contained in a repelling neighborhood of a repelling point
r1 of P8. Both of these facts together imply that LXTP is compact for any L in
rF. In the argument above one can take the neighborhood in

Ť

EPZpE Y S1pEqq,
where Z is any compact interval in the leaf space with L in the interior. This
shows that TP {ăĝą, TP {

ăf̂ą
are compact.

Finally we prove item (ii). Fix L in rF. Fix a union V of neighborhoods of the
points r1, ..., rp, so that P´1pV q Ă V . For any n ą 0, the set

An “ pT`
P ´ V q X P´npLq

is non empty. Otherwise the basins of attraction of different ai, aj intersect, which
is impossible. Choose xn in An and let yn “ Pnpxnq which is in L. In addition
yn is not in V and yn is in T`

P . Therefore yn is in a compact set of L. Take a

subsequence yni converging to y in L. If y is not in T´
P then there is n0 ą 0 so

that P´n0pyq is in V , so a neighborhood W of y so that P´npW q Ă V for any
n ą n0. Assume all yni are in W . But this contradicts that P´nipyniq “ xni are
never in V .

This contradiction shows that y is in T´
P . Since xn is in T`

P then yn is also in

T`
P and y is in T`

P . It follows that y is in TP so TP X L ­“ H. This finishes the
proof of (ii).

This finishes the proof of the proposition. □

Since for pA pairs (and appropriate choices of integers n,m with P “ ĝm ˝ f̂n)
all fixed of P8 in S1

univ are super attracting and super repelling, we will dispose
the use of the word super when it is clear that we are considering a pA pair and
call the points attracting and repelling.

Addendum 3.15. In the setting of Proposition 3.14 we have the following: for
every family of attracting neighborhoods Uai of the attracting points ai and L
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Figure 2. The core of the pA pair.

in rF, there is some R ą 0 such that outside a ball of radius R in E we have
that T´

P X E is contained in those neighborhoods, for any E in rL, ĝpLqs. The

symmetric statement holds for the repelling points and T`
P . In particular, TP XL

is contained in a ball of radius R inside L.

The second statement is obvious because the quotient TP {ăĝą is compact. To
obtain the first statement: for each individual E in rL, rgpLqs this is true for some
RpLq by item (iv) of the previous proposition. Then since rL, rgpLqs is a compact
interval of leaves, the result follows.

An argument very similar to the proof of item (ii) of the previous proposition
yields the following result which will be useful in the future. The map ĝ acts freely

and properly discontinuously in ĂM , hence ĂM{ăĝą is a manifold N (cf. Remark

3.2). The foliation rF induces a foliation FN in N , whose leaves are homeomorphic

to planes and the leaf space of FN is the circle. Let πN : ĂM Ñ N be the projection

map. We say that a sequence xn in ĂM converges to TP if πN pxnq converges to
TP {ăĝą, in the sense that for any neighborhood Z of TP {ăĝą in N then πN pxnq

is eventually in Z.

Lemma 3.16. Under the hypothesis of Proposition 3.7 let y in T`
P . Then Pnpyq

converges to TP as n Ñ 8.

Proof. We use the setup in the proof of item (ii) of the previous proposition. In
particular let V be a union of neighborhoods of the repelling points of P8 so that
P´1pV q Ă V .

Let PN be the induced map by P in N . Let z “ πN pyq. Assume that Pnpyq

does not converge to TP . Then there is a neighborhood Z of TP {ĝ and ni Ñ 8,
with Pni

N pzq always not in Z. There is n0 ą 0 so that if n ą n0 then Pnpyq is not
in V , hence Pn

N pzq is not in V {ăĝą. By the addendum, Pn
N pzq is in a compact set

in N for n ą n0. Hence up to another subsequence we may assume that Pni
N pzq

converges to z0. Notice that z0 is not in TP {ăĝą.

Lift z0 to x0 in ĂM . Then x0 is not in TP , but since y is in T`
P , it follows that

x0 is in T`
P , so it follows that x0 is not in T´

P .
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Hence as in the proof of item (ii) of the previous proposition there is a neigh-
borhood W of x0 and j0 integer so that if j ď j0 then P jpwq is in V for any

w in W . For any i big Pni
N pzq is in W {ăĝą, hence Pni`j0

N pzq is in V {ăĝą. This
contradicts the fact that Pn

N pzq is not in V {ăĝą for n ą n0. This contradiction
finishes the proof. □

3.4. Abundance of pseudo-Anosov pairs. In this section we specialize to the
cases described in examples 3.3 and 3.4: That is, we say that pf,Fq verifies the
commuting property if f : M Ñ M is a diffeomorphism preserving an R-covered
uniform foliation F by hyperbolic leaves and if one of the following conditions
holds:

(i) There is a lift f̂ to ĂM which commutes with all deck transformations7

and does not fix any leaf of rF.
(ii) There is a deck transformation γ which commutes with all deck transfor-

mations 8 and does not fix any leaf of rF.

The assumption that pf,Fq has the commuting property implies on the one

hand that it admits good pairs of the form pf̂ , γq with f̂ a lift of f and γ P π1pMq

a deck transformation (i.e. a lift of id : M Ñ M) and on the other that one can
construct new good pairs out of others.

Definition 3.17. A good pair pf̂ , γq for a pf,Fq with the commuting property

will be said to be admissible if either f̂ commutes with all deck transformations,
or γ is in the center of π1pMq.

In the first case, the good pair property is verified since f̂ acts as the identity
on S1

univ, and in the latter, it is γ that acts as the identity on S1
univ. In both cases

this happens because if a map commutes with all deck transformations then this

map is a bounded distance from the identity in ĂM (see also [BFFP2]).

Definition 3.18. Let pf,Fq have the commuting property and let pf̂ , γq be an

admissible good pair. We say that pf̂ 1, γ1q is conjugate to pf̂ , γq by η P π1pMq if
we have that9

pf̂ 1, γ1q “ pη´1 ˝ f̂ ˝ η, η´1 ˝ γ ˝ ηq.

Note that if pf̂ , γq is a pA pair (resp. regular pA pair) then every good pair

conjugate to pf̂ , γq also is a pA pair (resp. regular pA pair).
The following result shows that there are plenty of pA-pairs with good prop-

erties. In our specific settings, we could obtain this directly, but here we give a
unified proof.

Proposition 3.19. Let pf,Fq with the commuting property, pf̂ , γq be an ad-
missible pA-pair and let J Ă S1

univ be an open interval. Then, there exists an

admissible pA-pair pf̂ 1, γ1q conjugate to pf̂ , γq such that it has all its fixed points
in the interior of J .

7In particular, if f is homotopic to the identity.
8In particular, M is Seifert with hyperbolic base (because the leaves of F are hyperbolic)

and γ corresponds to the center of π1pMq generated by the element corresponding to the fibers.
This in particular implies that F is horizontal, and so S1

univ identifies with the boundary of the
universal cover of the base.

9Note that by the commuting property we have that either η´1
˝ f̂ ˝ η “ f̂ or η´1

˝ γ ˝ η “ γ.
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Proof. We will apply [FP2, Lemma 5.4] stating that for every pair of disjoint open
sets U and V in S1

univ there is a deck transformation η such that the action of η

on S1
univ maps the complement of U in the interior of V . Denote by P “ γm ˝ f̂n

with n,m not both equal to 0 and denote P8 the action on S1
univ.

Now, pick a open interval U disjoint from all fixed points of P8 and a deck
transformation η which maps the complement of U inside J .

Now, if one considers the map η ˝ P8 ˝ η´1 it follows that it has all its fixed
points inside J . Since the map is conjugated by a deck transformation, it follows
that the points are super attracting/repelling. This is because deck translations
acts in a Hölder way on S1

univ.

Since pf,Fq has the commuting property, then either pf̂ , η ˝ γ ˝ η´1) or pη ˝ f̂ ˝

η´1, γq make an admissible pair for pf,Fq. □

4. Pseudo-Anosov pairs and sub-foliations

We will assume that there is a one-dimensional branching foliation T subfo-
liating F which is f -invariant (recall the definition at the end of §2.1). Denote

by rT the lift of T to the universal cover. Recall from the previous section that
whenever pf̂ , γq is a pseudo-Anosov pair we will take P to be some P “ γm ˝ f̂n

which has a finite number of fixed points alternatingly super attracting and super
repelling in S1

univ. If we do not choose explicitely the values of n,m it will mean
that any choice with this property will work.

4.1. Landing points. Given a leaf c P rT we say that ĉ is a ray of c if it is a

connected component of cztxu for some x P c. Since the leaves of rT are properly

embedded in leaves of rF then every ray of c Ă L P rF accumulates only in some
connected subset of S1pLq.

Using the dynamics of pseudo-Anosov pairs one deduces the following simple
proposition that we will use several times in the paper. In this result we we use

the foliation FN in N “ ĂM{ăĝą.

Proposition 4.1. Let pf̂ , ĝq be a pseudo-Anosov pair and let ĉ be a ray in a

leaf of rT which accumulates in an interval J Ă S1pLq. Then, J contains the ΘL

images of at most two fixed points of P8 in S1
univ.

Proof. We assume that ĝ acts as the identity on S1
univ. If the interval J intersects

three such points we can assume without loss of generality that two of them (we
call them a1, a2, points in S1

univ) are attracting while one (called r) is repelling
and between the two attracting ones there are no other fixed point of P8.

Fix neighborhoods Ua1 and Ua2 of a1 and a2 in the respective basins of at-
traction given by Proposition 3.7. For those neighborhoods there is a sequence
ℓ1, . . . , ℓk, . . . of arcs of ĉ joining the neighborhoods Ua1 and Ua2 . Fix a repelling
neighborhood Vr of the form UI of r so that I has endpoints y1, y2. We assume
that yi is in the interval pai, rq of S1

univ. Then P i
8pyiq converges to ai as i Ñ 8.

Let bi “ ΘLpyiq. For i big ℓi has a subsegment ei in Vr X L connecting a point
very near b1 in L Y S1pLq to a point very near b2 in L Y S1pLq. These points are
in the basins of attraction of a1, a2 respectively. We claim that ei intersects T

`
P .

If not then ei is contained in the union of basis of attraction of attracting points,
but the endpoints are contained in distinct basis of attraction. Since the basis of
attraction are open sets this contradicts the connectedness of ei.

We consider the manifold N “ ĂM{ăĝą as in Lemma 3.16 (see also Remark

3.2). Let TN be the foliation induced by rT in N . As in Lemma 3.16 consider
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a fixed neighborhood Z of TP {ăĝą in N , but now with compact closure. Cover
the closure of Z by finitely many foliated boxes of FN and TN all with compact
support. Since the leaves of FN are planes, and FN is a fibration over the circle
the following happens: we can choose the foliated boxes small enough so that a
leaf of TN can only intersect each of these foliated boxes in a single component.

Since ℓi intersects T`
P , Lemma 3.16 implies that there is some ki such that if

k ą ki the map P k will then map the arc ℓi to a curve intersecting π´1
N pZq.

We can apply this several times to all the arcs, we find a sufficiently large
number of subarcs of a large iterate of ĉ that when projected to N they all
intersect Z. If there are sufficiently many, then more than two have to intersect
a product box of TN in Z.

This contradicts the fact that each curve of rTN can only intersect a local
product box as above in a unique connected component.

This produces a contradiction and proves the proposition. □

1 f

i

M

Figure 3. Proof of landing. The iterates Pn push the leaves away
from the middle point and into a compact part (when projected
to N).

Throughout the remainder of this section we will consider pf,Fq with
the commuting property (cf. §3.4).

We will assume that there is a one-dimensional branching foliation T subfoliat-
ing F which is f -invariant (recall the definition at the end of §2.1). We say that

a ray ĉ of a curve c P rT lands in a point if there exists ĉ8 P S1pLq so that the
closure of ĉ in LYS1pLq is ĉY ĉ8. In other words the ray ĉ accumulates only on
ĉ8.

Using the previous proposition, we deduce the following:

Proposition 4.2. If f : M Ñ M preserves an R-covered and uniform foliation
by hyperbolic leaves F which is subfoliated by a one-dimensional foliation T and

admits a pseudo-Anosov pair pf̂ , γq then every ray of rT lands in a point.

Proof. It is enough to show that given a pseudo-Anosov pair pf̂ , γq and an interval
J Ă S1

univ there exists another pseudo-Anosov pair so that J contains three or
more fixed points of it, in order to apply Proposition 4.1. But the fact we need
follows from Proposition 3.19. □

Notation 4.3. In ĂM we can orient leaves of rT, and we will fix an orientation.

Given a leaf ℓ P rT in a leaf L P rF both of whose rays land in a point we denote
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by ℓ` and ℓ´ in S1pLq the landing points of the positive and negative ray (with
respect to the orientation and a given point x P ℓ which is not relevant for the
definition of ℓ˘).

4.2. Pseudo-Anosov pairs with periodic leaves. We let pf̂ , γq be a pA-pair
and we will assume that:

(i) There is a leaf L P rF which is fixed by P “ γm ˝ f̂n for some m ‰ 0 and
n ą 0.

(ii) The action of P8 in S1
univ has 2p fixed points which are alternatively

super attracting and super repelling (with p ě 2).

Let c P rT X L be a leaf which is fixed by P and x P c. Write c “ c1 Y txu Y c2
where c1 and c2 are the two connected rays of c defined by x. Suppose that c1
has ideal point c` in S1pLq and c2 has ideal point c´. We say that c1 is coarsely
expanding (resp. coarsely contracting) if there is a compact interval I of c such
that for every compact interval J of c1 Y txu there is k ą 0 such that P´kpJq Ă I

(resp. P kpJq Ă I). These rays already played a prominent role in the arguments
of [BFFP3]. The next result should be compared with the results in [BFFP3,
§11.2].

We can show:

Proposition 4.4. Given a center curve c P rT X L which is fixed by P , then
Θ´1

L pc`q, Θ´1
L pc´q are fixed by P8 in S1

univ. Moreover, if Θ´1
L pc`q is an attracting

(resp. repelling) point of P8 in S1
univ then the ray c1 is coarsely expanding (resp.

contracting).

Proof. This is direct from Proposition 3.7. See also [BFFP3, §11.2]. □

We now give a definition that we will use several times since we will be able
to establish this strong property in the partially hyperbolic setting:

Definition 4.5. A pair pf,Fq has the periodic commuting property if it has the

commuting property (cf. §3.4) and for every admissible pA-pair pf̂ , γq for pf,Fq

there exists k ą 0, m P Zzt0u and a leaf L P rF which is fixed by P “ γm ˝ f̂k.

Notation 4.6. Whenever pf,Fq has the periodic commuting property and pf̂ , γq

is an admissible pA-pair, the lift P will denote a lift P “ γm ˝ f̂k with m P Zzt0u

and k ą 0 so that P fixes some leaf L P rF and such that P8 acting on S1
univ has

fixed points, all of which are either super attracting or super repelling.

Proposition 4.7. If pf,Fq has the periodic commuting property and pf̂ , γq is

any admissible pA-pair, then for every L P rF one has that PmpLq converges as
m Ñ ˘8 to a leaf which is fixed by P .

Proof. The hypothesis implies that P fixes a leaf E of rF. But then it also fixes

γipEq for any i P Z. For any L leaf of rF it is contained in rγiE, γi`1Es for some
i in Z which implies the result. □

The following property will be used several times:

Proposition 4.8. Let pf,Fq have the periodic commuting property preserving

a one dimensional branching foliation T that subfoliates F. Let pf̂ , γq be an

admissible regular pA-pair with attracting points a1, a2 for a lift P “ γm ˝ f̂n (cf.

Notation 4.6). Assume that there is a leaf ℓ of rT X L which has a segment I Ă ℓ
with the property that both extreme points of I belong to the basin of attraction
of a1 and so that I intersects the basin of attraction of a2. Then, there is a
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Figure 4. A configuration.

leaf E P rF fixed by P which has at least two disjoint leaves ℓ1 and ℓ2 from rT

joining ΘEpa1q and ΘEpa2q and ℓ1, ℓ2 fixed by P . In particular, ℓ1 and ℓ2 are
both coarsely expanding for P .

Proof. Let E be the limit of P kpLq as k Ñ 8 given by Proposition 4.7 which is
fixed by P .

Call x1 and x2 the endpoints of I so that I is oriented from x1 to x2. Take
y P I which belongs to the basin of attraction of a2. It follows that I “ I1 Y I2
where I1 is the segment oriented from x1 to y and I2 the segment oriented from
y to x2.

Let r1, r2 be the other fixed points of P8, which are both repelling, and
a1, r1, a2, r2 circularly ordered in S1

univ. Let V1, V2 be neighborhoods of type
UI of r1, r2 respectively so that P´1pV̄iq Ă Vi, given by Proposition 3.7. Let Ii
be the interval of S1

univ defined by Vi and containing ri.
For k ą 0 big enough P kpIiq cannot intersect V1 or V2, therefore the sequence

pP kpI1qq cannot escape compact sets in ĂM as k Ñ 8. This is because P kpLq

converges to E and P kpIiq intersects the basis of attraction of both a1 and a2.

Hence the sequence pP kpI1qq converges to some family of leaves in rT in E. The
leaves in the limit have must land. The set of landing points of all such limit
leaves is invariant under P (since E is invariant under P ). In addition the set
of landing points of these limit leaves cannot intersect ΘEpI1q or ΘEpI2q because
I1, I2 are expanding intervals under the action of P8. Therefore the only possible
limit points of the landing leaves must be ΘEpa1q and ΘEpa2q. See Figure 4 for
a depiction of this situation.

Since P kpI1q has endpoints in neighborhoods of a1 and a2 there must be a limit
leaf which has a1 and a2 as landing points (as opposed to both landing points
being a1 or a2). In addition this leaf is oriented going from a1 to a2. Similarly in

the limit of pP kpI2qq there must be at least one leaf of rT oriented from a2 to a1.
The family of such limit leaves is closed, ordered, and avoids neighborhoods of
the repellers of P ; so we can consider the two outermost of them and these must
be fixed by P . Moreover, since they are oriented in a different direction, these
leaves cannot be close and therefore are disjoint. □

Indeed we get a further property:
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Addendum 4.9. In the setting of Proposition 4.8 we further obtain that in E

there is at least one leaf ℓ3 of rT in E between ℓ1 and ℓ2 so that both endpoints
coincide with either a1 or a2.

Proof. Consider the leaves ℓ1, ℓ2 in E obtained in Proposition 4.8. These leaves
form the boundary of an infinite band B in E which accumulates only in a1 and

a2. Therefore any leaf of rT contained in B can only accumulate in these two
points. Assume by way of contradiction that no such leaf has both endpoints
a1 or both a2. Then every leaf has one ideal point in a1 and one in a2. As a

consequence the set of leaves of rT X E between ℓ1 and ℓ2 has an order making
it order isomorphic to an interval. Moreover, each such leaf has an orientation
either from a1 to a2 or from a2 to a1. Since the orientations of ℓ1 and ℓ2 differ,
this is a contradiction. Therefore it cannot happen that every leaf in between ℓ1
and ℓ2 has different endpoints. □

4.3. Shadows and visual measure. Let pf,Fq with the periodic commuting
property (Definition 4.5) preserving a one dimensional branching foliation T that
subfoliates F.

In some cases it is possible to control the visual measure of a center arc from

a point in a leaf L1 P rF if one can exclude certain configurations. For a point

x P L1 P rF and a subset X Ă L1 we call the shadow of X from x to the set of
points in S1pL1q – T 1

xL
1 corresponding to geodesic rays from x intersecting X.

1 f

i

M
Figure 5. The shadow.

Definition 4.10. We say that T has small visual measure in F if for every ε ą 0

there is R ą 0 such that if x P L P rF and I is a segment of rT X L at distance
larger than R from x, then the shadow of I from x has visual measure smaller
than ε in S1pLq – T 1

xL (cf. §2.3).

The distance condition means that dLpx, yq ą R for any y in I.

Proposition 4.11. Assume that there is a regular admissible pA-pair for pf,Fq

and that T does not have small visual measure in F. Then, there is a regular

pA-pair pf̂ , γq and a leaf L P rF fixed by P (cf. Notation 4.6) which has at least

two disjoint leaves of rT each fixed by P and whose landing points are ΘL images

of distinct attracting fixed points of P8 in S1
univ. In particular, these leaves of rT

are both coarsely expanding for P .
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Proof. By assumption there is ϵ ą 0, and there are points xn in leaves Ln P rF

such that there are segments In of leaves of rT X Ln at distance bigger than n
from xn and whose shadow in S1pLnq has visual measure larger than ε. Deck

transformations act as isometries on leaves of rF. Hence up to applying deck
transformations and a subsequence we can assume that xn converges to a point
x0. We can assume that Ln converges to L (notice F is a branching foliation so
a priori all Ln could contain x0).

Let Jn be the shadow of In on S1pLnq. Up to another subsequence we can
also assume that the intervals Jn in S1pLnq converge to an interval J8 of visual
measure larger than ε in S1pLq. We can assume without loss of generality that
J8 ‰ S1pLq by taking shorter segments In.

Using Proposition 3.19 we can consider pf̂ , γq an admissible regular pA-pair
such that it has all of its fixed points in the interior of J “ Θ´1pJ8q. Call the
attracting points a1, a2 and the repelling ones r1, r2. Since J ‰ S1

univ we can
order these points in S1

univ up to renumbering so that a2 is inside the segment
J 1 Ă J whose endpoints are r1 and r2. Consider neighborhoods Uai and Vri of

each in ĂM as in Proposition 3.7.
For large enough n we have that the arcs In contain subarcs Sn Ă In joining

Vr1 with Vr2 and intersecting Ua2 . We can also assume that Sn are such that for
some points ξ1, ξ2 in each connected component of JzJ 1 the segment Sn intersects
the neighborhoods Uξi as in Proposition 3.14 (iv). In particular these points in
Uξi are in the basis of attraction of a1 (the other attracting point). Denote as S1

n

and S2
n two segments of Sn joining respectively Ua2 with Uξ1 and Uξ2 .

Now the result follows from Proposition 4.8. □

Remark 4.12. Note that the proposition admits a symmetric statement since it
can be applied to pf̂´1, γq which is a regular pA-pair for f´1 which also preserves

F and T. So, under those assumptions there also exist a fixed leaf of rF with
two distinct leaves of T being fixed and coarsely contracting. Disjointness of the
curves is important since we do not assume that T is a true foliation. This will
allow us to rule out such behavior for centers in the partially hyperbolic setting.

5. Pseudo-Anosov pairs and partially hyperbolic foliations

In this section f : M Ñ M will be a partially hyperbolic diffeomorphism
preserving two transverse branching foliations Wcs and Wcu. We denote by Ws

and Wu the strong stable and strong unstable foliations respectively, and by Wc

the center (branching) foliation. We will assume that at least one of Wcs or Wcu

is R-covered and uniform and that some lift f̂ acts as a translation on this leaf
space. Many results will be stated for Wcs but obviously work equally well for
Wcu.

5.1. Periodic leaves for pseudo-Anosov pairs. Here we restate a result from
[BFFP3, BFFP4] in the context of pseudo Anosov pairs.

Proposition 5.1. Assume that pf̂ , γq is a pA pair for the foliation Wcs. Then,

there exists n ą 0, m P Z‰0 and a leaf L P ĄWcs such that γm ˝ f̂npLq “ L.

Proof. Under these conditions we proved in Proposition 3.14 (ii) that the set TP

is non empty. The quotient of TP in ĂM{γ ´ that is, TP {γ is compact. Since γ is

a deck transformation, the map f̂ projects to a map, which we denote by f0, in
ĂM{γ which is partially hyperbolic and preserves the compact set TP {γ.
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Let z P TP {γ and let y P TP {γ be an accumulation point of pfn
0 pzqq. Take i, j

big enough, with j much bigger than i, such that f i
0pzq and f j

0 pzq are both very
close to y.

Consider a small closed unstable segment τ containing f i
0pzq in its interior.

Since f0 increases unstable lengths uniformly, then if j is big enough, every leaf

of ĄWcs{γ intersecting τ intersects the interior of f j´i
0 pτq. This set of leaves of

ĄWcs{γ is an interval. This produces a fixed ĄWcs{γ leaf under f j´i
0 . Lifting to ĂM

proves the Proposition. □

This is the same proof as in [BFFP3, Proposition 10.3] (which itself uses
[BFFP2, Proposition 9.1]) or [BFFP4, Proposition 4.1].

Remark 5.2. Notice that once one has this, one immediately deduces that Wcs

cannot be a true foliation (cf. [BFFP2, Theorem B] and [BFFP4, §5]). This is
related with the fact that partially hyperbolic diffeomorphisms having pA pairs
with respect to the Wcs or Wcu foliation cannot be dynamically coherent and
will force that the map h in the definition of collapsed Anosov flow is not a
homeomorphism.

As a consequence of Proposition 5.1 we deduce immediately that:

Corollary 5.3. If pf,Wcsq has the commuting property and has an admissible
pA-pair, then it has the periodic commuting property.

Remark 5.4. Note that if pf̂ , γq is a pA pair and P “ γm ˝ f̂n with n ą 0, the
map P is a lift of a positive iterate of f therefore is partially hyperbolic and

the invariant bundles are exactly the lifts of those of f in M to ĂM (the stable
switches with the unstable if we take n ă 0).

Remark 5.5. Note that both Wc and Ws are one dimensional (branching) subfo-
liations of Wcs. By construction, it holds that Wc is also a subfoliation of Wcu

(which is also a branching foliation) and therefore we know that in ĂM we have

that a curve of ĂWs cannot intersect the same leaf of ĂWc twice.

5.2. Visual measure and distance of curves to geodesics. Here we show
the following result which has validity beyond the context we are working in this
paper as it does not require a full set of pA pairs (defined later).

Theorem 5.6. Let f : M Ñ M be a partially hyperbolic diffeomorphism pre-
serving branching foliations Wcs and Wcu so that pf,Wcsq has the commuting
property (see subsection 3.4). Assume moreover that there is an admissible regu-
lar pA pair for pf,Wcsq. Then it follows that both Wc and Ws have small visual
measure in Wcs (cf. Definition 4.10). Moreover, there is R ą 0 such that given

a center leaf ℓ P ĂWc (resp. a stable leaf ℓ P ĂWs) in L P ĄWcs if we denote by ℓ̂
a segment a or ray of ℓ whose landing is either ℓ´ or ℓ` P L Y S1pLq then the

geodesic segment or geodesic ray r̂ of L joining either the endpoints of ℓ̂ or the
starting point of ℓ̂ with its landing point is contained in the R-neighborhood in L
of ℓ̂.

Remark 5.7. It is important to mention what this Theorem does not say. In
particular, it does not ensure that the ray ℓ̂ is contained in a bounded neigborhood
of the geodesic ray (in particular, it does not say that ℓ̂ is a quasigeodesic). Later,
we will use this result to show that under some more assumptions, all center
curves are quasigeodesics. This cannot hold for stable curves as there may be
some stable curves which have both endpoints being the same (see eg. [BGHP]).
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However, the fact that the strong stables have small visual measure is something
quite remarkable as they can be made to have tangent vectors arbitrarily close
to horocycles (see [BGHP]).

Note first that the fact that curves from ĂWc and ĂWs land in leaves of ĄWcs is
direct from Proposition 4.2. To show that the visual measure of the arcs, rays
or shadows is small we will use the following result about center curves that will
also be useful later:

Lemma 5.8. Let f be a partially hyperbolic diffeomorphism preserving branching
foliations Wcs and Wcu so that pf,Wcsq has the commuting property, and there

is an admissible regular pA pair pf̂ , γq. Let P as in Notation 4.6 with P pLq “ L

for some L P ĄWcs. Then, there cannot be two disjoint center curves c1 and c2 of
ĂWc in L which are fixed by P and join the ΘL images of distinct attracting fixed
points of P8 in S1

univ.

Proof. Such center curves should be coarsely expanding by P by Proposition 4.4.
This forces P to have at least one fixed point x in c1. We look at spxq the stable
manifold of x. It cannot intersect c2 since both spxq and c2 are invariant by P
and so is their intersection, which is a single point y. See Figure 6. Since c2, c1
are disjoint y would be a fixed point of P in spxq different from x ´ impossible,
since spxq is a stable leaf and P is contracting in stables. Then, the ray of spxq

in the connected component of Lzc1 containing c2 must land in an attracting
point of P in S1

univ. This again is impossible since spxq is coarsely contracting
(cf. Remark 5.4), and this contradicts Proposition 4.4. □

 

c1

x s
c2

Figure 6. Proof of Lemma 5.8.

We complete the proof of Theorem 5.6 by showing that if geodesics joining
points of centers or stables do not remain boundedly close to the respective curves
in leaves, then one can construct arcs with shadows with large visual measure:

Lemma 5.9. Let F be an R-covered uniform foliation with hyperbolic leaves of
a closed 3-manifold M and let T be a one dimensional branching subfoliation of
F. Assume that for every n ą 0 there is a segment ℓn of a leaf of T such that the
geodesic segment joining the endpoints of ℓn is not contained in the ball of radius
n of the segment ℓn. Then, T does not have small visual measure in F.
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Proof. Just consider the segments ℓn Ă Ln and the corresponding geodesic seg-
ment rn Ă Ln joining the endpoints. By assumption, we know that there
is a point xn P rn at distance larger than n from ℓn, or equivalently, that
BLnpxn, nq X ℓn “ H.

Since the shadow of ℓn from xn is connected and ℓn intersects both sides of rn
we know that the shadow of ℓn through xn has at least half of the visual measure
from the point xn while it is completely outside the ball of radius n around xn.
This implies that T cannot have small visual measure in F. □

Now we can complete the proof of Theorem 5.6.

Proof of Theorem 5.6. The statement about visual measure in the case of Ws fol-
lows by appliyng Proposition 4.11 using T as the stable foliation.. The statement
follows because strong stable leaves cannot be coarsely expanding under P , if
P “ γm ˝ f̂n with n ą 0.

To show that this is also the case for Wc we again apply Proposition 4.11
using T as Wc. If centers did not have small visual measure in Wcs, it follows
that there is a regular pA-pair pf̂ , γq associated to pf,Wcsq and we can find two

disjoint leaves c1, c2 P ĂWc contained in a leaf L which are fixed by P as well as
c1, c2. Now, Lemma 5.8 gives a contradiction.

The statement about rays or segments of the leaves in the foliations follows
from Lemma 5.9. The statement about segments is strictly contained in that
Lemma. To get the result for rays it is enough to approximate the ray by longer
and longer segments which all have the same property. □

5.3. Impossible configurations. We show that some configurations of the foli-

ations in leaves of ĄWcs (or ĄWcu) are impossible and this will be used to show that

the leaf space of ĂWc is Hausdorff inside leaves of ĄWcs. The next proposition will
combine well with Lemma 5.8 (which together with Proposition 4.8 gives other
impossible configurations). We note that the next result works for a single pA
pair with certain properties and does not need to have the full set of pA pairs
that will be used in next section. In fact, we will need to deal with a case slightly
more general than a pA pair which is when there are only two fixed points in
S1
univ one super attracting and one super repelling.

Proposition 5.10. Let f : M Ñ M be a partially hyperbolic diffeomorphism pre-
serving a branching foliation Wcs which is R-covered and uniform with hyperbolic
leaves. Suppose that pf,Wcsq admits an admissible regular pseudo-Anosov pair.

Let pf̂ , γq be a good pair pair and P “ γm ˝ f̂n with n ą 0 so that P8 has fixed
points in S1

univ and such that all fixed points are either super attracting or super

repelling. Let L P ĄWcs be a leaf fixed by P . If there is a center curve c in ĂWc XL
with endpoints c` and c´ in S1pLq such that c` “ c´ then one must have that
Θ´1

L pc`q cannot be an attracting fixed point of P8.

Proof. We stress that we do not assume that pf̂ , γq is a pA-pair. In particular
P8 may have only two fixed points in S1

univ.

Since P pLq “ L we can reduce the proof to L̂ “ LYS1pLq. The map P induces

a homeomorphism of L̂. A point ξ in S1
univ is a fixed point, attracting or repelling

point of P8 if and only if ΘLpξq is a fixed point, attracting or repelling point of P

in L̂. We will prove the result by contradiction assuming that c` “ c´ “ a is an
attracting fixed point of P in L̂. We denote by Dpcq to the connected component

of Lzc whose closure in L̂ intersects S1pLq only in a.
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Note that such a center cannot be fixed by P . If it were the case, then it
would be coarsely expanding by Proposition 3.7 and therefore there would be
a fixed point x P c by P . Let spxq be the stable leaf through x. The ray of
spxq intersecting Dpcq must land in a “ c` “ c´ since a strong stable cannot
intersect a center curve twice (cf. Remark 5.5) and therefore the ray is completely
contained in Dpcq and lands in c`. That forces that stable curve to be coarsely
expanding by Proposition 3.7 which is impossible. Compare with Lemma 5.8. In
fact the same argument shows that this center cannot be periodic under P as
well.

Up to taking the square of P we assume that P preserves orientation when
acting on L, and hence also on S1pLq.

Consider now the iterates ck :“ P kpcq with k P Z. Denote by Dpckq “

P kpDpcqq which is the connected component of Lzck whose closure in L̂ intersects
S1pLq only in a “ c` “ c´.

Consider D “
Ť

k Dpckq. Note that D is a P invariant, closed set. Let C be
the set of center leaves which make up the boundary of D.

In order to prove the proposition we establish some general claims. The first
one is the place where we use that a is attracting for P . If it were repelling there
would be no a priori contradiction10.

Claim 5.11. There cannot be a fixed point of P in D.

Proof. Let x P D be fixed by P . If x P Dpckq for some k it follows that one
of the rays of spxq has to land in c` which is a contradiction. Otherwise, x is
accumulated by the curves ck, therefore, for large enough k we have that one
ray of spxq intersects ck and therefore enters in Dpckq and must land in c`, a
contradiction. This completes the proof. □

To continue the proof of Proposition 5.10 we distinguish two options (see Fig-
ure 7):

 

Dpc0q

Dpc0q Dpc1q

Dpc1q

Figure 7. Option (1) to the left and option (2) to the right.

(1) The sets tDpckqqu are not pairwise disjoint.
(2) The sets tDpckqqu are pairwise disjoint.

10Indeed, this behavior can happen for the strong stable/unstable foliations of some partially
hyperbolic diffeomorphisms such as the ones constructed in [BGHP].
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In option (1) there is i ą 0 so that Dpciq intersects Dpcq, hence either Dpciq Ă

Dpcq or Dpcq Ă Dpciq. Hence up to taking a further positive iterate of P we
assume that Dpcq Ă Dpc1q or Dpc1q Ă Dpcq. Since it is a positive iterate, the
point a is still super attracting for P .

Option (1)
We assume first that we are in option (1). This situation is by far the harder

to deal with. The overall strategy in this case is the following: we find a stable
leaf s intersecting D which is fixed by P . This leaf s has one ideal point in a
and this will contradict that a is attracting for P . To find such s we essentially
consider the set of all stables intersecting C plus the stable leaves “in between”.
We show that this set has a linear order, is invariant by P and P fixes a leaf in
this set. The last step is the hardest and depends on understanding the structure
of the boundary of D, how it interacts with the fixed points of P in S1pLq. Notice
that a priori the center foliation in L can be very complicated, so there are many
theoretical configurations. 11

Therefore, the first goal is to obtain some useful properties about the boundary
of D. There are similar properties in option (2), but not the same, and option
(2) is much easier to deal with.

Claim 5.12. The boundary BD of D in L is a non empty set saturated by center
curves. Every point in BD belongs to a center curve which is a limit of subintervals
of the curves ck. Moreover, the collection C of center leaves are pairwise non
separated in the center leaf space in L.

Proof. Assume first that D “ L, then we have that there are compact arcs
converging uniformly to some interval in S1pLq in the topology of L̂ “ LYS1pLq,
these arcs would have large visual measure and escape to infinity contradicting
Theorem 5.6. Therefore BD ‰ H.

Since D is saturated by center curves, then so is BD. Moreover, if x P BD

belongs to a certain center leaf e Ă BD then we have that every compact subin-
terval I of e must be accumulated by the sets Dpcjq with j Ñ `8 or j Ñ ´8.
This implies that there are arcs Ij of ckj converging uniformly to I.

Finally let e1, e2 be two distinct center leaves in C. Non separated means that
in the center leaf space they do not have disjoint neighborhoods. As above the
leaves e1, e2 are contained in the limit of cj with j Ñ 8 or j Ñ ´8. Therefore
e1, e2 are not separated from each other. □

Since P preserves the orientation in L the following happens:, if e is in C then
either P peq “ e or all iterates Pnpeq are pairwise disjoint. We can also show:

Claim 5.13. Let e P C a center curve in BD such that P peq ‰ e. Then tPnpequ

cannot accumulate in a point in L when n Ñ 8 or n Ñ ´8.

Proof. Consider Ge to be the connected component of Lze which is disjoint from
P peq. Since the curves in C are pairwise non-separated, and P preserves ori-
entation in L, we know that PnpGeq are all disjoint. Assuming that tPnpequ

accumulates in some point x P L with n Ñ ˘8, we can fix a local product struc-
ture neighborhood around x for the center foliation and we can see tPnpGequ

accumulating in this point. Since these sets are all disjoint, then this means that
the leaves tPnpequ accumulate on a local product structure box in more than one
connected component, which is impossible. □

11The eventual goal, done in Section 6 is to prove that the center foliation in L is actually
fairly simple, that is, its leaf space is Hausdorff and homeomorphic to R.
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Claim 5.14. Let e be a leaf in C. If e has an ideal point ξ which is a fixed
point of P then the other ideal point ν of e is different from ξ and one of them is
attracting and one repelling. In addition the ideal points of e cannot be in distinct
complementary components of the set of fixed points of P in S1pLq.

Proof. Suppose e is a leaf in C which has an ideal point ξ fixed by P8. Let ν be
the the other ideal point of e. Suppose first that ν is distinct from ξ. Then since
P peq is non separated from e and ck converges to both e and P peq it follows that
P peq “ e. If both endpoints of e are either attracting or repelling for P then
there is a fixed point of P in e, hence a fixed point of P in D, disallowed in Claim
5.11. So one of the ideal points of e is attracting and the other one is repelling.

Suppose now that ν “ ξ. Let Ge be the component of L´e which accumulates
only in ξ in S1pLq. Since ξ must be either super attracting or super repelling,
then using Claim 5.11, we deduce that P peq ‰ e and that all the iterates P ipGeq

are all distinct. Moreover, by Claim 5.13 we know that P ipeq cannot accumulate
on a point x P L which implies that the sets P ipGeq converge as i Ñ ˘8 to
ξ. However, since ξ is super attracting or super repelling it follows that P ipeq

cannot converge to ξ as i Ñ ´8 or i Ñ `8. This proves the first assertion of
the claim.

Finally suppose that e has ideal points in two distinct complementary com-
ponents of fixed points of P in S1pLq. Up to an iterate these complementary
components are fixed by P . Then since e is a boundary leaf of D this implies
that P peq “ e. In particular the ideal points of e are fixed by P and are not
in complementary of the set of fixed points of P . This finishes the proof of the
claim. □

We now define a set S of stable leaves which will produce a P invariant stable
leaf intersecting D. The construction of S is geometric and not dynamical. For
simplicity assume that cj converges to C when j Ñ 8. The case when cj converges
to C when j Ñ ´8 is entirely analogous and we address that later.

Let S be the set of stable leaves s in L so that there is j0 P Z so that s intersects
cj for any j ě j0. Each such stable leaf s intersects some cj . Since cj has both
ideal points equal to a, it follow that s has a ray limiting on a “ c` “ c´. Each
stable leaf s intersecting C intersects cj for all j ě j0 (the j0 depends on s), so
s is in S. In addition if s0, s1 are in S then they intersect cj for all j ě j0 for
some j0 (take a j0 that works for both). For any stable s intersecting cj0 between
s0 X cj0 and s1 X cj0 then s intersects cj for any j ě j0, so s is also in S. This is
because cj0 , cj and s0, s1 form a “quadrilateral” in L and s intersects cj0 , hence
intersects cj also. It follows that s is in S. Therefore the set S is linearly ordered.
Since the subset of S between s0 and s1 is order isomorphic to an interval then S

is order isomorphic to the reals. With the quotient topology it is homeomorphic
to the reals. Since we took a square of P if necessary, then the map P preserves
this order.

If on the other hand cj converges to C when j Ñ ´8, then in the definition of
S we require a j0 so that s intersects all cj for j ď j0.

Let I, J be the connected components of S1pLq minus the set of fixed points
of P in S1pLq, so that I, J have one endpoint equal to a. We now define a subset
SI of S associated with I. The definition will depend on whether there is a leaf
of C with an ideal point in I or not. Consider first the case that there is a leaf
e in C with an ideal point in I. By Claim 5.14 the other ideal point of e is also
in I. Let Ai be the set of stable leaves in L intersecting P ipeq. Let SI be the
smallest connected set of S containing all Ai. In this case for any s in SI then s
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has an ideal point in I. In fact for any s in S it has an ideal point in a. If the
other ideal point x of s is in I then x is in the closed segment contained in I with
endpoints P ipzq and P i`1pzq where z is an ideal point of a stable intersecting e
and i is some integer. Hence s separates two elements in S and intersects cj for
all j ě j0 (for some j0) hence s is in S. It follows that in this case SI is exactly
the set of stables intersecting D which have one ideal point in I. In particular
the definition of SI is independent of the particular leaf e that we start with.

The other possibility is that there is no leaf of C with an ideal point in I. We
deal with this case now. Let x in I. We claim that there is a neighborhood V
of x in L Y S1pLq so that V X L is disjoint from D. Suppose not. If for some
such V we have that V X L Ă D, then we get a sequence of arcs in ck (with
ck limiting to C as k Ñ 8) so that they escape compact sets in L and limit
to V X S1pLq. These arcs do not have small visual measure, violating Theorem
5.6. So this cannot happen. Choose Vi with i P N a basis neighborhood of x in
LYS1pLq, with ViXS1pLq always contained in I. By assumption, for each i there
is a point yi in Vi Xcki for a suitable choice of ki. If the ki can be chosen constant
equal to k then ck has one ideal point in Vk X S1pLq. But this is impossible by
hypothesis as Vk X S1pLq Ă I. So up to subsequence we can assume that ki are
pairwise distinct. Since the cki have both ideal points outside of I then either
they escape compact sets, contradicting Theorem 5.6, or up to subsequence they
keep intersecting a fixed compact set. This is impossible since the elements in
C are pairwise non separated from each other, cf. Claim 5.12. This shows that
there is such V as above, so that pV X Lq X D “ H. In this case let e be the
unique leaf of C which separates V X L from the interior of D. By P invariance
of D and the fact that no ideal point of e is in I, it follows that P peq “ e. In
addition one ideal point of e is a. This is because e separates V X L from the
interior of D and the interior of D has points limiting to a. Since e is fixed by P
the other ideal point of e is a repelling fixed point of P by Claim 5.14, and hence
it is not a. Let now Iex be the open interval of S1pLq determined by the ideal
points of e and which contains I. We remark that Iex is disjoint from J . In this
case let SI be the set of stable leaves intersecting e.

Notice that SI is again a connected subset of S. In either case we remark that
if s is a leaf in SI then no ideal point of s is in J .

Notice that in either case SI is P invariant. In the same way we define a set
SJ .

Claim 5.15. The sets SI , SJ are disjoint.

Proof. Suppose that there is a leaf e in C with an ideal point in either I or J .
For simplicity assume an ideal point in I. Then by construction for every leaf s
in SI it has an ideal point in I. Since no leaf in SJ has an ideal point in I, the
claim is proved in this case.

The remaining case is that we have the intervals Iex and Jex, which are defined
by leaves e, e1 in C. In this case SI is the set of stable leaves intersecting e
and SJ is the set of stable leaves intersecting e1. Since e, e1 are distinct but non
separated from each other, no stable leaf can intersect both of them. Hence again
SI X SJ “ H. This proves the claim. □

Since SI , SJ are disjoint, let s be the stable leaf in S corresponding to the
endpoint of SI separating it from SJ in S. Then since both SI , SJ are fixed by
P , so is s. Since s is in S then it intersects cj for some j and hence has an ideal
point a. This contradicts the fact that a is an attracting fixed point of P .

This finally finishes the proof of Proposition 5.10 assuming option (1).



PARTIAL HYPERBOLICITY AND PSEUDOANOSOV DYNAMICS 39

Option (2)
We now assume option (2).

Claim 5.16. In option (2) we have that as k Ñ ˘8 then Dpckq can only accu-
mulate in a “ c` “ c´.

Proof. In option (2) the sets Dpckq are pairwise disjoint. An argument entirely
analogous to that of Claim 5.13 shows that Dpckq cannot accumulate anywhere
in L as k Ñ 8 or k Ñ ´8.

If the collection Dpckq accumulates in another point of S1pLq besides a, then
since it does not accumulate in L it will have subsegments which limit uniformly
on non empty intervals of S1pLq. In particular these segments escape compact sets
in L. This violates that the center foliation has small visual measure, Theorem
5.6. This finishes the proof of the claim. □

Now we can complete the proof in option (2). As k Ñ ˘8, the Dpckq cannot
accumulate in L or in any other point of S1pLq besides a. Choose a neighborhood
U of a which is contracting under P as in Proposition 3.7. Choose U sufficiently
small so that D0 is not contained in U . Then for k big negative Dpckq is contained
in U , and applying P´k sends Dpckq inside of U , but also to Dpc0q not contained
in U , contradiction. This completes the proof of Proposition 5.10. □

6. Hausdorff center leaf space

In this section we show that under some assumptions the center leaf space of
ĂWc has to be Hausdorff in leaves of ĄWcs. This is an important step in the proof
of our main theorems and will use all the results on pseudo-Anosov pairs we have
been developing so far. We use the abbreviation pA pairs for pseudo-Anosov
pairs.

To be able to exclude non-Hausdorff leaf space we will need enough pA pairs
to be able to force certain configurations (see Remark 6.3 below). This will be
defined precisely in §6.1.

After we rule out a certain configuration in §6.2, we will show in §6.3 the
following:

Theorem 6.1. Let f : M Ñ M be a partially hyperbolic diffeomorphism pre-
serving branching foliations Wcs and Wcu. Assume that pf,Wcsq has full pseudo-
Anosov behavior (cf. Definition 6.7). Assume also that Wcu is R covered. Then,

inside each leaf of ĄWcs, the foliation ĂWc by center curves has leaf space which is
Hausdorff.

Recall that a one dimensional (branching) foliation rT in a complete simply

connected surface L has Hausdorff leaf space if for every pair of curves of rT in
L it follows that the positive (closed) half space in L determined by one of the
curves is contained in the positive (closed) half space determined by the other.

Remark 6.2. Definition 6.7 is quite restrictive and asks for the existence of several
pseudo-Anosov pairs for f . We suspect that the only examples which verify these
assumptions are the ones we treat in Theorem B and Theorem C.We note however
that we do not ask that the actions of the good pairs on the universal circle of
Wcs and Wcu coincide (this is immediate in the context of Theorem C, but not a
priori obvious for Theorem B).

Remark 6.3. Until now, all arguments used a given pA pair and then found se-
quences of curves that approached the universal circle in certain configurations
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that would ensure that some of their points belong to the basins of attract-
ing/repulsion of the fixed points in S1

univ of the pA pairs. In this section the
strategy will be different. We will fix a curve and find sequences of pA pairs
whose configurations will force that the curve has some points in basins of at-
traction of different fixed points of the pA pairs (as the configuration required in
Proposition 4.8). Two delicate issues with this approach will appear:

‚ The curves we will consider already have limit points and approach the
boundary very fast (cf. Theorem 5.6). Therefore we need that the con-
figuration of attracting/repelling points of the pA pairs are very special;

‚ Also, the core TP of a pA pair depends somewhat on the particular pA
pair we choose, and that is why it will be important to consider pA pairs
which are related to the same object in M (i.e. different lifts of the same
‘orbit’) so that we get some uniform estimates.

For these reasons, we will need to restrict to a class of diffeomorphisms that
we will later show contains the classes we are studying in this paper to show
Theorems B and C.

6.1. Diffeomorphisms with a full set of pseudo-Anosov pairs. In some
arguments we will need not only one pseudo-Anosov pair, but also that its con-
jugates (cf. Definition 3.18) fill the universal circle in a particular way.

Remark 6.4. In what follows one should have in mind the difference between
a pseudo-Anosov diffeomorphism of a surface and a reducible diffeomorphism
of a surface with a pseudo-Anosov piece. One can also think about regulating
flows for uniform foliations in atoroidal manifold versus manifolds with atoroidal
pieces but non-trivial JSJ decomposition. (Recall Examples 3.3 and 3.4.) When
there is a unique pseudo-Anosov piece, the laminations are minimal, so every
(regular) periodic orbit verifies that its stable/unstable manifold is dense in the
stable/unstable lamination of the pseudo-Anosov map which forms a “full lami-
nation” (see [Ca3] and references therein).

We consider a pair pf,Fq with the periodic commuting property (cf. Definition

4.5) and let pf̂ , γq be an admissible regular pA-pair with attracting points a1, a2
and repelling points r1, r2 in S1

univ (here the action is with respect to a lift P “

γm ˝ f̂k as in Notation 4.6).

Definition 6.5. The regular pA-pair pf̂ , γq is a full pair (for P “ f̂k ˝ γm), if
there are α0 ą 0, d0 ą 0 satisfying the following: for every geodesic ray η in a

leaf L of rF, with starting point x0 there is:

‚ a compact non degenerate interval I in the leaf space of rF,
‚ and for every n ą 0, a deck transformation βn P π1pMq such that βpLq P I

so that:

if we denote by gan the geodesic in L joining ΘLpβna1q with ΘLpβna2q and grn the
geodesic in L joining ΘLpβnr1q with ΘLpβnr2q then:

‚ either gan or grn intersects η in a point xn making angle larger than α0,
‚ dLpx0, xnq ą n and dLpxn, g

a
n X grnq ă d0.

We will use this property to obtain the following important result.

Proposition 6.6. Let pf,Fq have the periodic commuting property and admitting

a full pair pf̂ , γq. Then, given a geodesic ray η in a leaf L P rF from a point x0 P L
with ideal point ΘLpξq (ξ P S1

univ), the following happens: There exists a conjugate

pair pf̂ 1, γ1q of pf̂ , γq ´ with P 1 the corresponding conjugate of P (cf. Definition
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3.18) such that either x0 and ξ belong to different basins of attraction of the fixed
points of P 1

8 in S1
univ or they belong to different basins of repulsion of the fixed

points of P 1
8.

Proof. Consider the geodesic ray η in L with starting x0 P L and ideal point
ΘLpξq. Let a1, a2 be the attracting points of P8. Since pf̂ , γq is a full pair,
without loss of generality we can assume that there is a sequence γn P π1pMq

such that the geodesic gn in L with ideal points ΘLpγna1q and ΘLpγna2q makes
angle larger than α0 with η and intersects η in a point xn at distance larger than
n from x0. In addition if hn is the geodesic in L with ideal points ΘLpγnr1q and
ΘLpγnr2q then dLpgn X hn, xnq ă d0. Finally γnpLq is in a fixed compact interval

in the leaf space of rF for every n.
Let P 1

n “ γn ˝ P ˝ γ´1
n .

Extend η in L beyond x0 to a full geodesic still denoted by η and with other
ideal point ΘLpνq. Now we map back by γ´1

n . The fact that γnpLq is in a compact
interval of the leaf space means that the slithering distance of γn is bounded [Th2]
and so is the slithering distance of γ´1

n . In other words γ´1
n pLq is in a compact

interval, which we denote by J.
Suppose that up to subsequence that one of γ´1

n pξq or γ´1
n pνq converges to a1

or a2. Without loss of generality assume that γ´1
n pξq converges to a1 or a2. Up

to another subsequence assume that γ´1
n pLq converges to L0. Notice that gn Xhn

is a globally bounded distance from TP 1
n

X L ´ because of the following:

(i) TP {ăγą is compact, and

(ii) Since deck transformations are isometries of ĂM they induce metrics in
the quotients, and also

TP {ăγą, TP 1
n

{
ăγn˝γ˝γ´1

n ą

are isometric.

Since dLpgn X hn, xnq is bounded by d0, it follows that

dγ´1
n pLq

pγ´1
n pxnq, TP X γ´1

n pLqq

is bounded above. This is because γ´1
n pgnq, γ´1

n phnq are geodesics in γ´1
n pLq with

ideal points in S1pγ´1
n pLqq which are Θγ´1

n pLq
pa1q,Θγ´1

n pLq
pa2q,Θγ´1

n pLq
pr1q and

Θγ´1
n pLq

pr2q, respectively. Hence the intersection γ´1
n pgnq X γ´1

n phnq is a bounded

distance from Tp.

So we can assume γ´1
L pxnq also converges to y0. The sequence of geodesics

γ´1
n pgnq in γ´1

n pLq have ideal points Θγ´1
n pLq

pa1q,Θγ´1
n pLq

pa2q, so this sequence of

geodesics converges to the geodesic g in L0 with ideal points ΘL0pa1q,ΘL0pa2q.
In addition the sequence γ´1

n pηq converges to a geodesic in L0 through y0 and
making an angle with g of at least α0 as specified in the beginning of this proof.
This is impossible since γ´1

n pξq converges to either a1 or a2. Therefore none of
γ´1
n pξq, γ´1

n pνq converges to either a1 or a2.
The previous paragraphs show that there are fixed interval neighborhoods

I, J of the repellers r1, r2 not containing either a1, a2 in their closures, so that
γ´1
n pξq, γ´1

n pνq are always in I YJ for n sufficiently big. Let UI , UJ be neighbhor-
hoods of r1, r2 respectively as constructed in Proposition 3.7. Up to subsequence
and without loss of generality assume that γ´1

n pξq is in UI for n big. Since

dLpx0, xnq ą n, and γ´1
n pgn Xhnq is in a fixed compact set in ĂM , then eventually

γ´1
n px0q is in UJ .
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This shows that ξ, x0 belong to the basins of repulsion of γnpr1q, γnpr2q respec-
tively under P 1.

This proves the proposition. □

Now we are ready to give the definition we will use to get Theorem 6.1.

Definition 6.7. We say that pf,Fq has full pseudo-Anosov behavior if pf,Fq has
the periodic commuting property (cf. Definition 4.5) and:

(i) every admissible good pair (cf Definition 3.17) of pf,Fq, up to iterate, has
only super attracting and super repelling fixed points. and,

(ii) it contains a regular pA-pair which is a full pair (cf. Definition 6.5).

6.2. Distinct landing points. We first need the following auxiliary result. This
is the place where we will use the full pseudo-Anosov behavior on one of the
foliations.

Proposition 6.8. Let f : M Ñ M be a partially hyperbolic diffeomorphism
such that it preserves branching foliations Wcs and Wcu and such that pf,Wcsq

has full pseudo-Anosov behavior. Assume also that Wcu is R-covered. Then, for

every c P ĂWc X L with L P ĄWcs we have that the endpoints c` and c´ of c in
S1pLq are different.

The proof of this statement will require to first iterate in Wcs until we get a
center curve both of whose endpoints land in a single fixed point of a pA pair for
pf,Wcsq. If the fixed point is super attracting one can apply Proposition 5.10 to
get a contradiction. If the fixed point is repelling, we need to use Theorem 5.6
and an analysis of the center unstable foliation Wcu to derive a contradiction.

Lemma 6.9. Let f be as in Proposition 6.8 and assume there is a center curve

c P ĂWc X L for L P ĄWcs so that c´ “ c`. Then, there exists a regular pA-pair

pf̂ , γq such that P as in Notation 4.6 fixes a leaf L1 P ĄWcs which has a center
curve c1 so that both endpoints coincide and so that c1 is fixed by P .

Proof. Pick a point x0 P c and consider the geodesic ray η from x0 to ΘLpξq “

c´ “ c`. Since pf,Wcsq has full pseudo-Anosov behavior it has an admissible full

pair pf̂ , γq which is a regular pA pair.
We will use Proposition 6.6. By Proposition 6.6 we deduce that, up to con-

jugating pf̂ , γq, there is a P so that x0, ξ are in different basis of attraction of
either P8 or P´1

8 .
We will apply Proposition 4.8 with T “ Wc the center foliation.
We consider the case where the point x0 P c is in the basin of repulsion of a

repeller of P and ξ in the basin of repulsion of the other repeller of P . Applying
Proposition 4.8 to P´1 we obtain that iterating by P´n the leaf L converges to
a leaf L1 fixed by P and P fixing disjoint center curves c1 and c2 which join the
repelling points. (The other case is symmetric and obtains curves that join the
attracting points of P by iterating forward.)

By Addendum 4.9 one can also see that there is a center curve c3 in L1 between
c1 and c2 and so that both endpoints of c3 in L1 are equal. Since the curve is
between c1 and c2 it follows that its forward iterates remain in a compact region,
and so the curves converge to at least one curve c1 whose endpoints coincide with
the endpoints of c3 and which is fixed by P .

The symmetric case is dealt with using P´1 instead of P . □

Proof of Proposition 6.8. Let c1 given by the previous lemma. By Proposition
5.10 we get that the endpoints of c1 must correspond to a super repelling point
of P8.



PARTIAL HYPERBOLICITY AND PSEUDOANOSOV DYNAMICS 43

Since c1 is fixed by P , there is a leaf F P ĄWcu containing c1 and fixed by P .
Since the action of P on c1 is coarsely contracting, there is a fixed point x P c by
P . Let c1, c2 be the rays of c1ztxu.

We first consider the situation in L and the foliation Wcs. Both c1, c2 limit to
the same point z “ ΘLpξq in S1pLq with ξ super repelling for P . Theorem 5.6
implies that the geodesic ray in L starting in x and with ideal point z is contained
in uniform neighborhoods in L of c1 and c2. In particular, there are sequences
pn P c1 and qn P c2 converging to z in L Y S1pLq so that dLppn, qnq is bounded.
It follows that d

ĂM
ppn, qnq is bounded.

We now look at the center unstable foliation Wcu, and use that it is R-covered.
Since Wcu is R-covered, this implies that in F the points pn and qn are a bounded

distance apart. This is because F is uniformly properly embedded in ĂM . Let ℓn
be the geodesic segment in F from pn to qn. By trimming ℓn or replacing pn, qn if
necessary, we assume that ℓn intersects c1 only in pn, qn, still keeping the length
of ℓn globally bounded.

Since ξ is super repelling for P8 (acting on the universal circle of Wcs) it follows
that d

ĂM
ppn, P ppnqq converges to infinity and likewise for qn. The length of P pℓnq

is uniformly bounded. In particular for n big enough P pℓnq is disjoint from ℓn.
Fix one such n. Let D be disk in F bounded by ℓn and the segment in c1 from
pn to qn. By the above P pDq is strictly contained in D. There is a ray of the
unstable leaf of x entering D. This ray intersects BD. This ray is expanded by
P . This contradicts that P pDq is a subset of D.

This finishes the proof of Proposition 6.8. □

6.3. Proof of Theorem 6.1. The proof of Theorem 6.1 is very similar to pre-
vious arguments.

Proof. Assume by contradiction that there is a leaf L P ĄWcs on which the leaf

space of ĂWc is non Hausdorff. Consider two center leaves c, c1 P L which are
non-separated in the sense that there is a sequence cn of center leaves such that
cn converges both to c and c1 (it may converge to other center leaves too). Up to
changing orientation of the center foliation, we can assume that there are arcs In
of cn which approximate12 the points c` and pc1q´ in L̂ “ L Y S1pLq which may
or may not coincide.

By Proposition 6.8, we have c´ ‰ c` and also c` ‰ pc1q`. Hence as done in

the proof of Proposition 6.6 we can choose an admissible regular pA pair pf̂ , γq

which verifies that in L either the geodesic joining the attracting points or the
repelling points separates c` from the ideal points of the center curves cn. As
before, we assume that it is the geodesic joining the attracting ideal points that
makes the separation (as the other case is symmetric).

We can assume by further conjugating pf̂ , γq that it verifies that both ideal
points of the curves cn belong to the same basin of repulsion of the repeller r1 of
P8. Since c` belongs to the basin of repulsion of the other repeller r2 it follows
that for n large enough, the segment In intersects the basin of repulsion of r2.
We can then apply Proposition 4.8 to P k, k ă 0 to find a fixed center stable leaf

L1 P rF such that it contains two center curves which are disjoint and join the
repelling points of P8. Moreover, between these center curves there is a fixed
center curve both of whose points coincide by Addendum 4.9. This contradicts
Proposition 6.8 and concludes the proof of Theorem 6.1. □

12By this we mean that the Haudsorff limit of the arcs In in L̂ contains both c` and pc1
q

´.
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7. Quasigeodesic behavior

In this section we want to show that under our assumptions the centers behave
as uniform quasigeodesics in leaves of center stable and center unstable branching
foliations.

Recall that for k ą 1, an embedded rectifiable curve ℓ Ă L in a complete
Riemannian manifold is called a k-quasigeodesic if one has that for all x, y P ℓ

dℓpx, yq ď kdLpx, yq ` k.

where dL denotes the Riemannian distance in L and dℓ is the length along ℓ.
Note that dℓpx, yq ě dLpx, yq always.

Definition 7.1. Let F be a (branching) foliation in a closed 3-manifold M . We
say that a one dimensional branching subfoliation T of F by rectifiable curves is

by uniform quasigeodesics if there exists k such that every curve ℓ of rT in L P rF

with the induced path metric is a k-quasigeodesic.

Remark 7.2. The fact that a subfoliation is by uniform quasigeodesics is inde-
pendent of the metric in M since M is compact. Only the constant may change.
In our setting we typically work with (branching) foliations whose induced met-
ric is negatively curved, where quasigeodesics have very meaningful geometric
properties thanks to the classical Morse lemma (see [BH, §III.H.1]).

Unless otherwise stated we always assume that the one dimensional (branching)
subfoliations are by rectifiable curves.

Now we can state the main result of this section:

Theorem 7.3. Let f : M Ñ M be a partially hyperbolic diffeomorphism pre-
serving branching foliations Wcs and Wcu such that both pf,Wcsq and pf,Wcuq

have full pseudo Anosov behavior (Definition 6.7). Suppose that there is pf̂ , γq a
regular full pair for pf,Wcsq which is also a good pair for pf,Wcuq. Then Wc is
by uniform quasigeodesics in both Wcs and Wcu.

Note that uniform quasigeodesics in leaves whose metric vary continuously can
be followed in nearby leaves, so we deduce that:

Corollary 7.4. The endpoint maps c ÞÑ c˘ from the leaf space Lc of the center fo-

liation ĂWc to S1
univ is continuous and π1pMq-equivariant. It is also f̂ -equivariant

for f̂ a lift of f to ĂM (see Proposition 2.5).

We explain what we mean by c˘. Suppose that c is contained in a leaf L of ĄWcs.
Let b be the ideal point of c in the positive center direction. Then c` “ Θ´1

L pbq.
Similarly for c´.

7.1. Tracking geodesics. Consider T a one-dimensional sub-branching foliation
of a branching foliation F of M . We assume that F is R-covered and uniform and
by hyperbolic leaves so that we can apply all what was developed in §2.2-§2.4.
When lifting to the universal cover we get a (branching) foliation rF of ĂM which

is subfoliated by a (branching) foliation rT and we choose an orientation for both.
We will say that T has efficient behavior in F if the following conditions hold:

(i) the leaf space of rT in each leaf L P rF is Hausdorff,

(ii) each curve ℓ P rT in a leaf L P rF has well defined limit points ℓ´ and ℓ`

in S1pLq which are different
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(iii) there is R ą 0 such that for each ℓ P rT and x P ℓ Ă L P rF if we denote
by r˘

x the geodesic ray in L joining x with ℓ˘ then we have that r˘
x is

contained in the R-neighborhood in L of the ray of ℓ from x to ℓ˘.
(iv) T has small visual measure (cf. Definition 4.10).

Remark 7.5. In the previous sections we have established that if f : M Ñ M
is a partially hyperbolic diffeomorphism in the hypothesis of Theorem 7.3 then
the center (branching) foliation Wc has efficient behavior in both Wcs and Wcu:
Point (i) is done in §6, point (ii) in §4.1 and Proposition 6.8 and points (iii), (iv)
in Theorem 5.6.

The following will be an auxiliary result to show the quasigeodesic behavior.

Lemma 7.6. Let T having efficient behavior in F and let cn P rT be a sequence

of leaves. Assume that cn Ă Ln P rF so that Ln Ñ L, cn Ñ c P L and there are
points xn P cn so that xn Ñ x P c. Assume there is a point yn in the ray of
cnztxnu with positive orientation so that yn Ñ ξ P S1

univ (as in Definition 3.6).
Then, the endpoint c` of the positively oriented ray of cztxu is ξ is ΘLpξq.

Proof. Suppose this is not true, let cn, xn, yn failing this condition. Up to sub-
sequence assume that yn converges to ξ, with c` ­“ ΘLpξq. Let ν P S1

univ with
ΘLpνq “ c`.

Since c` “ ΘLpνq and cn converges to c in the center leaf space, then cn also has
points zn between xn and yn so that zn converges to ΘLpνq. Consider the segments
Jn in cn from zn to yn. These segments do not have visual measure converging
to zero as n Ñ 8, because ΘLpνq ­“ ΘLpξq. Since T has small visual measure

it follows that these segments cannot escape compact sets ĂM and converge to a
collection of center leaves in L. Let ℓ be such a center leaf. In particular there are
wn in Jn converging to w in ℓ. If c “ ℓ, then the the local product structure of
foliations (in the center leaf space) shows that the length of segments in cn from
xn to wn is bounded, so the length in cn from xn to zn would also be bounded
contradiction.

We conclude that ℓ, c are distinct center leaves in L. By Theorem 6.1 the
center leaf space restricted to L is Hausdorff. Hence there is a transversal to the
center foliation in L from x to w. This transversal produces in nearby leaves Ln,
transversals to the center foliation in Ln from xn to wn. This is a contradiction,
because xn and wn are in the same center leaf in Ln. This finishes the proof. □

Clearly the same statement holds for the negatively oriented ray.

Remark 7.7. We say that the endpoints of curves in T vary continuously if given

a sequence of leaves ℓn P rT, ℓn in Ln leaves of ĄWcs, with endpoints ℓ`
n and ℓ´

n in

S1pLnq and so that ℓn converges to ℓ, in the leaf space of rT and ℓ Ă L, where L
is the limit of Ln, then the sequences

Θ´1
Ln

pℓ`
n q, Θ´1

Ln
pℓ´

n q in S1
univ

converge to Θ´1
L pℓ`q and Θ´1

L pℓ´q respectively. It is worth making the remark

that if the sequence of leaves ℓn converges to ℓ in the leaf space of rT it means
that given a compact part of ℓ it will be well approached13 by the curves ℓn. The
proof of the previous Lemma can be adapted to show that the endpoints of the
curves in T vary continuously. Since we will only use the statement above, and

13If we consider a sequence of points xn Ñ x one may choose leaves of rT through xn which
are far from a given curve passing through x due to potential non unique integrability of the
(branching) foliation. Convergence in the leaf space is needed to make this work.
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continuity also follows a posteriori from the fact that T is uniformly quasigeodesic
(cf. Corollary 7.4), we do not prove this here.

Now we can use the previous lemma to show the following property which
implies one of the main consequences of being uniform quasigeodesic. This will
allow us to show the quasigeodesic property in the next subsection.

Lemma 7.8. If T has efficient behavior in F then there is R ą 0 such that for

every center leaf ℓ P rT contained in L leaf of ĄWcs, then the geodesic g in L with
ideal points ℓ` and ℓ´ is at Hausdorff distance less than R in L from ℓ. The

same results holds for segments or rays in leaves of rT.

Proof. Notice that condition (ii) of a efficient lamination says that ℓ´ ­“ ℓ`, so
the geodesic g is defined.

We first prove this for finite segments: there is a uniform constant R ą 0 such

that for every L P rF, the Hausdorff distance in L between a geodesic segment in

L joining the endpoints of an arc I Ă ℓ P rT X L and I is less than R. Assume
that this is not the case. Then, we can find a sequence In of segments of leaves

ℓn P rT, ℓn Ă Ln P rF, so that there is a point xn P In at distance larger than n in
Ln from the geodesic segment gn in Ln joining the endpoints of In.

Up to composing with deck transformations we can assume that the points

xn belong to a fixed compact fundamental domain of M in ĂM and therefore, up

to subsequence, that xn Ñ x P ĂM , that ℓn Ñ ℓ through x, and that Ln Ñ L
containing ℓ. Up to another subsequence assume that one of the endpoints of gn
converges to a point ξ in S1

univ.
Since the distance in Ln from xn to gn converges to infinity, and gn are geodesic

segments in Ln it follows that visual measure of gn in Ln from xn converges to
0. In other words both endpoints of gn in Ln converge to the same point ξ of
S1
univ. Applying Lemma 7.6 it follows that both endpoints of ℓ are ΘLpξq. This

contradicts condition (ii) of an efficient lamination. This proves the result for
segments.

To get the result for full center leaves, take x P ℓ and consider a sequence In of
intervals of ℓ from zn to a point yn so that yn Ñ ℓ` and z Ñ ℓ´. Since yn Ñ ℓ`,
zn Ñ ℓ´ in L̂ “ L Y S1pLq it follows that the geodesic segments from zn to yn
converge uniformly on compact sets to the geodesic with ideal points ℓ` and ℓ´.
Therefore the result holds maybe by taking R slightly larger. A similar proof
holds for rays. □

7.2. The quasigeodesic behavior. Here we show the following result which is
standard. A similar result in a slightly different setting can be found in [FM].

Proposition 7.9. Let T be a one dimensional (branching) foliation of M which

subfoliates F. Assume that there exists R ą 0 such that for every L P rF and

every finite segment I in a leaf ℓ P rT X L there is a geodesic segment in L with
same endpoints as I which is at Hausdorff distance in L less than R ´ 1 from ℓ.
Then T is by uniform quasigeodesics in F.

Proof. As seen by the proof of the last Lemma the condition implies that full

leaves of rT have distinct ideal points and are R distant from the corresponding
geodesics in their respective leaves. This also immediately implies that the leaf

space of rT in any leaf of rF is Hausdorff.
Let a0 ą 3R. We first claim that there is a global length a1 so that if a segment

I in a leaf ℓ of rT contained in L leaf of rF has length more than a1 then the distance
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in L between the endpoints of I is more than a0. Otherwise find segments In of
length ą n with endpoints xn, yn less than a0 in their respective leaves. Up to
deck transformations and subsequences assume that xn Ñ x0, yn Ñ y0 both in
L, which is the limit of leaves Ln containing In. The leaves ℓn through xn, yn
converge to a leaf b0 through x0 and a leaf b1 through y0. This is in the leaf

space of rT. If b0 “ b1 then the lengths of ℓn between xn and yn are bounded
contradiction. Hence b0, b1 are distinct leaves. There is a trasversal from x0
to y0 and this leads to transversals in respective leaves of rF from xn to yn,
contradiction. This proves the claim.

Given ℓ leaf of rT in leaf L of rF consider the geodesic g in L with same ideal
points as ℓ and the orthogonal projection from ℓ to g. Since ℓ is in a neighborhood
of size R in L from g, then the claim above shows that every time we follow along
ℓ a length ě a1 the projection to g moves forward at least R. This proves the

uniform quasigeodesic behavior of leaves of rT. □

Proof of Theorem 7.3. As observed in Remark 7.5 we know that under our as-
sumptions the center foliation T has efficient behavior in Wcs,Wcu. Properties
(ii) and (iii) of efficient behavior plus Lemma 7.8 imply that Wc is in the hy-
pothesis of Proposition 7.9 with respect to both Wcs and Wcu. The result then
follows. □

8. The collapsed Anosov flow property

In view of the previous section we can deduce:

Theorem 8.1. Let f : M Ñ M be a partially hyperbolic diffeomorphism preserv-
ing branching foliations Wcs and Wcu which are uniform, R-covered, and such
that both pf,Wcsq and pf,Wcuq have full pseudo-Anosov behavior. Suppose that
Wcs,Wcu are transversely orientable. Then, f is a collapsed Anosov flow.

Proof. The orientation hypothesis are equivalent to Eu, Es being orientable re-
spectively. Theorem 7.3 shows that centers are quasigeodesics in the respective

leaves of ĄWcs, ĄWcu. This is what is called a quasigeodesic partially hyperbolic
diffeomorphism, see [BFP, Definition 2.15]. Under the orientation hypothesis of
Es, Eu, [BFP, Theorem D] implies that f is leaf space collapsed Anosov flow,
which we do not define here. Again using the orientation hypothesis, [BFP, The-
orem B] then implies that f is a strong collapsed Anosov flow. The Definition of
a strong collapsed Anosov flow [BFP, Definition 2.9] immediately implies that f
is a collapsed Anosov flow as we have defined here. Items (i) and (iv) of [BFP,
Definition 2.9] are the exact conditions defining a collapsed Anosov flow. □

The situations we analyze in this article are simpler than the general situation
analyzed in [BFP]. In particular the branching foliations Wcs,Wcu here are R-
covered. We give here a detailed sketch of a proof of Theorem 8.1 in our simpler
setting. The reason for this sketch is twofold: on the one hand some arguments
can be simplified and we will point to some of these simplifications that make
the paper more self contained. On the other hand we also will use some of the
notions to get uniqueness of branching foliations, in particular we will use the
following notion:

Definition 8.2. A one dimensional branching foliation T in an R-covered uniform
foliation F by hyperbolic leaves is said to be a quasigeodesic fan foliation if the

following happens: For every L P rF there is a point p “ ppLq P S1pLq called the

funnel point, such that there is a bijection from the leaf space of rTXL and points
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in S1pLqzp, and so that the leaf of rT X L corresponding to the point q P S1pLq is
a quasigeodesic joining q and p.

The key point of the proof of Theorem 8.1 is to show that the center branching
foliation Wc is a quasigeodesic fan foliation in both Wcs and Wcu since this allows
to produce a (topological) Anosov flow rather easily (in fact, an expansive flow
preserving transverse foliations, which is equivalent to being a topological Anosov
flow). We refer the reader to [BFP] for details on this, we will concentrate here
in explaining how to obtain that centers form a quasigeodesic fan foliation just

by knowing that the leaves of ĂWc are uniform quasigeodesics in ĄWcs and ĄWcu (cf.
Theorem 7.3).

To prove this, we follow a path which is somewhat more direct than the one
taken in [BFP] since the R-covered property simplifies the arguments.

First, we notice that the branching foliations Wcs and Wcu must be minimal.
Recall that being minimal means that there is no closed π1pMq invariant set in
the leaf space of the (branching) foliation in the universal cover. See [BFFP2,
Appendix F] for more discussion.

Proposition 8.3. Let f : M Ñ M be a partially hyperbolic diffeomorphism
preserving branching foliations Wcs and Wcu which are uniform and R-covered
and such that the center foliation Wc is a quasigeodesic foliation both in Wcs and
Wcu. Then Wcs and Wcu are minimal.

Proof. We argue for Wcs since Wcu is symmetric. To see this, we use the fact

that since they are foliated by quasigeodesics then every leaf of ĄWcs has cyclic
stabilizer in π1pMq, and is either a plane, annulus or Möbius band. Note that up
to finite cover we can assume that all foliations are orientable and transversally
orientable. In addition, minimality in a finite cover implies minimality in M ,
so it is no loss of generality to assume these orientability assumptions. Given
the orientation hypothesis the leaves can only be planes and annuli. If there
was a proper minimal set one arrives at a contradiction using a volume versus
length argument, exactly as is done in the proof of [BFFP3, Proposition 6.1]. We
explain a bit more: suppose there is a a proper minimal set of say Wc, then one
can construct a region contained in the complement of the minimal set which is
either a ball or solid torus, and such that the region is mapped inside itself by
an iterate of f . The ball or solid torus is obtained by looking at a connected
components of the set of points that are ě ε away from the minimal set for a
suitably small ε. Using that leaves of Wcs are planes or annuli, and Wcs is R-
covered, one shows this complementary region has to be contained in either a ball
or a solid torus. This contradicts [HaPS, Proposition 5.2]. □

Now, we close this section with a sketch of the proof of Theorem 8.1 pointing
to some results from [BFP] when the arguments cannot be simplified.

Sketch of proof of Theorem 8.1. One can first argue similar to what is done in

[Ca2, §5] to see that the set of leaves of ĄWcs on which the foliation ĂWc is a

(weak)-quasigeodesic fan is a π1pMq and f̂ -invariant closed set of the leaf space

of ĄWcs which is non-empty. Therefore this set is everything because of minimality.
By weak quasigeodesic fan we mean that all center leaves share a common ideal

point, but we allow several curves of the foliation in a leaf of ĄWcs to joint the
same pair of points.

One gets the less powerful weak quasigeodesic fan property because to apply
arguments similar to those in [Ca2, §5] one needs to tighten up the foliation to an
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equivariant geodesic foliation on leaves. The arguments in [Ca2] are for geodesic
and not quasigeodesic leaves.

After this is done, it is however possible to show that the subset of the leaf

space of ĄWcu corresponding to the interval of centers in a ĄWcs leaf that join
the same pair of points produces an open and π1pMq-invariant sublamination
that cannot be the whole leaf space. So again using minimality we exclude this
possibility. We refer to detailed proofs, which work with much more generality,
in [BFP, Proposition 6.19].

Once the center (branching) foliation Wc is a quasigeodesic fan foliation in Wcs

and Wcu we apply the approximation foliation result (Theorem 2.1) to obtain a
true foliation Wc

ε which subfoliates the approximating foliations Wcs
ε and Wcu

ε

with the same quasigeodesic fan property (this is where we use the transverse
orientability assumption). One can then show that this gives an expansive flow
in M which, by virtue of preserving a pair of foliations, is topologically Anosov
[BFP, Theorem 5.9]. Since the foliation is R-covered, the flow is transitive and
therefore orbit equivalent to a true Anosov flow thanks to Shannon’s result (cf.
§ 2.6) . This already proves the existence of an Anosov flow in M and the notion
called leaf space collapsed Anosov flow in [BFP]. In addition the maps given by
the approximating foliation allow one to construct the collapsing map h, which
must then be intertwining the action of f with a self orbit equivalence associated
to how it permutes the orbits of the flow. The construction of the semiconjugacy
h in [BFP] is fairly complex due to the possibility of branching in the foliations
and it is done in detail in [BFP, §9]. □

9. Funnel directions

In this section we obtain a couple of technical properties.
Let f be a partially hyperbolic diffeomorphism satisfying the hypothesis of

Theorem 8.1. In particular in every leaf L of either ĄWcs or ĄWcu, the center

foliation is a fan. The stable funnel direction of a center c in a leaf L of ĄWcs is
given by the orientation in c towards the funnel point in L. Similarly one defines
the unstable funnel direction. By Corollary 7.4 the stable funnel direction varies
continuously and clearly it is invariant by deck transformations. Notice that the
stable funnel direction is defined a priori for points in center leaves contained in
center stable leaves and not just on points. However any two center leaves through

a point x in ĂM are connected by a continuous path of center leaves through x.
Since the stable directions on these centers ´ verified at x vary continuously, they
all define the same direction at x. Therefore the stable funnel direction depends
only on the point.

Let V be the universal circle of the center unstable foliation Wcu. For each U
leaf of ĄWcu, let τU : V Ñ S1pUq be the canonical identification.

Lemma 9.1. The stable and unstable funnel directions disagree everywhere.

Proof. Since the stable and unstable funnel directions vary continuously they
either coincide everywhere or disagree everywhere. Let us assume they coincide

everywhere. Let J be the leaf space of ĄWcu.

We consider a map η : J Ñ V defined as follows. Given U in ĄWcu, let qU P

S1pUq be the unstable funnel point of U . Let ηpUq “ pτU q´1pqU q.

Let L be a leaf of ĄWcs and e1, e2 distinct centers in L. Let I be the interval of

J of ĄWcu leaves intersecting L in a center between e1, e2 including the boundary
leaves. Let U,U 1 be leaves in I intersecting L in centers c, c1. Rays of c, c1 in the
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stable funnel direction are a bounded distance from each other in L, hence in
ĂM . By the definition of the universal circle of the center unstable foliation, these
rays define the same point in V. By hypothesis in this proof the stable funnel
direction is also the unstable funnel direction in the center leaves. This implies
that η is constant in I.

By Proposition 8.3 for every U leaf of ĄWcu there is a deck translate γpUq

contained in the interior of I. Hence the union of deck translates of I is all of
the leaf space J. This shows that η is constant. But then η would be π1pMq

invariant. This contradicts [FP2, Proposition 5.2]. This finishes the proof. □

Lemma 9.2. Let f be a partially hyperbolic diffeomorphism satisfying the hy-

pothesis of Theorem 8.1. Let L be a leaf of ĄWcs. Then any two centers c, c1 in
L are asymptotic in L in the stable funnel direction. In addition if two distinct
center leaves c, c1 in L intersect in a point x, the following happens: if c1, c2 are
the rays of c, c1 respectively starting in x and in the stable funnel direction then
c1 “ c2.

Proof. Suppose that the first statement is not true. Then there are L, c, c1, and
ε ą 0 so that there are points xn (say in c) converging to the funnel point of L
so that dLpxn, c

1q ą ε. Up to subsequence there are γn in π1pMq so that γnpxnq

converges to x. Then up to subsequence γnpLq converges to E, γnpcq converges to
a center e in E, and γnpc1q converges to a center e1 in E. Since dLppn, c

1q ą ε then
e, e1 are distinct centers in E. By construction and the uniform quasigeodesic
property, the centers e, e1 have the same pair of ideal points in S1pEq. This
contradicts Theorem 8.1 that the center foliation in E is a quasigeodesic fan.
This proves the second statement.

To prove the second statement, suppose that there are c, c1 center leaves in some
leaf L which intersect in x but so that the rays c1, c2 in the stable funnel direction
in L are not the same. We already know that the rays c1, c2 are asymptotic in
L. Let V be a component of L ´ pc1 Y c2q which is between c1 and c2. Then it

contains a stable segment s0 through a point y0 in V . As usual let f̂ be a lift of f .
Take deck translates γi of a subsequence f̂nipy0q converging to y with ni Ñ ´8,

so the stable lengths increase. Up to another subsequence suppose that γif̂
nipciq

converges to curves d1, d2 which are contained in center leaves e1, e2 in the limit
center stable leaf E. Let W be the limit of γif̂

nipV q which is a region between

d1, d2. The limit of γif̂
nips0q is at least the full stable leaf s through y which is

contained in W .
It could be that d1, d2 have an endpoint, which then would be the limit z of

γif̂
nipxq. In this case d1, d2 are rays in e1, e2. Otherwise d1, d2 are the full leaves

e1, e2. In the first case the two rays of s limit to the same point in S1pEq which
is the common ideal point of d1, d2 in S1pEq. But the two rays of s have to be
at least some distance apart from each other or else they would intersect the
same foliated box of the center foliation, a contradiction. The rays are in the
region between e1 and e2. This would imply that e1, e2 are not asymptotic in
the stable funnel direction. This contradicts the first statement that has already
been proved. In the second case d1, d2 are the full leaves e1, e2. But then the two
distinct center leaves e1, e2 in E have both endpoints which are the same. This
is impossible because the center foliation is a quasigeodesic funnel in E. This
finishes the proof of the second statement. □

10. Uniqueness of the branching foliations

In this section we show:
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Theorem 10.1. Let f : M Ñ M be a partially hyperbolic diffeomorphism pre-
serving branching foliations Wcs and Wcu such that both pf,Wcsq and pf,Wcuq

have full pseudo Anosov behavior (Definition 6.7). Then, if Wcs
2 is another

branching foliation such that pf,Wcs
2 q has full pseudo-Anosov behavior then Wcs “

Wcs
2 .

Some parts will require less assumptions, but whenever shorter we will choose
to give a direct proof in our specific setting. Of course there is a symmetric state-
ment to show uniqueness of Wcu. One should compare this result to [BFFP3, §12]
were we get some uniqueness results for branching foliations in a different setting.
Later, we will put these results together to get very strong unique integrability
properties for partially hyperbolic diffeomorphisms of hyperbolic 3-manifolds.

We start by showing that the induced center foliations Wc
1 (by intersection

between Wcs and Wcu) and Wc
2 (by intersection between Wcs

2 and Wcu) coincide.

10.1. Limit behavior. In this section f : M Ñ M will be a partially hyperbolic
diffeomorphism preserving a branching foliation Wcu tangent to Ecu so that Wcu

is subfoliated by two f -invariant one dimensional branching foliations Wc
1 and Wc

2

tangent to Ec which are quasigeodesic fan foliations (cf. Definition 8.2) obtained
by intersecting with f -invariant branching foliations Wcs

1 and Wcs
2 . In the proof

of Theorem 10.1, Wcs
1 “ Wcs.

Notice that a priori we have four choices for funnel directions on center leaves:
two stable funnel directions (the pairs Wcu,Wcs

1 and Wcu,Wcs
2 ) and likewise two

unstable funnel directions (for the same pairs). Lemma 9.1 shows that for the
same pair, the stable and unstable funnel directions are opposite.

Here we show that a particular configuration holds if the foliations Wc
1,W

c
2 do

not coincide. In the next section we will show that this is impossible.
For the next few results we only consider unstable funnel directions or points.

So for simplicity, unless otherwise stated we refer to them as funnel directions
or funnel points. In addition the universal circle, still denoted by S1

univ, is the
universal circle of Wcu. Similarly, we use the previous notation for the maps

ΘL : S1
univ Ñ S1pLq for L P ĄWcu.

We need to show the following:

Lemma 10.2. The funnel points of Wc
1 and Wc

2 coincide.

Proof. By Corollary 7.4 we have that the set of leaves L P ĄWcu where the funnel

points of ĂWc
1 and ĂWc

2 coincide is closed and π1pMq invariant. Therefore, by
minimality (Proposition 8.3) we just need to show that there exist some leaf
where they coincide.

To do this, take a leaf L where the funnel points differ (if there is no such leaf,

there is nothing to prove). Denote by pi to the funnel point of ĂWc
i in L (with

i “ 1, 2) and consider a point ξ P S1
univ with ΘLpξq not in tp1, p2u.

Choose a sequence xn P L such that xn Ñ ΘLpξq in LYS1pLq. Now, composing
with deck transformations γn P π1pMq sending xn to a given bounded set, and

up to extracting a subsequence we have that γnxn Ñ x P ĂM . Let L8 P ĄWcu

be the limit of the leaves γnL which is a leaf through x. The funnel points of
γnL are given by γnp1 and γnp2. These converge to the funnel points in L8.
Since the visual measure from xn of the interval between p1 and p2 in S1pLq that
does not contain ΘLpξq goes to zero with n we deduce that the endpoint of the
quasigeodesic fans in L8 must coincide. This completes the proof. □

Finally we show the following result which is important to get a contradiction
in our case, but we note that the proof may work in more generality.
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Lemma 10.3. Assume that pf,Wcuq has full pseudo-Anosov behavior. If Wc
1 ‰

Wc
2 then there exists a regular pA pair pf̂ , γq and a leaf L P ĄWcu which is fixed

by a conjugate P of P0 “ γm ˝ f̂k (cf. Notation 4.6) such that it contains two

disjoint curves c1 P ĂWc
1 and c2 P ĂWc

2 whose endpoints in S1pLq are ΘL images of
super-attracting points of P8 in S1

univ. In addition P pciq “ ci.

Proof. If Wc
1 ‰ Wc

2, using Lemma 10.2 we know that there is a leaf E1 P rF

such that there are center curves e1 P Wc
1 and e2 P Wc

2 in E1 which share both
endpoints and so that e1 ‰ e2. Denote by p, q P S1pE1q the ideal points of the
curves ei (i “ 1, 2). One can then define the region Z between e1 and e2 as the

union of connected components of E1zpe1 Ye2q whose closure in Ê1 “ E1 YS1pE1q

is contained in E1 Y tp, qu. This is an open and non-empty set and we can then
consider an unstable interval I Ă E1 (i.e. tangent to Eu) which is contained in
Z.

Fix x in the interior of I. Consider a lift f1 of f to ĂM . Up to subsequence
there are γj in π1pMq so that γjf

nj

1 pxq converges to y in a leaf E0, where E0 is

the limit of γjf
nj

1 pE1q. We can assume that γjf
nj

1 peiq, i “ 1, 2 also converge to
centers e1

i, i “ 1, 2 in E0. This is because the curves

γjf
nj

1 pe1q, γjf
nj

1 pe2q

have the same pair of ideal points in S1pγjf
nj

1 pE1qq and hence are a bounded

Hausdorff distance from each other in γjf
nj

1 pE1q. Finally γjf
nj

1 pxq is between

them in γjf
nj

1 pE1q. The limit of γ
nj

1 pIq contains the full unstable leaf u1 of q,
which is then betweeen e1

1, e
1
2 in E0.

If the ideal points of u1 are distinct in S1pE0q, let u1 “ u1, e1i “ e1
i, E “ E0.

If the ideal points of u1 are the same point z in S1pE0q consider yn in u1

converging to z in E0 Y S1pE0q so that πpynq converges in M . There are βn in
π1pMq so that βnpynq converges to q0, βnpE0q converges, and we let the limit
of βnpE0q be E. We can also assume that βnpe1

iq, i “ 1, 2 converge, and we let
the limits be e1i . Then βnpu1q converges to at least one unstable leaf u1 in E

which separates e11 from e12 in E. So in any case we obtain a leaf E of ĄWcu with

two centers e11, e
1
2 of ĂWc

i respectively so that e11, e
1
2 have the same ideal points in

S1pEq and there is an unstable leaf u1 in L separating e11 from e12.
We assumed that pf,Wcuq has full pseudo Anosov behavior (cf. Definition 6.7).

So there is a conjugate P of the full regular pair so that points in disjoint rays of
e1i are either in distinct basins of attraction of P or distinct basins of repulsion
of P . To get this use the last two bullet points of Definition 6.5. In the case of
attraction (repulsion) use iterates Pn as n Ñ 8 (as n Ñ ´8). In either case
we get L is the limit of PnpEq, and up to subsequence Pnpe1i q converges to ci
center leaves in L which are invariant by P and there is an unstable leaf u in E
separating c1 from c2 and u invariant by P . Since P puq “ u the ideal points can
only be super attracting.

This finishes the proof of the Lemma. □

10.2. Orientability of the center foliation. Even if the funnel points coincide
(cf. Lemma 10.2), the orientation may be different in both. This will play a
crucial role in the proof, so we introduce the following definition:

Definition 10.4. Let T be a quasigeodesic fan foliation of F (cf. Definition 8.2)
and consider an orientation of the tangent space to T. We say that T is oriented

towards the funnel point if every curve of rT XL is oriented in the direction of the
funnel point. Otherwise, we say that T is oriented against the funnel direction.
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Remark 10.5. Notice that the definition makes sense. First of all, the fact that T
is a quasigeodesic fan foliation implies that T is orientable. Secondly, the funnel

point varies continuously (cf. Corollary 7.4), therefore, either rT X L is oriented
in the direction of the funnel point everywhere or nowhere.

We will choose from now on an orientation in Ec making that Wc
1 is oriented

towards the funnel point. As remarked before we are always considering the
unstable funnel point and the direction in the center unstable leaves.

Lemma 10.6. Assume that pf,Wcuq has full pseudo-Anosov behavior. If Wc
1 ‰

Wc
2 then Wc

2 is oriented against the funnel point.

Proof. We work in the leaf L given by Lemma 10.3 where we have disjoint centers

ci P ĂWc
i fixed by P which join the attracting points a1, a2 of P in S1

univ and which
are separated by a fixed unstable leaf u which also joins those points. Let x P u
be the unique fixed point. Note that since both Wc

1 and Wc
2 share their funnel

points, we can assume that a1 is the funnel point for both.

Let ei be a curve of ĂWc
i through the point x P u and fixed by P . Note that x

may belong to many curves in ĂWc
i but at least one must be fixed by P , we choose

any such fixed curve. It is important to remark that ei ‰ ci since ci does not
intersect u.

Consider the ray of ei from x pointing to the region between u and ci. This
region has limit points only a1 and a2. We claim that the endpoint of the ray
must be a1: if it were a2 this is different than a1 and so the other endpoint of ei
would be a1. Hence ei is another curve in ĂWc

i from a1 to a2 (besides ci) and this
is inconsistent with being a quasigeodesic fan foliation.

Since the regions between u and c1 and u and c2 are oriented differently from
x, we deduce that the orientation of e2 has to be against the funnel point. Since
orientations coincide or disagree everywhere, this concludes. □

x

u

a1

a2

r1
r2

c1

e1
e2

c2

Figure 8. Proof of Lemma 10.6.

10.3. Proof of Theorem 10.1. We first show:

Lemma 10.7. If Wcs
1 “ Wcs ‰ Wcs

2 then there is a leaf U P ĄWcu such that the

foliations ĂWc
1 and ĂWc

2 are different.
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Proof. We show that if ĂWc
1 “ ĂWc

2 in every leaf U of ĄWcu, then Wcs “ Wcs
2 . Let

L in Wcs
1 and U in Wcu intersecting L in a center c leaf of ĂWc

1. Since
ĂWc

1 “ ĂWc
2,

then there is E leaf of Wcs
2 intersecting U also in c. We will show that E “ L,

hence every leaf of Wcs
1 is also a leaf of Wcs

2 and vice versa, proving the result.
Let W be the union of the stable leaves intersecting c. The foliations Wcs

1 ,Wcs
2

have leaves which are stable saturated, hence W is contained in both L and E.
Let p be the (stable) funnel point of L. Lemma 9.2 shows that for any other
center c1 in L then c, c1 are asymptotic in the direction of p. Hence c1 has a ray
towards p contained in W (so contained in E). This ray defines direction 1 in c1.

Let V be a leaf of ĄWcu so that V X L “ c1. Let c2 “ V X E. Then c1, c2 share
a ray in direction 1. The unstable funnel direction in V induces the opposite
direction (direction 2) in c1 by Lemma 9.1. It follows that in V the rays of c1, c2
corresponding to direction 2 have the same ideal point q in S1pV q.

Notice that c1 is a leaf of ĂWc
1 and c2 is a leaf of ĂWc

2. Since these foliations are

the same in V , then c2 is also a leaf of ĂWc
1 in V . But then c1, c2 are leaves of ĂWc

1
with same pair of ideal points in V (in direction 1 they share a ray, in direction 2

they both limit to q). Since ĂWc
1 is a quasigeodesic fan in V it follows that c1 “ c2.

In other words c1 is contained in E. Since this is true for any center in L then
L Ă E. Since L is properly embedded this implies that L “ E. This finishes the
proof. □

Now we can apply what we showed before to prove uniqueness:

Proof of Theorem 10.1. By the previous Lemma it is enough to show that Wc
1 “

Wc
2, so assume by way of contradiction that Wc

1 ‰ Wc
2. Now use Lemma 10.3,

which provides a P and a leaf L of ĄWcu fixed by P , containing two leaves ci of
Wc

i invariant by P and an unstable leaf u in L fixed by P separating c1 from
c2 in L. This is the setup of Lemma 10.6 and we use the same center curves ei
through a fixed point x P u as in that lemma.

a1

a2

r1

y

c1

I1

J

V

c1

I2

c2

e2

Figure 9. Proof of uniqueness.
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Recall the setup of Lemma 10.6: there are 4 fixed points of P on S1pLq, which
are a1, a2 (attracting) and r1, r2 (repelling). Since e2 is fixed by P its ideal points
are fixed points of P in S1pLq. One of them is a1. The other ideal point z of e2
cannot be r2 as c2 separates r2 from e2. The point z cannot be a2 either since
c2 already has ideal point r2. It follows that z “ r1, see figure 9. Here r1 is the
repelling fixed point of P acting on L Y S1pLq which is not separated by u from
c2. In particular, e2 must intersect c1.

Let y P c1 X e2 be the last point of intersection (when following e2 towards the
point r1 or c1 towards a1 which are the positive orientations). The point y must
be fixed by P . Let I1 be the ray of c1 from y to the ideal point a2, and let I2
be the ray of e2 from y to the ideal point r1. It follows that I1 Y I2 separates L
in two components, one of which, that we call Z has its closure in L̂ containing
the segment in S1pLq from r1 to a2 (and not intersecting any other of the fixed

points of P in S1pLq). Notice that I1 is in a leaf c1 of ĂWc
1 and at y the orientation

in c1 is pointing away from I1. Conversely I2 is contained in a leaf E2 of ĂWc
2 and

at y its orientation is pointing into I2 ´ in other words pointing away from I1.
This is because Lemma 10.6. Since both I1 and I2 are oriented coherently at y
it follows that the unstable manifold upyq of y has one ray J inside Z. But J is
invariant under P and it is expanding under P , hence J must have ideal point
a2. Consider the region V of L bounded by the union of I1 and the ray J .

If c1 P ĂWc
1 is a curve intersecting V it follows that it must intersect upyq twice,

contradicting the fact that an unstable manifold cannot intersect the same leaf

of ĄWcs twice (cf. §2.1). This completes the proof. □

11. Hyperbolic manifolds: Proof of Theorems A and B

In this section f : M Ñ M will be a partially hyperbolic diffeomorphism of
a hyperbolic 3-manifold. Recall that a hyperbolic manifold is one obtained as
a compact quotient of H3 by isometries. By Perelman’s proof of Thurston’s ge-
ometrization conjecture this is equivalent to being aespherical (i.e. π2pMq “ t0u)
and homotopically atoroidal (i.e. no π1-injective torus) with infinite fundamen-
tal group (see [BFFP2, Appendix A]). Note that we will only use the atoroidal
condition plus generalities about foliations.

11.1. Dichotomy: Discretized Anosov or double translation. Here we
explain how the main results of [BFFP3] allow us to reduce the proof of Theorem
B to what we did so far.

Up to finite cover and iterate, we have that f must preserve branching foliations
and be homotopic to the identity (this is because of Mostow rigidity, see e.g.
[BFFP2, Proposition A.3]). We will lift these assumptions in §11.4 to prove the
full theorem.

This is the main statement of [BFFP3] we will use. See [BFFP3, Theorem 2.4].

Theorem 11.1. Let f : M Ñ M be a partially hyperbolic diffeomorphism ho-
motopic to the identity of a hyperbolic 3-manifold M which preserves branching
foliations Wcs and Wcu. Then,

(i) either f is a discretized Anosov flow, or,
(ii) the pairs pf,Wcsq and pf,Wcuq have the commuting property (cf. §3.4).

Notice that in case (ii) of this theorem we are in option (i) of §3.4. In particular

there is a lift rf of f to ĂM which commutes with all deck transformations and rf

acts freely on the leaf space of ĄWcs. This global commuting property of rf imme-
diately implies that for any γ deck transformation, then γ preserves transversal
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orientations to ĄWcs and ĄWcu. Hence the orientation conditions of Theorem 8.1
are satisfied.

We need to make some comments to explain how this follows directly from

[BFFP3]. When f is homotopic to the identity we call a lift rf : ĂM Ñ ĂM a good
lift if it commutes with all deck transformations. Such a lift can be obtained by
lifting a homotopy to the identity. See [BFFP3, Definition 2.3]. The good lift
has the property required for pf,Wcsq, pf,Wcuq to have the commuting property
(the fact that Wcs and Wcu are R-covered and uniform are direct consequences
of [BFFP3, Theorem 2.4]).

Notice that if f is a discretized Anosov flow then it is a collapsed Anosov flow,
so we need to analyse only the second situation which we call double translation.

11.2. Regulating pseudo-Anosov flows. We state here the results that follow
from [Th2, Ca1, Fen3]. We remark that these results depend only on the fact that
M is atoroidal and not on its geometry (said otherwise, they depend on the coarse
geometry and not on the precise hyperbolic metric).

See [BFFP3, Proposition 10.1] for the adaptation to branching foliations:

Theorem 11.2. Let F be a R-covered, transversely oriented and uniform branch-
ing foliation of a hyperbolic 3-manifold M . Then, there exists a pseudo-Anosov
flow Φt : M Ñ M transverse and regulating to F.

Recall that the condition of being regulating means that in the universal cover
ĂM , given two leaves L,L1 P rF there is a uniform time t0 :“ t0pL,L1q such that
for every x P L it holds that Φtpxq P L1 for some |t| ă t0. We state the following
relevant properties about pseudo-Anosov flows in hyperbolic 3-manifolds that
follow from previous work by several authors (we give a very short sketch of the
proof pointing to some references for more details):

Theorem 11.3. Let Φt : M Ñ M be a pseudo-Anosov flow in a hyperbolic 3-
manifold. Then, Φt is transitive and therefore both the weak stable and weak
unstable (singular) foliations are minimal. Moreover, if Φt is regulating to an
R-covered foliation it cannot be an Anosov flow.

Proof. If a pseudo-Anosov flow in a 3-manifold is not transitive, then it has an
incompressible torus (or Klein bottle) transverse to the flow (see [Mos]). Since
M is hyperbolic then this is impossible.

Once that a pseudo-Anosov flow is transitive, the minimality of the singular
foliations follows, since a closed set saturated by unstable (resp. stable) leaves
is an attractor (resp. repeller). Finally, in [BFFP2, Proposition D.4] we explain
how the fact that pseudo-Anosov flows transverse and regulating to R-covered
foliations in hyperbolic 3-manifolds cannot be Anosov follows from previous work
by Barbot and the first author. □

We note that this will provide pA-pairs for pf,Wcsq and pf,Wcuq in case (ii)
of Theorem 11.1 since for every periodic orbit of the transverse and regulating
pseudo-Anosov flow one can construct a pA-pair associated to it using the deck

transformation associated to the orbit. Note that rf acts trivially in the universal
circle, so one needs only to care about the action of the deck transformation (see
[BFFP3, Proposition 10.2]). Using Corollary 5.3 one deduces that both pf,Wcsq

and pf,Wcuq have the periodic commuting property. In Lemma 11.5 we show
how this produces the announced pA pairs.

Remark 11.4. Let γ be a deck transformation. A point p P S1
univ is superattracting

for γ8 (the induced action on S1
univ), if and only if for some (and hence for any)
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L in rF if γL is an expression in L of the action of γ, then the following happens:
there is a neighborhood basis of Θppq in LYS1pLq defined by geodesics ℓi in L so
that the minimum distance in L between points in ℓi and γLpℓiq goes to infinity
with i. See also proof of Proposition 3.7.

Lemma 11.5. Let Φt be a pseudo-Anosov flow transverse to F as in Theorem
11.3. Let γ be a deck transformation associated with a periodic orbit of Φt. Then
some power of γ has fixed points in S1

univ and so that all fixed points are either
super attracting or super repelling.

Proof. We follow the setup in [BFFP2]. Fix L in rF. Let Gs
L,G

u
L be the singular

one dimensional foliations in L induced by intersecting the stable and unstable

2-dimensional singular foliations of Φt lifted to ĂM with L. The non singular
leaves are uniform quasigeodesics [BFFP2, Fact 8.3]. Let B

s,Bu be the geodesic
laminations in L obtained by pulling tight the leaves of Gs

L,G
u
L respectively. Each

non singular leaf of Gs
L is a uniformly bounded Hausdorff distance in L from a

unique leaf of Bs. A p-prong leaf of Gs
L generates p leaves of Bs.

The deck transformation γ is associated with a periodic orbit α of Φt and fixes

a lift rα to ĂM . Up to taking a power assume that γ fixes all prongs of rα. Assume
that γ is associated with the negative direction of α. As in [BFFP2, Section 8]

let τ12 : L Ñ γ´1pLq be the map obtained by flowing x in L along its rΦt flow line
until it hits γ´1pLq. Notice that

d
ĂM

px, τ12pxqq, x P L

is bounded. Then γ˝τ12 is a representative in L of the action of γ. Let h “ γ˝τ12.
Let x “ rα X L, which is the only fixed point of h “ γ ˝ τ12. Fix an unstable

prong η of x with ideal point p in S1pLq. We will prove that p is a super attracting
fixed point of γ. For a stable prong we get a super repelling fixed point. Up to
applying a power of γ we can assume that the Hausdorff distance between L and
γpLq is very big. This is okay since the lemma claims the result for a power of
γ. Then by [BFFP2, Fact 8.4] the map h expands length along Gu

L exponentially
and contracts length along Gs

L exponentially (see also [Fen3]). This means that
length along η from y to hpyq goes to infinity as y escapes in η. We consider a
basis neighborhood of p defined by leaves of Gs

L intersecting η: given y in η let ℓy
the leaf of Gs

L through y.
Given y in η let gy be the geodesic associated with ℓy: it is a bounded Haus-

dorff distance in L from ℓy. Let ν be the geodesic in L associated with Gu
Lpxq (for

simplicity assume x is non singular, otherwise there are 2 such geodesics associ-
ated with the ray η). Then the angle between ν and any gy is bounded below by
a0 ą 0. Also the point y is a bounded distance from the intersection between ν
and gy.

These facts imply that the minimum distance between points in ℓy and hpℓyq

goes to infinity as y escapes in η.
This proves that p is a superattracting point. This finishes the proof. □

Remark 11.6. Note that the pseudo-Anosov flows associated to Wcs and Wcu

given by Theorem 11.2 may be different and not even share the same homotopy
classes of periodic orbits. This will not be an issue, and we will obtain a posteriori,
that both pseudo-Anosov flows are orbit equivalent since this is the case always
for the weak stable and unstable foliations of an R-covered Anosov flow in a
hyperbolic 3-manifold.

11.3. Existence of full pseudo-Anosov pairs. Here we show:
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Proposition 11.7. Let f : M Ñ M be a partially hyperbolic diffeomorphism of
a hyperbolic 3-manifold with f homotopic to the identity and preserving trans-
versely oriented branching foliations Wcs and Wcu. Suppose that both pf,Wcsq

and pf,Wcuq have the periodic commuting property. Then, both pairs have full
pseudo-Anosov behavior (cf. Definition 6.7). In particular, f is a collapsed
Anosov flow.

Proof. This follows from the existence of a regulating pseudo-Anosov flow. We
discuss the arguments to get the statements in our current framework. The fact
that pf,Wcsq and pf,Wcuq have the periodic commuting property follows from
Corollary 5.3 and [BFFP3, Proposition 10.2] as explained in the previous section.

Let Φcs
t be the pseudo-Anosov flow given by Theorem 11.2 for the branching

foliation Wcs (the same arguments apply for Wcu). To obtain the existence of
a full pA pair (cf. Definition 6.5) we use the fact that the singular foliations of

the pseudo-Anosov flow are minimal. The good pairs we will be using are p rf, γq

where γ is a deck transformation associated with a regular periodic orbit of Φcs
t

and rf is the good lift of f to ĂM . Since Φcs
t is regulating for Wcs, then γ acts

freely on the leaf space of ĄWcs. Hence p rf, γq is a good pair. Up to a power assume
that γ preserves all the prongs of the periodic orbit when lifted to the universal

cover. Lemma 11.5 any P “ rfmγn (n non zero) has periodic points when acting
on the universal circle of Wcs. If there are fixed points then they are all either
super attracting or super repelling if |n| is sufficiently big. This is achievable,

because any power of γ satisfies this, and rf moves points a bounded distance.

Hence p rf, γq is a regular pA-pair for pf,Wcsq.

Now we explain why this provides a full pair. For each leaf L of ĄWcs let Bs
L,B

u
L

be the geodesic laminations in L obtained by pulling tight in L the leaves of the

stable and unstable foliations of rΦcs
t intersected with L. The complementary

regions of each of these geodesic laminations in L are finite sided ideal polygons,
and the complementary regions of the union are relatively compact polygons with
bounded diameter. The union of these over L projects to transverse laminations
in M ´ for details on these laminations see [Fen3]

14. These laminations are
minimal. For each ε ą 0 there is a diameter d0 ą 0 so that disks or annuli of size
d0 in any of these laminations are ε dense in M . Choose ε much smaller than
the product foliation size of all the foliations or laminations involved. Given the
deck transformation γ associated to a regular periodic orbit µ, then the stable
and unstable leaves of µ are annuli or Möbius bands producing like sets in the
leafwise geodesic laminations. A fixed compact annulus or Möbius band (denoted
by As, Au) band near the blow up of the periodic orbit is ε dense inM . The As, Au

intersect in a core closed curve corresponding to the blow up (or pre-image) of
the periodic orbit µ.

Let now η be a geodesic ray in L. By the above there is a length d1 ą 0 so
that any segment of length ě d1 in η intersects one of the laminations Bs

L or Bu
L.

There is α1 ą 0 so that the intersection with at least one of Bs
L or Bu

L has angle
ą α1. This implies that η intersects either a lift of As or Au making an angle
ą α1. This lift is given by a deck translate β´1 of a fixed lift of either As or Au.
This implies that the conditions of Definition 6.5 are satisfied.

14In [Fen3] the leafwise geodesic laminations are constructed first, before the pseudo-Anosov
flow, via an analysis of the action of π1pMq on the universal circle of the foliation Wcs. Then
these laminations blow down to singular foliations producing a pseudo-Anosov flow. In [Fen3]
this is worked out for (non branching) foliations. The case of Wcs a branching foliation is worked
out in [BFFP3].
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After we showed that both pairs have full pseudo-Anosov behavior, the fact
that f is a collapsed Anosov flow follows from Theorem 8.1. □

11.4. Proof of Theorems A and B. Theorem A follows immediately from
Theorem B since the existence of a collapsed Anosov flow in M explicitely asks
for the existence of a (topological) Anosov flow in M . Notice that in hyperbolic
manifolds every topological Anosov flow is transitive, and therefore the existence
of a topological Anosov flow implies the existence of an Anosov flow (cf. §2.6).

To show Theorem B we need to be careful since the existence of branching
foliations is ensured by Theorem 2.1 only after some iterate and finite lift.

Proof of Theorem B. As explained we can assume that if f : M Ñ M is a par-
tially hyperbolic diffeomorphism in a hyperbolic 3-manifold, then Theorem B
holds for the lift of some iterate of f to a finite cover (see Theorem 11.1 and
Proposition 11.7). We denote the finite cover of M as M0 and f0 to the lift of
the finite iterate of f to M0. The lift f0 is chosen so that it is a lift of an iterate
of f which is homotopic to the identity in M . We emphasize that the finite cover
is considered so that all bundles are orientable. In the double translation case we
will show a posteriori that this finite cover is indeed not necessary as the bundles
were orientable in the first place. Up to taking a further cover and lift of further
of iterate we may assume that M0 is a regular cover of M .

We want to show that f preserves branching foliations so that Theorem 11.1
applies and this completes the proof together with Proposition 11.7.

For this, we lift the branching foliations Wcs, Wcu preserved by f0 to ĂM which

is the common universal cover of M and M0 and denote the lifts as ĄWcs and ĄWcu.
Let rf0 the good lift of f0 to ĂM . We need to show first that deck transformations

π1pMq preserve ĄWcs and ĄWcu (we know that the subgroup π1pM0q ă π1pMq does
preserve them).

We first assume that we are in the situation of Theorem 11.1 (ii).
We consider then the pair of foliations Wcs

2 and Wcu
2 in M0 obtained by pro-

jecting to M0 the foliations γ ĄWcs and γ ĄWcu for some γ P π1pMq. The reason
why these project to M0 is because π1pM0q is a normal subgroup of π1pMq so

π1pM0q preserves γ ĄWcs, γ ĄWcu. Since rf0 commutes with all deck transformations,
then f0 preserves Wcs

2 ,Wcu
2 . By Theorem 10.1 it is enough to show that the pairs

pf0,W
cs
2 q and pf0,W

cu
2 q have full pseudo-Anosov behavior. But this follows as in

Proposition 11.7 once we show that rf0 acts as a translation on γ ĄWcs
2 and γ ĄWcu

2

which is direct since rf0 commutes with γ.

Since the foliations are invariant by deck transformations of M , and rf0 acts
as a translation and commutes with deck transformations, it follows that deck

transformations of π1pMq must preserve the orientation transverse to both ĄWcs

and ĄWcu. Since the center direction is orientable because of the existence of a
funnel point (that must also be preserved by deck transformations) we deduce
that all bundles were orientable inM and therefore the finite lift was not necessary
to make the bundles orientable.

Finally, in this case, taking the iterate is not necessary. For this it is enough to
show that the foliations fpWcsq and fpWcuq are equal to Wcs and Wcu, but this
follows by the same argument applying Theorem 10.1. (See also [BFP, Theorem
B].)

This finishes the analysis of the case when rf0 acts as a translation in the leaf

spaces of ĄWcs, ĄWcu.
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We now deal with the case that rf0 fixes every leaf of ĄWcs and of ĄWcu. Here we
use [BFFP3, Theorem 12.1]. It shows that f is dynamically coherent preserving
actual foliations, center stable and center unstable. The center foliation is the
intersection of these, and hence it is preserved by f as well. In addition [BFFP3,
Theorem 12.1] shows that a finite iterate of f is a discretized Anosov flow pre-
serving each leaf of the center foliation. In this case let h be the identity. The
self orbit equivalence β is f itself since it preserves the center foliation. Orbits of
the flow are tangent to the center direction, showing that f is a collapsed Anosov
flow.

This completes the proof of Theorem B. □

11.5. Unique integrability properties. We state here a strong geometric con-
sequence of our study:

Theorem 11.8. Let f : M Ñ M be a partially hyperbolic diffeomorphism in a
hyperbolic 3-manifold. Then, f admits a unique pair Wcs, Wcu of f -invariant
branching foliations tangent respectively to Ecs and Ecu. Moreover, every curve

c tangent to Ec in ĂM is contained in the intersection of a leaf L P ĄWcs and a leaf

F P ĄWcu (which is connected).

Proof. Suppose that fk is a positive iterate homotopic to the identity and let

g “ fk. Let rg be the good lift to ĂM . We start by proving uniqueness of the
branching foliations.

Suppose first g,Wcs,Wcu is a double translation and suppose that f preserves
another branching foliation Wcs

2 . Then g also preserves Wcs
2 . Mixed behavior in

general means that rg fixes leaves of one foliation (of the pair ĄWcu, ĄWcs
2 ), but not

the other. But mixed behavior is impossible in hyperbolic 3-manifolds [BFFP3,

§12]. Since rg acts as a translation on ĄWcu, then rg also acts as a translation on ĄWcs
2

soWcs
2 ,Wcu is a double translation pair. Then pg,Wcs

2 q, pg,Wcuq have the periodic
commuting property (cf Def. 4.5). Theorem 10.1 implies that Wcs

2 “ Wcs.
Suppose now that g,Wcs,Wcu is a discretized Anosov flow and let Wcs

2 pre-
served by f . Then g also preserves Wcs

2 . Again mixed behavior cannot occur,

and now rg fixes every leaf of ĄWcu, so it fixes every leaf of ĄWcs
2 . It follows that

g,Wcs
2 ,Wcu is also a discretized Anosov flow. Then Wcs

2 “ Wcs follows from
[BFFP3, Lemma 7.6].

The statement about curves tangent to Ec is proved from uniqueness of branch-
ing foliations [BFP, Proposition 10.6] as follows: Let c be a curve tangent to Ec.
Following previous notation let f0 be a lift of a a finite iterate of f to a finite
lift M0 of M so that all bundles are orientable in M0 and f0 preserves the ori-
entability of the bundles. In addition suppose the original finite iterate of f is
homotopic to the identity. Then c lifts to c1 in M0 tangent to the center bundle.
[BFP, Proposition 10.6] requires the orientability of the bundles which is attained
by f0 in M0, hence c1 is obtained as the intersection of a leaf of the center stable
foliation and a leaf of the center unstable foliation in M0. But we proved that
these foliations in M0 project to Wcs,Wcu in M . This proves the result for curves
tangent to Ec. □

Immediate consequences are the following:

Corollary 11.9. Let f : M Ñ M be a partially hyperbolic diffeomorphism in
a hyperbolic 3-manifold. Then f is a discretized Anosov flow if and only if the
bundle Ec is (uniquely) integrable.
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This follows because in [BFFP2, Theorem B] we prove that for double trans-
lations Ec cannot integrate to a foliation. By the uniqueness properties given by
Theorem 11.8 the result follows.

One can also get a result in the direction of the plaque expansivity conjecture
[HPS] in a concrete setting.

Corollary 11.10. Let f : M Ñ M be a diffeomorphism of a hyperbolic 3-
manifold so that T is a one-dimensional normally hyperbolic foliation preserved
by f . Then f is dynamically coherent and plaque expansive.

We refer the reader to [HPS] for a definition of T being a one-dimensional
normally hyperbolic foliation, which in particular implies that f is partially hy-
perbolic, and that the tangent space of the foliation T is the center bundle.

Proof. Theorem 11.8 shows that f preserves a unique pair of branching foliations
Wcs,Wcu and any curve tangent to Ec is contained in the intersection of a leaf of
Wcs and a leaf of Wcu. It follows that T has to be the center foliation associated
with these branching foliations. Since T is a foliation (as opposed to a branching
one dimensional foliation) it follows that Wcs,Wcu are also foliations, and do not
have branching. This shows that f is dynamically coherent.

Using Theorem B we get that an iterate of f is a discretized Anosov flow.
These are plaque expansive [Mart]. □

12. Seifert manifolds: Proof of Theorem C

In this section we consider a partially hyperbolic diffeomorphism f : M Ñ M
where M is a Seifert manifold and such that the induced action of f in the base
is pseudo-Anosov. As in the statement of Theorem C, we will assume that M
is Seifert over a hyperbolic orientable orbifold Σ. We note that in contrast with
the hyperbolic case (Theorem B) the arguments here do not rely on [BFFP3] and
this result can be considered self contained.

In [HPS, §7] it is shown that under these hypothesis, the manifold M is ori-
entable and the bundles Es, Ec, Eu of f are also orientable. Moreover, up to
considering an iterate, fk it follows that fk preserves orientation of all bundles
and thus we can apply Theorem 2.1 to get branching foliations Wcs and Wcu

invariant under fk. (Note that one can take k “ 2.)
Using [HaPS, §5.3] we get that the branching foliations are horizontal, in partic-

ular, they are R-covered, uniform and by hyperbolic leaves. Moreover, it follows

that in ĂM , the universal cover of M the action of δ P π1pMq associated to the

fiber of the circle bundle acts freely on the leaf space of both ĄWcs and ĄWcu. Using
Thurston’s classification of surface diffeomorphisms [Th1] one deduces:

Proposition 12.1. The pairs pfk,Wcsq and pfk,Wcuq have full pseudo-Anosov
behavior.

Proof. Since Wcs is horizontal, δ acts freely on ĄWcs. As explained in Remark 3.4,

for any lift f̃ of fk to ĂM , and for large enough |m|, then pδmf̃ , δq is a good pair
(cf.Definition 3.1). Notice that δ acts as the identity on the universal circle of
Wcs. Any pair obtained is an admissible pair (cf. Definition 3.17). It is easy to
see they have the periodic commuting property (Definition 4.5).

Finally one can check the full pseudo-Anosov behavior of pfk,Wcsq (cf. Defi-
nition 6.7) using [CB, Lemmas 6.2 and 6.4] the same way as in Proposition 11.7.
The same argument applies to Wcu. □

We deduce from Theorem 8.1:
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Corollary 12.2. The diffeomorphism f is a collapsed Anosov flow.

Proof. It follows from Theorem 8.1 and the analysis above that fk is a collapsed
Anosov flow with respect to the branching foliations Wcs, Wcu. We must show
that these branching foliations are also f invariant and this concludes. But since
fpWcsq is also fk-invariant and the argument of Proposition 12.1 applies, we can
invoque Theorem 10.1 to deduce that fpWcsq “ Wcs. The same argument applies
to Wcu and this completes the proof of the Corollary. □

Remark 12.3. One also obtains unique integrability results analogous to those of
Theorem 11.8. We remark that since the argument in Proposition 12.1 applies
to any branching foliation invariant under fk, we can use the results of [BFP,
Proposition 10.6] in order to deduce that the curves in the branching foliation
obtained as intersection of Wcs and Wcu are all the complete curves tangent to
Ec.

13. Further results

In this section we give a couple of applications of pseudo-Anosov pairs to
partially hyperbolic diffeomorphisms in other 3-manifolds or isotopy classes to
show the flexibility of the tools developed here. We hope other applications can
be found.

13.1. General partially hyperbolic diffeomorphisms homotopic to the
identity. Theorem 11.2 in [Ca1, Fen3] for atoroidal manifolds has been extended
recently by the first author to more general manifolds [Fen4]. In particular, it will
allow us to extract the following result that holds in a larger class of 3-manifolds:

Theorem 13.1. Let F be a transversely oriented, R-covered, uniform foliation
on a 3-manifold with an atoroidal piece. Then, there exists a deck transformation

γ P π1pMq which acts as a translation on the leaf space of rF and the induced
action in the universal circle S1

univ of F has exactly exactly 4 fixed points: two
super attracting and two super repelling fixed points.

As a consequence, we get:

Theorem 13.2. Let f : M Ñ M is a partially hyperbolic diffeomorphism ho-
motopic to the identity on a 3-manifold having some atoroidal piece in the JSJ

decomposition preserving a branching foliation Wcs so that the good lift rf of f is

a translation on the leaf space of ĄWcs. Then both the center (branching) foliation
and the strong stable foliation have small visual measure inside the leaves of Wcs

(cf. Theorem 5.6). In particular for any ray r of a center leaf c in a leaf L of
ĄWcs, then r accumulates in a single point in S1pLq.

Proof. By translation we mean it has no fixed points on the leaf space of ĄWcs.
This was analyzed in [BFFP3, Proposition 4.6], where it is proved that this implies

that Wcs is R-covered and uniform. The translation of rf also implies that Wcs

is transversely orientable. We can apply Theorem 13.1 and we get that pf,Wcsq

has the periodic commuting property and it has at least one (regular) pA pair.
Therefore, Theorem 5.6 applies and we get the statement. □

We note that for discretized Anosov flows the center foliation also has small
visual measure in center stable leaves, but the strong stable foliation does not,
which looks as something quite remarkable about Theorem 13.2 that needs to be
better understood. The previous result complements well with [BFFP3, Theorem
1.2].
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We now explain the proof of Theorem 13.1. This is proved in [Fen4, Proposition
5.2]. We give an alternate proof of super attracting/repelling behavior which uses
less of the transverse regulating flow and the transverse lamination and relies only
on large scale geometry. We put this alternate proof here as it may be useful in
other contexts. In particular the proofs of Claim 13.3 and Claim 13.4 work even
when the deck transformation γ has two fixed points in the universal circle S1

univ.
The super attracting property proved in [Fen4, Proposition 5.2] only works for γ
associated with an orbit of the flow which necessarily has (up to finite iterate) at
least four fixed points in S1

univ.

Proof of Theorem 13.1. For simplicity we assume that M is orientable, which
can be accomplished by taking a double cover. We will divide the proof in three
steps. We assume some background on 3-manifolds, see [BFFP2, Appendix A]
and [BFFP3, Appendix A]. First we show the following claim reminiscent of

[BFFP2, Lemma 8.5]. Recall that for leaves L,E P rF we have a quasi-isometry
τL,E : L Ñ E given by Proposition 2.4.

Claim 13.3. Let γ P π1pMq be a deck transformation of M acting increasingly

in the leaf space of rF and such that γ fixes an atoroidal piece P and does not
fix the lift of a JSJ tori. Then for every R ą 0 there is K ą 0 such that if

L P rF is some leaf and we denote g : L Ñ L to be the quasi-isometry given by
γ ˝ τL,γ´1L : L Ñ L then there is a disk D of radius R in L such that if y R D
then dpy, gpyqq ą K.

Proof. Notice that γ is in π1pP q and does not represent a peripheral curve in
P . The proof is the same as [BFFP2, Lemma 8.5] once one notices that the
hypothesis on γ forces the existence of an axis for the action on the atoroidal
piece (which admits a hyperbolic structure). This also follows from an argument
similar to Lemma 11.5 using the laminations constructed in [Fen4]. □

Now, using some hyperbolic geometry on the leaves we can show:

Claim 13.4. If γ is a deck transformation as in the previous claim, then every
fixed point of γ acting on S1

univ is either super attracting or super repelling.

Proof. Take ξ P S1
univ and assume that it is fixed by the action of γ. Consider

a leaf L P rF and a geodesic ray r0 whose endpoint is ξ̂ “ ΘLpξq in S1pLq. Let
g “ γ ˝ τL,γ´1pLq. It extends to a homeomorphism of L Y S1pLq still denoted by

g. Since the action of γ in S1
univ is given by the action of g as defined above in

S1pLq via the identification of ΘL we get that gpr0q is a quasi-geodesic ray that

also lands in ξ̂. Let r1 be the geodesic with same starting point and ideal point
as gpr0q. Notice that r1 is asymptotic with r0.

Fix a sequence of neighborhoods of ξ̂ in S1pLq given by intervals ran, bns in

S1pLq so that the geodesics αn joining an, bn converge to ξ̂ and are orthogonal to
r0. It follows that gpαnq is a quasigeodesic which makes a uniform (coarse) angle
with gpr0q. In other words if ℓn is the geodesic in L with same ideal points as gpαnq

then the angle between ℓn and r0 is bounded below by a0 ą 0. This is because
if the angle goes to 0, then one gets points xn, yn in r1, ℓn respectively which are
very close in L and very far away from the intersection of r1, ℓn. In addition xn
converging to ΘLpξq. Pulling back by g´1 (using that r1, r0 are asymptotic) one
gets points in r0, αn which are boundedly close in L but the points in αn very far
from r0. This is a contradiction to g being a quasi-isometry..

Using the previous claim we obtain the desired result. See [BFFP4, Lemma
A.10] for a similar argument in a slightly different setting. □
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Finally, [Fen4, Proposition 5.2] gives a deck transformation fixing an atoroidal
piece and with at least four fixed points at infinity. This completes the proof of
Theorem 13.1. □

Remark 13.5. Note that in the setting of the Theorem 13.2 we also get that f
cannot be dynamically coherent (see Remark 5.2).

Let us now prove Theorem D (we assume familiarity with some arguments
from [BFFP2, BFFP3]).

Proof of Theorem D. Under the assumptions of Theorem D, it is shown in [BFFP3]
that if f is not a discretized Anosov flow, then f is not dynamically coherent and

one of the two branching foliations is R-covered, uniform and the good lift rf of
f acts as a translation in the leaf space. This implies as in Example 3.3 that we
have a good pseudo-Anosov pair. Therefore, we can apply Theorem 5.6 to the
corresponding foliation to deduce Theorem D. □

13.2. Results in Seifert manifolds with only one pseudo-Anosov compo-
nent. There is also a partial statement similar to Theorem 13.2 where we replace
Theorem 13.1 with the results in [BFFP2, Appendix A].

Theorem 13.6. Let f : M Ñ M be a partially hyperbolic diffeomorphism of a
Seifert manifold so that the induced action on the base has some pseudo-Anosov
component preserving branching foliations Wcs and Wcu, which are horizontal.
Then, both the center (branching) foliation and the strong stable foliation have
small visual measure inside the leaves of Wcs (cf. Theorem 5.6). Similarly for
the center and unstable foliations in center unstable leaves.

We remark that the desired properties are independent of taking a finite cover
and lift of iterate, so we can assume orientation properties. We note that this
result is new even for the examples of [BGHP] where this behavior of the strong
foliations was unknown. The horizontality condition implies in particular that
Wcs,Wcu are R-covered, which is needed to apply the results in this article (see
[HaPS] for conditions under which the assumption is met). Note that incoherence
in this setting (cf. Remark 13.5) was shown in [BFFP4]. Theorem E is a direct
consequence of Theorem 13.6.
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in Mathematics, 83 Birkhäuser (1990). (Cited on page 15.)

[Go] S. Goodman, Dehn surgery on Anosov flows, Lecture Notes in Math. 1007 Springer (1983)
300-307. (Cited on page 7.)
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