
LEAFWISE QUASIGEODESIC FOLIATIONS IN DIMENSION
THREE AND THE FUNNEL PROPERTY
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Abstract. We construct one dimensional foliations which are subfoliations of two
dimensional foliations in 3-manifolds. The subfoliation is by quasigeodesics in each
two dimensional leaf, but it is not funnel: not all quasigeodesics share a common
ideal point in most leaves.

1. Introduction

The goal of this article is to analyze whether certain geometric conditions imply
that a one dimensional foliation in a 3-manifold is the foliation by flow lines of a topo-
logical Anosov flow. We do this analysis for one dimensional foliations whose leaves
lie inside leaves of two dimensional foliations and whose leaves are quasigeodesics in
these two dimensional foliations. In other words the goal of this article is to analyse
whether some strictly geometric behavior implies strong dynamical systems behavior
in this setting. This has important connections with partial hyperbolicity in dimen-
sion 3.

A foliation G subfoliates a foliation F if each leaf of F has a foliation made up of
leaves of G. We call G the subfoliation and F the super foliation. This situation is
very common, for example if F1 and F2 are two foliations which are transverse to
each other everywhere, then their intersection forms a subfoliation of each of them.
This article aims to study geometric properties of leaves of subfoliations inside the
leaves of the super foliation.

One very common and extremely important example is the following: let Φ be an
Anosov flow and let Fws,Fwu be the weak stable and weak unstable foliations of Φ
[Ano63, KH95]. Then Fws,Fwu are transverse to each other ´ the intersection is the
foliation by flow lines of Φ which is a subfoliation of each of them. This example
has connections with geometry or large scale geometry: the leaves of Fws,Fwu are
Gromov hyperbolic. In rough terms this means that they are negatively curved.
The subfoliation by flow lines in, say Fws, satisfies an additional strong geometric
property: in each leaf of Fws the flow lines are quasigeodesics. This means that when
lifted to the universal cover of the leaves, the flow lines are uniformly efficient up to
a bounded multiplicative distortion in measuring length in the weak stable leaves.
In other words the flow lines are quasi-isometrically embedded in these weak stable
leaves. The quasigeodesic property has many important consequences, for example
the flow lines are within bounded distance from length minimizing geodesics when
lifted to the universal cover of their respective weak stable leaves ([Thu82, Thu97,
Gro87]). Hence the flow lines have well defined distinct ideal points in the Gromov
boundary of the weak stable leaves in both directions. These properties and others
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are very strong and useful in many contexts. Obviously this also works for the flow
subfoliation of the weak unstable foliation.

A (one dimensional) subfoliation made of quasigeodesics in the leaves of a super
foliation by Gromov hyperbolic leaves is called a leafwise quasigeodesic foliation.

The Anosov case has an additional geometric property: in (say) a weak stable leaf
all flow lines are forward asymptotic, this is a defining property of the weak stable
foliation. In particular all flow lines in a given weak stable leaf have the same forward
ideal point in the ideal boundary of the weak stable leaf (when lifted to the universal
cover).

When all leaves of a leafwise quasigeodesic subfoliation in a leaf of the super foli-
ation have a common ideal point we call that leaf a funnel leaf. If all leaves of the
super foliation are funnel leaves then the leafwise quasigeodesic foliation is said to
have the funnel property.

The motivation for this article is the following question: is the funnel property an
additional property or is it a consequence of the leafwise quasigeodesic property? The
importance of this is the following: in dimension 3 we have a much stronger connection
between some of these properties as follows. Suppose that G is a leafwise quasigeodesic
foliation (which is a one dimensional subfoliation of a two dimensional foliation) which
has the funnel property. The ambient manifold is 3-dimensional. Suppose that the
foliation G is orientable, or in other words it is the foliation of a non singular flow.
Then one can prove (we refer to [BFP20] for definitions of the terms used here and
for detailed proofs) that the flow in question is expansive. This implies that the flow
is a topological Anosov flow ([IM90, Theorem 15.], [Pat93, Lemma 7]). If the flow is
transitive (the union of periodic orbits is dense) then the topological Anosov flow is in
addition orbitally equivalent to a (smooth) Anosov flow ([Sha20]). This means that
if the leafwise quasigeodesic property implies the funnel property, then this purely
geometric condition implies a very strong dynamical systems property: the foliation
is the flow foliation of an Anosov flow, up to topological equivalence..

In this article we prove that the funnel property is not a consequence of leafwise
quasigeodesic behavior:
Theorem 1.1. There are examples of leafwise quasigeodesic foliations in dimension
3 which do not have the funnel property.

We now briefly explain one class of examples: start with the Franks-Williams
example of a non transitive Anosov flow Φ. This is obtained as follows: start with
a suspension Anosov flow and do a DA (derived from Anosov) blow up of a periodic
orbit transforming it into (say) a repelling orbit α. Remove a tubular neighborhood
of α so that the resulting semiflow is incoming in the complement of the removed
tubular neighborhood of α. Glue this manifold with boundary with a copy of it
which has a reversed flow. One fundamental result is that the ensuing flow Φ in the
final manifold M is Anosov [FW80, BBY17]. This holds for certain isotopy classes
of gluings and certain gluing maps satisfying transversality conditions. These were
the first examples of non transitive Anosov flows in dimension 3. Our examples use
this flow. There is a smooth torus T in M transverse to the flow. There is a single
two dimensional attractor and a single two dimensional repeller of the flow Φ in M .
Start with a one dimensional foliation Z in T which is transverse to the intersections
of both the weak stable and the weak unstable foliations of Φ with T . Saturate Z by
the flow producing a collection of two dimensional sets embedded in M. The flow
saturation of T is an open subset V of M , and the collection of the two dimensional
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subsets described is a two dimensional foliation in V . In addition V is exactly the
complement of the union of the attractor and the repeller of Φ. Complete the foliation
in V to a foliation F in M which is the weak unstable foliation of Φ in the attractor
of Φ and the weak stable foliation in the repeller of Φ. The proof that this is in fact
a foliation of M depends on a careful choice of the one dimensional foliation Z in
T . There is a subtle point here in that if one chooses an arbitrary foliation Z in T ,
then when lifting to ĂM the lifted sets may not be properly embedded in ĂM and so
F would not be a foliation in M. This is carefully analyzed in section 3 and there
we prove that for appropriate choices of Z the object F we construct is a foliation.
The super foliation is this two dimensional foliation F . The subfoliation G of F is
the foliation by flow lines of Φ. Each leaf of F is saturated by flow lines. We prove
that G is a leafwise quasigeodesic subfoliation of F , but G does not have the funnel
property. There is an Anosov flow Φ in this example, however notice that the super
foliation F is neither the weak stable nor the weak unstable foliation of Φ, but rather
a different foliation. In fact in the same way one can construct an infinite number
of inequivalent examples with the same starting flow Φ. The foliations are pairwise
distinguished because of how they intersect the torus T in foliations which are not
equivalent.

In this article we consider more general examples. We prove that one can construct
examples starting with any non transitive Anosov flow Φ in dimension 3 so that all
the basic sets have dimension 2. As in the case of the Franks-Williams example, we
construct super foliations which have Gromov hyperbolic leaves and whose leaves are
saturated by flow lines of Φ. We show that the subfoliation G by flow lines of Φ is
by quasigeodesics in each leaf of the super foliation F . This is the hardest step to
prove. This involves a very careful analysis of the geometry in these examples. The
proof that G is not funnel is simpler than proving it is leafwise quasigeodesic as a
subfoliation of F .

We finish this introduction mentioning another reason why we analyzed this ques-
tion: this comes from partially hyperbolic dynamics. Let f be a partially hyperbolic
diffeomorphism in a closed 3-manifold M (we refer to [BFP20] for definitions and
properties of partially hyperbolic diffeomorphisms). Under very general orientability
conditions, there is a pair of transverse two dimensional branching foliations (center
stable and center unstable foliations) associated with the partially hyperbolic dif-
feomorphism which intersect in an one dimensional branching foliation, called the
center foliation [BI08]. The center foliations subfoliates both the center stable and
center unstable foliations. In some situations ([BFP20]) it is shown that the center
foliation is a leafwise quasigeodesic subfoliation of both the center stable and cen-
ter unstable foliations. But in [BFP20] it is proved that in the partially hyperbolic
setting the leafwise quasigeodesic property implies that the center foliation has the
funnel property (as a subfoliation of both super foliations). The proof of this also
uses dynamical systems properties, namely partial hyperbolicity. An open question
from the article [BFP20] was to whether the funnel property could be derived strictly
from the leafwise quasigeodesic property in (say) the center stable foliation. In this
article we prove that this is not the case, by constructing counterexamples for general
foliations.
Acknowledgement: We thank Rafael Potrie for providing a crucial idea which

greatly simplified the proof of Lemma 3.2.
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2. Preliminaries

A C1-flow Φt : M Ñ M on a Riemannian manifold M is Anosov if the tangent
bundle TM splits into three DΦt-invariant sub-bundles TM “ Es ‘ E0 ‘ Eu and
there exists two constants C, λ ą 0 such that

‚ E0 is generated by the non-zero vector field defined by the flow Φt;
‚ For any v P Es and t ą 0,

||DΦtpvq|| ď Ce´λt||v||

‚ For any w P Eu and t ą 0,

||DΦtpwq|| ě Ceλt||w||

The definition is independent of the choice of the Riemannian metric ||.|| as the
underlying manifold M is compact. For a point x P M, the set γx “ tΦtpxq|t P Ru
is called the flow line of x. The collection of all flow lines of a flow defines a one-
dimensional foliation on M. For an Anosov flow there are several flow invariant
foliations associated to the flow and these foliations play a key role in the study of
Anosov flows.

Property 2.1 ([Ano63]). For an Anosov flow Φt on M, the distributions Eu, Es,
E0 ‘ Eu and E0 ‘ Es are uniquely integrable. The associated foliations are denoted
by Fu, F s, Fwu and Fws respectively and they are called the strong unstable, strong
stable, weak unstable and weak stable foliation on M.

For the remainder of this article we will assume that M is a closed three
dimensional Riemannian manifold.

We also assume that M is equipped with an Anosov flow Φt and rΦt is the lift of
the flow Φt in ĂM, the universal cover of M. The strong unstable, strong stable, weak
unstable and weak stable foliation of rΦ are the lifts of the foliations Fu, F s, Fwu and
Fws in the universal cover ĂM, and these foliations in ĂM are denoted by rFu, rF s, rFwu

and rFws respectively.
A map f : pX1, d1q Ñ pX2, d2q is called a pK, sq-quasi-isometric embedding if there

exits K ą 1 and s ą 0 such that for all x, y P X1

1

K
d1px, yq ´ s ď d2pfpxq, fpyqq ď Kd1px, yq ` s

A pK, sq-quasigeodesic in X is the image of a pK, sq-quasi-isometric embedding
γ : ra, bs Ñ X where ra, bs is a closed interval on R with the Euclidean metric. The
interval could be infinite (that is a “ ´8, b “ 8 or both), in which case the notation
would be of a half open or open interval. If we have a map R Ñ X with rectifiable
image we consider the arclength metric in the domain R.

Lemma 2.2. Flow lines on the leaves in rFws and rFwu are quasigeodesics with respect
to the metric induced from ĂM in their respective leaves.

Proof. Reparametrize the flow to have unit speed. The new flow is still Anosov
[Ano63] with the same flow lines and the same weak stable and weak unstable folia-
tions. However the strong stable and strong unstable leaves may change.

Any leaf L of rFwu is subfoliated by rFu and by the flow lines, these two foliations
are transversal to each other. We can define a metric ds1 on L by ds1 “ dw`dy where
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dw measures length along flow lines and dy measures length along unstable curves.
Suppose ds is the Riemannian metric induced on Lwu from ĂM. The two path metrics
induced in L from ds1 and ds on are uniformly quasi-isometric to each other [Fen94].
Moreover each flow line in the leaf L is a length minimizing curve in the ds1 metric,
hence flow lines are uniform quasigeodesics with respect to the metric induced by
ds. Similarly it can be shown that flow lines on leaves in rFws are quasigeodesic with
respect to the induced metric on their respective leaves. �

Definition 2.3. Suppose F is a two dimensional foliation on M with Gromov hyper-
bolic leaves when lifted to the universal cover. Suppose that G is a one dimensional
foliation on M which subfoliates F . In this situation we say that leaves of G are
leafwise quasigeodesic in F if every leaf of G is a quasigeodesic in the respective leaf
of F containing it when lifted to the universal cover of the leaf. In that case we say
that G is a leafwise quasigeodesic subfoliation of F .

In Lemma 2.2 the flow lines of Φt are shown to be leafwise quasigeodesics in the
leaves of Fws and Fwu.

The leaves in rFws and rFwu are Gromov hyperbolic with respect to the Riemannian
metric on the leaves induced from the metric on ĂM [Fen94]. Suppose that L is a
leaf either in rFws or in rFwu. As the leaves are Gromov hyperbolic, we can define the
ideal boundary of L which is homeomorphic to the circle and we denote it as S1pLq.
The compactification LY S1pLq is homeomorphic to a closed disk. As the flow lines
are quasigeodesics in L, they define two distinct ideal points on S1pLq: If γ is a flow
line in L then the forward ray of γ defines an unique ideal point on S1pLq as γ is a
quasigeodesic, which is called the forward or positive ideal point of γ. Similarly we
define the backward or negative ideal point as the limit of the ray in the backwards
direction. The following statement describes the equivalence between the forward
and backward flow rays in the leaves of rFws and rFwu and the points on their ideal
boundaries.
Property 2.4 ([Fen94]). For a leaf L either in rFws or rFwu, all the points on S1pLq

correspond to forward or backward flow rays on L. If L P rFws then all the flow lines
on L have a common forward ideal point and all the other ideal points are backward
ideal points on S1pLq of the flow lines. No two different flow lines define a common
negative or backward ideal point.

If L P rFwu then all the flow lines have a common backward ideal point and all the
forward flow lines defines all the other ideal points on S1pLq. No two different flow
lines define the same positive or forward ideal point.

The property for forward ideal points in rFws is immediate as these flow lines
are forward asymptotic, a direct consequence of the definitions. The property for
backward ideal points in leaves of rFws is not as immediate and is proved in [Fen94].
Definition 2.5. Suppose that G is a leafwise quasigeodesic subfoliation of F . If a
leaf L of rF has all leaves of rG in it sharing a common ideal point then the projected
leaf πpLq of F in M is called a funnel leaf. In this case the common ideal points
shared by all the flow lines in L is called the funnel point of L.
Corollary 2.6. By property 2.4, for an Anosov flow Φt on a three manifold M, with
the flow foliation a leafwise quasigeodesic subfoliaton of both Fws and Fwu the follow-
ing happens: all the leaves in weak stable foliation Fws and weak unstable foliation
Fwu are funnel leaves as shown in figure 1.
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(a) leaves in rFwu (b) Leaves in rFws

Figure 1. Geometry of flow lines on the leaves in rFwu and rFwu

Basic sets of Anosov flows on three manifolds: The Anosov flow Φ is called
transitive if there exists a flow line γ dense in M, otherwise the flow is non transitive.
The first example of a non transitive Anosov flow was constructed by John Franks
and Bob Williams in their 1980’s article [FW80].

A point x P M is called nonwandering if for any open neighborhood U of x and
any t0 ą 0, there exists t ą t0 such that ΦtpUq XU ‰ H, the set of all nonwandering
points is denoted by ΩpΦq. For a non transitive Anosov flow Φt the nonwandering set
ΩpΦq is not equal to the whole manifold M and according to Spectral Decomposition
Theorem [Sma67], ΩpΦq is decomposed into finitely many closed, disjoint, Φt-invariant

and transitive basic sets tΛi, i “ 1, ..., nu, so ΩpΦq “
n
Ů

i“1

Λi.

Suppose Λ is a basic set of a non transitive Anosov flow Φt on a three manifold.
Then Λ can be characterised in four different types [Sma67, Bru93],

‚ dimpΛq “ 2 and the basic set Λ is an attractor, i,e. there exists an open set
U containing Λ such that

Ş

tą0

ΦtpUq “ Λ.

‚ dimpΛq “ 2 and the basic set Λ is a repeller, i,e Λ is an attractor for the
reversed flow Ψt “ Φ´t.

‚ dimpΛq “ 1 and Λ is a saddle with local cross section a Cantor set.
‚ dimpΛq “ 1 and λ is a hyperbolic periodic orbit.

Property 2.7. If Λ is an attractor then Λ is saturated by weak unstable leaves. If
Λ is a repeller then Λ is saturated by weak stable leaves.

From now on we assume the following:

Assumption 2.8. We assume throughout that the Anosov flow Φ on M is non
transitive and its nonwandering set Ω consists of two dimensional basic sets only.
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In other words we assume that Φ has no one dimensional basic set. As M is
compact there exits at least one attracting basic set and one repelling basic set.
Suppose A denotes the union of all attracting basic sets and R denotes the the union
of all repelling basic sets. We will denote the collection of all lifts of A in ĂM by rA.
rA is the the attracting set for rΦt defined on ĂM. The union of all lifts of R is denoted
by rR similarly.

Property 2.9. [KH95] Suppose γ is a flow line not contained in A or R. Then there
exists a flow line in A, say α, such that the forward rays of γ and α are asymptotic
in M. Similarly there exits a flow line β in R such that the backward rays of γ and
β are asymptotic in M.

Proof. This is classical [KH95], we explain briefly. Given the orbit γ it gets closer
and closer to the attractor A in future time. Fix x in γ. Every point in the attractor
has a local product structure, see for example Proposition 6.4.21 of [KH95]. Hence
for a t sufficiently big Φtpxq is ε near the attractor where ε is smaller than the size
of product boxes of the hyperbolic set A. Hence Φtpxq is ε near some point z in A
and there is w in A near z so that Φtpxq is in the stable manifold of w because of the
local product structure in sets of size ε. This proves the result. �

The attractor is saturated by leaves of Fwu and the repeller saturated by leaves of
Fws. In the property above, one can choose the flow line α in the attractor A to be
in the boundary of the attractor. This means the following: let x P α and L the Fws

leaf through x. Let D be a small disk in L with x in the interior. The local flow line
of x cuts D into two components D1, D2 (which are also disks). The condition is that
one of D1 or D2 does not intersect the attractor A. Suppose it is D1. The “D1 side”
of α in L is the side so that γ is getting closer and closer to α.

3. The foliation F

Throughout the article we will fix a non transitive Anosov flow Φ as in the previous
section, that is, Φ has only two dimensional basic sets.

To prove our results we will consider a two dimensional foliation F in M such that:
‚ on the attractor A, F |A “ Fwu|A
‚ on the repeller R, F |R “ Fws|R
‚ on MztAYRu, F is transversal to both Fws and Fwu.
‚ every leaf L P F is subfoliated by the flow lines of Φ, i,e every leaf L is

ΦR-invariant.
We will denote the lift of F in the universal cover ĂM by rF . Leaves of rF in rA and
rR look like the leaves in figure 1. Leaves in ĂMzp rA Y rRq are described in figure 2.
It is not immediate from definition why the leaves not contained in rA and rR are as
described in figure 2, we will prove this later in this article.

Theorem 3.1. There are foliations F with the properties described above.

Proof. We start with an Anosov flow as described above. For simplicity assume that
M is orientable as well. There is a collection of disjoint tori tTiu transverse to the
flow Φ which separate the basic sets [Sma67, Bru93]. We choose Ti to be smooth.
The collection of tori is supposed to be minimal with the property that if an orbit is
not in R or A then it intersects one of the tTiu. Let γ be such an orbit intersecting
a specific Ti, let x be a point in the intersection. Then the forward orbit of x is
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Figure 2. An example of a leaf L P rF not contained in rA or rR.
In R1 forward rays are asymptotic to rA; in R3 backward rays are as-
ymptotic to rR; R2, the blue line, represents the intersection of L with
some lift rTi of some torus Ti.

asymptotic to a component A of the attractor A ´ this uses the fact that there are
no one dimensional components of the non wandering set of Φ. The set of such x
so that the forward ray of x is asymptotic to A is open in Ti. This holds for any
component A of the attractor A. Since the union over such components of A is all
of Ti and Ti is connected, it follows that all orbits in Ti are forward asymptotic to a
single component A of A.

In a similar way one proves that if T1, T2 are tori contained in the complement of
the union of the attractor and repeller, and T1, T2 intersect a common orbit of Φ,
then T1, T2 intersect exactly the same set of orbits of Φ. In other words, if B is a
component of M ´ pAYRq, then there is a torus T contained in B, transverse to Φ
so that B is the flow saturation of T . Hence we can choose a minimal collection tTiu
of tori transverse to Φ and intersecting all orbits in the complement of A YR, and
any such orbit intersects a unique Ti and only once.

Construction of F
Now we construct the foliation F . The foliations Fws,Fwu are C1 [KH95], and so

are the intersections with each Ti. On each Ti choose a one dimensional C1 foliation
Fi transverse to both

Fws
X Ti, and Fwu

X Ti.

Saturate Fi by the flow to produce a two dimensional foliation in the flow saturation
of Ti. Let F be this foliation in the complent of the attractor union the repeller.
Figure 2 describes a possible leaf in the lift rF of F to ĂM; where R2, the blue line,
represents its intersection with some lift of Ti. The figure depicts the following several
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properties that we are going to prove later and that are essential to the results of this
article: 1) We will show later that leaves of rF are Gromov hyperbolic, 2) We will
also show that for L P rF not in the lift of the attractor or repeller then each flow ray
in L converges to a single point in S1pLq, and that distinct flow rays do not forward
converge to the same ideal point in S1pLq. Similarly for backward flow rays.

A flow line that does not intersect any Ti has to be either in the attractor (A) or
the repeller (R). We define F to be Fwu in the attractor, Fws in the repeller, and
the saturation of the Fi everywhere else.

We claim that F is a foliation. Clearly it is a foliation in the complement of the
union of the attractor and the repeller, because this is an open set and because of
the definition of F : each component C of MzpAYRq is equal to ΦRpTiq for some Ti
and this is homeomorphic to TiˆR with the product topology (the topology in Ti is
induced from M). The foliation F in C is equivalent to the foliation FiˆR in TiˆR.

There is a subtle point here. Let rF be the lift of F to M. If F is a foliation,
then rF is a foliation of ĂM by properly embedded planes. By construction the leaves
of F intersecting the attractor are contained in the attractor and similarly for the
repeller. Therefore the leaves of F in the complement of AYR are entirely contained
in the complement of A YR as well. In particular if L is a lift of a leaf of F in the
complement of the attractor and repeller, then it should be properly embedded in ĂM.
As it turns out this property is not true if one starts with an arbitrary foliation Fi in
Ti. Let us review the construction: we start with a foliation Fi in Ti and saturate it
by the flow to produce a foliation in an open set in M. Then consider a lift L of a
leaf of this foliation to the universal cover. Is L always properly embedded in ĂM? In
general this is not true. For example start with the Franks-Williams non transitive
flow [FW80], consider a smooth torus T which separates the attractor and repeller
and start with say the intersection of the unstable foliation of Φ with T , which we
call F . Then for some of the leaves of F , it follows that if L is a lift of the flow
saturation to ĂM, then L is not properly embedded in M. For example [FW80, Fig.
3, page 164] depicts the foliations induced by the weak stable and unstable foliations
in T for the Franks-Williams flow. Each has two Reeb components. Take α to be a
leaf of the unstable foliation which is not in the interior of a Reeb component, that is
a horizontal line in the figure. Lift it to rα in ĂM. If C is the flow saturation of rα, then
C is not properly embedded in ĂM: there is an orbit γ of rΦ which is not in C but is
contained in the closure of C. This orbit γ is the lift of a periodic orbit contained in
the attractor of the Franks-Williams flow.

The reason why our construction of a foliation F as above works is because we
start with a foliation Fi which is transverse to both the stable and unstable foliations
in Ti. We state this as a separate result.

Lemma 3.2. Let ` be a leaf of Fi and let L be a lift to ĂM of the flow saturation of
` in M. Then L is a properly embedded plane in ĂM.

Proof. Let E be the flow saturation of `. Since ` is smooth and the flow is C1 it
follows that E is C1. For any x, y in ` if

Φtpxq “ Φspyq,
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then x “ y and t “ s, since the component of M ´ pA YRq containing ` is home-
omorphic to T ˆ R and ` is injectively immersed in T . Hence E is parametrized as
`ˆ R, that is every point p in E can be represented as px, tq where x P ` and t P R .

The Riemannian metric in M induces a Riemannian metric in E and a path metric
in E. We show that with this path metric E is complete. In particular this implies
that the lift L to ĂM is a properly embedded plane. What we prove is the following:

Claim 0. There is a0 ą 0 so that any point p “ px, tq in E is the center of a metric
disk of radius a0 in E.

Proof. This is obvious for any point p in ` or in other words if t “ 0.
We now prove the claim for t ą 0 using the unstable foliation. The analogous proof

shows the result for t ă 0 using the stable foliation. The foliation Fi is transverse to
both the stable and unstable foliations induced in Ti, hence uniformly transverse to
these foliations. Given any smoothly embedded curve α inM let lupαq be its unstable
length: we integrate only the component of the tangent vector in the direction of the
unstable bundle. For example if α is contained in a weak stable leaf then lupαq is
zero, while if α is contained in a strong unstable leaf then lupαq is the same as its
length under the Riemannian metric of M. In particular if α is a curve not contained
in a strong stable or unstable leaf, then original length lpαq is always strictly greater
than the unstable length lupαq.

By the definition of an Anosov flow, there exist constants C ą 0, λ ą 1 such that
if we flow forward a segment with t amount of time, the new unstable length is at
least Cλt-times of the original unstable length. Hence if we let a1 “ C then for any
smooth segment, any flow forward of that segment has unstable length which is at
least a1 times of the original unstable length.

Since Fi is uniformly transverse to Fws X Ti by our construction, it follows that
any point x in Ti is the midpoint of a segment β in its leaf of Fi of unstable length
2. For any t ě 0 the unstable length of Φtpβq is at least 2a1. This constant a1 is
defined globally. In addition if v is a non zero vector tangent to β then v makes a
definite positive angle with the flow direction. Since flowing forward increases the size
of unstable vectors more than the size of tangent vectors (for t ą t0 ą 0) it follows
that there is a global constant θ ą 0 so that DΦtv also makes an angle ą θ with the
tangent to the flow. Consider the infinitesimal arclengths dt, ds, du along the flow,
stable and unstable bundles. The (non Riemannian) metric

|dt| ` |ds| ` |du|

is quasicomparable with the Riemannian metric inM : there is a2 ą 0 so that the Rie-
mannian length is at least a2 times the length in this metric. Consider the following
set:

A “ Φrt´1,t`1spβq

for t ě 0. The segment β of Fi is contained in the leaf E of F . From any point in
the boundary of A to Φtpxq along E one has to have at least a1 unstable length, and
flow length of at least 1. It follows that there is a global constant a0 (depending only
on a1) so that A contains a disk in the Riemannian metric, of radius a0 and centered
at Φtpxq.

For t ă 0 we use the stable foliation and flow backwards instead of forwards.
This finishes the proof of the claim. �
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The claim shows that E is complete and finishes the proof of the lemma. �

Proof of Theorem 3.1 ´ We consider a foliation F as constructed in the beginning
of this section. This object F is a foliation restricted to M´pAYRq, and this is an
open set. The leaves of F in this set lift to properly embedded planes in ĂM by Lemma
3.2. It follows that rF describes ĂM as the disjoin union of properly embedded planes
which form a foliation in the complement of the lift of the union of the attractor and
the repeller.

The only remaining thing to prove is that if a sequence xn inM´pAYRq converges
to x in AYR then the leaves of F through xn converge to the leaf of F through x.
Without loss of generality we may assume that x is in the attractor.

Let pn P Ti so that xn are in ΦRppnq. There are tn P R with xn “ Φtnppnq. Since x
is in the attractor then tn converges to positive 8. The leaf of F through pn is the Φ
flow saturation of the leaf of Fi through pn. The tangent to this two dimensional set
through pn is generated by the Anosov vector field generating Φ and a tangent vector
v to Fi at pn. The leaf of F is Φ-flow invariant. Flowing forward, the flow vector
remains invariant. The vector v is transverse to the weak stable foliation and hence it
flows more and more to the weak unstable direction. So flowing forward these leaves
become more and more tangent to the E0 ‘ Eu bundle, and limit to leaves of Fwu.
Since flowing forward limits to the attractor, this shows that the leaves of F through
xn converge to the leaf of F through x. This shows that F defines a foliation. This
finishes the proof of Theorem 3.1. �

We remark that the construction of F highlights why our methods do not work
when there are one dimensional basis sets. For simplicity suppose that there is a
basic set which is a periodic orbit γ. There is a torus T so that negative saturation
limits on γ. If we start with F in T transverse to both Fws X T and Fwu X T then
flowing backwards will make it limit to the weak stable leaf of γ. So the weak stable
leaf of γ is in the collection F so constructed. But there is also a torus T 1 so that
the forward flow saturation limits on γ. The similar argument shows that the weak
unstable foliation of γ also has to be in the collection F . Hence the collection F has
sets which intersect transversely and cannot be a foliation.

The structure of the proof of Theorem 1.1 is as follows: We will prove the following
properties for such a foliation F :

(1) The flow lines are leafwise quasigeodesics in leaves of F ,
(2) Every leaf of F not contained in A or R is a non funnel leaf as in figure 2.

4. Gromov hyperbolicity of the Leaves of F

We will consider a foliation F as constructed in the previous section.
In this section we will show that there exists a Riemannian metric g such that every

leaf of the foliation F is Gromov hyperbolic. By Candel’s Uniformization Theorem,
this condition is equivalent to the fact that every holonomy invariant non trivial
measure µ on M has Euler characteristic χµpM,Fq ă 0, which includes the case
when there exists no invariant measure. For more details about Euler characteristic
see [Can93] or [CC00]. In our context we will prove that there is no holonomy invariant
transverse measure. In fact, under these conditions, Candel proved that there is a
metric in M inducing a smooth metric in the leaves so that curvature in each leaf of
F is constant equal to ´1. A precise statements can be found at [Can93],[CC00] or
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[Cal07]. We call such a metric a Candel metric. This Candel metric is not smooth in
the transverse direction.

Here is the precise statement on the equivalence of Gromov hyperbolicity of leaves
of a foliation and negative Euler charectaristic of a positive invariant measure:

Proposition 4.1 ([Can93]). Let pM,F q be a compact oriented surface lamination
with a Riemannian metric g. Then χpM,µq ă 0 for every positive invariant trans-
verse measure µ if and only if there is a metric in M which induces a metric in each
leaf of F which makes it into a hyperbolic surface. In particular, this holds true if M
has no invariant measure.

To prove that all the leaves of F are hyperbolic, we will show that there does not
exist any invariant measure. We will argue by contradiction, we assume that there
exist a invariant measure µ and we will attain a contradiction.

The support of µ onM, denoted by supppµq, is defined as the collection of all points
x PM such that if τ is a one dimensional manifold transverse to F which contains x
in its interior then µpτq ą 0. The support of a holonomy invariant transverse measure
is a closed set and it is saturated by F , which means supppµq is a union of leaves
of F . The orientation hypothesis is not essential as it can be achieved by a double
cover. The double cover does not change the conformal type of any leaf.

Lemma 4.2. The support of µ on M contains at least one leaf from the attractor A
or the repeller R.

Proof. Consider a point x P supppµq and suppose Lx is the leaf in F which contains
x, then Lx Ă supppµq as supppµq is F -saturated. If x P A, then Lx Ă A and the
claim is true. Similarly if x is in R then its leaf is contained in supppµq. Finally
suppose that x R pAYRq. Then consider the sequence tΦnpxqu as nÑ 8. Let z be
an accumulation point of tΦnpxqu. As supppµq is closed, z is in supppµq and hence
Lz Ă supppµq. Since z is an accumulation point of Φnpxq, it implies that z is a non
wandering point, hence z P AYR and Lz Ă pAYRqXsupppµq. In fact since nÑ 8,
it follows that z is in the attractor, so Lz Ă A. �

Suppose L is a leaf in supppµq which is contained in A (assume in A without loss
of generality). By [Pla75, Theorem 6.3], we know that if µ is a holonomy invariant
transverse measure on a compact manifold foliated by a codimension one foliation F
then any leaf contained in supppµq has polynomial growth. Then the leaf Lz in the
attractor A as obtained in the previous paragraph has polynomial growth. Recall
that the leaves of F are either planes or annuli. At the same time, Lz is contained in
the attractor and each leaf in the attractor belongs to the weak unstable foliation of
the Anosov flow Φ. But weak stable and weak unstable leaves of Anosov flows have
exponential growth, a contradiction. This contradiction shows that each leaf of F is
Gromov hyperbolic.

As each leaf L P rF is Gromov hyperbolic with respect to the path metric from the
induced Riemannian metric from ĂM, we can define the circle at infinity or the ideal
boundary S1pLq of each leaf L.

Next we will describe the topology we will use on the spaces

S1
pĂMq “

ď

LP rF

S1
pLq and
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ĂMY S1
pĂMq “

ď

LP rF

pLY S1
pLqq

For this we will assume first that M has a Candel metric.
Suppose τ is an open segment homeomorphic to (0,1) and transversal to rF . We

define the the following sets

Pτ “
ď

yPτ

S1
pLyq and Qτ “

ď

yPτ

pLy Y S
1
pLyqq

If T 1pτq denotes the unit tangent bundle of rF restricted to τ , then T 1pτq is naturally
homeomorphic to the standard cylinder. The natural identification between T 1pτq
and Pτ induces the topology on Pτ homeomorphic to the standard annulus. In [Fen02]
it is proved that this is independent of the transversal τ that is chosen intersecting
the same sets of leaves of rF . This is because the metrics induced in S1pLq from the
visual metric in any point are Hölder equivalent.

Similarly Qτ has a natural topology homeomorphic to the standard solid cylinder.
The collection of all Pτ ’s over a π1pMq-invariant discrete collection of transversals

defines a topology on S1pĂMq. Similarly the collection of Qτ s over the same collection
of transversals defines a topology on ĂM Y S1pĂMq. Deck transformations act by
homeomorphisms on both sets. For more details see [Fen02], [Cal00] or [Cal07].

After the fact it is easy to see that the topologies described are independent of the
specific metric in M chosen and also work for any Riemannian metric in M .

5. Properties of flow lines

This section describes the behavior of forward rays of flow lines, in particular their
asymptotic behavior towards the the boundary at infinity

Ť

LP rF
S1pLq. In particular

we will prove that the rays are quasigeodesics in their respective leaves of rF . Notice
that this is definitely much weaker than saying that full flow lines are quasigeodesics
in their respective leaves. We will also show that in some leaves, the forward ideal
points are pairwise distinct and the negative ideal points are also pairwise distinct.
In particular even if the flow foliation is a leafwise quasigeodesic subfoliation of F it
will not have the funnel property.

We now introduce a family of sets in ĂM which will be extremely useful for us:

The sets U
Fix a point x P rA Ă ĂM and the forward ray from x which is γ`x “ rΦr0,8qpxq

starting at x, let Lx Ă rA be the leaf containing γ`x . Recall that in the attractor A
the foliation F is equal to Fwu, hence transverse to Fws. Therefore the foliations rF
and rFws are transversal to each other near rA.

Let U be a compact rectangle transverse to the flow and with x in the interior of U .
We assume that U is contained in foliation boxes of all foliations, that U is made up
of a union of stable segments, every one of which intersects the local strong unstable
segment through x. Consider the set

U “ rΦr0,8qpUq

The set U is a neighborhood of the forward ray rΦr0,8qpxq. We can assume that U
is homeomorphic to r´1, 1s ˆ r´1, 1s ˆ r0,8q with x “ p0, 0, 0q and we can define
coordinates on U such that
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‚ U is identified with r´1, 1s ˆ r´1, 1s ˆ t0u and points on U are represented as
pr, s, 0q for r, s P r´1, 1s. In particular, x “ p0, 0, 0q.

‚ for a point y “ pr, s, 0q, rΦtpyq has coordinates pr, s, tq, that is, the ray tpr, s, tq|t P
r0,8qu represents the ray Φr0,8qpyq.

‚ for a point y1 “ pr1, s, t1q P U , Py1 denotes the horizontal infinite strip
Py1 “ tpr, s, tq|r P r´1, 1s, t P r0,8qu

The infinite strip Py1 is contained in the leaf Ly1 P rF which contains y1.
‚ for a point y1 “ pr, s1, t1q P U , Qy1 denotes the vertical infinite strip

Qy1 “ tpr, s, tq|s P r´1, 1s, t P r0,8qu.

The infinite strip Qy1 is contained in the leaf Ey1 P rFws which contains y1.
As x “ p0, 0, 0q P rA the leaf of rF through x is actually the weak unstable leaf of rΦ

through x, hence Px is contained in the rFwu leaf through x.

The sets U will be used throughout this section.
We can define a projection map Π : U Ñ Px by the formula Πpyq “ Sy X Px where

Sy is the one dimensional leaf of the strong stable foliation rF s containing y. This is
possible because one can do that in the original rectangle U as it is a union of strong
stable segments, and then U is the flow forward saturation of U and the maps rΦt

preserve the strong stable foliation in ĂM. These projection maps are well defined
and continuous because of the foliation structures on U .

For any y P U , the rays rΦr0,8qpyq and rΦr0,8qpΠpyqq are asymptotic as they lie on the
same weak stable leaf. We assume that lengths of all the line segments tpr, s, 0q|s P
r´1, 1su are less than a fixed ε ą 0 in ĂM.

The line segment λ “ tp0, s, 0q|s P r´1, 1su is transversal to rF . Consider the open
sets V “

Ť

x1Pλ

S1pLx1q and W “
Ť

x1Pλ

pLx1 Y S
1pLx1qq.

Definition 5.1. Let γ be a flow line of rΦ contained in a leaf L of rF . Given x in γ
if the forward ray converges to a single point of S1pLq we let this be η`pxq. Similarly
define η´pxq. In addition given a point a in ĂM let γa be the flow line of rΦ containing
a.

Lemma 5.2. For any w P ĂM, the forward and the backward rays of the flow line
γw “ rΦRpwq are quasigeodesics on the leaf Lw in rF which contains the flow line.

Proof. To prove this Lemma we assume a Candel metric in M so that leaves of F are
hyperbolic surfaces. This metric is not Riemannian, but the result is independent of
the metric.

By lemma 2.2 every forward or backward ray in a leaf in rFwu or rFws is quasigeodesic
in its respective leaf. In particular every flow line is a quasigeodesic in the respective
leaf of F if contained in the attractor or repeller.

So we may assume that the ray is in a leaf not in the attractor or repeller. Property
2.9 shows that the ray is asymptotic with a ray in the attractor. By taking a subray
we may assume that the ray is in the weak stable leaf of a point x in the attractor
and the initial point w of the ray is very near x. Hence we may assume that the
initial point is contained in a local cross section U to rΦ centered at x as described
above. Let Lx be the leaf of rF containing x, and similarly define Lw.

Recall that Lx is also the weak unstable leaf of rΦ containing x.
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Figure 3. the region Ax in Lx and the half-space Px

Therefore it is sufficient to show that every forward ray in the set U described above
is quasigeodesic in its respective leaf of rF . In the rF leaf through x we consider the
following curve. Let I be the compact unstable segment U XLx which has endpoints
z, y. Let r1, r2 be the forward rays of rΦ through z,y. Then c :“ r1 Y I Y r2 is a
bi-infinite curve as shown in figure 3. The two rays r1, r2 are quasigeodesics in Lx
and they converge to distinct ideal points in S1pLq.

The curve c bounds a region A in Lx (as in figure 3) which is exactly rΦr0,8qpIq.
This is contained in U . This region contains a half plane in Lx.

Recall that we are considering w a point in U X rF spxq, where rF spxq is the strong
stable leaf of x. Let J be the intersection of LwXU , where Lw is the leaf of rF through
w. Then B :“ rΦr0,8qpJq is contained in Lw and contained in U . In addition since
every point in J is in the strong stable leaf of a point in I, it follows that every flow
ray in B is asymptotic to a flow ray in A. In fact as points leave compact sets in B
they become closer and closer to A.

The induced metrics on the leaves rF vary continuously and the ray rx “ rΦr0,8qpxq

is quasigeodesic in its leaf and asymptotic to the ray rw “ rΦr0,8qpwq, it follows that
the other ray is also a quasigeodesic in its rF leaf.

Since this is a very subtle point we provide specific details. In the leaf Lx choose
two points x1, x2 in I with x in between them so that the geodesic βx in Lx with ideal
points η`px1q, η`px2q is contained in the interior of A. This is possible since the flow
lines in Lx are uniform quasigeodesics and they spread out in the forward direction.
We stress that in general it is not possible to choose x1, x2 as the endpoints of I as
the flow lines are only quasigeodesics and not geodesics in Lx. Let Px be the half
plane of Lx bounded by βx and containing a forward ray from x. We also may assume
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Figure 4. Px in Lx is asymptotic to Pw in Lw

that every point in Px is ε1 close to Lw with ε1 very close to zero. Then βx is ε1 close
to a curve β1 in Lw which has geodesic curvature very close to zero. To obtain this
property of β1 with small geodesic curvature in Lw was one of the reasons to choose
a Candel metric with hyperbolic leaves varying continuously. In particular this curve
β1 is very close in Lw to an actual geodesic in Lw, and this geodesic is denoted by βw.
Let Pw be the half plane of Lw which is very close to Px as shown in figure 4.

Now we prove that the ray rw is quasigeodesic in Lw. The ray rx in Lx satisfies the
quasi-isometric property for some pK, sq. The ray rw is asymptotic to rx so length
along rw is extremely well approximated by length along rx when moving forward.
But distance in Lw between points in rw is also boundedly approximated by the
corresponding distance in Lx. This is because if one gets a length minimizing path
in Lw connecting the endpoints of a segment in rw, then this segment is contained in
the half plane Pw as above if the points are far enough in Lw from w. This is why
we constructed Pw. Since Pw is ε1 close to Px there is a corresponding segment in
Px whose length is multiplicatively increased by at most a factor of 1 ` ε2, where ε2
is very small. But the approximating segment in a flow line in A is a quasigeodesic
in Lx with constants pK, sq, hence the length of the approximating path is bounded
below, and so is the length of the length minimizing original path in Pw.

This proves that rw is a quasigeodesic in Lw.
If we reverse the flow every backward ray becomes forward ray, hence leafwise

quasigeodesic. �

By compactness and continuity there is K0, s0 so that given any ray in a flow line,
there is a subray of it that is a pK0, s0q quasigeodesic in its leaf of rF . As the flow
rays are quasigeodesics they define unique points on the ideal boundaries.

In the next proposition we consider the sets Py contained in U .

Proposition 5.3. Suppose a, b P Py but γa ‰ γb, then η`paq ‰ η`pbq in S1pLyq.

Proof. By the previous lemma we already know that all rays are quasigeodesics in
their respective leaves. We do the proof by contradiction and assume that η`paq “
η`pbq. Since the rays rΦr0,8qpaq, rΦr0,8qpbq are quasigeodesics in Ly and by assumption
they have the same ideal point in S1pLyq, the following happens: there is d0 ą 0

and points pi, qi in rΦr0,8qpaq, rΦr0,8qpbq respectively, escaping in the rays and so that
dLyppi, qiq ă d0. Consider the points Πpaq and Πpbq on Px. Since

rΦr0,8qpaq, rΦr0,8qpΠpaqq
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are asymptotic in the weak stable leaf of rΦ in ĂM, there are p1i in rΦr0,8qpΠpaqq with
dppi, p

1
iq Ñ 0. Here d is ambient distance in ĂM. Similarly there are q1i in rΦr0,8qpΠpbqq

with dpqi, q1iq Ñ 0. By the local product structure of the foliation F it follows that
dLxpp

1
i, q

1
iq ă d0`1 for i sufficiently big. Therefore the rays rΦr0,8qpΠpaqq, rΦr0,8qpΠpbqq

converge to the same ideal point in S1pLxq. Here we are using that Lx is also a weak
unstable leaf of rΦ and the flow lines are quasigeodesics in the weak unstable leaves
of rΦ. But the flow lines rΦRpΠpaqq, rΦRpΠpbqq are distinct flow lines in Lx. Again by
the description 2.4 of ideal points of flow lines in weak unstable leaves, the forward
limit points are distinct, that is,

η`pΠpaqq ‰ η`pΠpbqq in S1
pLxq

This is a contradiction and shows that η`paq ‰ η`pbq in S1pLyq. �

Lemma 5.4. In each leaf L of rF the leaf space of the flow foliation is Hausdorff and
homeomorphic to the reals R.

Proof. In the lifts of leaves in the attractor and repeller this is obvious since the
foliation by flow lines satisfies this property in weak stable and weak unstable leaves
of Anosov flows [Fen94]. Any other leaf L of rF is the lift of a leaf of F which intersects
a torus T from the collection of tori tTiu which separates A and R. Hence L intersects
a lift rT of T in a curve β. The flow saturation of β is exactly L, since every flow line
in M is either in the attractor or repeller; or intersects a torus in tTiu. The curve β
is transverse to the weak stable and weak unstable foliations, hence intersects a flow
line exactly once. Hence β parametrizes the set of center leaves in L. This proves
the result. �

For each L of rF the map η` induces a map from the flow foliation leaf space in
L (which is – R) to S1pLq. Since flow lines are disjoint in their leaves, this map is
weakly monotone.

Corollary 5.5. For all y P U , η`pyq ‰ η´pyq in S1pLyq.

Proof. If η`pyq “ η´pyq then the flow line γy bounds a disk D on Ly Y S1pLyq such
that the closure of D in L Y S1pLq intersects S1pLq only in η`pyq “ η´pyq. For any
z in interior of D, the flow line γz is contained in D, hence η`pzq “ η´pzq “ η`pyq “
η´pyq. This contradicts the proposition 5.3, because if z, y P U and γz ‰ γy, then
η`pzq ‰ η`pyq. �

We now extend the map η` to a map from ĂM to S1pĂMq. For each x in ĂM then
η`pxq is in S1pLxq Ă S1pĂMq.

Proposition 5.6. η` and η´ are continuous on ĂM.

Proof. In this proof we again use a Candel metric in M .
Suppose xi Ñ x0 in ĂM. We will show that η`pxiq Ñ η`px0q in S1pĂMq. There are

two different cases depending on whether x0 P rR or x0 R rR.
We first prove the result for x0 R rR. As x0 R rR the forward ray starting at x0 is

asymptotic to a forward flow ray in rA. Therefore it is enough to assume that txiu
and x0 belong to a neighborhood U as constructed above, since this is true for every
ray asymptoptic to rA.

For z in M let Lz be the leaf of rF containing z.
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For for i P N Y t0u, let γ`i denote the forward flow ray starting from xi and let ζi
denote the geodesic ray on Lxi starting at xi and with ideal point η`pxiq in S1pLxiq.
Each ζi defines the ideal point η`pxiq on S1pLxiq, therefore it is enough to show that
any convergent subsequence of pζiq converges to ζ0 in the compact open topology.
Since xi are in a compact subset of ĂM, existence of of convergent subsequences of
tζiu is assured.

Suppose that a subsequence pζipkqq converges to ζ 1. We have to prove that ζ 1 “ ζ0.
We assume that the neighborhood U constructed above has a point x P rA as in the
construction of U . Then all flow rays in Lx X U are pK, sq-quasigeodesics in Lx for
some fixed K, s. Since all flow rays in U are forward asymptotic to flow rays in Lx
there are K 1, s1 so that all flow rays in U are pK 1, s1q-quasigeodesics in their respective
rF leaves. It follows that there exists a uniform d ą 0 such that

γ`ipkq Ă Ndpζipkqq and γ`0 Ă Ndpζ0q,

where Nd denotes the neighborhood of radius d in the respective leaf of rF . For
any d1 ą 0, the segment of length d1 on γ`ipkq starting at xipkq is within d-distance
from ζipkq. Therefore in the limit the segment of γ`0 of length d1 starting from x0 is
contained in d distant neighborhood from ζ 1 in the respective leaf. This is true for
all d1, so ζ 1 is at Hausdorff distance d from γ`0 on Lx0 . But γ`0 is also at bounded
distance from ζ0 on Lx0 , therefore ζ 1 and ζ0 are at a finite Hausdorff distance from
each other on Lx0 . Hence ζ 1 “ ζ0, because they have the same starting point. As this
is true for all convergent subsequences of pζiq, we get our result for x0 not in rR.

Before dealing with the remaining case let us note the following:

Observation 5.7. By the construction of U starting with x in rA, and continuity of
η` near rA we observe that the set U Y tη`pzq|z P Uu is homeomorphic to r0, 1s ˆ
r0, 1sˆr0, 1s inside W “

Ť

yPλ

pLyYS
1pLyqq, which is homeomorphic to a compact solid

cylinder r0, 1s ˆ t the unit disc Du.
The set U Y tη`pzq|z P Uu above is saturated by forward flow lines and all the ideal
points contained in this neighborhood are defined by forward flow rays. This is true
for example for any forward ideal point p on any S1pLq where L is a leaf of rF in rA.
Here λ is a transversal to rF intersecting exactly the leaves of rF which intersect U .
This in particular implies that for any y in λ and ideal point v in S1pLyq which is a
forward ideal point of rΦRpzq with z in Ly X U and in the interior of U then η`pzq is
an interior point of the interval Iy of S1pLyq associated to all forward ideal points of
flow lines in Ly X U . In particular we stress the important fact that any ideal point
in this interval Iy in S1pLyq is an ideal point of a forward flow ray, but it is not an
ideal point of a backwards flow ray.

In an analogous way the corresponding property is true for any backward ideal point
q on any S1pEq where E Ă rR, but the difference is that the neighborhood around a
backward flow ray defining q is saturated by backward flowrays and all the ideal points
in that neighborhood are defined by backward flowrays and no such ideal point is an
ideal point of a forward flow ray.

To continue the proof of Proposition 5.6 we next assume that x0 P rR. Suppose
that a subsequence pη`pxipkqqq converges to q where q is not η`px0q. As x0 is in rR,
then Lx0 is a leaf of the weak stable foliation rFws. Hence by property 2.4 on Lx0 all
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the forward flow rays converge to a single ideal point in S1pLx0q and all the other
ideal points in S1pLx0q are ideal points of backward flow rays. As q ‰ η`px0q, q is
defined by a backward ray, that is q “ η´pzq for some z in Lx0 . By Observation 5.7
starting with z in rR (notice that z is in the repeller, not the attractor), there exits
a neighborhood V saturated by backward flow rays around z in

Ť

yPλ1
pLy Y S

1pLyqq for

some transversal λ1. By Observation 5.7 all limit points are backward ideal points
in V and no limit point is a forward ideal point. This contradicts the fact that the
forward rays γ`ipkq have ideal points in these intervals of ideal points for k big enough
by construction. This contradiction shows that a subsequence pη`pxipkqqq converging
to q ‰ η`px0q is not possible, hence q “ η`px0q.

Hence η` is continuous on ĂM. If we consider the flow Ψt “ Φ´t then backward
ideal points of Φt are forward ideal points of Ψ´t and the continuity of η´ follows.
This completes the proof of Proposition 5.6. �

In the next lemma we combine all the above results and describe a key property
that will be used to show that all the flow lines are quasigeodesic on their respective
leaves of rF .

Again we use a Candel metric. As before, given x in ĂM, let γx be the rΦ flow line
through it. In addition if Lx is the leaf of rF containing x, let gx be the geodesic in
L with ideal points η`pxq, η´pxq. Notice that we already proved that η`pxq, η´pxq
exist and are distinct from each other. This follows from Corollary 5.5.

Lemma 5.8. There exists d ą 0 such that for all x P ĂM we have that

γx Ă Ndpgxq,

where gx is the geodesic on Lx connecting η`pxq and η´pxq and Ndpgxq is the d-
neighborhood of gx on Lx.

Proof. Suppose that there does not exists any such d. Then there exists a sequence
pxiq in ĂM with xi in leaves Lxi of rF such that dLxi

pxi, gxiq ą i. Up to deck transfor-
mations there exists a convergent subsequence of pxiq which we assume is the original
sequence, and we assume xi Ñ x. By lemma 5.6 we know that

η`pxiq Ñ η`pxq and η´pxiq Ñ η´pxq.

Since xi converges to x we assume that all xi are in leaves of rF which intersect a
fixed transveral λ to rF .

Since η`pxiq converges to η`pxq, η´pxiq converges to η´pxq and η`pxq ‰ η´pxq it
follows that tgxiu converges to gx. This uses that the topology defined on

Ť

yPλ

pS1pLyqq

is given by the trivialization of the unit tangent bundle to rF along λ. By conver-
gence we mean convergence in the compact open topology. But this contradicts that
dLxi

pxi, gxiq converges to infinity, since dLxpx, gxq is finite and the sequence converges
to it. This finishes the proof. �

6. Flow lines Are Leafwise Quasigeodesic

We first prove a weak quasigeodesic property of the flow lines on the leaves of rF
containing them.
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Proposition 6.1. For all b ą 0 there exists a constant cb ą 0 depending on b such
that if γ is a flow segment connecting x and y with lengthpγq ą cb then dLxpx, yq ą b,
where Lx is the leaf of rF which contains x.

Proof. Fix b ą 0. We do the proof by contradiction. Suppose the statement is not
true for some b ą 0. Then for all i P N there exists two points xi and yi in leaves
Li of rF , with xi, yi in the same flow line defining a flow line segment γi satisfying
lengthpγiq ą i but dLi

pxi, yiq ă b. Up to deck transformations and a subsequence,
we assume that pxiq is convergent and xi Ñ x0. Since dLi

pxi, yiq ă b we can similarly
assume that pyiq is convergent and let yi Ñ y0.

Claim 1. x0 and y0 are on the same leaf L0 of rF .

Proof. If we consider a compact ball Bx0 on L0 containing x0 and a product neighbor-
hood of NpBx0q of rF , then for all large i, Li intersects NpBx0q and xi P LiXNpBx0q.
If we consider Bx0 sufficiently large, the assumption dLi

pxi, yiq ă b for all i forces that
yi has to be contained in NpBx0q. Hence by the product structure on NpBx0q, y0 also
has to be on L0 as yi Ñ y0. �

Claim 2. x0 and y0 cannot be on the same flow line in L0.

Proof. If not, then there exists a flow line segment γ connecting x0 and y0 and consider
a compact neighborhood N around γ which has a product structure with respect
to the flow lines. This is the crucial fact. As xi Ñ x0 and yi Ñ y0, the flow
segments γi are contained in N for all large i. By continuity of length of flow lines,
lengthpγiq Ñ lengthpγq. But that is not possible as lengthpγiq Ñ 8 and γ is compact,
a contradiction. �

Claim 3. x0 and y0 can not be connected by a curve on L0 everywhere transversal to
the flow lines in L0.

Proof. Suppose that there exists a line segment σ on L0 everywhere transversal to
the flow lines on L0 and connecting x0 and y0. By the local product structure of rF
near σ P L0, there should be a segment σi in Li connecting xi and yi and everywhere
transversal to flow lines on Li. Up to taking a sub-segment of γi if necessary and
then a sub-segment of σi we may assume that γi does not intersect the interior of σi.
It follows that the union of σi and γi bounds a disk Di on Li as their end points are
same. All the flow lines which enter Di transversally intersecting σi have to exit Di

transversally intersecting σi. Poincaré-Hopf theorem says that there exists at least
one flow line tangent to σi, a contradiction. �

By Lemma 5.4 the leaf space of the flow foliation in L0 is homeomorphic to the
reals. Hence any two distinct flow lines in L0 are connected by a transversal.

This contradiction proves Proposition 5.1. �

Now we are ready to prove our final claim:

Theorem 6.2. The flow lines are uniformly quasigeodesics in their respective leaves
of rF .

Proof. We prove the theorem by contradiction. Again we use a Candel metric in F .
We assume that the geodesics are not uniform quasigeodesic on their leaves. From
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this assumption we will construct sequence of pairs tpxi, yiqu such that xi and yi are
connected by a flow segment γi where lengthpγiq Ñ 8 but dLi

pxi, yiq is bounded.
Here Li is the rF leaf containing both xi, yi. But that will contradict the ‘weak
quasigeodesic property’ in proposition 6.1. A very similar result was proved in [FM01],
we reconstruct the same arguments in our specific case.

By our assumption that flow lines are not uniform quasigeodesics, we get that for
any K ą 0, there exists a flow segment γrx,ys on a leaf Lx such that

lengthpγrx,ysq{dLxpx, yq ą 2K and lengthpγrx,ysq ą K

Here the x, y, Lx depend of the K, we omit the explicit dependence. Consider the
geodesic gx “ gy on Lx with ideal points

η`pxq “ η`pyq and η´pxq “ η´pyq on S1
pLxq.

By Lemma 5.8, there exists d ą 0 such that γ Ă Ndpgxq, where the neighborhood is
in Lx. This d is global. Let ρ : Lx Ñ gx be the ‘closest point map’, which means ρppq
is the closest point on gx from p P Lx. This is the orthogonal projection in Lx to gx.
It follows that:

dLxpρpxq, ρpyqq ď dLxpx, yq ď dLxpρpxq, ρpyqq ` 2d (*)

Let us assume that dLxpx, yq ą 1` 2d. Hence dLxpρpxq, ρpyqq ą 1 by p˚q and

lengthpγrx,ysq
dLxpρpxq, ρpyqq

ě
lengthpγrx,ysq
dLxpx, yq

ě 2K ą K `
K

dLxpρpxq, ρpyqq

Therefore
lengthpγrx,ysq

K
ą dLxpρpxq, ρpyqq ` 1 ą rdLxpρpxq, ρpyqqs

where ras denotes the integer n such that n´ 1 ă a ď n.
Suppose n0 “ rdLxpρpxq, ρpyqqs, then lengthpγrx,ysq ą n0K. Also

n0 ´ 1 ă rdLxpρpxq, ρpyqqs ď n0,

hence we can construct a sequence tρpxq “ z0, z1, ..., zn “ ρpyqu of points in gx, such
that dLxpzi´1, ziq “ 1 for all i ă n0 and dLxpzn0´1, zn0q ď 1. Next we consider the
sequence x “ x0, x1, ..., xn0 where xi is the last point on γrx,ys such that ρpxiq “ zi.

If γi denote the flow segment joining xi´1 and xi, we have γrx,ys “ γ1 ˚ γ2 ˚ ... ˚ γn0 .
Hence

n0
ÿ

n“1

lengthpγiq “ lengthpγrx,ysq ą n0K

By the pigeonhole principle there exists xi´1 and xi such that lengthpγrxi´1,xisq ą K.
But from p˚q we get that for all i,

dLxpxi´1, xiq ď dLxpρpxi´1, xiqq ` 2d “ dLxpzi´1, ziqq ` 2d ă 1` 2d.

As the choice of K ą 0 was arbitrary, this proves that the ‘weak quasigeodesic
property’ in lemma 6.1 is not true for b “ 1` 2d, a contradiction. We conclude that
flow lines are uniformly quasigeodesic on their respective leaves of rF .

This finishes the proof of the theorem 6.2. �

Conclusion: Section 4 shows that every leaf in F is Gromov hyperbolic when lifted
to the universal cover. Theorem 6.2 proves that the flow foliation is a leafwise quasi-
geodesic subfoliation of rF . Moreover Proposition 5.3 proves that all leaves of F which
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are not contained in A or R are non funnel, whereas all leaves in A or R are funnel
by corollary 2.6. This completes the proof of the Main Theorem 1.1. ˝
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