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Keywords: “Compactness”, or the use of shape as a proxy for fairness, has been a long-running theme in the scrutiny
Mathematical geography of electoral districts; badly-shaped districts are often flagged as examples of the abuse of power known as
Dem;gtr:PhY gerrymandering. The most popular compactness metrics in the redistricting literature belong to a class of scores
Graph theory

that we call contour-based, making heavy use of area and perimeter. This entire class of district scores has

Discrete geometr: . . .
8 Y some common drawbacks, outlined here. We make the case for discrete shape scores and offer two promising

examples: a cut score and a spanning tree score.

No shape metric can work alone as a seal of fairness, but we argue that discrete metrics are better aligned
both with the grounding of the redistricting problem in geography and with the computational tools that have
recently gained significant traction in the courtroom.

1. Introduction

A variety of elections in the United States—for the House of Repre-
sentatives, state legislatures, city councils, school boards, and more—
are conducted by partitioning a local area into geographically-delimited
districts and selecting one winner per district via a plurality election. A
suitable partition of the locality is called a districting plan, or sometimes
just a plan, and the act of revising it is called redistricting. States may
have their own guidelines governing the redistricting process, often
including specific requirements for valid plans, and the procedures and
outcomes are the subject of considerable debate and legal scrutiny.
Both mathematicians and geographers are professionally interested in
boundaries, making for natural allies to study the intersection of shape,
territory, and representation. We set out here to re-think the “boundary
work” of electoral terrain (Gieryn, 1983).

There are two main principles commonly applied to the shape (that
is, the geometric form) of districts: jurisdictions should be cut into
pieces that are “contiguous” and “compact”. The first of these criteria,
contiguity, refers to topological connectedness: a district should be a
single connected component, not multiple separated components. This

* Corresponding author.

is a widespread and mostly uncontroversial requirement for district-
ing plans.! In contrast with that clarity, compactness gestures at the
idea that shape should be somehow reasonable rather than eccentric,
but this is rarely defined precisely, if at all. Even on such unsteady
footing, the notion is critical to any discussion of redistricting (and,
in particular, to any discussion of abusive districting practices broadly
known as gerrymandering) because compactness appears as an explicit
requirement in many states and is nationally recognized as a traditional
districting principle.”> And in the biggest redistricting court case of
this census cycle so far—a complaint on behalf of Black voters about
the congressional district boundaries in Alabama—the Supreme Court’s
decision to invalidate the state’s map made heavy reference to the
plaintiffs’ demonstration plans being “reasonably configured”, in large
part because their compactness scores were “generally better on aver-
age than” the state’s plan, and they contained no “bizarre shapes, or
any other obvious irregularities”.

To date, more than thirty possible definitions of compactness as
a shape quality metric have been proposed in the political science
literature (see Altman, 1998; Duchin & Walch, 2022; Niemi, Grofman,
Carlucci, & Hofeller, 1990 and references). The purpose of this paper

E-mail addresses: moon.duchin@tufts.edu (M. Duchin), bridget@math.depaul.edu (B.E. Tenner).

1 Note that while contiguity seems largely unambiguous, it is sometimes achieved by connective tissue along a highway or through water. For example, after
the 2000 Census, Illinois’s 4th Congressional District had been constructed using a stretch of Interstate 294 to connect its northern and southern components, in
a shape often described as “earmuffs”. Many states need to interpret contiguity across water, which is not always handled in a clear or consistent fashion (and
see Caldera, DeFord, Duchin, Gutekunst, & Nix, 2020 for an example of surprising impacts).

2 See redistricting.lls.edu/where-state.php (accessed July 26, 2023), which describes specific compactness rules of some kind in more than 30 of the 50 states.

3 Merrill v Milligan (2023). The first author of this paper served as an expert witness for the plaintiffs and drew the demonstration maps in question, in addition
to expert work in LWV v. PA (2018) and several other court cases relevant to the current piece.
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is to call attention to a shared feature in nearly all of the popular
definitions of compactness scores: they dissolve the geographical units
of districts and represent each district as a single region enclosed by
a contour on a projected map. Numerical scores are then based on
measurements made relative to the contours. This makes all of the
standard definitions of compactness susceptible to a common set of
drawbacks, which undermine the extent to which the definitions can
be made precise and meaningful. More broadly, passing up units for
contours risks making a category error. Underlying other data formats,
districting plans are defined and communicated as census block assign-
ments, so there is a basic sense in which the problem is fundamentally
discrete.

Geographers—especially but not only those who work with GIS—
are intimately familiar with this tension. Working with spatial data
involves both geographical units and coordinate mapping; geography
more generally contends with the interplay between the discrete and
the continuous, and with problems of scale and zoning that come from
that interplay, in fundamental ways. Managing the confounding effects
of the choice of units is a central theme in the field, going by the name
of the Modifiable Areal Unit Problem, or MAUP, most associated with
the work of Openshaw (Openshaw, 1983; Openshaw & Taylor, 1979)
but anticipated in Gehlke and Biehl (1934) and developed in Fother-
ingham and Wong (1991), Wong (2008) and in more recent work
like Kwan (2012), Nelson and Brewer (2017). Shape, and the use of
shape descriptors, is of course another central theme in geography, and
a long tradition of work studies compactness of urban development,
forms of administrative areas, and so on; for example, the classic
piece of Boyce and Clark (1964) focuses on compactness of central
business districts. Numerous geographers have engaged with shape
in redistricting specifically, such as Maceachren (1985), Monmonier
(2001) and the references therein. The discrete shape metrics suggested
in the current work can add to this literature by making fundamental
use of the geographical units and the demographic network structure
that are at the heart of the redistricting problem, confronting the
redistricting MAUP head-on. Furthermore, this discrete approach is
well adapted to the mathematical and computational tools that are
increasingly prominent in legal settings.

1.1. Outline

We give a brief background on compactness and census/electoral
geography in Section 2, survey the standard contour-based compactness
scores and their use in courts and by redistricting bodies in Section 3,
then present and discuss problems that contour scores face in Section 4.
Graph formalism is introduced in Section 5 and two scores—a cut
score measuring partition efficiency and a spanning tree score mea-
suring clustering—are defined. Finally, Section 6 provides tools for
interpretation and for assessment, both abstractly and empirically.

The use of graph partitions to model redistricting is hardly new;
in particular, it is at the center of every algorithmic approach to
generating districts, now held up as a promising tool for understanding
redistricting in a set of opinions that collectively include every sitting
U.S. Supreme Court justice as a signatory.* Computational redistricting
has been a long-standing dream since at least the 1960s and has
exploded as a practical reality in U.S.-based research since the 2010 De-
cennial Census. The cut and spanning tree scores presented in Section 5
are extremely natural in the graph setting and tie into a large body
of mathematical literature, including the study of so-called community
structure in networks and efficient algorithms in scientific computing.
Our aim is to give these topics a unified and simple treatment that
dovetails with the normative and substantive grounding of compactness
in representational and geographical terms.

4 The main opinion, the concurring opinion, and the dissenting opinions in
Milligan all describe potentially valuable roles for algorithmic district sampling,
with various degrees of enthusiasm. See Becker and Solomon (2022) for a
historical survey of algorithmic approaches.
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2. Compactness and electoral geography
2.1. Introducing compactness

The political relevance of requiring districts to be reasonably
shaped, and not unnecessarily elongated or twisting, can be defended
in several ways: shape assessment detects signals of manipulation,
imposes checks on power, and promotes cognizable and functionally
interconnected districts.

First and foremost, geometric eccentricity can signal a district-
ing plan that has been engineered to produce an extreme outcome,
for instance by exploiting demographics and geography in order to
maximize representation for one group at the expense of another. A
mapmaker can tilt outcomes by packing the out-group into a small
number of districts, with wastefully high vote share in those districts,
and cracking their leftover population by dispersing it, thus dilut-
ing those voters’ influence. Either strategy can induce (indeed, might
necessitate) distended district shapes in order to unite non-proximal
groups to create a carefully composed district. In fact, it has been
convincingly argued that the contorted appearance of a district can
have an “expressive harm”, communicating to voters that fundamental
criteria were subordinated achieve to other goals, such as manipulating
the racial composition of the district (Pildes & Niemi, 1993). This idea,
that appearances can be directly harmful, amounts to a defense of the
“eyeball test” for district shape.

A second, related argument for shape guidelines is that any limi-
tation placed on districters is a healthy check on their power. A third
kind of argument, this time positively framed, argues that being more
compact should mean that districts represent chunks of territory that
have a social or infrastructural cohesion, and can be traveled efficiently.
This ties into the idea of cognizable districts: the territory of a district
should be distinguishable by its residents and its representative, and
should correspond reasonably with the structure of towns and counties,
making it easy to describe.® Clear and easily communicated boundaries
might enable the representative to better understand their electorate;
conversely, constituents need to be able to identify and contact their
representative (Curiel & Steelman, 2018).

Ease of transit and communication is sometimes bundled into a
notion of “functional compactness” together with other traits such
as community composition. The notion of communities of interest—
COIs for short—is about factors such as social organization, identity,
and economics combining to create geographical areas that may not
coincide with administrative boundaries, but which are still meaningful
and relevant to political representation. Districts are regarded as more
successful when COIs are held intact, and can be faulted for splitting
them, or for uniting them improperly. Though this at first sounds
completely independent of district shape per se, legal decisions have
sometimes blurred the lines.®

5 This cognizability principle was examined in some depth by political
scientist Bernie Grofman: “By ‘cognizability,” I mean the ability to characterize
the district boundaries in a manner that can be readily communicated to
ordinary citizens of the district in commonsense terms based on geographical
referents” (Grofman, 1993). The original Gerry-mander of 1812 was singled
out for flouting this kind of easy delineation through suspiciously complicated
selection of towns and its unnecessary division of counties (Russell, Cutler, &
Gardner, 2023). See also Benjamin Forest, who looks at the U.S. Supreme Court
rhetoric from their “Shaw line” of rulings, which focused on non-compactness
and racial gerrymandering (Forest, 2004). In Forest’s view, the justices held
that compact plans must respect the political regionalization of a state (into
counties and municipalities) as well as its physical geography.

® To see the intertwining of shape and community structure, consider this
passage from Justice Kennedy’s majority opinion in LULAC v Perry (2006):
“The enormous geographical distances separating the two communities, cou-
pled with the disparate needs and interests of these populations—not either
factor alone—renders District 25 noncompact for §2 purposes”. So the sins of
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So in sum, a good compactness definition should flag geograph-
ically complicated boundaries as bad; should meaningfully constrain
the space of allowable plans; should tend to label easily described
districts as good; and should comport with a general visual sense of
a shape’s simplicity on a map. Most ambitiously, it might also tie,
in some way, to notions of community. An elementary discussion
of compactness metrics can be found in Duchin (2022); a review of
regionalization perspectives on redistricting appears in Nelson (2022);
and a brief overview of communities of interest law and practice is
offered in Rosenfeld and Duchin (2022).

Experts routinely testify that there are multiple compactness scores
with no single best choice of score and no bright-line threshold of per-
missibility; furthermore, they are hard to compare and contextualize.
So what accounts for their enduring popularity? Scores are appealing
to courts because they put some quantitative meat on the bones of
intuitive visual assessment. This means that they offer some (apparent)
concreteness in a domain that is notorious for the lack of agreed-
on standards. Furthermore, as is very often the case, technology is
a key part of the story: we cannot understand the uptake of par-
ticular compactness scores without investigating their ease of use in
the dominant software packages. Expert work involving measures of
compactness draws on either commercial software such as Maptitude
for Redistricting, on free software such as Dave’s Redistricting App
(davesredistricting.org), or on custom functions built in GIS or in
geospatial packages in Python or R. Maptitude, in particular, is the
dominant enterprise package that legislatures and their consultants use
to draw the lines; states, counties, and cities frequently release their
districting plans together with a suite of Maptitude reports. Because the
software plays such a central role, we will cite Maptitude functionality
as a recurring theme below.

2.2. Districts and their building blocks

Though political jurisdictions, even states themselves, have textual
legal definitions, the usable formats for communicating those defini-
tions are usually based on technological representations found in a GIS
shapefile. Shapefiles (and other vector file formats such as GeoJSONs)
store a definition of each unit as a polygon, possibly with many thou-
sands of vertices.” In U.S. redistricting, the canonical shapefiles are data
products released by the Census Bureau. The Census Bureau releases
an updated “vintage” of its most precise shapefiles—called TIGER/Line
Shapefiles (U.S. Census Bureau, 2023f)—every year, with a special re-
lease for congressional districts once new boundaries have been enacted
in law after each decennial data drop. It also releases Cartographic
Boundary Shapefiles of districts (U.S. Census Bureau, 2023a), which
are intended for the purpose of map-drawing rather than definition,
and are generally clipped to land (see Fig. 3). These Cartographic maps
are prepared for every Congress, at three levels of resolution, discussed
further below. Units defined by the Census Bureau have the advantage
as well of being better insulated from the political pressures that create
the conditions for gerrymandering. They are certainly not categorically
free of the taint of politics and gamesmanship, if only because they
are created in partnership with state actors and in an agency with
political oversight, but the agency benefits from a strong tradition of
independence.

U.S. Census geography is organized in a hierarchy that begins with
finest units called blocks, nesting into larger units called block groups,

this Texas congressional district are at the same time based on geometry and
on a lack of social/demographic harmony. More examples of this entwinement
of shape and community talk are traced through earlier court decisions
in Forest (2004).

7 See, for instance, Hachadoorian and Buck (2022), for a discussion of
vector versus raster data.
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which in turn nest into tracts, then counties and states.® For each level
in the main census hierarchy (also called the “central spine”), the
geographical units in that category partition the state that they belong
to, meaning that the entire territory of the state (land and water) is
covered by the census units at that given scale, and furthermore that
those units are disjoint from each other, except along their borders. In
mathematical language, the units tile the state at each level, and smaller
units nest into larger ones.

Not every relevant geography is defined by the Bureau. Precincts are
the state or local administrative units of geography in which elections
are conducted and vote results are reported. Their boundaries are
typically controlled by local officials, and they can change at erratic
intervals. Because of their importance for elections, the Census Bureau
attempts to capture them in an approximate snapshot every ten years
known as voting tabulation districts or VTDs. These are made of whole
census blocks, but do not respect block groups or any other units in
the central spine. Sometimes it is appropriate to model the redistricting
problem with precinct assignments, as numerous states have a strong
preference or even a requirement for keeping precincts intact in partic-
ular kinds of districts, largely because election administrators struggle
to deliver the correct ballots when precincts are split.

But blocks, the finest level of census detail, will remain the principal
atoms for redistricting. Districts form an off-spine partition of the state,
made after the decennial release using census blocks, while their lines
frequently cut across block groups, VIDs, and tracts. Since blocks nest
inside of all other census geographies, other units’ populations are
calculated by aggregation from the blocks. And indeed the call to
release data on blocks is explicitly for redistricting; Public Law 94-171
was passed in 1975 and mandated a decennial release known as the
Redistricting Data, sometimes itself referred to as the PL94-171 data.
This tabular data is composed of counts of residents by race, ethnicity,
and voting age status for each block (U.S. Census Bureau, 2023b).
These blocks are then used to fine-tune populations on districts, with a
common practice of balancing Congressional plans so that the top-to-
bottom deviation is one person—which would be essentially impossible
with larger units than blocks.’ This makes census blocks the standard
“pixels” of redistricting and explains why block assignment files are a
common data format, more succinct but just as precise as a shapefile
of districts.

3. Polsby-Popper and other contour-based scores

“Compactness”, unlike contiguity, is a continuous concept that con-
cerns the geographical shapes of districts. There is no bright line
test that determines whether a district is or is not compact, but
districts may be considered more or less compact. While numerous
quantitative measures of compactness have been proposed for this
purpose, the two measures that are now referenced the most are a
dispersion measure known as the Reock measure and a perimeter
measure known as the Polsby—Po[p]per measure.

[-Expert report of Dick Engstrom, Martinez v Bush (2002)]

The most commonly cited compactness metric in litigation is the
Polsby—Popper score. The motivating idea for Polsby-Popper and its
cousins is that a “compact” region should have large area relative to
its perimeter. This is an isoperimetric score, because it creates a ranking
among regions with a given (“iso” = same) perimeter.

8 There were over 11 million blocks in the 2010 Census, with an average
population of about 28.

9 Reynolds v Sims (1964) gave the general slogan “One Person, One Vote”,
which by common practice has come to require the near-equalization of
census population across congressional districts, with a few more percentage
points of slack at legislative levels and below. Congressional plans are often
“zero-balanced”, while legislative districts are typically allowed top-to-bottom
deviation up to ten percent of ideal size. For actual population balances in
enacted districting plans, see National Conference of State Legislatures (2023).
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Fig. 1. Five regions with the same perimeter are shown from left to right in order of
increasing area. The region with largest possible area relative to a fixed perimeter is

the circle, and is deemed the most “compact” by Polsby—Popper scoring. Reading left
to right, the Polsby-Popper scores are roughly .12, .34, .60, .79, and exactly 1.

3.1. Perimeter versus area

It has been known (or guessed) since antiquity that

circles have the most area among all shapes with a given perimeter.

In other words, all shapes satisfy 0 < %4 < [, where A stands
for area and P stands for perimeter.'° Examples of this phenomenon
appear in Fig. 1. Depending on the scope of the statement (i.e., on the
generality of what counts as a “shape”), the first rigorous proof can
be credited to Jakob Steiner in the 1830s. Despite the long history of
this fact (see especially Blasjo, 2005 for an excellent guided tour), a
1991 article by law scholars Polsby and Popper led to their names being
attached to the associated metric in political science (Polsby & Popper,
1991).

Definition 1. The Polsby—Popper score of a district Q is

area(£2)
perim(2)2

Equivalently, PP(£2) can be defined as the ratio of the area of 2 to
the area of the circle whose circumference is equal to the perimeter of
Q. (To see this, set 2zr = perim to define the circle, solve for the radius
r, and compute 7zr2.)

The Polsby—Popper score of a districting plan is not defined in the
literature. Legal and administrative reports often include the mean,
maximum, minimum, and other such statistics for the set of scores over
the districts in a plan, likely because this is made easy in the standard
commercial software (see Fig. 2).

The Polsby—Popper score is highly sensitive to elongations of the
boundary. Shapes with skinny necks, long spurs, or whose boundary
winds in a complex manner will have much less area than could have
been enclosed by the same boundary length around a “plumper” shape.
Higher Polsby—Popper scores are therefore termed more compact, and
are thought to be preferable to lower ones.

By Theorem 5, the score satisfies 0 < PP(£2) < 1 for all shapes,
with PP() = 1 realized only when Q is a circle. The squaring of the
perimeter in the denominator of the Polsby—Popper score also serves
to make the units of measurement cancel out, so that the score is
(theoretically) scale-invariant. In other words, if one were to dilate an
entire region by a factor of k, its Polsby—Popper score would not register
the change. Thus this metric is said to measure something about the
shape, and not the size, of a district. Polsby—Popper scores have been
cited in hundreds of court cases on redistricting.!’

A cosmetic variant of the Polsby-Popper score, which in fact pre-
dates Polsby—Popper in the literature, is the Schwartzberg score. This

PP(Q) := 4x-

10 For a statement in mathematically precise language, see Appendix A.

11 See for instance Louisiana House of Reps. v Ashcroft, 539 U.S. 461 (2003);
Martinez v Bush, 234 F. Supp. 2d 1275 (S.D. Fla. 2002); Perez v Perry, 835
F. Supp. 2d 209, 211 (W.D. Tex. 2011); Vesilind v Virginia State Board of
Elections, 15 F. Supp. 3d 657, 664 (E.D. Va. 2014); Page v Virginia State Board
of Elections, 15 F. Supp. 3d 657 (E.D. Va. June 5, 2015); Sanders v Dooly
County, 245 F. 3d 1289 (11th Cir. 2001); Session v Perry, 298 F. Supp. 2d 451
(E.D. Tex. Jan 6, 2004); Garza v County of Los Angeles, Cal., 756 F. Supp. 1298
(C.D. Cal. 1991); Harris v McCrory, 159 F. Supp. 3d 600, 611 (M.D.N.C. 2016);
Johnson v Miller, 922 F. Supp. 1552 (S.D. Ga. 1995); Cromartie v Hunt, 526
U.S. 541 (1999); Moon v Meadows, 952 F. Supp. 1141 (E.D. Va. 1997); and
many more.
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was originally defined as the ratio of the perimeter of a district to the
perimeter (circumference) of the circle having the same area—clearly
echoing the Polsby-Popper construction—so that lower Schwartzberg
scores are deemed preferable to higher ones (Schwartzberg, 1966). This
is expressed by

perim(£2)

\4r - area(£2)

Since Schw is simply a power of PP, Schwartzberg and Polsby—Popper
assessments must rank districts from best to worst in precisely the
same way.'” But because Joseph Schwartzberg worried that there was
no way (with 1966 technology) to accurately measure perimeters of
districts, he also proposed a notion of gross perimeter using a sim-
plified boundary to make the problem more tractable (Schwartzberg,
1966). Because it follows the article literally, Maptitude redistricting
software uses a different definition of perimeter in the computation
of a Schwartzberg score than in the computation of a Polsby—Popper
score, which of course breaks the scores’ monotonic relationship and
once again highlights the power of software to create and stabilize
definitions.

Schw(Q) := = PP(Q)"!/2,

3.2. The landscape of compactness metrics

Despite the fact that experts frequently cite Polsby—Popper scores,
there is no consensus on how these scores should be used when de-
termining the validity of a districting plan. To make matters more
confusing, legal contexts often call for the reporting of more than one
type of compactness score. Consider the 2018 litigation-driven congres-
sional redistricting in Pennsylvania. In the court orders of January 22
and 26 that year, it was declared that “[A]ny redistricting plan the
parties or intervenors choose to submit to the Court for its consideration
shall include ... [a] report detailing the compactness of the districts
according to each of the following measures: Reock; Schwartzberg;
Polsby-Popper; Population Polygon; and Minimum Convex Polygon”."*
The last three of these metrics are defined as follows.

» Reock: the area of a district divided by the area of its smallest
circumscribing circle (Reock, 1961);

» Population Polygon: the population of a district divided by the
population contained in its convex hull;'* and

* Minimum Convex Polygon (also known as the Convex Hull
score): the area of a district divided by the area of its convex hull.

The court orders do not specify whether any of these assessments
might be more important than the others, nor how two plans are to be
compared. If two plans were being evaluated in terms of their Reock
scores, each plan had 18 values to consider, and it is not obvious how
to say that one suite of scores is better than the other (see Fig. 2 for 8-
district Minnesota comparisons). Averaging over the districts to make
two plans directly comparable may give some insight, but it fails to
distinguish a plan where all districts are moderate from another where
some districts score extremely badly while others score favorably.
Each of these metrics, including Polsby—Popper and Schwartzberg,
requires rendering a district as a domain on a map of the state. This
domain is bounded by a contour, and then classical (i.e., Euclidean)
plane geometry is invoked to make some sort of computation. Popu-
lation Polygon stands out by taking population location into account,

12 This is because for positive values of x and y, we have x >y < x!/2 <
y~172, Therefore a higher (and thus better) PP score corresponds to a lower
(and thus better) Schw score.

13 Turzai v League of Women Voters of Pennsylvania, 17A909 (2018).

14 A convex body is a region that contains the entire line segment between
any two of its points. The convex hull of a region is the smallest convex body
containing the entire region. This is sometimes picturesquely referred to as the
“rubber-band enclosure”.
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Compactness Measures
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Polsby- Population Population Convex

Reock Schwartzberg Perimeter Popper Length-Width Polygon Circle Ehrenburg Hull
Mean 0.39 1.71 0.30 56.20 0.72 0.37 0.37 0.75
Min 0.22 1.30 0.17 2.06 0.25 0.15 0.24 0.63
Max 0.58 227 0.54 206.00 0.93 0.66 0.50 0.85
Std. Dev. 0.13 0.28 0.11 88.05 0.24 0.23 0.11 0.07

Sum 4,527

. . Polsby- Population Population Convex

District Reock Schwartzberg Perimeter Popper  Length-Width Polygon Circle Ehrenburg Hull
1 0.22 1.75 704 0.31 188.69 0.93 0.16 0.30 0.83
2 0.27 1.76 315 0.29 37.89 0.67 0.23 0.30 0.72
3 0.48 1.73 168 0.25 2.06 0.48 0.37 0.41 0.71
4 0.58 1.30 100 0.54 2.30 0.88 0.66 0.46 0.85
5 0.49 1.59 72 0.33 5.75 0.84 0.58 0.50 0.80
6 0.37 227 525 0.17 2.40 0.25 0.18 0.25 0.63
7 0.28 1.78 1,359 0.21 206.00 0.80 0.15 0.24 0.77
8 0.42 1.53 1,284 0.26 4.52 0.88 0.65 0.48 0.70

Fig. 2. Page from a report generated by Maptitude for Redistricting, reporting Maptitude’s standard compactness scores for a Minnesota districting plan.

but it still relies on the contour in a fundamental way. In fact, the 1990
survey (Niemi et al., 1990) identifies 24 compactness metrics, and every
one of them depends on a planar embedding, including the three that
are designated as population-based.

A focus on contours is not fundamental to the geography or the
geometry of partitions. Since the early twentieth century, geometry
has flourished in a discrete, combinatorial setting. The objects in this
framework (such as graphs, groups, and complexes) are made up of
individual units that one can enumerate and identify, rather than the
smooth curves of classical geometry. Because of the small menu of
important geographical units in this application—principally counties,
precincts, and blocks—discrete geometry gives a useful toolkit for the
geography of redistricting, as we will see below in Section 5.

4. Problems with contour-based scores

To fully appreciate the benefits of a discrete perspective on this
problem, we set the stage by itemizing some drawbacks to contour-
based compactness. Contour-based scores face four primary issues com-
mon to the category: trouble with physical geography, resolution
instability, coordinate dependence, and areal emphasis. We discuss
these below, together with examples that are mainly drawn from the
113th Congress (2013) vintage using the repository of data and code
found in Voting Rights Data Institute (2023a). The goal is to highlight
that the definitions are shakier than they seem, and that the scores often
align poorly with commonly understood best practices in redistricting.

As already discussed, the classic scores often face challenges of
aggregation and comparison.'” For instance, the five scores cited in
the Pennsylvania litigation are all valued between O and 1, inviting
comparisons across place, scale, and time. Though any careful prac-
titioner would caveat the use of averages and would avoid giving the
impression that a district score of .209 in one context could be mean-
ingfully compared to a district score of .205 in another, courts often
reach for simple summary statistics and direct comparison. We include
some naive numerical comparisons below, such as the rank among

15 A notable variant to these district-level scores is simply to report the total
perimeter involved in a districting plan. For example, the state constitutions of
Iowa and Colorado and at least one expert report (Puerto Rican Legal Defense
and Education Fund v Gantt, 796 F. Supp. 677 (E.D.N.Y. 1992)) compare the
total area of the jurisdiction (which is constant across alternative/contending
districting plans for that jurisdiction) to the sum of all district perimeters. This
handles the aggregation problem but not the other drawbacks of contours.

the 435 Congressional districts, to highlight the risks of uncritical
quantification.

Issue A: Physical geography. Districts with edges defined by natural
features, such as coastlines, are heavily penalized by contour-based scores,
whereas physical features are often good choices for district boundaries.

The perimeter of a contour-based region cannot account for a
pertinent geographical feature like a coastline or an irregular state
boundary that explains a portion of a district’s border. The districting
plan might incur a steep penalty for having an erratic perimeter,
even though that border was not chosen through any questionable
or manipulative process. For example, Alabama’s 1st Congressional
District from 2013 is partly bounded by the Gulf of Mexico to the
south, and the Tombigbee and Alabama Rivers to the north. As depicted
in Fig. 3, this creates sections of eccentric natural boundary. Some
shapefiles mitigate the effects from Gulf boundary by adding a buffer
extending into the water—but of course nothing similar can be done
for the river boundary. Accordingly, AL-1 has a fairly low Polsby-
Popper score of approximately .162, ranking 318th out of 435 districts
in the TIGER/Line Shapefiles (shown at left in the figure), but scores
significantly worse (.111, ranking 367th) in the Cartographic maps
(shown at right).'° There is no standard on whether to include water
when reporting compactness scores.!”

Consideration of the coastline issue leads naturally to a related
worry about stability of scores under changes in resolution. A coast-
line border is irregular and, in a sense, unmeasurable. This is the
well-known “coastline paradox” sometimes attributed to Benoit Man-
delbrot: the length of the coast of Great Britain depends on the size
of one’s ruler (Mandelbrot, 1982). In this way, the quantities area(£2)
and perim(£2) depend on the scale of precision used when mapping
the region, and can change significantly at different levels of zoom.
Finer wiggles in the boundary can expand the perimeter with no limit.
Indeed, arbitrarily long perimeter can exist within a fixed finite area,
as shown in Fig. 4.

The penalty on district borders that follow natural features is con-
trary to good districting practices, particularly with respect to the goal
of easily described district lines. Natural borders like rivers, which often

16 The reader can find code, data, and documentation for area and perimeter
statistics at Voting Rights Data Institute (2023a).

17 For instance, some districting plans filed with the court in Pennsylvania’s
2018 redistricting included portions of Lake Erie in the northwest of the state,
while others did not.
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Tombigbee
River

Gulf of Mexico

Fig. 3. Alabama’s 1st district has boundary partly defined by the Gulf of Mexico and the Tombigbee and Alabama rivers. The TIGER/Line (left) and Cartographic 500 K (right)
maps are shown here, illustrating that the Polsby—Popper quantification of compactness leaves the modeler caught in an unpleasant choice between a map subject to coastline

effects (Issue A) or to arbitrary inclusion of unpopulated areas (Issue D).

Fig. 4. A Hilbert space-filling curve in an intermediate stage of construction. The
winding becomes progressively more complicated, finally converging on a curve of
infinite length that fits in a finite area.

coincide with town, county, and state lines, are clearly far preferable
to lines or arcs that do not correspond to visible or marked features.'®

Next, we consider what the cartography and GIS literature refers
to simplification and generalization: varying the number of points and
features that define a curve. In computing, this would be considered a
matter of resolution. The geography and computer science communities
share a concern with the effects of scale on precision.

Issue B: Resolution instability. Varying map resolution can have a dra-
matic impact on contour-based scores, even though resolution is functionally
independent of the district definition.

Consider the Census Bureau Cartographic Boundary files, which are
available in three scales:

500 K (1:500,000), 5M (1:5,000,000), 20M (1:20,000,000).

One would expect some variation in the perimeters and areas of
districts because the 20M files are greatly simplified. Indeed, the Census
Bureau itself flags this issue, warning that “These boundary files are
specifically designed for small scale thematic mapping ... These files
should not be used for ... geographic analysis including area or perime-
ter calculation” (U.S. Census Bureau, 2023a). Nonetheless, we use those
maps here as an extreme illustration of an issue that will be present
whenever map resolution can vary: not only are area and perimeter
themselves altered, but those changes are compounded by the way
Polsby—-Popper is calculated. Perimeter is typically more sensitive to

18 Census geography is built with this in mind, as for instance with census
blocks, which are “formed by streets, roads, railroads, streams and other bodies
of water, other visible physical and cultural features, and the legal boundaries
shown on Census Bureau maps” (U.S. Census Bureau, 2023d).

resolution change, and because it is squared, the Polsby—Popper score
may drop precipitously at higher resolutions.

For example, California’s 53rd Congressional District, an
unremarkable-looking district located inland in San Diego County
before its elimination in the last reapportionment, saw an 81% jump
in perimeter when going from the 20M scale to the 500 K scale.
In the same transition, the district’s area increases by less than 9%.
This has a major effect on the district’s relative ranking of PPscore
among the 435 congressional districts: from ranking 61st at the coarsest
zoom, it drops to 191st at the intermediate resolution, and then to
292nd at the finest zoom. That means that the district’s assessed shape
quality goes from being in the best third, to the middle third, to the
worst third, inviting completely different qualitative assessments. On
average, when comparing data between the 20M scale and the 500 K
scale, congressional district perimeters increase by about 23%, while
district areas increase by 0.2%. Clearly both statistics are sensitive
to resolution, and perimeter is markedly more so.!° Census Bureau
TIGER/Line files are updated with slight modifications every year; even
state boundaries are regularly adjusted, sometimes with adjustments
on the order of inches from one year to the next, reflecting what
the Bureau regards as improved accuracy. Redistricting analysts would
need to use maps not only from the same source, but also from precisely
the same vintage, in order to expect consonant results.

Issue C: Coordinate dependence. The choice of map projection and
coordinate system, while fully independent of district definition, can impose
drastic changes on the contour-based scores.

Geographers have a well-established apparatus for specifying pro-
jections from sphere to plane: the Earth is round, roughly speaking, but
most maps are flat. It is widely known to be impossible to choose a
map projection that faithfully preserves both shape and area of regions
on the sphere. From a mathematical perspective, the proof of this fact
is simple to sketch: any smooth map that preserves area and angles
must be a local isometry (i.e., it preserves distances at small scale), and
so must preserve total curvature. Spheres have positive total curvature
while planes have zero total curvature, making such a map impossible.
Three example projections are shown in Fig. 5.

A recent paper by Bar-Natan, Najt, and Schutzman (2020) beauti-
fully proves what one might call an impossibility theorem for consistent
map projection from a mathematical point of view. The authors show

19 In Barnes and Solomon (2021), Barnes and Solomon explore the resolution
sensitivity, bypassing Census cartographic maps by varying map resolution
along a spectrum and using a sophisticated geometric toolkit.
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Fig. 5. The first map projection preserves angle measurements from the sphere, the last preserves area, and the middle map is an attempted compromise between the two,

sacrificing some accuracy in each (Kunimune, 2023; Strebe, 2023).

that any possible map projection will reverse the order of some pair
of districts with respect to Polsby—Popper scores, Reock scores, and
convex hull scores. That is, if you specify any map projection, you can
always find a pair of regions so that one scores better on the sphere,
but the other scores better once you have projected to the plane.

The Reock score is not as badly plagued by coastline and resolu-
tion issues as Polsby—Popper because it depends on area and on the
circumscribing circle, both of which are fairly robust to small boundary
perturbations. On the other hand, Reock is flagged as having especially
strong coordinate dependence in Bar-Natan et al. (2020). Hachadoorian
et al. (2023) also single out Reock scores for their extreme projection-
dependence. For instance, out of 18 districts that they selected for
comparison, 8 had changes of 24% or more in their Reock scores among
three projected coordinate systems (locally parametrized Albers equal-
area; World Mercator; and plate carrée lat-long). Worse, the changes
were in unpredictable directions, with some scores increasing and some
decreasing over a given shift in map projection. Since there is certainly
no standard map projection in the redistricting use case—for instance,
Maptitude seems to use a locally parametrized CRS while the popular
Dave’s Redistricting App uses lat-long coordinates—this dependence
undermines the meaningfulness of contour-based scores.?°

Even the Population Polygon score, which sounds promising be-
cause it is population-based, suffers from coordinate dependence. The
projection of the district does not impact the population of the district,
of course, but it heavily affects the form of the convex hull, and
therefore the population enclosed by it.

Issue D: Areal emphasis. Contour-based scores emphasize land area,
despite the fact that the electoral impact of districts is purely population-
based.

Districts are to be equalized by population, not by acreage, and
districts are intended to specify a division of voters. Consider an
unpopulated geographical region—a designated wilderness area, say—
with different districts to its north and south. The assignment of any
part of this unpopulated region to the northern district has no influence
on voting, and should not have a great impact on the districts’ quality.
However, the choice of how to allocate this unpopulated region be-
tween the two districts will have a marked influence on their perimeters
and areas.

One major source of unpopulated surface area is water. To see the
impact that this can have on shapes, consider that by Census measure-
ments, fifteen states are at least 10% water by area, with Michigan
topping the list at 41.5%. Overall, water makes up 7% of the United
States census geography (U.S. Census Bureau, 2023e). More broadly, in
the 2010 Census, nearly 45% of blocks had zero reported population;

20 Though there is no universal standard for American redistricting, it would
be a solid practice, for instance, to use a State Plane or UTM zone projection
for states. A UTM zone is well adapted in the case of a long north-south axis,
while a State Plane (locally parametrized version of Lambert Conformal Conic)
fits the case of a long east-west axis. See Hachadoorian and Buck (2022) for
more information on projections and coordinate systems.

these blocks that were unpopulated after the 2010 census are depicted
in Fig. 6 . Compactness can be wildly skewed by assignments of
officially unpopulated area to districts.

Cartographers are of course attuned to this issue, so for instance
conventional (areal) representations are often complemented with car-
tograms that are resized by population. But it is important to remember
that attempts to mitigate areal emphasis in district compactness scores
are going to butt up against the “eyeball test”. This will prevent us from
leaving unpopulated areas completely out of any scoring system; since
they have a major impact on the optics of a district, they will have to
figure into any metric that hopes to pass muster as a compactness score.

5. Discrete geometry and discrete compactness

This section contains further motivation for discrete metrics, as well
as formal definitions and examples. We present two specific discrete
metrics in Section 5.4 and Section 5.5. These scores, called the cut edges
score and the spanning tree score, have been principally articulated and
studied in the last few years by the present authors and collaborators
(Duchin, 2022, DeFord, Duchin, & Solomon, 2021, etc.), but in this
section we will detail antecedents going back many years.

5.1. Discreteness and graphs

The mathematical term discrete refers to a set whose elements are
distinguishably isolated from each other.?’ Any set with only finitely
many elements (in a space with a notion of distance) is necessarily
discrete. The relationship between redistricting and standardized Cen-
sus geography means that redistricting is necessarily a finite—although
perhaps gigantic—problem, and therefore discrete.

For redistricting purposes, it is important to know which geograph-
ical units are adjacent to which other ones, in order to make sense
of district contiguity. The mathematical abstraction for recording a
discrete set of elements and the adjacencies among them is called a
graph or network. Here we will introduce only as much terminology as
is needed for this discussion, and refer the reader to numerous graph
theory texts (for example, Diestel, 2005) for more information.

Formally, a (simple undirected) graph G = (V, E) consists of a vertex
set V and an edge set E. Each edge is an unordered pair of distinct
vertices, said to be adjacent to each other. See the second and third
drawings in Fig. 7 for examples of such graphs. The degree of a vertex is
the number of edges that are incident to it. Our graphs will be endowed
with a (vertex) weight function, w : V' — R, associating nonnegative
values to the vertices.

21 The technical definition is as follows: given a topological space X, a
subset S C X is discrete if for each element x € X, there exists an open
neighborhood U(x) containing x and no other element of S. For instance, the
integers {...,—1,0,1,2,... } are discrete as a subset of the number line because
a small enough interval around one integer will separate it from the others.
By contrast, consider the set of the rational numbers p/q on the number line:
there is no way to isolate a single one of these points from all others, no matter
how closely one zooms in.
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NOBODY LIVES HERE

The 4,871,270 US. Census Blocks with zero population
(2010)
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Fig. 6. Unpopulated census blocks, excluding the Great Lakes, are depicted in dark green in these maps by Freeman (2023). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

dual graph
(rook)

dual graph
(queen)

Fig. 7. On the left is a tiling of a rectangular region into five units. The middle and right-hand figures represent dual graphs of this tiling, using rook and queen adjacency,
respectively—the queen style allows corner connections, considering two tiles meeting at a point to be adjacent. Some states specify which form of contiguity is permitted in their

districts.

5.2. Creating geography dual graphs

We now have notation and terminology needed to build a
population-weighted graph that is “dual” to a set of geographic units.
This graph will contain one vertex for each unit. We put an edge
between two vertices when the corresponding units share part of their
boundary; note that a model requires a choice between so-called rook
adjacency or queen adjacency to build the graph, where the names
are drawn from the movement of the corresponding chess pieces (see
Fig. 7). This is a standard construction called the dual graph of a planar
tiling.

The census data comes with population counts on the geographical
units, which we will record with a weight function on the vertices. For
instance, the segment of the Charles River near Allston, MA is a census
tract designated by the GEOID 981501 (see Fig. 8), and the 2010 Census
says it has population 12. So in a dual graph on tracts, we could write
w(981501) = 12 to indicate that population count as a weight on the
vertex labeled 981501. This tract is rook-adjacent to twenty-one other
tracts, so the vertex labeled 981501 would have degree 21 in that graph.
It is not unusual for water units, less subdivided than land, to have high
degree in this way.

We can define the population for a set of vertices by summing: if
A C V, we write w(A) := ) ., w() for the total population of all
the units that make up A. So for instance if S is the set of vertices
corresponding to census tracts in Suffolk County, MA, within the graph
of Massachusetts tracts, then w(S) is the population of the county.

5.3. Plans as partitions

By a partition of a graph G, we mean a decomposition into mutually
disjoint subgraphs Pj,..., P, that, between them, cover all of the ver-
tices of the graph.?” Our notation for a partition will be P = (P, ..., P,).
If each subgraph P, is connected, then we call each P, a district and we

22 In mathematical notation, a vertex partition is given by V' =V, U -- UV,
where ¥, nV; = @ for all i # j. For each V,, the induced graph P, has vertex
set V; and includes all edges between those vertices that were present in the
original graph G.

Fig. 8. Census tracts in the Boston area, with tract 981501 highlighted.

call P a districting plan (or simply a plan). For instance, in Fig. 9, we
could take P, to be the subgraph on the yellow vertices, P, the subgraph
on the green vertices, and so on. Below, we will assume that a graph G
has been fixed, so that we can talk about its partitions without referring
back to G in the notation.

Now we can restrict districting plans with & districts to those that
balance the census population to within a tolerance ¢ > 0. That is, we
require

D < wipy < 1+
k k
for all districts P, in the plan. If ¢ = .05, for example, this amounts to
requiring that each district be within 5% of ideal district population.

(I-e

5.4. Cut edges

The first discrete shape measure that we present is the cut score.
The idea of the cut score is that a geographically efficient division of
units should separate relatively few adjacent pairs across district lines.
This lets us measure the “scissors-complexity” of the division, with the
intuition that a plan that deliberately slices up different segments of
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Fig. 9. This figure shows two representations of a partition of the counties of Arkansas into four districts (k = 4). In this plan, each district is within about 4% of ideal population,
so in particular this could be considered a balanced partition at ¢ =.05. The county dual graph shown on the right has 75 vertices (one for each county) and 192 edges (one for
each pair of adjacent counties). This plan has 36 marked edges between pairs of counties that are adjacent but that belong to different districts (Blue/Yellow: 3, Blue/Green: 2,
Blue/Red 4, Red/Green: 8, Red/Yellow 6, Yellow/Green: 13). That means that 36 of the 192 adjacencies have to be severed in order to separate the state into districts in this
pattern; below we define this as the cut edge count, or cut score, of the plan. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
Source: Figure reprinted from Duchin and Walch (2022) with permission.

population in order to meet an agenda will require more scissors-work
to cut it into those pieces.

Definition 2. A cut edge of a partition P is an edge of G whose
endpoints lie in different districts. (That is, there is a cut edge for every
pair of units that are adjacent to each other but that are assigned to
different districts.) The cut-set is the set of all cut edges, and the cut
score counts the cut edges. In set-theoretic notation, we can write

cut(P) :='{{u,u}eE ‘u€P,vEP forsomei;éj}

This cut score should be thought of as the discrete analog of the
perimeter of the districts: the boundary length between districts is
measured in a count of geographic units, not in miles or kilometers.
This means that perturbations or additional wiggles in the definition
of a river, say, do not contribute to the score. As an added benefit,
only interior perimeter contributes, and not the edge of the state. Just
as with conventional perimeter, a lower score would be thought of as
simpler, so more compact.

To be precise about units, we might speak of the block cut score in
a graph dual to census blocks, while Fig. 9 illustrates an Arkansas plan
with a county cut score of 36.

The Arkansas county dual graph has k = 4 districts, N = 75 units,
and m = 192 edges. For all possible graphs with these parameters,
the theoretical range of cut edges is from 3 to 121 (see Lemma 4).
The actual (realizable) minimum number of cut edges possible in a
given graph depends on both its connection topology (which vertices
are adjacent) and on the population deviation that is allowed, and
finding this sharp minimum is closely related to problems that are
known to be computationally intractable (i.e., what computer scientists
call NP-complete: if you could solve these problems efficiently, modern
cryptography would fall apart). In this particular case, Becker and
Solomon have proved that every possible four-district plan for the
Arkansas county graph with < 2% population deviation has at least
32 cut edges, and they produced a plan realizing this bound (Becker
& Solomon, 2022). This means that the districting plan shown in the
figure, with 36 cuts, is not the most compact possible plan by this
measure, but it is fairly close.

Far from a novel suggestion, using the cut-set as a discrete perime-
ter is a wholly standard idea across subfields of pure and applied
mathematics. Explicit use of cut-sets goes back at least to the Cold
War birth of operations research in the mid-1950s in the form of
the Max Flow-Min Cut theorem, establishing a formal and quanti-
tative duality between maximizing flow in a network and finding
a minimal cut-set (Ford & Fulkerson, 1956). A special case was al-
ready treated by Menger in the 1920s (Menger, 1927). Graph-based
isoperimetric inequalities abound in geometric group theory (Bridson

& Haefliger, 1999), anticipated by important work of Dehn in the
1910s (Dehn, 1911) developing graph notions of area and perimeter.
A fairly direct parallel to the usage proposed here is the graph Cheeger
constant (Lubotzky, 1994), which is computed by finding a short cut
that divides a graph into big pieces. Connections to network science
will be further explored in the next section. As far as we know,
the first invocation of the cut-set in redistricting was proposed in a
political science conference paper by Dube and Clark in 2016 (Dube &
Clark, 2016), where the authors propose to minimize cuts to optimize
“edge-cut compactness”; the idea also appears in subsequent work in
2017 (Powell, Clark, & Dube, 2017; Powell, Dube, & Clark, 2017).

The dream of computational redistricting in the 1960s triggered
early use of the graph model for districting plans, because graphs are
the mathematical formalism aligned with how computers store adja-
cency relations. Today, every computational approach to redistricting
makes use of the graph model, and an efficient algorithm for handling
partitions is likely to store the cut-set as part of its data pipeline for
plans. This makes the cut score an extremely lightweight calculation
in computational applications. The cut score features in numerous
research papers that use Markov chains for redistricting (Caldera et al.,
2020; DeFord & Duchin, 2019; DeFord, Duchin, & Solomon, 2020;
DeFord et al., 2021; DeFord, Najt, & Solomon, 2019; Duchin & Walch,
2022).

As a sign of uptake through digital/commercial instantiation, the
cut score was incorporated into the updated 2020 release of Maptitude.
From there, cut edges scores could be featured in the court documents
for the major cases that were running as this article was in submission:
the special master’s remedial plan report in Alabama and the federal
court decision in Georgia.??

5.5. Spanning trees

For the next discrete compactness score, we turn to another aspect
of graph theory. This time we build a score of the internal connectivity
within districts, rather than the complexity of the boundary between
districts.

A graph is connected if each vertex can follow a path of edges in the
graph to reach any other vertex; otherwise the graph is disconnected. A
connected graph with n vertices must have at least n — 1 edges. When
a connected graph with n vertices has exactly n — 1 edges, it is called

23 Report and Recommendation of the Special Master, Singleton v. Allen, No.
2:21-cv-1291-AMM (N.D. Ala. Sept. 25, 2023) and Opinion and Memorandum
of Decision, Alpha Phi Alpha Fraternity, Inc., v. Raffensperger, No. 1:21-CV-5337-
SCJ (N.D. Ga. Oct. 26, 2023), both offering comparison of cut edges for maps
under consideration by the court.
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Fig. 10. The first image is a graph with N =8 vertices and m = 8 edges. It has four spanning trees, shown on the right. They are found by deleting any of the four edges in the

graph’s lone cycle.

cut =20
sp = 80.56~

cut =33
sp = 65.53~

cut =73
sp = 14.99~

Fig. 11. The 10 x 10 grid-graph has 100 vertices, 180 edges, and, as a whole, a spanning tree score of 98.45~. Here we have shown three examples of 4-district plans. Both
scoring methods rank these model plans from most compact to least compact, reading from left to right—agreeing with the eyeball test.

a tree; equivalently, a tree is a connected graph with no cycles. Every
connected graph contains at least one tree as a subgraph that uses all
of the vertices, known as a spanning tree. In particular, to produce a
spanning tree of a graph, we can proceed by deleting edges, checking
not to disconnect the graph at any stage, until no more edges can be
removed. Fig. 10 gives an example of a graph having four spanning
trees.

Since trees are the limiting case of graphs having the most frag-
ile interconnectivity (i.e., no edges to spare), a natural measure of
connectedness is the number of spanning trees in a graph.

Definition 3. The spanning tree score of a graph G, denoted sp(G), is
defined as the natural logarithm of the number of spanning trees of G.
The spanning tree score of a districting plan P = (P,, ..., P,) is defined
as

k
sp(P) 1= )" sp(P),
i=1

the sum of the scores of the districts in the plan.

For example, the spanning tree score of the original graph in Fig. 10
is In(4) = 1.397, because it has four trees. (Here and below, * and ~
will indicate whether the raw value is slightly greater or slightly less,
respectively, than the rounded value that is shown.) Cut and spanning
tree scores for some districting plans in a grid are shown in Fig. 12.

In the case of spanning trees, a higher score represents a more
compact plan, because the score measures the internal connectedness
of the districts, which visually corresponds to more bulk and fewer
bottlenecks. The logarithm in the definition helps keep the score in a
reasonably human-readable range, since the count itself can get very
high once we are in a setting with thousands (or hundreds of thousands)
of vertices. By exploring the spanning tree count of a graph, one soon

10

realizes that “plumper” and more interconnected graphs have more
spanning trees than their “spindly” relatives.”* A thorough discussion
of the spanning tree count as a complexity measure, and a beautiful
exploration of the asymptotics, can be found in Lyons (2005).

Spanning tree methods are found across graph theory, theoretical
computer science, and electrical engineering. Kirchhoff’s “Matrix-Tree”
theorem from 1847 counts spanning trees in a graph as the product
of non-zero eigenvalues of the graph Laplacian (Kirchhoff, 1847). Wil-
son’s algorithm samples a spanning tree uniformly at random, using a
random walk method (Wilson, 1996). Kruskal’s algorithm (a favorite
in undergraduate computer science courses) gives a faster method
to generate spanning trees in a weighted graph using random edge
weights (Kruskal, 1956). Network theory and practical network pro-
tocols make heavy use of spanning trees. The use of spanning trees for
clustering is discussed further in the next section.

6. Interpreting and assessing discrete compactness

This paper calls for importing ideas from discrete geometry into the
study of electoral geography, so we need broader context to situate
these mathematical ideas, setting up an evaluation of the fit. Agnew
and Duncan called for geographers to “display more critical acuity in
borrowing ideas from outside the field” (Agnew & Duncan, 1981); the
mere fact that cuts and spanning trees appear all over the mathematics

24 The precise conditions on graphs (for a given number of vertices and
edges) to have as many spanning trees as possible are not known; this is an
open problem even for grid-graphs (those that can be realized in a square
lattice) such as those in Figs. 10 and 11. However, it is widely conjectured
that square-shaped districts have the most spanning trees in a grid-graph, just
as circular districts have the optimal scores for most contour-based measures.
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and computer science literature is no guarantee that they help us think
about compactness specifically, or human geography more broadly.
In this section we take on the conceptual work of connecting metric
to meaning, building an argument that these scores are well suited
to measure compactness in political geography terms, and that they
may be promising for wider application. For the specific use case of
redistricting, we will consider how the new scores hold up against the
problems and issues outlined above.

6.1. Explainability

Cut edges is a score of scissors complexity, counting how many pairs
of units needed to be separated to divide the districts. Spanning tree
counts measure the connectivity of the districts, upweighting districts
with more ways to traverse from point to point. These seem to be
at least as intuitive as the classical scores like Polsby-Popper (area
over perimeter squared, which produces a unit-free score) and Reock
(area of district compared to area of bounding circle). Some authors
like Niemi et al. (1990) have tried to make the contour scores more
intuitive by taxonomizing them, with Polsby-Popper as a “perimeter”
score and Reock as a “dispersion” score, but these categories are dubi-
ous; in particular, Reock has no mathematical connection to dispersion.
Both Polsby-Popper and Reock idealize the circle, but there is no reason
that circles should be held up as an ideal district shape. By contrast, it
is arguably much more defensible to idealize simplicity (cut edges) or
interconnectedness (spanning trees).

6.2. Clusters and communities

Both the cut score and the spanning tree score reward plans that
keep well-connected areas together, and both prefer plans that find
economical rather than winding cuts. This means that both scores
will tend to penalize districts that weave or meander through space,
but importantly this is measured in terms of the passage from unit
to unit and not as the crow flies. They maintain attention on the
building blocks of districting plans and study them as a network in
which adjacency matters, not Euclidean distance or travel patterns or
demographic similarity (except in the ways that those attributes are
reflected in the units themselves and their connection topology). This
will capture interesting structure when the geographical units are built
to correspond to human political and social formations.

The notion of selecting subgraphs with high interconnectivity is
well studied in the field of network science, going by the highly
suggestive name of community detection. As one survey article puts it,
“One mesoscopic structure, called a community, consists of a group of
vertices that are relatively densely connected to each other but sparsely
connected to other dense groups in the network” (Porter, Onnela, &
Mucha, 2009). The use of community structure language and methods
from network science is well underway in the geography literature
(see Adam, Delvenne, & Thomas, 2018; Chi, Thill, Tong, Shi, & Liu,
2016; He, Glasser, Pritchard, Bhamidi, & Kaza, 2020; Thomas, Adam,
& Verhetsel, 2017). This dovetails with the different but highly related
study of clustering methods in statistics (and now in machine learning),
for which spanning tree algorithms were being used at least as far back
as 1969 (Gower & Ross, 1969; Zahn, 1971). For the uses of clustering in
regionalization, see for instance (Farmer & Fotheringham, 2011), which

25 Notably, a government office exists to build and uphold concepts and
criteria for many of the units discussed here. The Geography Division of the
U.S. Census Bureau maintains a Geographic Standards and Criteria Branch
whose publications frequently reference social structure in the definition
of geographies like census blocks and block groups (which are built and
adjusted in collaboration with local officials) (U.S. Census Bureau, 2023c).
This institutionalized attention to concept maintenance is notable, though of
course it provides no guarantee of correspondence to the lived experience of
residents.
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uses terms that closely echo the networks notion of community from
above: a functional region is “internally well connected and relatively
cohesive, especially compared with the links between regions”.

So favorable cut and spanning tree scores occur when a plan of-
fers an efficient graph clustering with weight balance. It is important
not to overstate the congruence of the graph-theoretic definition of
community with the more robust social and cultural definition; the
correspondence is more than cosmetic but far less than complete.

6.3. Comparison, normalization, and bounds

The cut score and the spanning tree score are strongly related to
each other (see Fig. 12), and are generally correlated with the standard
suite of scores (Polsby-Popper, Reock, etc.) when applied to enacted
districts.”® But we will argue in the next section that these discrete
scores mitigate (though they do not eliminate) the worst issues and
limitations of the classical scores.

First, we briefly address the question of normalization: is it possible,
or advisable, to transform these scores to be within a fixed range (like
0 to 1) for the purposes of comparison? To address this we should say
something about the highest and lowest possible scores. The lowest
possible spanning tree score is 0, which occurs when every district is
a tree. We can summarize what is known about the other bounds as
follows.

Lemma 4 (Bounding the Cut and Spanning Tree Scores). Suppose G is
any connected planar graph with N vertices and m edges. Over all possible
partitions P into k > 2 connected districts, the cut and spanning tree scores
satisfy the following inequalities:

k—1<cut(P)<m-—N +k; 0 <sp(P) < 1.665N.

Spanning tree scores of roughly 1.615N are realized by families of partitions
on a triangular lattice.

The notation < represents an asymptotic inequality: that is, sp(P) <
1.665N means that sp(P) is much smaller than 1.665N when N is large.
For more details and the proof of Lemma 4, see Appendix B.

Considering these bounds, is it possible to use discrete compactness
scores to compare two plans made from different graphs, such as a
congressional plan in Wisconsin against one from North Carolina? We
emphasize that the bounds in Lemma 4 hold for all graphs with N
vertices and m edges, including extreme examples (like paths) that are
very unlike geography dual graphs. Finding a precise maximum and
minimum achievable score for a graph in a given class is a difficult
open problem. But of course, the same is true for the classical scores;
even though 1 is the best Polsby-Popper score for a single district
in the abstract, that value is only achievable if the boundary is a
perfect circle. Circular districts are geographically unrealistic, in the
first place, and would not fit together to tile a region in any case.
The best Polsby—Popper score for a real-world redistricting problem of
finding equipopulous partitions of census geography seems to be just
as difficult to assess.

So instead of attempting to standardize the range of scores to
encourage cross-context comparison, we argue that the (un-normalized)

26 At the same time, there are plentiful examples where the contour scores
diverge from the discrete scores—and from each other—in their assessment
of whether districts are compact or not. One setting where the discrete scores
differ from contour scores is in Utah, where census blocks have wildly different
sizes because so much of the state is unpopulated; because blocks no longer
act like pixels, this partially decouples the statistics of blocks from the visual
appearance of the shapes. Here, blocks still provide the accurate record of
choices available to those drawing districts. Many more examples resemble
Fig. 3 above, in which cosmetic mapping choices skew contour scores but not
discrete scores.
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Fig. 12. These charts present comparisons of cut and sp scores. On the left is a scatterplot of all 451,206 six-district plans on the 6 x 6 grid, showing a nearly perfect linear
relationship between the scores. On the right is the same comparison for a random sample of 250 40-district plans on a 40 x 40 grid, showing a strong negative correlation. These
were sub-sampled from an ensemble of 100 million plans generated by a Markov chain process described in DeFord et al. (2021), using an implementation available in Voting
Rights Data Institute (2023b). The latter problem, building 40 districts from 1600 geographical units, has enough complexity to be comparable to a real-world redistricting problem.

Fig. 13. A comparison of physical geography (left) to precinct geometry (right) in Pennsylvania. We see that precincts are not a lattice superimposed on the state, but instead
reflect patterns of natural geographical formations and built infrastructure. This illustrates that the adjacency patterns of the units are not just abstract and everywhere identical,

but encode aspects of human geography and physical geography as well.

cut and spanning tree scores promote the good practice of only com-
paring plans to their alternatives that hold constant the problem’s
parameters (the choice of region, building blocks, and number of dis-
tricts). That is, the practice of normalization and cross-state comparison
was always misleading, even for standard compactness scores.

6.4. Assessing success

We have argued that the redistricting data is better suited to dis-
crete geometry; now we will consider whether the issues discussed in
Section 4, which attach to contour-based scores of compactness, are
successfully defused by discrete scores like cut and sp.

Discretization will significantly mitigate coastline effects (Issue A),
since the census geography along a complicated natural border will
absorb any wiggling perimeter into a fixed (and not unduly large)
number of units. Subsequent refinements to the measurements that add
precision to those polygons will not increase the number of polygons,
and so will not change the discrete scores—the geographical units
encountered along a jagged coastline will be more complicated, but not
generally more numerous, than along a straight-line boundary. Since
the discrete scores are defined by counts over the units and their
adjacencies, they do not incur a coastline tax. More broadly, it is an
interesting question to consider the extent to which physical geography
is reflected in census and administrative units (Fig. 13).

Some insulation from resolution instability (Issue B) is provided
by discrete compactness scores for the same reason: more precision
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puts more points on each polygon, but typically without changing the
adjacencies between units.

Next, note that coordinate data is not recorded in the graph from
which our discrete scores are computed. Fig. 14 shows a centroidal
embedding of the VTD graph in the plane for illustrative purposes, but
the weighted graph itself retains no latitude/longitude data, only adja-
cency relations and population counts for the units. This means that any
compactness score based on the graphs dual to geographical units—in
contrast with all contour-based scores—will automatically be inde-
pendent of map projection or choice of coordinates. This completely
negates Issue C above.

Finally, discrete compactness scores that do not take population
weights into account, like the cut and spanning tree scores in the form
presented above, are still subject to empty space effects (Issue D). In
particular, since so many census blocks have zero population, their
movement between districts creates a different partition (and changes
the cut and sp scores) but not in a way that affects representation.?’
The desire to put more emphasis on population might lead us to

27 In order to ensure that scores are more keyed to population than area,
one approach is to work with a graph based on units that are designed to
have relatively even levels of population, such as block groups or precincts.
The Census Bureau writes that block groups are “statistical subdivisions of
census tracts[,] generally defined to contain between 600 and 3,000 people
and 240 and 1,200 housing units” (U.S. Census Bureau, 2023d).
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Fig. 14. The dual graph for the 2372 VTIDs (precincts) in Virginia, shown with each vertex plotted at the centroid of the VID it represents. The corresponding graph of the
285,762 census blocks would look substantially more complicated. The centroidal embedding makes cities visible as loci of greater vertex density, but the graph itself is just a list

of vertices and a record of which pairs of vertices are adjacent.

”

favor population-weighted scores, which are designed not to ‘“‘see
unpopulated areas. For instance, instead of reporting the number of
cut edges, we can sum over the populations of their endpoints, which
incentivizes districts whose borders slice through sparsely populated
areas. This may be in line with good districting practices in some
instances—such as keeping together a community of interest—but at
odds in other instances, because city populations are vulnerable to
packing and are sometimes better served by being split.

Taken together, this means that the area-vs.-population tension is
the issue that remains most alive for discrete compactness scores, while
the other problems are significantly mitigated. However, this tension
may not be resolvable. It is area that governs the eyeball test, and so
area has an ineliminable role in the judgments that will ultimately be
passed by the public, the bodies that control the lines, and the judges
who decide their fate when challenged (Kaufman, King, & Komisarchik,
2021; Pildes & Niemi, 1993).

Let us review the design principles for districts that have been writ-
ten into the rules and applied by courts and by observers. Compactness
has been hoped to flag divisions with excessive geographical complex-
ity, to limit the power of line-drawers, and to promote cognizability and
ease of description. The cut and spanning tree scores favor districts that
pass muster visually but also, by construction, are formed as clusters
in the adjacency network of census or administrative units. They have
reasonably intuitive explanations that are accessible to a layperson
as described above. Placing limitations on the discrete compactness
scores allowed in districts will restrict the degrees of freedom of the
redistricter just as contour scores do.?® And by mitigating the “coastline
tax” and measuring complexity in units that are themselves built to
hew to boundaries of towns and relevant physical geography, discrete
compactness scores are better aligned with the formation of cognizable
districts. Indeed, a plan can be completely described by specifying its
units and naming its cut edges. So this is a final and very literal sense
in which plans with fewer cut edges are more simply described.

6.5. Empirical benchmarks and directions for future work

We close by sketching future directions for quantifying compact-
ness.

28 Civil rights advocates have been leery of compactness scores, worrying
that they could obstruct the formation of effective districts under the Voting
Rights Act. But this worry can be turned around: because the cut score
in particular is so efficient to compute, algorithmic methods can be used
to find plans with VRA-compliant districts and reasonable compactness, as
in Becker, Duchin, Gold, and Hirsch (2021). Indeed, the opinion of the court
in Milligan, authored by Chief Justice John Roberts, favorably cites just this
use of exploratory algorithms. (See footnote 7 of that decision.)
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Other scores

We have focused attention here on two possible discrete com-
pactness scores, but there are an enormous number of possibilities
for the application of discrete ideas to redistricting. The cut score is
based on a discretization of perimeter. A corresponding discretization
of area would open the door to discrete isoperimetry. (A discrete
Polsby-Popper score is defined in Appendix A.)

We have focused on the limitations of plane geometry, but there
is another interesting possible departure from that way of measuring:
distance calculated in miles can be replaced with distance calculated in
travel time, as numerous authors have noted. For example, dispersion-
based scores have been formulated for decades that are essentially
average distance calculations over districts, say the average distance
between pairs of points or from a point to the center of mass. (See the
“moment of inertia” scores in Niemi et al., 1990.) These can first be
discretized, localizing population by census block and using sums over
the blocks rather than integrals over the plane domains. If distances
are then computed with respect to travel time rather than linear miles,
we might find that time compactness—low “travel-time dispersion”—
tracks with easy transit and assembly. This sounds quite appealing.
What makes this challenging to execute is the lack of a canonical or
stable source for travel times that parallels the census as a canonical
source for geographical units; rush hours, weather differences, and
more would make the measure dynamic rather than static. Even more
problematically, to the extent that travel time is supposed to be human-
centered, we have to ask whose travel we are timing: residents with cars
or who can pay for fast trains will have very different travel realities
from those who rely on buses, even for the same routes.

Units

The choice of units for analyzing plans is a thorny question, tied
to the equally thorny choice of units for building plans in the first
place. We have argued census blocks are in many ways a good choice
because current practice is to tune plans at that level, but building
with larger units would in many cases be a good practice (few choices,
more cognizable, and so on). When trying to define compactness scores
using larger units that do not cleanly nest in districts, one strategy is
to refine the units by splitting down to their intersections with the
districts, but this has the downside that it becomes hard to compare
a given plan with other alternatives on equal footing. For the cut score
in particular, a quantitatively equivalent approach is to increment the
cut edge count for each split unit, effectively regarding it as made up of
multiple sub-units that have been severed from each other in the plan.
A second strategy is to “round off” the districting plan into a given set
of units, by assigning each unit to the district with the largest share
of its population, say. Our preliminary explorations indicate that all of
these strategies retain the motivating properties of discrete scores when
working with precincts for congressional and state legislative districts,
and sometimes block groups, but that census tracts are too large (and
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too independent of district structure)—attempts to describe districts
in terms of tracts will lose the signal of unit integrity that discrete
compactness scores are designed to detect. There are exceptions to
this rule of thumb that precincts are the largest reasonable choice: for
instance, the practice in Iowa is that congressional districts are built
from whole counties. An individualized inquiry should be conducted
when choosing suitable units for undertaking a new kind of redistricting
analysis with discrete geometry tools.

Incentives and gaming

Sometimes, scores that are built with reference to one set of inputs
turn out to be sensitive to other features, in addition to (or sometimes
even instead of) the attributes appealed to in the definition. This occurs
so commonly in redistricting metrics that it is the rule rather than
the exception: from efficiency gap to competitiveness to partisan symme-
try, many popular scores turn out to have surprising simplifications
that show they cannot possibly capture all the phenomena that their
proponents used to motivate and justify them (Cover, 2018; DeFord
et al., 2023, 2020; Veomett, 2018). In some cases these findings can be
worked out directly by analytical examination of the definitions, and
in some cases there are suggestive correlations that can be observed
from computational investigation. In fact, observed correlations can
sometimes lead to the derivation of provable characterizations.*

It is important to study the correlates of good or bad performance
in any new proposed score, in order to be confident that irrelevant plan
features are not being unduly rewarded or penalized, and that relevant
features move the needle. More generally we should seek to be sure that
the named inputs do not carry hidden proxies. In particular, all metrics
that are designed to evaluate districts (and all rules and generation
methods for plans) merit a close look at the incentives they create for
the line-drawers. An example already came up just above: a population-
weighted perimeter might be intended to mitigate coastline effects,
but by neglecting unpopulated units it will rate plans as efficient, or
compact, when they slice through rural or industrial areas and leave
more densely populated regions whole. This might be advantageous in
some circumstances but could not be expected to produce a healthy
incentive overall.

The flip side of incentives is the gaming of scores, where agenda-
driven plans are designed to avoid detection by finding blind spots or
loopholes in the gatekeeping metrics. Following through with the ex-
ample of a population-weighted perimeter, an abusively drawn district
could, in principle, make its gerrymander invisible by adding a buffer
of unpopulated units around its border, thereby dropping the weighted
perimeter to near zero.

To address both of these, an important method of approach is to
build large ensembles of plans to examine, looking for correlations be-
tween discrete compactness scores and other map features, both under
neutral conditions and while searching for extreme examples. A sys-
tematic correlational study of new compactness metrics will also help
clarify the success with which mathematized notions of communities
and geographical clusters map onto bottom-up social understandings
of communities of interest.

Overall, this discussion leaves us with two promising measurements
of compactness that are cued up for investigation. We have argued
that these metrics go further to meet the normative aspirations of
compactness scores for redistricting than the classical scores, and even
that they admit more intuitive explanations. The discrete scores are
well aligned with geographical analysis on many levels, especially
because they are keyed to the pieces designed for redistricting and so
they confront rather than eliding the role of units (i.e., the MAUP).
At the same time, there is ample room for further computational (and
normative) exploration of applications of discrete geometry to redis-
tricting. We hope that political scientists, sociologists, legal scholars,
mathematicians, and political geographers will find this to provide
intriguing questions for study, working in parallel and (especially) in
collaboration.

29 This was the case with the “Utah paradox” in DeFord et al. (2023).
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Appendix A. Ideas for discrete isoperimetry

As discussed above, the isoperimetric theorem roughly says that all
shapes satisfy A/P? < 1. Here is a more precise statement.

Theorem 5 (Isoperimetric Theorem). Let €2 be a bounded open subset of
the Euclidean plane R? whose boundary 32 is a rectifiable curve. Then
the Lebesgue measure m and the length ¢ are related by the inequality
4z -m(2) < £(02)%, with equality if and only if Q is a disk and 0% is
a circle. That is, all Q satisfy

area(£2)
dr———= <

perim(£2)2

In this generality, Theorem 5 has a short and elegant proof using
the Brunn-Minkowski inequality (Stein & Shakarchi, 2005).

Many geometric ideas have been profitably discretized in the last
several decades, particularly in computer science, where discrete differ-
ential geometry is an essential part of computer graphics, and geometric
group theory, where the shapes of spaces are echoed in the shapes of
their (discrete) lattices (see generally (Bobenko, Schroder, Sullivan, &
Ziegler, 2008; Bridson & Haefliger, 1999; Clay & Margalit, 2017). Con-
sequently, another natural direction of inquiry is to take the popular
definitions of compactness and to discretize their elements, like area
and perimeter. In this appendix we will briefly outline the ideas needed
to form a discrete Polsby—Popper score.

Recall that the weight of the vertices in the dual graph G is given by
the population of the corresponding units. We can define the boundary
oG of the graph to be the subset of vertices corresponding to units on
the outer boundary of the state—note that this is not an abstract graph
notion, but depends on the tiling from which the dual graph was made.
Consider a partition P = (P, ..., P,) into k connected districts. Then
we can similarly define the boundary 0P, of each district coming from
units on the outer boundary of the district (either belonging to dG or
adjacent to a different district).

Let us define the discrete area of a district to be the order (that
is, the number of vertices) of the district and the discrete perimeter
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Fig. 15. Square and triangular lattices with square and hexagonal “districts” £, and £, respectively..

to be the order of its boundary, possibly choosing to weight both
of these calculations by population. This immediately suggests two
discrete analogs of the Polsby—Popper score of a district. We can let
the compactness be measured by

1. discrete area divided by the square of discrete perimeter; or
2. the same calculation, but weighted by population.

These scores are, respectively,

|~Q| Zue.@ w(v)

2 2"

02| (Zoeoq wv)
To defend the decision to square the perimeter to achieve scale-
independence, as in the continuous setting, consider the lattice exam-
ples in Fig. 15.

The square-shaped subgraph @, in the square lattice G and the

hexagon-shaped subgraph ! in the triangular lattice G’ have isoperi-
metric ratios

2, 2
1022,

1 and (2

12,1 3x2_3n+1
o> 36(n—1)? "

T 16— 1)2

respectively. These tend to positive, finite limits as n gets large (1/16
for the square case and 1/12 for the hexagon), whereas if any other
power of perimeter had been used, the limits would be zero or infin-
ity. We interpret this to say that if a grid has underlying geometry
that is roughly Euclidean, then squaring the perimeter makes these
measurements stable under refinement of the grid.

There is no need for a coefficient in the discrete calculation to
play the role of 4z from the classical formula. This is because 4z was
chosen in order to scale the continuous value PP to lie in the unit
interval, whereas these discrete variants can take arbitrarily large or
small values.>® We consider this to be a feature, not a bug: it reminds
the responsible modeler to only compare a compactness score to others
that have been collected at the same resolution—which is a good
practice, whether scores are contour-based or discrete.

As a remark, the discrete geometry explored here—small cut-sets,
interconnected clusters, and isoperimetric inequalities—can be
rephrased and reframed in terms of discrete curvature. Graphs that
encode geographical networks carry their own geometry. In picturesque
words, imagining the edges as rigid rods with length one, for instance,
allows us to convert the connection topology to a surface topography
with peaks and saddles and plateaus. At a high level, discrete defini-
tions of compactness measure how the divisions cleave this abstract
landscape as much as the physical one.

30 With a uniform weighting function, a path of length n would have
isoperimetric ratio approaching zero; on the other hand, we can produce
scores tending to infinity if we begin with a fixed district 2 and successively
subdivide interior cells while leaving the boundary fixed.

15

Finally, we make a quick note on allocation of split units. When
the units represented by a dual graph nest neatly into districts, then
it is straightforward to regard the plan as a partition: we let P, be
the subgraph corresponding to the units in district 1, P, correspond
to district 2, and so on. However, we sometimes want to build a
graph from units that do not fully nest in districts. As we have seen,
census block inclusion in districts is usually all or nothing, but districts
typically split the larger census units. Therefore, if bigger units are
being used, an allocation system is needed in order to decide which
units belong to which districts. For example, the modeler might assign
each unit to the district in which the largest part of its land area lies, or
the largest portion of its population. Alternatively, the units themselves
can be split to make smaller pieces that do nest, with fractional alloca-
tion of the original population to each district, assuming the share of
population in each district can be estimated.

We have formulated definitions of compactness for districting plans
that make use of the formalism of graph partitions; the impact of
making different allocation choices should be studied for any proposed
metric if blocks are not the basic unit.

Appendix B. Bounding the discrete scores

We now prove Lemma 4. Below we write f(n) < g(n) and f(n) < h(n)
if the limiting behavior of a function f satisfies lim,_, f(n)/g(n) = 1
and lim,_, , f(n)/h(n) = 0, respectively.

Lemma 5 (Bounding the Cut and Spanning Tree Scores). Suppose G is
a connected planar graph with N vertices and m edges. Over all possible
graphs G and all possible partitions P into k > 2 connected districts, the cut
and spanning tree scores satisfy the following inequalities:

k—1<cut(P)<m-N +k; 0 <sp(P) < 1.665N.

Spanning tree scores of roughly 1.615N are realized by families of partitions
on the triangular lattice.

Before we begin, we cite spanning tree counts for planar lattices and
a global bound for planar graphs. Keeping the notation from Fig. 15,
we can write @, for a square subgraph of the square lattice, and €/
for a hexagonal subgraph of the triangular lattice. Classical counting
formulas tell us that

sp(2,) < 1.166* N and sp(2)) < 1.615* N,

where N is the number of vertices of each graph: |2,|] = »*> and
|.Q;| = 3n® — 3n + 1 (Glasser & Wu, 2005). In a 2010 paper, Buchin
and Schultz use a linear programming argument to establish that all
families of planar graphs satisfy sp(G,) < 1.665” N for N = |G, | (Buchin
& Schultz, 2010).
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Proof. Because trees are minimally connected, every deleted edge
divides them into two connected components; for any other graph, each
cut edge may or may not separate the graph. Therefore it takes k — 1
cut edges to divide a tree into k connected components, and it takes at
least this many for general graphs.

At the other extreme, we construct a graph with a maximal cut score
relative to its total number of edges. This occurs when the districts
themselves have the lowest number of edges. Suppose the districts
Py,..., P, have n,...,n, vertices, so that n; + --- + n, = N. Since each
district must be connected, having n; vertices requires at least n; — 1
edges. This means that there are at least ¥ (n,—1) = (X n;)—k = N~k
edges within the districts, leaving m — (N — k) = m — N + k edges of G
that were cut to obtain this partition.

Consider again a partition into trees. A tree T has only itself as
a spanning tree, so sp(T) = In(1) = 0. That means that a plan whose
districts are trees satisfies sp(P) =0+ --- + 0 =0.

Finally, let us denote by Ngr(G) the number of spanning trees of a
graph G. Using the definition of sp and the properties of logarithms, we
have

sp(P) = Y In(Nsr(P) = In(Ngr(P;) -+ Ner(Py)).

The product of the number of spanning trees of the districts counts the
number of ways to simultaneously choose one spanning tree for each.
But any choice of spanning trees for the districts can be completed to
a spanning tree of the full graph G by restoring cut edges between
districts (and there must be enough cut edges between districts for G
to have been connected in the first place). This gives us []; Nst(P) <
Ng1(G), which shows that sp(P) < In(Ng7(G)) = sp(G).

Finally we establish the claim about a family of partitions of tri-
angular lattice graphs. Consider a graph G partitioned into k copies
of Q! for large n, writing N for the number of vertices of G so that
|2/| = N/k. Then sp(P) = k - sp(€2]) < k - c¢(N/k) = cN, as desired,
where ¢ = 1.6157. [

As to finding planar graphs with many spanning trees, we note
that any planar embedding that is a contender for maximality would
have to be triangulated, because otherwise we can increase the number
of spanning trees by adding a diagonal to some face. The standard
triangular lattice has degree six at each vertex; we can do slightly better
with some vertices of higher degree, but get diminishing returns as we
push up the degree.
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