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SCAMPP: Scaling Alignment-Based
Phylogenetic Placement to Large Trees

Eleanor Wedell -, Yirong Cai*, and Tandy Warnow

Abstract—Phylogenetic placement, the problem of placing a “query” sequence into a precomputed phylogenstic “backbona” tres,
is useful for constructing large trees, parforming taxon identification of newly obtained sequences, and other applications. The most
accurate current methods, such as pplacer and EPA-ng, are based on maximum likelihood and require that the query sequence be
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provided within a multiple sequence alignment that includes the leaf sequences in the backbone tres. This approach enables high
accuracy but also makes thesa likelihood-basad methods computationally intensive on large backbone trees, and can even lead to
tham failing when the backbone trees are very large (2.g., having 50,000 or more leaves). We present SCAMPP (SCaling Alignheant-
hased Phylogenetic Placament), a technigue to extand the scalability of these likelihood-based placement methods to ultra-large
hackbone trees. We show that pplacer-SCAMPF and EPA-ng-SCAMPP both scale wall to ultra-large backbone trees (even up to
200,000 leaves), with accuracy that improves on AFPLES and APFLES-2, two recently developed fast phylogenetic placement
methods that scale to ultra-large datasets. EPA-ng-SCAMPF and pplacer-SCAMPFP are available at hitps://github.com/chry04/

PLUSplacer

Index Terms—FPhylogenatic placemeant, maximum likelihood, phylogenstics, pplacer, EPA-ng

1 INTRODUCTION

HYLOGENETIC placement is the process of taking a

sequence (called a “query sequence”) and adding it into
a phylogenetic tree (called the “backbone tree”). These
methods are used for taxonomic identification, obtaining
microbiome profiles, and biodiversity assessment [1], [2],
[31, [4], [5], [6]. Furthermore, phylogenetic placement can be
used to update very large phylogenies [7], where they offer
a computationally feasible approach in comparison to de
novo phylogeny estimation (which is NP-hard in most for-
mulations). These two different applications of phylogenetic
placement - taxonomic identification of reads in an environ-
mental sample and large-scale phylogeny estimation - pres-
ent different scalability challenges: the first requires the
ability to process many reads, potentially millions, and the
second requires the ability to add query sequences into
increasingly large trees. In this paper, we mainly consider
the scalability challenges in using phylogenetic placement
to add query sequences into large trees.

Phylogenetic placement based on optimizing the maxi-
mum likelihood score is a natural approach, and is
employed in pplacer [8], EPA [9], and EPA-ng [10] (an
improved version of EPA). These likelihood-based phyloge-
netic placement methods have generally been found to have
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excellent accuracy but can be computationally intensive
when placing into large trees, due to their use of likelihood
calculations. Another limitation of likelihood-based place-
ment methods is that they depend on multiple sequence
alignments, which can reduce their applicability and also
increase the computational effort in using the methods.

Other phylogenetic placement methods have been devel-
oped that enable potentially greater scalability and speed.
RAPPAS [11] and App-SpaM [12] both focus on placement
for unaligned query sequences. RAPPAS in particular shows
promise in scalability to large backbones since it uses k-mers.
However, both App-SpaM and RAPPAS were reported as
being less accurate than pplacer [11], [12]. APPLES [7] is a
distance-based approach to phylogenetic placement that has
shown particularly good scalability, including to backbone
trees with up to 200,000 sequences. APPLES-2 [13], a new
version of APPLES, has subsequently been developed using
a divide-and-conquer strategy to substantially improve
upon the accuracy and speed of APPLES while maintaining
its scalability. However, although APPLES and APPLES-2
can both scale to very large backbone trees, the maximum
likelihood-based placement methods provide better accu-
racy on those datasets on which they can run [13].

Thus, maximum likelihood phylogenetic placement meth-
ods have accuracy advantages over alternative approaches, but
many studies have restricted these methods, such as pplacer,
to relatively small backbone trees due to a combination of rea-
sons, inchuding limitations in computational resources and
potentially numeric issues (see further discussion in Supple-
mentary Materials, which can be found on the Computer Soci-
ety Digital Library at httpe//doiiececomputersociety.org /
10.1109/ TCBEB.2022 3170386, Section S5). Of the other methods,
APPLES-2 may be the most scalable and perhaps mostaccurate
method, but has reduced accuracy compared to pplacer and
has not been extensively studied. In particular, APPLES-2 has
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not been examined for accuracy in placing fragmentary
sequences.

To enable pplacer, EPA-ng, and other computationally
intensive likelihood-based phylogenetic placement methods
to be used on larger backbone trees, we have developed the
SCAMPP (ie, “5Caling AlignMent-based Phylogenetic
Placement”) framework, which we now describe. Rather
than attempting to find the best location in the entire back-
bone tree into which we insert the query sequence, the
SCAMPP framework uses an informed strategy to select a
subtree of the backbone tree, places the query sequence into
that subtree using the selected placement method, and then
identifies the correct location in the backbone tree associated
with that location. Using the SCAMPP framework with
pplacer yields pplacer-SCAMPP and similarly, EPA-ng
vields EPA-ng-5CAMPF, but any standard phylogenetic
placement method that uses aligned sequences can be used
within SCAMPF. The SCAMPF framework thus extends the
provided phylogenetic placement method to enable it to scale
to larger backbone trees and does not change the method
when the backbone tree is small enough. This approach to
phylogenetic placement focuses on placement locally within
a subtree of the backbone tree, rather than searching the
entire backbone tree for where to place the query sequence.

Our experimental study, using both biological and simu-
lated datasets, shows that the SCAMPP framework enables
pplacer and EPA-ng to be used with large backbone trees and
maintains their accuracy on those datasets on which the place-
ment methods can run, while reducing nmtime and peak
memory usage. A particular outcome of our study is that EPA-
ng-SCAMFF and pplacer-SCAMPT can place into backbone
trees with 200,000 leaves with accuracy that improves on
APFLES2, the prior leading method for phylogenetic place-
ment on large backbone trees. Furthermore, althcugh APFLES-
2 remains generally the fastest of these methods, the difference
in running time between pplacer-SCAMPT and APPLES2 is
relatively small on the largest datasets, and pplacer-SCAMPP
is faster than APPLES-2 when placing fragmentary sequences
into the largest backbone trees. Thus, the SCAMPP framework
not only enables alignment-based phylogenetic placement
methods to scale gracefully to large datasets, but its use with
pplacer provides the best accuracy of all the existing phyloge-
netic placement methods we explore.

2 THE SCAMPP FRAMEWORK

2.1 Overview
The SCAMPF framework is designed to work with a pro-
vided phylogenetic placement method &, under the follow-
ing basic assumptions about @. The input to @ is (a) T, the
“backbone tree”, which is an unrooted binary tree with
numeric parameters {including branch lengths) for its speci-
fied model of sequence evolution, (b) a set @@ of query
sequences, and (c) a multiple sequence alignment of the
sequences at the leaves of the tree and the query sequences.
For each query sequence, @ returns an output jplace file
[14], consisting of multiple possible placement edges within
the tree, each with a corresponding distal length, likelihood
weight ratio, likelihood, and pendant branch length. The out-
put can be used to identify a single edge into which the query
sequence should be placed, as well as to produce support
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statistics about edge placements. The statistical support val-
ues are useful for metagenomic taxon identification and
abundance profiling (e.g., as used in TIPP [3] and TIPP2 [4]).
However, the output of the single best placement is also rele-
vant when using phylogenetic placement for the purpose of
incrementally building a large tree, as discussed in [7].

In this study, we focus on the use of phylogenetic place-
ment to identify a single best edge within the backbone tree
for a single query sequence; this is an application that can
be used both for adding sequences into very large trees
{e.g., incrementally building a gene tree) as well as for taxon
identification.

Here we describe the SCAMPP framework for use with
any given phylogenetic placement method &, when pladng
a single query sequence from ¢}; we note that inserting all
the sequences in () can be performed independently, and so
this description will suffice to define the framework. We
also describe the SCAMPF framework for the Generalized
Time Reversible (GTR) [15] model for nuceotide evolution
with gamma-distributed rates across sites, noting that modi-
fications to this approach for other models (e.g, protein
models) is trivial. The input to the SCAMPP framework has
two algorithmic parameters, which are @ (the phylogenetic
placement method) and B, the maximum size for the place-
ment subtree. The remaining parameters are the usual ones

given to likelihood-based placement methods, and are:

e T, an unrooted tree with numerc substitution model
(e.g., GTR) parameters (e.g., branch lengths, substitu-
ton rate matrix, stationary distribution, gamma dis-
tribution), with 5 the set of sequences labelling the
leaves of T

* q the query sequence to be inserted into T'

¢ A:the multiple sequence alignment on S LI {g}

When we use SCAMPF with @, we refer to the combina-
tion as P-SCAMPF; hence, EPA-ng-SCAMPF refers to using
SCAMPP with the EPA-ng phylogenetic placement method,
pplacer-5SCAMPP refers to using SCAMPT with pplacer, etc.
At a high level, our three-stage technique for ©-SCAMPP
operates as follows (see Fig. 1):

* Stage 1: A sublree T' of T is identified (defined by its
set & of leaves), with the restriction that T cannot
contain more than B leaves. This is referred to as the
“placement tree”.

* Stage 2: We apply @ to T7; this returns a jplace file
with the set of the edges selected by @ for having
good likelihood scores for the query sequence.

# Stage 3: Foreach edge €' in the jplace file, we find the
associated edge ein T

The output is therefore a jplace file containing all the

potential placement edges and their associated likelihood
scores. We study the SCAMPP framework in the context of
finding the single best placement, but the output can be
used more generally.

In what follows, we will assume that the backbone tree

has n leaves and that the sequence alignment has length k.

2.2 Stage1
The input to Stage 1 includes the value for B, which defines

the size of the placement subtree, as well as the backbone
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Stage 1

Backbone Tree T ()

Stage 2
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Stage 3

Backbone Tree T ()

nearest taxon |

W

Fig. 1. Description of the SCAMPP technique. In Stage 1, we salect the placemeant subtrae T’ from the backbone tree T, for a specified query
saquence. To find the placement subtrae T of T, we first find the leaf I'with the smallest Hamming distance to the query sequence (called the “nearest

taxon”™). Then, we greedily pick the &

1 leaves (here B = 6) with the smallest distance to [ In this case, we select five leaves O,BS, UV, and the

placement subtree T” is induced by the set {F, 0, 5, U7, V,{} of six leaves. Here we show the given placement method selecting an edge in T separat-
ing leaves { F,(} from { 5,0, V. 1}, and this single edge in T" corresponds to a path of three edges in T. Note that a viable phylogenetic placement
method for the SCAMPF framework returns not only which edge in the placement subtree to insert the query sequence into, but the branch lengths
on either side; this is usad 1o find the correct placement of the query sequence in Stage 3.

tree T, Note that if the backbone tree is small enough (ie.,
has at most 2 leaves), then the SCAMPP framework just
defaults to the selected phylogenetic placement method;
hence this algorithm only applies when the backbone tree
has more than B leaves.

The first stage needs to select the subtree of B leaves into
which to place the query sequence. The first step is to find a
closest leaf | (defined by the Hamming distance, which is
number of sites where the two sequences are different (i.e.,
both have different letters or one is gapped and the other is
not). This is modified when the query sequence is identified
as a fragment by the user, in which case the calculation is
performed after removing the leading and trailing gaps.
This calculation takes Oink) time. We call this closest leaf
the “nearest taxon” to the query sequence.

Once the leaf | is found, we select the B — 1 leaves in
order of their path distance to [, as we now define. The path
distance in T from a given leaf I' to lis 3°_ .p L(e;) where P
is the path in T from [ to ' and L(e;) is the length of the
edge ¢; in P. Starting from [, we use a breadth-first search to
select those leaves in T that have the lowest path distance to
I until we select the B -1 additional leaves (thus forming
the set of B leaves, after we add [). Once the set of B leaves
is identified, the induced subtree T” is returned, with the
branch lengths in T' computed by using the associated
branch lengths in T (note that this subtree T' may not be a
clade in 7).

Stage 1 takes (Wnk) time, and returns a set of B leaves
and the induced subtree 7" (with its associated numeric
parameters, induced on it by the backbone tree), which is
the placement tree passed to a phylogenetic placement
method in Stage 2.

2.3 Stage2

We then run the given phylogenetic placement method on
the placement tree T we obtain from Stage 1. This identifies
a collection of edges, each of which has a good likelihood

sSC0re.

24 Stage3d

For each edge ¢ found in Stage 2, we find the single edge ¢
in T corresponding to that edge. To do this, we first deter-
mine the set of edges in T that define the same bipartition as
¢'. This set will either be a single ed ge ¢ or will define a path
of two or more edges in T. Fig. 1 shows such an example of
how an edge ¢ in the placement subtree T’ corresponds to a
path with more than a single edge from the given backbone
tree T. We let Path(e') denote the edge or path in T corre-
sponding to ¢, noting that a single edge is also a path (albeit
of length 1). To determine Fufhie') given &', note that &
defines a bipartition m(e') on T". At least one, and possibly
more than one, of the edges in T define bipartitions that cor-
respond to z{e) (meaning specifically that they induce the
same bipartiion when restricted to the leafset of 7). The set
of edges in T' that define bipartitions corresponding to (e’
form either a single edge or a path of two or more edges,
and so defines Fath(e'). We then set L(e') (Le., the length of
edge €) to be L{Fath(c")), where L{Fath(e']) is the sum of
the branch lengths in the path (or edge) in T' denoted by
Fath(<).

If &' corresponds to a single edge e in T, then we place the
query sequence into that edge. However, if ¢ corresponds
to a path with two or more edges in T, then we use the dis-
tances we obtained to find the correct placement edge for
the query sequence, as we now describe and also show in
Fig. 1.

Recall that the tree T is a subtree of T formed by specify-
ing a set of leaves, and that the edges of TV have branch
lengths that correspond to the branch lengths in T, Recall
also that when a phylogenetic placement method inserts the
query sequence into € in T7, it also subdivides the edge ¢
and specifies how the branch length is divided. For example,
suppose ' = (a, b) is an edge in 7" with length Lie') and the
query sequence is attached to this edge. Then the given phy-
logenetic placement method subdivides the edge ¢, thus cre-
ating two new edges (e, v) and (v,b), whose lengths add up
to Lie'). We then use those new lengths to determine exactly
what edge in T we should insert the query sequence into and
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TABLE1
Dataset Stafistics
Dataset number of alignment Type p-distance p-distance gaps
SeqUences length {bio or sim) mean maximum proportion
greenss [16] 5088 1486 biological .250 479 146
LTP_s128_S5U [16] 12,953 1598 biological 228 AB8 090
165B.ALL [17] 27,643 6857 biological 210 JB9 118
nt78 [18] 78,132 1287 simulated 404 B39 006
EMNASim [19] 200,000 1620 simulated 410 618 051

The first column gives the name of the dataset and the publimtion describing the dataset. For sach dataset we show the monber of sequences, the length of the ref-
erence alignment, its type (lologioal or sinnudated), the mean and maximem pedistance (e, normalized Hamming distances) betuween pairs of sequences in the

alignment, and the proportion of the alignment that iz gapped.,

where in that edge we should create a new node (to which we
attach the query sequence) s0 as to produce the lengths speci-
fied by the phylogenetic placement method. An example of
this is provided in Fig. 1, and another more complex example
is provided in the Supplementary Materials, available
online, Section 51 and Fig. 51.

3 EXPERIMENTAL STUDY

3.1 Overview

Recall that SCAMPP has two algorithmic parameters: the phy-
logenetic placement method ¢ and the value for B, which is
the maximum size (ie, number of leaves) of the placement
subtree. In our first experiment we explore how to set B
within SCAMPP for use with & being either pplacer or EPA-
ng. After selecing B, we use that value in all subsequent
experiments. The second experiment compares pplacer-
SCAMPP and EPA-ng-5C AMPF to other phylogenetic place-
ment methods on backbone trees with up to 78,000 leaves,
also for placing full-length sequences. The third experiment
explores larger backbone trees with up to 200,000 leaves, and
explores placement of full-length as well as fragmentary
sequences. All methods were evaluated with respect to delta
error [7], [20] (a measure of how much tree error increases by
adding a query sequence) as well as running time and peak
memory usage within a leave-one-out experiment.

All our analyses were performed in the same computa-
tional infrastructure (the Campus Cluster at the University
of lllinvis), which provides 64GB of memory, 18 CPUs, and
up to 4 hours of runtime. Nevertheless, the machines vary
in age and speed, and running Hmes are not exactly compa-
rable. Additional details of the methods, including version
numbers and commands, are provided in the Supplemen-
tary Materials, available online, Section 54.

3.2 Methods

We evaluate EPA-ng-SCAMPF (v1.0.0) and pplacer-SCAMFPP
(v1.1.0) in comparison to APPLES (v1.1.3), APPLES-2 (v22.0),
EFA-ng (v(1.3.8), and pplacer (v1.1.alpha19).

3.3 Datasets
3.3.1 Overview

For our experiments we use five nucleotide datasets, with
three biclogical and two simulated (Table 1). These datasets
have alignments and reference trees (true alignments and true
trees for the simulated datasets and estimated alignments and

trees for the biclogical datasets) that range in size from
roughly 5000 sequences to as large as 200,000 sequences. We
use the two smallest datasets, both biclogical datasets from
the PEWO collection [16], for Experiment 1, where we set the
algorithmic parameter B (which determines the size of the
subtree used in the SCAMPT framework); the other datasets
are used in Experiments 2 and 3 for evaluating the impact of
the SCAMPP framework We also made versions of these
datasets where the sequences are fragmentary. All datasets
are available in public repositories, with locations provided at
https:/ /doi.org/10.13012/ B2IDB-9257957_V1.

3.3.2 Biological Datasels

We use three biological datasets, two from the PEWO [16] col-
lection and one from the Comparative Ribosomal Website
[17]. The first PEWO dataset is the green85, originally from the
Greengenes database [21], of 5088 aligned sequences and a ref-
erence tree that was computed on the alignment. The second
PEWO dataset is LTF 5128 SSU, which contains 12,953
aligned sequences and a reference tree originally from [22],
[23]. The final biological dataset is 165.B.ALL, which contains
27,643 sequences with an alignment based on secondary struc-
ture [17] and a RAxML [24] maximum likelihood tree.

3.3.3 Simulated Datasets

We use two collections of simulated datasets. The first is the
nt78 dataset, which contains 78,132 nucleotide sequences.
This simulated dataset was created to evaluate the maxi-
mum likelihood method, FastTree 2 [25]. This dataset con-
tains 20 simulated replicates, and we arbitrarily chose the
first for this study. We generate an estimated tree for phylo-
genetic placement using FastTree 2 for this study.

The second collection comes from the RENASim dataset,
which is a simulated dataset with ten replicates, each con-
taining 1,000,000 sequences. The RNASim dataset is the
result of a simulation where sequences evolve under a com-
plex biophysical model that reflects selective pressures to
maintain the RNA secondary structure. RMASim has been
used in other studies to evaluate alignment accuracy [19],
[26], [27], [28]. The RN ASim Variable Size (RNASim-VS)
datasets are subsets of varying sizes (up to 200,000 sequen-
ces), drawn at random from the million-sequence RNASim
dataset. These RN ASIim-VS datasets were used in [13] to
evaluate phylogenetic placement methods, and provide
true phylogenetic tree, true multiple sequence alignment,
and estimated maximum likelihood (ML) trees (obtained
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using FastTree 2 [25]) on each subset, which serve as the
backbone trees. For each backbone tree size there are five
replicates included in [7] {(except for the largest which con-
tains only one), and 200 query sequences per replicate.

3.3.4 Fragmentary Datasets

For Experiment 3, we created fragmentary versions of the
ENASIim datasets as follows. We created “low fragmentation”
(LF) conditions where a quarter of the sequences are fragmen-
tary (mean 25% of the original length, with a standard devia-
tion of 60 nucleotides). We picked a random starting position
within the randomly selected sequence, selected a random
number I from a normal distribution with mean 25% the orig-
inal length and standard deviation of 60, and extracted the
next L nucleotides. “High fragmentation” (HF)} conditions
were also simulated in a similar manner, with a mean 10% of
the original length witha standard deviation of 10 nucleotides.
The resulting mean fragment length is 154 for the HF condi-
tions and 385 for the LF conditions. The true alignments of
resulting sequence fragments are used for placement.

3.3.5 Backbone Trees and Numeric Parameters

The phylogenetic placement methods need backbone trees
with numeric parameters (branch lengths, substitution rate
matrix, stationary distribution, and gamma distribution},
with specific protocols for each method. It is recommended
that APPLES-2 uses branch lengths estimated under mini-
mum evolution [7], [13], and APPLES-2 will estimate these
branch lengths using FastTree-2 prior to performing place-
ment. In order to provide fair runtime analyses we provide
APPLES with a tree estimated by FastTree-2 with the no ML
option for all datasets. We used the minimum evolution
branch lengths provided by [7] for use with APPLES and
APPLES-2 on the BNASIm-VS datasets, and for all other
datasets we estimated these using FastTree-2 [18]. For EPA-
ng and EPA-ng-SCAMFF, we re-estimated branch lengths
for each estimated ML tree using RAxML-ng [29]. For
pplacer-SCAMPP, on the RNAsim dataset we used trees
with branch lengths estimated by FastTree 2 [25]. For
pplacer-SCAMPF on all other datasets we estimated branch
lengths using RAXML. The remaining parameters (i.e., 4 = 4
substitution rate matrix) across all datasets were estimated
using RAxML [24] version 7. For pplacer we used the
branch lengths and numeric parameters directly from
RAxML version 7. However, pplacer failed to provide valid
results on some large backbone trees using the numeric
parameters produced by RAxML. Therefore, on those back-
bone trees where pplacer produced negative infinite likeli-
hood scores using the default technique for numeric
parameter estimation, we produced numeric parameters
using an altemative technique recommended in [13]: we
computed numerical parameters using FastTree 2 and then
provided these parameters to taxit within Taxtastic [30]; this
produced numeric parameters that we then used with
pplacer. See Supplementary Materials, available online, Sec-
tion 54 for additional information.

3.4 Leave-One-Out Study

Our leave-one-out evaluation operates as follows. Given a
backbone tree on n leaves, a random leaf is selected and
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removed, thus producing a reduced tree on n — 1 leaves.
The sequence for that leaf is then added back into the
reduced tree using the given phylogenetic placement
method.

3.5 Criteria

We report running time, peak memory usage, and place-
ment error. We report placement error by comparing trees,
before and after a single query sequence is added to the
backbone tree, to the true tree (when using simulated data-
sets) or a reliable estimated tree (when using biclogical
data) on the corresponding set of leaves. We will refer to the
true tree or reliable estimated tree as the “reference tree”.
This comparison is performed by representing each tree by
its set of bipartitions, noting that each edge in a tree defines
a bipartition on the leafset. We define the “false negative”
error {also called the number of "missing branches”) of a
given tree £ with respect to the reference tree to be number
of edges (or bipartitions) that are in the reference tree but
not in ¢. The change in the number of false negatives pro-
duced by placing a query sequence into a backbone tree is
the “delta error” produced by the placement method.

We illustrate this calculation with an example. Suppose
the backbone tree has leafset S and is missing 5 edges found
in the true tree on this leafset. Now suppose we use a phylo-
genetic placement method to add a new sequence s into the
tree, so that the extended backbone tree now has leaves 51U
{5}, and suppose this extended tree is missing 7 edges from
the true tree on 5L {s'}. Then the delta error is 2, since the
number of edges that were missing went up by 2. Note that
the delta error can never go down, since an edge that is
missing before s' is added is still missing after s is added.

We now make this concept precise using mathematical
notation. Given a tree ¥ we let B(Y") denote the set of bipar-
titions of ¥. We let T* denote the reference tree (i.e., either
the true tree or a reliable estimated tree), and we assume T
has leafset 5. In a leave-one-out study, we are given a tree ¢
and we delete one leaf &' from ¢, thus producing a tree T on
leafset 5" = 5 {'}. Note that the tree ¢ may not be the ref-
erence tree. When we add query sequence & into T, we
obtain a tree P. Note that P has the entire leafset 5. We let
T*|s denote the subtree of T* induced by leafset 5. Then
the delta error for F, denoted by A, (FP), is given by the fol-
lowing formula:

Ae(P) = |B(T'\B(P)| - |B(T"| ¢ )\B(T}|, (1)

where |X| denotes the number of elements in the set X.
Thus the first term is the number of false negatives for the
tree P and second term is the number of false negatives for
the tree T". Note that A,(F) = 0, since the number of missing
branches produced by adding a query sequence to a tree
cannot decrease.

We note that several earlier studies [10], [16], [31] have
used the “node distance” to evaluate phylogenetic place-
ment methods within leave-out studies, as follows. A start-
ing tree is given and a leaf is deleted, and then reinserted
using a placement method. The distance (i.e, number of
nodes) from the final placement to the placement in the
starting tree is the node distance. However, this is equal to
the delta error when the starting tree is interpreted as the
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true tree. Therefore, the delta error is an extension of the
node distance that allows error in the starting tree (which
can be quantified in a simulation study) to be part of the
evaluation. Therefore, throughout our experiments, we use
the delta error for both simulated and biological datasets,
with the trees provided for the biological datasets treated as
reference trees. (In other words, when we report delta error
on the biological datasets, it is the same as reporting node
distance for these datasets.)

4 RESuULTS

Results for Experiments 1-3 are shown here for APPLES-2,
EFPA-ng, pplacer, EFA-ng-SCAMPFP, and pplacer-SCAMPP.
APPLES was clearly inferior to APPLES-2 with respect to
runtime, memory usage, and accuracy, and the results for
AFPLES are thus provided only in the Supplementary
Materials, available online, Section 52 and Fig. 52. Results
shown are restricted to those replicates where all methods
returned valid outputs.

4.1 Experiment 1: Evaluating the Impact of the
Parameter 5 on the SCAMPP Framework

An important algorithmic parameter is the size B of the sub-
tree into which the query sequence is placed, and exploring
this question is the focus of this secion. Previous studies
have suggested that better placement accuracy is obtained
by plading into a larger subtree [3], [20], indicating that the
best placements may be obtained by increasing the value of
B, which limits the placement subtree size given to the phy-
logenetic placement method. However, increasing the
placement subtree size too much also increases the compu-
tational effort, and may also lead to failures in some cases.

In order to understand the impact of B, which deter-
mines the placement subiree size, we used two relatively
small PEWO datasets (green85 with 5088 sequences and
LTP_s128_SSU with 12,953 sequences) and tested a range of
subtree sizes. We see (Fig. 2) that small values for B (which
limit the placement to small subtrees) produced high error,
but values for B generally between 1000 and 4000 had good
accuracy (with very small differences between B = 1000
and B = 4000). However, as subtree sizes increased, run-
time and memory usage also increased. Based on these
trends, we performed a more focused evaluation of settings
for Bin the range between 1000 and 4000.

In Fig. 3, we compare pplacer-5SCAMPP and EPA-ng-
SCAMPP to the other phylogenetic placement methods
using these three values for B to get a sense for how impor-
tant it was to set B optimally. We examine the impact on
placement error first, and then the impact on runtime and
Memory usage,

On the smaller of these two datasets (i.e,, green85, with
only 5088 sequences), we see that EPA-ng is slightly more
accurate than EPA-ng-SCAMPP when B = 1000 or B =
2000 and then matches accuracy when B = 4000. This sug-
gests that EPA-ng is able to provide a good analysis of the
full dataset and that B = 4000 is slightly better than B =
2000. In contrast, for all settings of B, pplacer is clearly less
accurate than pplacer-SCAMPF, and there is little difference
between pplacer-SCAMPP for B = 2000 and £ = 4000. This
suggests that pplacer is unable to provide good accuracy on
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Fig. 2. Experiment 1: Exploring the impact of how B is sat, which speci-
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LTP_s128_S3U. Fesults are shown across 200 query sequence

placements.

the full dataset and benefits from restriction to a subtree,
and that B = 2000 is as good as B = 4000. Results on the
larger of the two datasets (i.e, LTP_s128_S5U) are some-
what different than on the smaller dataset. First, all methods
except for APPLES-2 have very low placement error, with
average delta error below 1. In addition, there are very small
differences the remaining methods, and changes to B on
this dataset does not have much impact. Across the two
datasets, setting B = 2000 or B = 4000 are both reaspnable
settings, with B = 2000 somewhat better for pplacer-
SCAMPP and B = 4000 somewhat better for EPA-ng-
SCAMPP,

A comparison of running time provides additional
insights about how to set B. Specifically, increasing B
increases the running time for both pplacer-SCAMPP and
EPA-ng-SCAMPP, and has a larger impact on pplacer-
SCAMPP than on EPA-ng-SCAMPF. In addition, pplacer
has by far the highest running time (see for example run-
time on the LTP_s128_55U dataset) and EPA-ng is in second
page, but setting 7 = 2000 in pplacer-SCAMPF or EPA-ng-
SCAMPP greatly reduces the runtime. Furthermore, chang-
ing B from 2000 to 4000 approximately doubles the runtime
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for both pplacer-SCAMPT and EPA-ng-SCAMPP. Thus, B
has a large impact on runtime, as expected.

The peak memory usage by pplacer-SCAMPP and EPA-
ng-SCAMPP is also very impacted by the setting for B. On
the green85 dataset, the lowest peak memory usage is
achieved by both methods when B =1000, and then
increases substantially with increases in B. The highest
peak memory usage is for pplacer, followed by EPA-ng in
second place, and every explored setting for B reduces their
peak memory usage. On the LTP_s128 S50 dataset, the
same trends appear, but with the following difference: here,
EPA-ng has by far the highest peak memory usage (more
than three times that of every other method).

Owerall, what these trends show is that the different set-
tings for B between 1000 and 4000 result in at worst small
changes to the placement error but very large changes to
runtime and memory usage. If placement accuracy must be
optimized, then these results suggest that the optimal set-
ting for B when using pplacer-SCAMPF is probably 2000,
but the optimal setting when using EPA-ng-SCAMPP is
possibly B =4000 (but B = 2000 produces very close
results). However, the computational hit (both running time
and memory usage) in changing from B = 2000 to B = 4000
is substantial for both methods. Based on these experimen-
tal results, we set B =2000 for default usage with both

pplacer-SCAMPT and EPA-ng-5CAMPP, and used this set-
ting in the subsequent experiments.

4.2 Experiment 2: Evaluating SCAMPP on
Moderately Large Trees

This experiment examines phylogenetic placement on two
moderately large backbone trees, using the setting for B
established in Experiment 1. We analyze the 165.B.ALL bio-
logical dataset (with 27,643 sequences) and the nt78 simu-
lated dataset (with 78132 sequences). We see different
trends for each of these datasets, and so we discuss them
separately, starting with the smaller of the two datasets.

On the 165.B.ALL dataset (Fig. 4a), we see that APPLES-2
has double the delta error of the other methods. The most
accurate method is EPA-ng, with delta error of 4.4, but the
delta errors of the remaining methods are all between 5.3
and 5.4, and have overlapping error bars with EPA-ng.
There are substantial differences in terms of running time,
with APPLES-2 by far the fastest and pplacer by far the
slowest. EPA-ng is the second slowest. In contrast, pplacer-
SCAMPP and EPA-ng-SCAMPP (which are nearly identical
in running time) are nearly as fast as APPLES-2. The meth-
ods also differ substantially with respect to memory usage,
with APPLES-2 the best, followed closely by pplacer-
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SCAMPF and EPA-ng-SCAMPP, and then by EPA-ng and
pplacer, which have about the same (large) memory usage.
Specifically, SCAMPF enables a large reduction in peak
memory usage for both pplacer and EPA-ng, from over
30Gb to under 3Gb on this dataset.

Results on the 78nt dataset (Fig. 4b) show somewhat
different trends. The first and most significant difference
is that neither pplacer nor EPA-ng were able to perform
the placements. On this dataset both pplacer and EPA-ng
failed to return a jplace file due to segmentation faults
(see Supplementary Materials, available online, Section
55). The comparison between the remaining methods
shows AFPLES-2 less accurate than EPA-ng-SCAMPF and
pplacer-SCAMPP, and with a small advantage to EPA-ng-
SCAMPP. The three methods are again distinguishable in
terms of runtime and memory usage, with APPLES-2 the
fastest and wusing the least memory. A comparison
between EPA-ng-SCAMPF and pplacer-SCAMPP shows
pplacer-SCAMPP slower than EPA-ng-SCAMPT but using
less memory.

4.3 Experiment 3: Evaluating SCAMPP on Very
Large Trees

Here we explore performance of phylogenetic placement

methods when the backbone trees are very large, using the

ENASim-V5 datasets with backbone trees ranging from 50K

to 200K leaves. There are five replicates each for trees with

S0K and 100K leaves and only one replicate with a tree of
200K leaves. For this study, we do not use either pplacer or
EPA-ng, as they fail to complete on the nt78 dataset, as
shown in Experiment 2.

4.3.1 Experiment 3a: Scalability in Placing Full-

Length Sequences

Placement error results on these data present interesting
trends (Fig. 5¢c). On the backbone trees with 50,000 leaves,
pplacer-SCAMPF has the lowest placement error, followed
by EPA-ng-SCAMPF, and then by APPLES-2. On the
100,000-leaf backbone trees, pplacer-SCAMPF again has the
lowest errar, and APPLES-2 and EPA-ng-SCAMPF have the
same higher error. Results on the 200,000-leaf backbone tree
show the same relative trends as on the 100,000-leaf back-
bone trees, but error rates have dropped somewhat for all
methods.

A comparison of methods with respect to running time
and memory usage is also interesting (Fig. 5c). APPLES-2 is
clearly the fastest of the three methods, followed by EPA-
ng-SCAMPT and then by pplacer-SCAMPP. Furthermore,
EPA-ng-5CAMPP and APPLES-2 are not very far apart in
terms of runtime on the 100,000-leaf tree and then identical
in running time on the largest tree with 200,000 leaves.
Memory usage also clearly favors APPLES-2, and the differ-
ences between EPA-ng-SCAMPP and pplacer-SCAMPP are
very small.
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4.3.2 Experiment 3b: Scalability of Fragmentary
Sequence Placement
We examined two lengths for the fragmentary sequences:
short fragments, averaging 154 nucleotides, and slightly
longer fragments, averaging 385 nucleotides. We refer to
the shorter sequence condition as HF (high fragmentary)
and the slightly longer fragments as LF (low fragmentary).
Results on the short fragments show very clear trends
(Fig. 5a). First, APPLES-2 has substantially higher delta
error than pplacer-SCAMPP and EPA-ng-SCAMPP for all
backbone tree sizes, and the difference between pplacer-
SCAMPP and EPA-ng-SCAMPP is very small. All three
methods have essentially the same running Hme for back-
bone tree size 50,000 but differences appear as the backbone
tree size increases so that APPLES-2 becomes the slowest of
the three methods, EPA-ng-SCAMPT and pplacer-SCAMPP

have close runtimes, with pplacer-SCAMPF slightly slower
than EPA-ng-5CAMPF on backbone tree size 100,000 and
then faster on backbone tree size 200,000. AFPPLES-2 and
pplacer-5CAMPP both have relatively low peak memory
usage at all sizes (though APPLES-2 uses more peak mem-
ory than pplacer'S5CAMPF on the larger backbone trees),
and EPA-ng-SCAMPP has by far the highest peak memaory
usage.

Results on the longer fragments show very similar
trends, but with a few differences (Fig. 5b). As with the
short fragments, APPLES-2 is the least accurate, and differ-
ences between pplacer-SCAMPP and EPA-ng-SCAMPP are
minor (though there is a small advantage to pplacer-
SCAMPP over EPA-ng-SCAMPP on the largest backbone
size). The same basic trends hold for running time, except
that pplacer-SCAMPP is the slowest of the three methods
until the largest backbone size, where it is faster than
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APPLES-2 but slightly slower than EPA-ng-SCAMPP. Peak
e usage is also slightly different, but EPA-ng-
SCAMPP is still by far the most memory-intensive.

Some other trends are also worth noting. First, delta
error rates drop with increases in the backbone tree
size, while runtime increases. The increase in runtime is
expected, but the decrease in delta error is surprising, and
worth further investigation. Interestingly, peak memory
usage is fairly constant as the backbone tree size increase
for EPA-ng-5CAMPP, but grows for pplacer-5CAMFF and
for APPLES. The impact of backbone tree size on peak
memory usage for APPLES-2 follows from its algorithm
design, but the differential impact on pplacer-SCAMFF
and EPA-ng-SCAMPT is somewhat surprising and worth
further investigation. We also see that error rates are
higher on the short fragments than on the long fragments,
which is also expected (since there is less information
available for placement).

4.3.3 Computational Scalability of pplacer-SCAMPP
We finish this section with a direct evaluation of how well
pplacer-SC AMPP scales in terms of runtime and memory
usage, by comparing runtime and memory usage on the
RMNASim-VS datasets for both full-length and fragmentary
sequences. The runtime of pplacer-SCAMPFP is close to
linear in the size of the backbone tree (Fig. 6), and a
detailed evaluation of the runtime of each step (Table 2)
shows that the time used by pplacer itself is constant
across all backbone tree sizes. We similarly see that the
peak memory usage does not increase with backbone tree
size (Fig. 5), suggesting that the maximum likelihood
phylogenetic placement method is likely the process
where the memory usage peaks, because the placement
tree within the backbone tree remains a fixed size within
our experiments. Overall, the computational scalability of
pplacer-5CAMPP is very good on these datasets, and sug-
gests the potential for being scalable to even larger back-
bone trees.
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5 Discussion

5.1 Impact of Using SCAMPP

In general, we find that SCAMPP improves computational
performance (both memory usage and running time) for
both phylogenetic placement methods, but the impact on
accuracy depends on the model condition and even
depends on whether pplacer or EPA-ng is used. We also see
that the relative accuracy and computational efficiency
{both speed and memory) compared to a leading fast phylo-
genetic placement method, APPLES-2, depends on the
model condition. We therefore begin with a discussion of
these trends.

Starting with a comparison between pplacer and pplacer-
SCAMPT, we note that on those datasets on which pplacer
could run, pplacer-SCAMFPT was always at least as accurate
as pplacer, often substantially more accurate, and was also
faster and had a smaller peak memory usage. We also see
that the subtree size, as defined by B, has a large impact on
pplacer: when B is very small (e.g., below 500 on the data-
sets in Experiment 1), delta error rates are high, then error
rates drop as B increases to (approximately) 2000, but as B
increases beyond that the error rates can become very high.
This is most noteworthy on the LTP_s128 SSU dataset,
where there is a very large increase in error at B = 8000.
This trend shows that pplacer accuracy degrades on very
large placement trees, which is an intriguing finding. Since
we also observed that pplacer can retum —oo values on
large backbone trees (Supplementary Materials, available
onling, Section 55 and Table 51), this suggests that the issue
is numerical. Taking these observations together, we infer
that pplacer has numerical issues that make it not work that
well (in terms of accuracy) on large placement trees, which
is why the use of SCAMPP improves accuracy. In other
words, the parameter B in the pplacer-SCAMPP pipeline
limits the size of the subtree into which pplacer is applied,
which eliminates {or at least reduces, depending on B) this
numerical instability. The advantage of pplacer-SCAMPP
over pplacer for accuracy, however, is not an inherent
aspect of pplacer, since addressing the numerical instability
of pplacer in a future implementation of pplacer may elimi-
nate the accuracy advantage (or even reverse it). Thus, the
main longterm advantage of pplacer-SCAMPF over pplacer
may be computational performance.

The comparison between EPA-ng and EFA-ng-SCAMPP
presents somewhat different trends. On those datasets
on which both methods run, we sometimes see EPA-ng
more accurate and sometimes less accurate than EPA-ng-
SCAMPFP; while these differences are small, the fact that
EPA-ng-SCAMPP can be less accurate than EPA-ng indi-
cates a noteworthy difference between EPA-ng and pplacer.
We also see that increases in B beyond 2000 has a small but
occasionally negative imapct on EPA-ng-5CAMPP. On the
other hand, EPA-ng can fail to run on some datasets due to
memory requirements. Owverall, these trends suggest that
EFP A-ng may not have the same numeric vulnerability as we
saw in pplacer (see Supplementary Materials, available
onling, Section 55 for additional discussion about this issue).
In sum, our study shows that EPA-ng can provide good
accuracy on those large backbone trees on which it can run,
and the benefit to using EPA-ng within the SCAMPP
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TABLE 2
Runtime Breakdown for pplacer-SCAMPP on Full-Length Sequences

EMNASIim Tree Size Time Per Process in Seconds

Loading Finding Extracting Running Backbone Total

Data Mearest Taxon Subtree pplacer Placement Runtime

50,000 3.24 388 0.37 20.21 0.06 27.76
100,000 664 6.43 0.48 20,29 0.07 33.91
200,000 13.37 10.60 0.80 20.33 0.09 45.19

framework may only be to enable it to run within the avail-
able computational resources.

SCAMPP has a larger beneficial impact, especially for
runtime and memory usage, for placing fragmentary
sequences than it does for full-length sequences, which is
also interesting. Spedfically, pplacer-SCAMPP and EFA-
ng-5CAMPP become much more computationally efficient
on fragmentary sequences compared to full-length sequen-
ces, while APPLES2 does not become more efficient on
fragmentary sequences. These reductions in runtime and
memory use are likely due to the masking techniques for
leading and trailing gaps used in the SCAMPP framework
as well as in EPA-ng and pplacer [10].

Owerall, therefore, using SCAMPP greatly reduced run-
time and memory usage for both pplacer and EPA-ng, and
either improved accuracy or at worst slightly decreased
accuracy; however, the decreases in accuracy were limited
to EPA-ng-SCAMPF. Moreover, there were many large
backbone trees on which neither pplacer nor EPA-ng could
run, and using SCAMPF enabled them to run and with low
memaory usage. Thus, there was always a benefit obtained
in using SCAMPPF in our experiments, but the type of bene-
fit and its magnitude depends on the placement method,
backbone tree, and query sequence length.

5.2 Choosing Between Phylogenetic
Placement Methods

This study establishes that pplacer-SCAMPP, EPA-ng-
SCAMPP, and APPLES-2 can be used on large backbone
trees, and that pplacer and EPA-ng are not as scalable as
these three methods. Here we discuss the question of which
of the three scalable methods should be used, and under
which conditions. A comparison between pplacer-SCAMPP
and EPA-ng-5CAMPFP shows little difference in terms of
accuracy, and differences for runbime and memory usage
that depend on the dataset. Here we examine the relative
performance of pplacer-SCAMPP and APPLES-2, as an
example of when this framework can be useful.

Throughout the datasets we studied, pplacer-SCAMPT
was more accurate than APPLES-2, but the degree of
improvement varied. With the exception of the RN ASim-VS
datasets with fragmentary sequences, APPLES-2 was faster
and had lower peak memory usage than pplacer-SCAMPT;
however, the gap narrowed for the largest backbone trees.
Thus, the choice between the two methods is fundamentally
a tradeoff between computational performance (generally
but not always favoring APPLES-2) and accuracy (favoring
pplacer-SCAMPP). When accuracy is very important, the
accuracy advantage may be large enough to merit the extra

computational hit in using pplacer-SCAMPF instead of
APPLES-2. However, the large difference in runtime under
many conditions suggests that for some applications (most
notably for microbiome analyses of millions of reads),
APPLES-2? will be the method of choice.

5.3 Related Studies

This work builds off of an earlier prototype [32], which
was limited to the SCAMPP framework's use with
pplacer, and only explored a single model condition
(RN Asim V5) with only full-length sequences. In the Sup-
plementary Materials, available online, Section 53, we
compare that implementation of SCAMPP to the current
implementation, demonstrating that the new implementa-
tion is much faster and has lower memory usage that the
initial implementation.

There are two relatively closed related approaches to the
SCAMPFP framework that require discussion: pplacerDC
[33] and the multilevel “Russian Doll” phylogenetic place-
ment technique [34]. We discuss each in furn.

The pplacerDC [33] technique employs a more exhaus-
tive approach than pplacer-SCAMPP, but also enables
pplacer to scale to larger backbone trees. In pplacerDC, the
backbone tree is divided (through edge deletions) into
placement subtrees with a bounded number of leaves, and
then the query sequence is placed into each of the placement
subtrees using pplacer. Each such placement is then embed-
ded in the full backbone tree, thus producing an extended
backbone tree, and the maximum likelihood score is esti-
mated (using the provided numeric parameters, which are
not re-optimized) using RAxML. The extended backbone
trees thus have all the taxa (including the query sequence)
and so can be compared to each other with respect to their
maximum likelihood scorves. The tree with the best likeli-
hood score is then refurned.

The shudy evaluating pplacerDC was limited to the
REMNASim V5 datasets, where it was shown to be able to scale
to backbone trees with 100,000 leaves. However, pplacerDC
failed on backbone trees 200,000 leaves and was extremely
computationally intensive on those datasets on which it
completed — with higher running time and peak memory
usage than pplacer-SCAMPP. Finally, pplacerDC was not
evaluated on datasets with fragmentary sequences. Since
both methods have been run on the same datsets (RNASIim-
V5 with full-length sequences), the compadson shows that
pplacerDC is slower, has higher delta emor (eg., about
twice as high on the 100,000-leaf backbone tree), and higher
peak memory usage. To understand the differences in run-
tme and peak memory usage, recall that pplacerDC
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requires that the query sequence be placed into all the place-
ment subtrees created by the decomposition, which makes
the runtime increase linearly with the backbone tree size
(unless run with unbounded parallelism). There is also a
memory and runtime hit produced by the use of RAxML to
compute the likelihood score of each extended tree (and the
number of these trees grows linearly with the size of the
backbone tree). This discussion shows that by design ppla-
cerDC is more computationally intensive than pplacer
SCAMPP, and that this additional expense will be seen on
any dataset, not just the RNASIim-VS datasets.

Another useful strategy for addressing the limited scal-
ability of phylogenetic placement methods with respect to
the backbone tree size is the multilevel placement method
[34] that is also available within the GAPPA suite of tools
[35]. The multilevel “Russian Doll” placement approach
is described for use with a taxonomy (on a carefully
selected set of sequences), but the general technique can
be extended for use with any rooted tree. A sparse but
representative subset of leaves from the rooted tree is
selected, and is then used as the backbone tree (where it
is referred to as a “broad backbone tree” (BT)). A phylo-
genetic placement method is then used to place the query
sequence into the BT, which allows it to identify the best
clades (rooted subtrees) for more careful exploration. The
query sequence can then be placed in each of the clades,
and the best placement(s) for each query sequence can be
identified. By design, this multi-stage process reduces the
need to place into the full backbone tree, and so reduces
the computational effort for phylogenetic placement. The
approach is very different from ours in a few ways, but
the main difference is that it requires rooted trees. Never-
theless, it is a very interesting approach, and extending
this technique to work with unrooted trees merits
investigation.

5.4 Other Future Work

In previous sections we have identified some directions for
future work. Here we discuss additional opportunities for
developing the approach we have described here, as well as
alternative approaches.

Improving the SCAMPP Design. The current SCAMPP
strategy places a query sequence by finding a nearest taxon
(iLe., a leaf that has minimum Hamming distance to the
query sequence} and then extracks a subtree with B leaves
using that leaf. Thus, the current strategy has only one algo-
rithmic parameter (B) beyond the choice of the placement
method. Our default is B = 2000, but Experiment 1 and our
additional evaluations reported in the Supplementary Mate-
rials, available online, Section 56 and Fig. 54) suggested the
possibility that the optimal setting for B might depend both
on the dataset properties and on the phylogenetic place-
ment method. In particular, if accuracy is the most impor-
tant objective, then it seems possible that larger values of B
might improve accuracy for EPA-ng-5CAMPP, and that
very small values might suffice for sufficiently “easy” data-
sets. Hence a better understanding of the impact of dataset
properties on this parameter selection is needed. Moreover,
our placement subtree construction approach is very sim-

ple, and it is possible that other techniques for extracting a
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placement subtree might provide improved accuracy com-
pared to this technique, even if the runtime and memory
usage does not change.

We also note that EPA-ng has been optimized for placing
large numbers of query sequences into backbone trees. This
is an advantage for EPA-ng that is not enabled in the
SCAMPP framework, which gives the placement method a
different subtree for each query sequence. In order to take
advantage of the batch processing offered by methods such
as EPA-ng a different divide-andconguer framework
would need to be explored.

Additional Evaluation. More generally, a full evaluation
of the SCAMPP phylogenetic placement approach
requires additional study. We performed a leave-one-out
study, but a more extensive analysis including leave-
clade-out study should be explored. We also did not
explore the impact of alignment error in the phylogenetic
placement pipeline, and so this should also be examined.
Finally, we explored pplacer-SCAMPP and EFA-ng-
SCAMPPT in the context of growing a large tree, but they
should also be evaluated for use in microbiome abun-
dance profiling and taxon identification, as some of the
most accurate such methods use phylogenetic placement.
Thus, there are several directons for future work that
have the potential to lead to improved understanding of
how to design phylogenetic placement methods for use in
different downstream applications.

6 CONCLUSION

Phylogenetic placement is a basic computational step in sev-
eral bipinformatics pipelines, including incremental con-
strucion of wvery large phylogenies and taxomomic
identification of reads obtained in metagenomic analyses.
Of the many phylogenetic placement methods that have
been developed, methods that use maximum likelihood,
such as pplacer and EPA-ng, has been found to be the most
accurate. Unfortunately, these likelihood-based methods
are difficult to use with moderately large backbone trees
(i.e., they can fail to return valid outputs or may have exces-
sive memory requirements), which has meant that other
phylogenetic placement methods are necessary. Methods
such as APPLES-2 use distance-based techniques to perform
phylogenetic placement, and are particularly fast and scal-
able; howewver, this and other studies have shown distance-
based placement to not provide the same level of accuracy
as likelihood-based methods.

We have presented the SCAMPP framework, a three-
stage procedure for scaling alignment-based phylogenetic
placement methods. We evaluated the SCAMPP framework
for use with two such methods, pplacer and EPA-ng. Our
study showed that using SCAMPTP allowed both pplacer
and EPA-ng to scale to backbone trees with 200,000 leaves
without high peak memory requirements, thus greatly sur-
passing the limitations of these methods when used outside
the framework. For those datasets on which pplacer could
run, we also saw that pplacer-SCAMPP had better accuracy
than pplacer, was faster, and used less peak memory. While
EPA-ng-SCAMPP was sometimes less accurate than EPA-
ng, those reductions in accuracy tended to be small and the
improvement in running time and peak memory usage was
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very high. Thus, in general SCAMPP provides computa-
tional benefits to both methods and either improves accu-
racy (for pplacer) or has a variable impact (for EPA-ng) that
tends to be minor,

One of the interesting trends we saw in this study is that
although pplacer-SCAMPP improved on APPLES-2 for
accuracy in all the cases we evaluated, the differences in
some cases were extremely small; furthermore, in nearly all
cases, APPLES-2 was the fastest and least memory-intensive
method. Thus, it is not at all obvious that any one method
dominates the others. This is particularly important, given
that computational performance may be a limiting factor,
making it by necessity a requirement to use the fastest
method, or the least memory-intensive method, on a given
dataset. In considering the different factors that impact
accuracy and runtime/memory usage, we suggest that
APFLES-2 be used when highly accurate phylogenetic
placement seems likely, as it tends to be the most computa-
Honally efficient, but that pplacer-SCAMPF or EPA-ng-
SCAMPP be used under other conditions. In particular,
there may be a benefit to using pplacer-SCAMPT or EPA-
ng-SCAMPP instead of APPLES-2 when the query sequen-

ces are short, as is typical in metagenomic datasets.
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