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Effective medium theory for mechanical phase
transitions of fiber networks

Sihan Chen, ab Tomer Markovich bcd and Fred C. MacKintosh *abef

Networks of stiff fibers govern the elasticity of biological structures such as the extracellular matrix of collagen.

These networks are known to stiffen nonlinearly under shear or extensional strain. Recently, it has been shown

that such stiffening is governed by a strain-controlled athermal but critical phase transition, from a floppy

phase below the critical strain to a rigid phase above the critical strain. While this phase transition has been

extensively studied numerically and experimentally, a complete analytical theory for this transition remains

elusive. Here, we present an effective medium theory (EMT) for this mechanical phase transition of fiber

networks. We extend a previous EMT appropriate for linear elasticity to incorporate nonlinear effects via an

anharmonic Hamiltonian. The mean-field predictions of this theory, including the critical exponents, scaling

relations and non-affine fluctuations qualitatively agree with previous experimental and numerical results.

1. Introduction

Networks formed by stiff fibers are ubiquitous in both biological
and artificial materials.1–6 One notable example is the extracellular
matrix of collagen, which provides structural support to surround-
ing tissues.4,7 These networks possess remarkable mechanical
properties, such as stiffening under shear or extensional
strain,8–18 softening under compression14,15 and anomalous Pois-
son’s ratio.11,19,20 Recently, it has been recognized that the strain
stiffening of fiber networks is associated with a critical phase
transition: as the applied strain exceeds a critical value, the
network transforms from a floppy phase to a rigid phase.7,21–28

Various properties of this mechanical phase transition have been
studied through simulations and experiments, including critical
exponents,7,21,22,26,28 non-affine fluctuations26,27 and scaling
relations.26,29 Despite these efforts, a complete analytical theory
for the nonlinear elasticity remains elusive.

Non-affine deformations pose a significant challenge in any
analytical description of rheology and mechanical phase transi-
tions. Unlike an affine deformation that corresponds to a uniform
deformation field throughout the entire network, non-affine
deformations in fiber networks represent inhomogenous and
largely independent deformation of the constituents. This non-

affinity has a strong impact on the elasticity of network, including
a significant reduction in the elastic moduli. Non-affinity also
plays a crucial role in mechanical phase transitions. For instance,
previous simulations have shown that the non-affine fluctuations
diverge at the critical strain.26,27 As a result, traditional effective
medium theory (EMT) cannot be directly applied to fiber networks
at a mechanical phase transition since such theories are based on
uniform lattices with vanishing non-affinity.30–37 A recent EMT
has been proposed to account for non-affine deformations and
has shown quantitative agreement with prior linear elasticity of
fiber and semiflexible polymer networks.38 Since it accounts for
non-affine deformation, this theory offers a potential framework
for describing mechanical phase transitions.

Here, we extend this EMT to describe the nonlinear elasticity of
fiber networks. We find good qualitative consistency with prior
work on the strain-controlled critical phase transition of fiber
networks. To achieve this, we essentially use the EMT of ref. 38,
with an extension of an anharmonic effective Hamiltonian. Our
theory provides an analytical prediction of the mechanical phase
transition, including mean-field critical exponents. Furthermore, it
reproduces several qualitative features observed in previous numer-
ical studies, such as the discontinuity of the elasticity,22,27,39 the
divergence of non-affine fluctuations26,27 and scaling relations.26

Although our focus is on athermal fiber networks, our theory can
also be used as an efficient tool for understanding the influence of
thermal fluctuations on such mechanical phase transitions, where
numerical simulations are challenging.

2. Effective medium theory

In this section we construct an EMT for nonlinear elasticity of fiber
networks, by extending our previous linear EMT proposed in ref. 38.
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Consider a 3D fiber network (the original network) formed
by N fibers, each with contour length L (see Fig. 1(a)). Hinge-like
crosslinks are randomly formed between pairs of fibers with an
average distance cc. For simplicity the network is assumed to be
both isotropic and homogeneous on large scale. The network
Hamiltonian can be written as:

HO ¼
XN
a¼1

Hb uaðsÞ½ � þHs u
aðsÞ½ �½ �; (1)

where ua(s) = ua8(s) + ua>(s) is the microscopic displacement of the
ath fiber at position s along its contour (�L/2 o s o L/2), with
ua8(s) and ua>(s) being its longitudinal and transverse components,
respectively. Hb uðsÞ½ � ¼ k

Ð
dsj@2u?=@s

2j2=2 and Hs uðsÞ½ � ¼
m
Ð
dsðjn̂þ @u=@sj � 1Þ2=2 are the bending and stretching energy,

respectively, with n̂ being the fiber orientation.† The form of the
bending and the stretching energies are extracted from the classic
worm-like chain model of semiflexible polymers.13,40–43 If a cross-
link exists between the ath and the bth fiber, it corresponds to an
additional constraint, ua(sab) = ub(sba), with sab (sba) being the
position of the crosslink on the ath (bth) fiber.

To calculate the elasticity of the original network, in ref. 38 we
have constructed an EMT which reproduces the elasticity of the
original network (see Fig. 1(b)). In this EMT all the fibers in the
original networks are conserved, while all crosslinks are replaced
by springs that connect the fibers to a substrate, introducing an
additional spring energy HK. The substrate is assumed to deform
affinely with the macroscopic deformation tensor L

EM
of the

network. The corresponding Hamiltonian is,

HEM ¼
XN
a¼1

Hb v
aðsÞ½ � þHs v

aðsÞ½ � þHK vaNAðsÞ
� �� �

; (2)

where the microscopic deformation in the EMT is denoted by
va(s) = vaA(s) + vaNA(s), with vaA(s) being the affine displacement and
vaNA(s) being the non-affine displacement. The microscopic affine
displacements are given by vaAðsÞ ¼ sL

EM
� n̂a, with n̂a defining the

fiber orientation. As appropriate for fibers we assume both v> and
v8 are small such that we can write the stretching energy as:

Hs vðsÞ½ � ¼ m
Ð
dsð@e=@sÞ2 þ n̂ � ð@vk=@sÞj@v?=@sj2=4, where qe/qs =

n̂�(qv8/qs) + |qv>/qs|
2/2. Then, to simplify the calculation we

neglect the coupling between the transverse and longitudinal dis-
placements and approximate the energy as:Hs vðsÞ½ � ¼ m

Ð
dsð@e=@sÞ2.

For simple shear deformation, neglecting this coupling term
can be interpreted as a mean-field approximation: since half of
the filaments are stretched while the other half are compressed,
taking the mean-field value of n̂�(qv8/qs) (which is zero) results
in a vanishing coupling term between the longitudinal and
transverse displacements. HK is a functional of the non-affine
displacements, because only non-affine displacements can
introduce relative displacements between the fibers and the
affine substrate, which stretch the springs. HK can also be
written as a summation of spring energy at all crosslinking
positions,

HK vaNAðsÞ
� �

¼
X
i

USP½vaNAðsai Þ�; (3)

with USP being the energy of a single spring and sai is the
position of the ith crosslink on the ath fiber.

We are interested in how the two networks (original and EMT)
respond to macroscopic deformations L

O
and L

EM
, respectively.

In this work we focus on simple shear deformation that is most
commonly studied in rheology of fiber networks. Other deforma-
tion types, including uniaxial and bulk strain can lead to mechan-
ical phase transition as well.20,35,44,45 Without loss of generality,
we assume simple shear in the x–z plane in the x direction. gO and
gEM are the nonzero xz component of each of the macroscopic
deformation tensors with other components constrained to zero.
The deformations result in macroscopic stresses in the two net-
works, with sO and sEM being the xz (and zx) component of each
of the stress tensors.‡ In such a setup, and because fiber networks
are elastic and athermal, there is a one-to-one relation between s
and g in each network. To identify this relation, one can either
calculate s at a given g (strain-controlled) or calculate g at a given s
(stress-controlled). The two methods are equivalent and are
related by a Legendre transform. Here we choose the stress-
controlled scenario, in which the network deformation at a given
shear stress is found from the minimum-energy states of the two
total energies, EO = HO � VsOgO and EEM = HEM�VsEMgEM. V is the
system volume that is set to unity from here on. As discussed
above, an additional constraint is that, except for the xz compo-
nents, all other components of the deformation tensors must be
zero. Importantly, while the two strains gO and gEM describe the
macroscopic strain of the corresponding networks (and also the
substrate of the EMT), each fiber has a different, non-affine
microscopic deformation ua and va. The macroscopic and micro-
scopic deformations are intrinsically related to each other such
that gO = gO({u

a}) and gEM = gEM({v
a}), see eqn (9) below for details.

Therefore, the total energies EO and EEM are also functionals of
microscopic variables ua and va. The values of ua and va in the
minimum energy state are ũa and ṽa, for the original network and
the EMT network, respectively.

Fig. 1 (a) A 2D sketch of the original fiber network (in 3D). Fibers (lines) are
connected by hinge-like crosslinks (dots), with an average crosslinking
distance cc. The fibers have an average length L. (b) Illustration of the EMT.
Each crosslink in the original network is replaced by a spring with potential
USP, which connects the fibers with a substrate. The substrate deforms
with the same strain as that of the entire network, and is assumed to
deform in an affine manner.

† The form of the stretching energy is different from that in our earlier work.38

This is because in ref. 38 we consider linear elasticity only. One can show that for
small u the two stretching energies are equivalent.

‡ In principle the stress tensor may have other non-zero components, e.g., normal
stresses.46–49
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The nonlinear elasticity of two networks is quantified using
the differential shear moduli KO = qsO/qgO and KEM = qsEM/
qgEM. Our goal is to construct an EMT network that reproduces
the differential shear modulus of the original network, i.e.,
KEM = KO. For this we rewrite 1/KEM = 1/KO using the chain rule,

X
ai

@~uai
@sO

�
@g

O

@~uai
¼

X
ai

@~vai
@sEM

� @gEM
@~vai

; (4)

with ũai and ṽai being the displacements of the ith crosslink of the
ath fiber in the original network and the EMT network, respec-
tively. Eqn (4) decomposes the network mechanical response
into two parts: when amacroscopic stress (sO or sEM) is imposed,
it leads to microscopic deformations of each fiber (ũ or ṽ); these
microscopic deformations further determine the macroscopic
deformation of the entire network (gO or gEM). Due to the random
crosslinks in the original network, let

@~uai
@sO

¼ @~uai
@sO

� �
þ nai ; (5a)

@gO
@~uai

¼ @gO
@~uai

� �
þ gai ; (5b)

where h. . .i denotes averages with respect to random crosslinking
angles. xai and Zai are two noise-like terms describing the effects of
random crosslinks, with hxai i = hZai i = 0. In the thermodynamic
limit, eqn (4) is rewritten as

X
ai

@~uai
@sO

� �
� @gO

@~uai

� �
þ
X
ai

hnai � gai i ¼
X
ai

@~vai
@sEM

� @gEM
@~vai

: (6)

Here we ignore the correlation between two noise-like terms by
assuming hnai �gai i = 0. To ensure that eqn (6) holds for any strain
and stress, we let our EMT satisfy the following criterion

@~uai
@sO

� �
¼ @~vai

@sEM
; (7a)

@gO
@~uai

� �
¼ @gEM

@~vai
: (7b)

As noted in ref. 38, such requirements may be stronger than
needed. However, assuming solutions to these combined equa-
tions can be found, these must agree with eqn (4). Thus, by
construction, if one finds an EMT that obeys eqn (7), it is
guaranteed that eqn (4) holds.§ eqn (7a), in particular, is natural
in that it is equivalent to the coherent potential approximation
(CPA) used in prior EMTs.32

To approximate the differential elasticity for arbitrary strain
and stress, eqn (7a) and (7b) should hold when the derivatives
are evaluated at any deformation. In our linear EMT of ref. 38
the partial differentials are evaluated at the undeformed state,
which gives the spring energy in the linear regime,38

USPðvNAÞ ¼
9k
‘c3

jvNAj2: (8)

In such a linear regime, eqn (7b) leads to a relation between the
macroscopic and microscopic deformations,

L
EM

¼
P
a

ðL=2
�L=2

dsvaðsÞ � Tðn̂a; sÞ; (9)

where

Tðn̂; sÞ ¼ fkðsÞ � f?ðsÞn̂n̂n̂þ f?ðsÞIn̂
h i

; (10)

with

fkðsÞ ¼ 3

NL
½dðs� L=2Þ � dðsþ L=2Þ�;

f?ðsÞ ¼
36

NL3
s:

(11)

Here d(s) is the Dirac-d function.¶ The value of gEM can be found
by minimizing the total energy with respect to va (gEM is
determined from va according to eqn (9)),

EEM ¼ HEM � gEMsEM: (12)

In this work we assume isotropic networks and the filament
orientations n̂a is sampled from an isotropic distribution. In
Appendix B we detail the energy minimization process.

In ref. 38 we show that the linear version of the EMT
successfully predicts the linear shear modulus G of fiber net-
works. Here, we study the nonlinear elasticity and consider the
nonlinear version of eqn (7a) and (7b), in which all derivatives
may depend on the network deformation. We assume g { 1
such that the relation between g and u, v (eqn (7b)) is still
linear. This assumption is appropriate because it is known that
fiber networks can exhibit nonlinear elasticity at small strain,13

as we discuss in detail below in Section 5. Therefore, we neglect
non-linearity in eqn (7b) and only treat non-linearity in
eqn (7a). This results in an anharmonic correction term UAH

to the spring energy:

USPðvNAÞ ¼
9k
‘c3

jvNAj2 þUAHðvNAÞ; (13)

which consequently gives rise to nonlinear elasticity of the
network. As we show below in Section 3, UAH is independent
of k in the small k limit. This is consistent with previous
numerical results in which the nonlinear regime is dominated
by the stretching energy.7 In Section 3 we derive the form of
UAH. In Section 4 we show that the anharmonic spring energy
leads to the mechanical phase transition, and then predict the
mean-field critical exponents and non-affine fluctuations.

3. Elastic energy of nonlinear springs

We continue by calculating UAH using eqn (7a). As we have
pointed out in ref. 38, the longitudinal part in the spring energy
only slightly affects the network deformation in the linear
regime, because the longitudinal displacements of fibers are
always restricted by the stretching energy, even in the absence

§ There is, in general, the possibility that one will not be able to find solution to
eqn (7), while a solution to eqn (4) does exist. As we show below, we find a
solution to eqn (7), thus eqn (4) is obeyed as required.

¶ Note that the integral in eqn (9) is performed from s = (�L/2)� to s = (L/2)+, such
that the two d functions are covered in the integral.
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of the springs. In the nonlinear regime, the longitudinal part of
the spring energy is also not important: the nonlinear stiffening
of the network corresponds to a transition from a bend-
dominated regime to a stretch-dominated regime. Because of
the large stretching energy of each fiber, the longitudinal
displacements of the fibers are always stretch-dominated and
have little contribution to the stiffening of the network. There-
fore, we neglect the energy in UAH due to the longitudinal
displacement and write UAH as UAH(vNA>).

3.1 Infinite molecular weight limit: L/cc - N

To analyze eqn (7a), we adopt the same method as we used in
ref. 38, the coherent potential approximation: because the stress
can be decomposed into tensions on each node, we exert a test
force F on a particular crosslink on the same fiber of both the
original network and the EMT, and measure the resulting displace-
ments drO and drEM, respectively. By letting hdrOin̂ = drEM, where n̂
is the orientation of the other fiber connected to the crosslink in
the original network, one obtain the form of UAH. Note that in ref.
38 we assumed small F because we were only interested in the
linear elasticity. Here we extend the procedure to any finite F.

In the infinite molecular weight limit (L/cc-N), the crosslinks
adjacent to the particular crosslink can be treated as being fixed,
because in this limit the network is densely crosslinked, making it
energetically unfavorable to move the adjacent crosslinks. The
resulting UAH is (see Appendix A for detailed derivation):

UAHðvNA?Þ ¼ 2:32
m
‘c3

jvNA?j4: (14)

The quartic term in eqn (14) suggests that the energy has a
stronger-than-harmonic dependence on the displacement,
which is consistent with the expectation from ref. 29. This means
that the spring stiffens non-linearly as the displacement
increases. The coefficient in eqn (14) is insensitive to k because
in the derivation we only keep the leading order term in the
elastic energy: the bending energy contributes an additional
anharmonic term B(k/cc

5)|vNA>|4, but it is negligible because
k { mcc

2, i.e., for bend-dominated compliance for which the
transition is apparent.7 Note that eqn (14) is only valid in the
high molecular weight limit. In the finite molecular weight limit,
the spring energy needs to be corrected, as detailed below.

3.2 Finite molecular weight: L/cc o N

We now derive UAH for finite molecular weight. Let us start with
a simple limit of central-force networks (k = 0). For central-force
networks, an important observation in previous studies is the
emergence of the strain-controlled phase transition: the stiffen-
ing of the network only happens for strain above a critical value
gc, and the network has zero elasticity for strain below gc. This
suggests that for central-force networks the network free energy
is singular at gc, which also implies a singular UAH:

UAHðvNA?Þ ¼
0 jvNA?j � vc

2:32
m
‘c3

jvNA?j4 � DUAHðvNA?Þ jvNA?j4 vc:

8><
>:

(15)

Here UAH is singular at a loop |vNA>| = vc because of the network
rotational symmetry. DUAH is a finite-molecular-weight correc-
tion of UAH which vanishes when L/cc - N. When deriving the
spring energy in the infinite molecular weight limit, we assume
that the crosslinks adjacent to the deformed crosslink are fixed.
Such an assumption is inappropriate for finite molecular weight,
due to the reduced number of constraints imposed by crosslinks.
In this finite molecular weight case, the displacements of the
adjacent crosslinks effectively reduce the spring energy com-
pared to eqn (14). The leading term of DUAH is

DUAH ¼ c
m
‘c
jvNA?j2; (16)

which is quadratic due to the network isotropy. The coefficient c
is a dimensionless number.

Remarkably, the second part of eqn (15) has the form of a
meanfield free energy in Landau theory for second-order phase
transition (see Fig. 2(a)). For this potential we can define a
force-extension relation FAH ¼ dUAH=dvNA?, which must be
continuous, as a discontinuity in the network stress is unphysical.
This statement can be proved by contradiction: assume the stress
is discontinuous at gc, i.e., let the stress at g = gc

� be 0 and the
stress at g = gc

+ be sc. Imagine a network starting with strain gc
�

and zero stress, where the stress then quasistatically increases
from 0 to sc. During this process the network strain remains
unchanged, such that no external work is done. After the process,
because of the finite stress, some of the fibers in the networkmust
be stretched and the network gains a non-zero elastic energy. This
process contradicts the first law of thermodynamics, because the
internal energy of the system increases with no external work
done (there is no heat transfer because the temperature is zero).
Therefore, both the stress and FAH must be continuous at the
critical point,8 leading to c = 4.64vc

2/cc
2 and

UAHðvNA?Þ ¼ 2:32
m
‘c3

ðjvNA?j2 � vc
2Þ2YðjvNA?j2 � vc

2Þ; (17)

where Y(x) is the Heavyside function. The corresponding FAH is

FAHðvNA?Þ ¼ 9:27
m
‘c3

vNA?ðjvNA?j2 � vc
2ÞYðjvNA?j2 � vc

2Þ:

(18)

Eqn (18) suggests that, even an infinitesimal force leads to a
displacement with magnitude vc (see Fig. 2(b)). As we show below
in Section 4, at the network level it corresponds to the mechanical

Fig. 2 (a) Anharmonic spring energy UAH calculated from eqn (17).
(b) Force-extension relation of the anharmonic spring calculated from
eqn (18). (c) Differential spring constant of the anharmonic spring calcu-
lated from eqn (19).
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phase transition, in which an infinitesimal stress leads to a strain
with magnitude gc B vc/L.

We then define a differential spring constant, kAH ¼
d2UAH=djvNA?j2, which according to eqn (17) gives

kAHðvNA?Þ ¼ 9:27
m
‘c3

ð3jvNA?j2 � vc
2ÞyðjvNA?j2 � vc

2Þ: (19)

There is a discontinuity in kAH at |vNA>| = vc, where kAH jumps
from 0 to kc = 18.54mvc

2/cc
3 (see Fig. 2(c)). Although the stress

must be continuous, the stiffness needs not be. Such a dis-
continuity in stiffness can be understood as the first appear-
ance of a state of self stress.22

The range over which the anharmonic spring is floppy to
displacement is characterized by vc. To estimate vc, we adopt
the self-consistent approach proposed in ref. 51: consider the
original network, in which each crosslink on a particular fila-
ment can have a displacement vc without costing any energy, i.e.,
each segment is free to rotate to an angle yB vc/cc. The direction
of such rotation is random due to the random crosslinking
angles. For each segment, the rotation leads to a reduction
of the projected length on the fiber backbone, Dc B ccy

2 B
vc

2/cc. The change in the end-to-end distance of the fiber is the
sum of the change of the projected length of L/cc segments,
DL B (L/cc)(vc

2/cc). The self-consistent criterion imposes vc = DL,
leading to

vc � ‘c
2=L or gc � vc=L � ‘c

2=L2: (20)

Eqn (20) suggests that when L/cc - N, vc - 0 and eqn (17)
reduces to eqn (14). This is consistent with our assumption that
in the infinite molecular weight limit the displacement of
adjacent crosslinks can be neglected.

Above we have derived UAH for central-force networks (k = 0).
In principle, for finite k there should be a correction of UAH due
to the bending energy. Because the bending and stretching
energies are additive, for k { mcc

2 we expect such a correction
term to be unimportant to |vNA>| both below and above vc. For
|vNA>| o vc, the leading correction term is a quartic term
(k/cc

5)|vNA>|4, because all quadratic terms are accounted for in
the calculation of the linear elasticity. This term is much
smaller than the quadratic termB(k/cc

3)|vNA>|2 in USP because
we assume g { 1 such that |vNA>| { cc. For |vNA>| Z vc, the
leading correction term is a quadratic term (k/cc

3)|vNA>|2,
which is much smaller than |DUAH| since k { mcc

2. Therefore,
in any case the correction of UAH due to bending energy can be
neglected, and we use eqn (17) as the anharmonic part of the
spring energy for any k.

4. Results
4.1 Network nonlinear elasticity

Having identified UAH, we substitute eqn (17) into eqn (13) to
obtain the complete spring energy USP. The EMT network strain

gEM under a given stress sEM is found by numerically minimizing
eqn (12) with respect to va, see Appendix B for details. The network
nonlinear elasticity is then calculated with KEM ¼ dsEM=dgEM. In
Fig. 3(a) we plot KEM as function of gEM for various k values. We
start with the k = 0 case. In this non-bending limit, the network
has a vanishing shear modulus for gEMo gc. As expected from our
construction, when the network reaches the critical point g = gc, it
immediately gains a non-zero elasticity KEM = Kc, i.e., KEM is
discontinuous at the critical point. Such a discontinuity is a result
of the discontinuous differential spring constant, see eqn (19) and
Fig. 2(c). This is consistent with the mechanical phase transition
being second-order because KEM is a second derivative of the free
energy, similar to the heat capacity in a temperature-controlled
transition. This is also consistent with a recent scaling theory and
prior numerical results.22,26,27

We now consider finite k values, which stabilize the network
and introduce non-zero linear elasticity GEM B k. Below the
critical point (g o gc) is the bend-dominated regime, in which
KEM B k. The network still undergoes a stiffening near g = gc,

Fig. 3 (a) Differential elastic modulus as function of strain g, for different
rescaled bending rigidity, ~k ¼ k=ðm‘c2Þ. Lines are theoretical predictions of
the EMT with L = 5cc and vc = 0.05cc. The red dot denotes a discontinuous
transition at the critical point, (gc, Kc), for ~k ¼ 0. GA = NLm/15 is the affine
modulus. Crosses are simulation results of 3D diluted phantom fcc lattice
with connectivity Z = 3.2 (equivalent to L = 5cc), reproduced from ref. 51.
No fitting parameter is present (the value of vc in the EMT is chosen to
ensure the same critical strain gc E 0.2 as in the simulation). (b) Scaling
behavior of the EMT elasticity for g 4 gc, with Dg = g � gc and ~k ¼ 0.
(c) Scaling behavior for g o gc and for various ~k values from 10�6 to 10�3.
The color coding and EMT parameters used in (b) and (c) is the same
as that in (a).

8 This statement may not be true for non-elastic systems, e.g., plastic systems, for
which energy can be dissipated. In such systems a discontinuous yield stress may
emerge.50

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
8 

Se
pt

em
be

r 2
02

3.
 D

ow
nl

oa
de

d 
by

 R
ic

e 
U

ni
ve

rs
ity

 o
n 

6/
4/

20
24

 6
:4

7:
48

 P
M

. 
View Article Online

https://doi.org/10.1039/d3sm00810j


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 8124–8135 |  8129

although this is now smooth with no phase transition. The
stiffening, however, becomes increasingly rapid as k is reduced.
Above the critical point (g 4 gc), the modulus becomes indepen-
dent of k for k { mcc

2, consistent with a stretch-dominated
regime. These qualitative features agree with previous simulations
of both 2D and 3D networks.7,21,22,28 For comparison, previous
simulation results of 3D phantom fcc lattice are also plotted in
Fig. 3(a). The EMT qualitatively captures the linear and the
nonlinear elasticity of the simulations. However, we find that it
underestimates the stiffening. This is not surprising because the
stiffening in real networks is expected to be governed by non
mean-field behavior, which cannot be reproduced by our mean-
field EMT, see Section 4.2 below. Therefore, we only expect
qualitative agreement between the EMT and simulations. While
the deviation of the prediction is small both near the critical point
and in the floppy phase, it becomes considerable when the strain
is far above gc. This is possibly due to the geometric nonlinearity
that is neglected in the EMT, whose effect can be strong for large
strain (gE 1). Interestingly, the elasticity at the critical point K(gc)
was recently studied using numerical simulation,29 which
reported that K(gc) in the small-k limit is significantly smaller
than K(gc) for zero k, indicating an underlying difference between
the two cases. This difference is also reproduced by our theory, see
Fig. 6 in Appendix C.

While the signal of the phase transition is apparent for k = 0
because of the discontinuity in KEM, for any finite k value, KEM

becomes continuous and the criticality is less obvious. For large
k values the phase transition is unidentifiable, see Fig. 3(a).
Since biopolymer networks always have finite k values, it is
important to identify the range of k in which the criticality
dominates the nonlinear stiffening. For the criticality to be
identifiable, we need GEM { Kc. For each individual spring this
suggests that k/cc

3 { kc (see eqn (19)), which further leads to
k { mcc

4/L2. For k \ mcc
4/L2, the criticality becomes unim-

portant and the analytic form of UAH in eqn (14) is sufficient in
describing the stiffening. For real fibers with diameter 2a, we
expect kB a4 and mB a2, and the criterion k{ mcc

4/L2 reduces
to a{ cc

2/L. This can be easily satisfied, given that a is of order
10–100 nm and both cc and L are of order micrometers, e.g., in
collagen networks.

4.2 Critical exponents

The critical behavior of fiber networks have been studied in
both simulation and experiments. Examples of such behavior
for the differential modulus include K�Kc B m|Dg|f for Dg = g �
gc 4 0 and K B k|Dg|f�f.7,26,28,39,52 Simulations have identified
various values of these exponents, with 0 o f o 1 and l = f �
f B 1.5. Our EMT predicts mean-field exponents, f = 1 and l =
1.5 (see Fig. 3(c) and (d)), which agree with ref. 39 and 52.
On the other hand, extensive simulations have found non
mean-field exponents.7,20–22,26–28,44,53 Because our theory is a
mean-field theory, it gives mean-field exponents by construc-
tion and cannot conclude the exponents of real networks. We
leave the prediction of non-meanfield exponents for future
work54 and focus here on getting the qualitative features of

the transition. Below we show how these mean-field exponents
are derived in our theory.

For g 4 gc, the network is stretch-dominated and KEM is
independent of k, allowing us to study the critical behavior for
k = 0. In this case the nonlinear springs are described by the
Landau-like energy of eqn (17). We first consider the network at
the critical strain g = gc

+, where all springs are stretched to their
critical displacement vc. For a strain slightly above the critical
strain, g = gc + Dg, the springs are stretched to vc + Dv. The value of
Dv may vary for each spring, while Dv B Dg holds for all springs.
The differential spring constant, see eqn (19), is Taylor-expanded
to linear order inDv as kAH ¼ kc þ k0AHðvcÞDv. Such a dependence
leads to a similar relation for the macroscopic network elasticity

with KEM ¼ Kc þ K
0
EMDg, where K

0
EM is a constant. Therefore,

above the critical strain we have KEM � Kc B m|Dg|1.
For g o gc, the network is bend-dominated, allowing us to

consider the extreme limit m - N, where no stretching
deformation is allowed. In this case UAH = 0 for |vNA>| r vc
and UAH = N for |vNA>| 4 vc, such that USP is a harmonic
potential for |vNA>| r vc and USP = N for |vNA>| 4 vc. This
suggests that each spring can only deform in the region |vNA>|r vc
and resists any displacement larger than vc. In Appendix D we show
that the spring energy leads to an unusual fiber conformation near
the critical strain that results in KEM B k|Dg|�3/2. Interestingly, in
ref. 52 the same exponent is derived by analyzing the floppy
deformation modes in the network.

4.3 Non-affine fluctuations

Previous simulations and scaling theory have revealed another
important quantity in characterizing the mechanical criticality,
which is the non-affine fluctuations, or the differential non-
affinity.7,26,55,56 This quantity is defined in the original network as

dGO ¼ 1

‘c2dg2
hjduNAj2i: (21)

Here duNA is the non-affine displacement of a single node in the
original network due to a small incremental strain dg, and the
average is with respect to all nodes in the network. To estimate dGO,
we similarly define the non-affine fluctuations of the EMT network:

dGEM ¼ 1

‘c2dg2
hjdvNAj2i: (22)

In Fig. 4(a) we plot dGEM as function of Dg = g� gc. For all ~k values,
we find non-monotonic dependencies of dGEM on Dg with a sharp
peak near Dg = 0. The height of the peak increases for decreasing ~k
and diverges for ~k ! 0 when Dg o 0. Such a divergence in
fluctuations is an important signal of a critical point, which has
been observed in previous simulations.21,26 For Dgo 0, we observe
|dGEM|B |Dg|�lwith an exponent equal to l = f� f = 1.5, agreeing
with previous simulations and scaling theory.26,52,57

For Dg 4 0, however, we do not observe a divergence of the
non-affinity, which appears to contradict both prior simula-
tions and the general expectation of equal exponents above and
below a critical point.26 Nevertheless, such an apparent contra-
diction is expected in our framework, because our theory does
not capture accurately the non-affinity above the critical point.
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By construction, our theory guarantees that the EMT network
approximates the elasticity of the original network, i.e., KEM/KOC 1.
On the other hand, dG can be interpreted as a susceptibility-like
quantity, dG B Kk(0,g), where Kk(k,g) � qK(k,g)/qk.26 dG thus
reflects the k-dependence of the elasticity. In the small k limit,
we have

KEMðk; gÞ ¼ KEMð0; gÞ þ kKk
EMð0; gÞ;

KOðk; gÞ ¼ KOð0; gÞ þ kKk
Oð0; gÞ:

(23)

Below the critical point, because K(0,g) = 0, the condition KEM/KOE 1
naturally leads to KkEM(0,g)/K

k
O(0, g) E 1, hence dGEM/dGO E 1.

Together with KEM E KO we have dGEM E dGO. However, above
the critical point we have K(0,g) B m, which represents the dominat-
ing part in K that is independent of k. In this case, the condition KEM/
KO E 1 only guarantees that KEM(0, g)/KO(0, g) E 1 and no longer
guarantees similar k-dependencies of KEM and KO. Therefore, the
theoretical prediction of dGEM becomes inaccurate for g 4 gc.

5. Discussion and conclusion

In this work we have presented a non-linear EMT that analyti-
cally captures the mechanical critical phase transition of fiber
networks. For this, we have extended our previous linear EMT38

for non-affine deformations by introducing a phenomenologi-
cal anharmonic spring energy that exhibits a Landau-like
structure. Such modification of the spring energy is sufficient
to capture the strain-controlled mechanical phase transition of
fiber networks, with good overall agreement with previous
numerical and experimental results. Our results show a dis-
continuous transition of the differential elasticity KEM in the
non-bending limit (k = 0), which agrees with previous
simulations.22,27,29,39 We also predict critical exponents and
diverging non-affine fluctuations in the vicinity of the critical
point, within the limits expected of a mean-field theory.

Our previous linear EMT is based on two key linear relations:
the first one is the linear force-extension relation of the
harmonic springs (e.g., in eqn (8)), the second one is a linear
relation between the microscopic and macroscopic deforma-
tion (e.g., in eqn (9)).38 In calculation of the nonlinear elasticity,
both of these two relations may need nonlinear corrections.

However, in our nonlinear EMT we have only taken into
account a nonlinear correction to the spring energy, while the
linear microscopic–macroscopic deformation relation remains
unchanged. The reason for this assumption is that the micro-
scopic–macroscopic deformation relation is a geometric property
of the network. Therefore, one would expect it to be dominated
by the nonlinear terms only for g approaching unity. For fiber
networks, both numerical and experimental studies have
observed phase transitions at strain much smaller than one,
suggesting that the nonlinear contribution in the deformation
relation can be neglected. By contrast, the spring energy reflects
a local mechanical property of the network, whose nonlinear
contribution could dominate even at small strain.13 In fact, we
predict the critical strain due to the anharmonic spring energy to
be gc B vc/LB cc

2/L2, which is indeed small for long fibers. Both
prior experiments and experimentally-motivated simulations
have shown the critical strain values to be in the 10–30%
range,7 which is consistent with our small-strain assumption.

Another nonlinearity of biopolymers lies in their longitudinal
force-extension relation. For athermal fibers such a nonlinearity
is seen through their buckling under compression. The buckling
of fibers, however, is absent in the presented work, because we
neglect the coupling between transverse and longitudinal dis-
placements (see below eqn (2)). As a result, our EMT fails to
capture the non-zero normal stresses in real networks that is
induced by fiber buckling.46–49 In future work, it will be inter-
esting to extend the EMT to study the nonlinear elasticity of
thermal semiflexible polymer networks induced by the nonlinear
and asymmetric force-extension relation of fibers.58 We also note
that our EMT can be extended to other modes of deformation
beyond simple shear. For a general deformation tensor L

EM
,

one simply needs to modify the total energy above to EEM ¼
HEM � VL

EM
:S

EM
, with S

EM
being the stress tensor.

The traditional, lattice-based EMT has been extensively
applied in studying the elasticity of 2D networks. Despite the
great success in predicting both linear and even some
nonlinear35 properties, a traditional EMT faces limitations
when describing strain-controlled criticality. This is because
the criticality is intrinsically related to non-affine deformations,
which are absent in traditional EMT approaches that are based
on a perfect lattice as the EMT network.30–37 The present work
reproduces non-affine deformations or fluctuations of networks
and even quantitative aspects of their divergence near the critical
point, although our model appears to underestimate the non-
affinity, especially in the stretch-dominated regime (see Fig. 4).
The fact that non-affine fluctuations are accounted for in a
homogeneous EMT network may seem counter-intuitive. The
reason it works is that the basic element in the EMT is not a
dimensionless particle, but a fiber with finite length and a
specific orientation. Thus, the microscopic deformation of each
node can still vary according to the orientation n̂ and the
position along the fiber s. It is this variation that gives rise to
the non-affine fluctuations in our EMT. Moreover, even homo-
geneous networks can exhibit non-affine deformations under
shear: one example of this is the perfect central-force honeycomb
lattice that is subisostatic and has vanishing linear elasticity.

Fig. 4 (a) Non-affine fluctuations dG as function of Dg = g � gc, for various
values of ~k ¼ k=ðm‘c2Þ. The fluctuations diverge at the critical point. (b)
Scaling behavior of dG for g o gc. The network parameters are the same as
in Fig. 3. The color code used in (b) is the same as that in (a).
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The bending stiffness k can be regarded as a stabilization
factor: when k = 0, fiber networks reduce to spring networks
that are floppy to linear deformation. The floppy spring net-
works are thus stabilized by finite k values in linear regime.
Other physical quantities may also serve as stabilization factors
for spring networks. For example, a finite temperature also
leads to an entropic linear elasticity of spring networks.59–61

Our EMT may be extended to study the mechanical phase
transition of spring networks in the presence of such other
stabilization factors as well. The spring energy USP may need to
be modified according to the specific stabilization factor, but
its anharmonic part should remain unchanged, because it is
controlled by the stretch rigidity alone.

The nonlinear EMT presented in this paper is a first step
towards a theoretical understanding of the nature of the critical
phase transition in fiber networks. While the mean-field beha-
vior of the phase transition is predicted by the EMT, it would
be interesting to consider a field theory which goes beyond
mean-field,54 as non mean-field exponents have been reported
repeatedly in numerical simulations.7,20–22,26–28,44,53
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Appendices
Appendix A. Derivation of anharmonic spring energy

In this appendix we derive the anharmonic spring energy UAH

in the infinite molecular weight limit (eqn (14)).
The spring energy is determined by eqn (7a), which is essen-

tially a coherent potential approximation (CPA). As we show in the
supplementary material of ref. 38, the CPA is equivalent to the
test-force approach in which one exerts a test force at a particular
crosslink on the ath fiber in both the original network and the
EMT, and calculate the resulting displacements drO and drEM.
Because we are only interested in the transverse response of the
spring, we set the direction of the force to be perpendicular to the
ath fiber and denote the force by F>. In the original network
because the crosslink is also connected to another fiber (the bth),
drO would also depend on the orientation of the other fiber n̂.
We use hdrOin̂ to denote the average of drO with respect to the
distribution of n̂. To ensure that the EMT gives the same average
response as the original network, we impose

drEM = hdrOin̂ (A1)

Note that in our previous linear EMT eqn (A1) is only analyzed
in the small force limit. In this nonlinear EMT eqn (A1) should
hold for arbitrary force. In the calculation below we also
assume the adjacent nodes (blue ones in Fig. 5) do not move,
which corresponds to the high molecular weight limit, as
explained in the main text.

Let us start with the EMT and write the stretching energy
Hs uðsÞ½ � ¼ m

Ð
dsðjn̂þ @u=@sj � 1Þ2=2 in the coarse grained limit,

i.e., approximating the fiber with straight segments connected

by crosslinks:

Hs ¼
m
2‘c

P
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘cn̂þ ui � ui�1j2

p
� ‘c

	 
2

; (A2)

where ui is the displacement of the ith crosslink. In the test-
force approach only a particular crosslink (the j-th) is deformed,
corresponding to uj = drEM and ui = 0 for other crosslinks.

The leading order term of Hs in drEM is

Hs ¼

m
‘c
ðdrEM � n̂Þ2 dr

EM
� n̂a0

m
4‘c3

jdr
EM

j4 drEM � n̂ ¼ 0;

8>><
>>: (A3)

which is of fourth order if drEM is perpendicular to the fiber and
of second order otherwise. Because the force F> is perpendi-
cular to n̂, the leading order term in eqn (A2) is

Hs ¼
m

4‘c3
jdrEMj4. Similarly we write the bending energy

Hb uðsÞ½ � ¼ k
Ð
dsj@2u?=@s

2j2=2 in the coarse grained limit as:

Hb ¼ 3k
‘c3

drEM2: (A4)

The total energy associated with the displacement is the sum
of the bending, stretching and the spring energy:

DEEM ¼ 12k
‘c3

jdrEMj2 þUAHðdrEMÞ þ m
4‘c3

jdrEMj4 � F? � drEM;

(A5)

where the first term is the bending energy, the second term is the
anharmonic spring energy, the third term is the stretching energy of
the two purple bonds (keeping the leading term) and the fourth term
is the work done by the force. The resulting drEM of the force is
found by minimizing DEEM. Because of the rotational symmetry UAH

should be a function of |drEM|
2, which further leads to a Taylor

expansion UAH = a2|drEM|
2 + a4|drEM|

4+ � � �. Since UAH does not
contribute to the linear elasticity of the spring, we have a2 = 0 and the
leading term in UAH is the quartic term. In this case UAH = a4|drEM|

4

is determined by a4, and in the minimum energy state we have

24k
‘c3

jdrEMj þ 4a4 þ
m
‘c3

� �
jdrEMj3 � jF?j ¼ 0: (A6)

While the exact solution of eqn (A6) is cumbersome, one can analyze
the solution under extreme limits. For |F>|{ k3/2cc

�3(4a4cc
3 + m)�1/2,

Fig. 5 Sketch of the test force approach. A particular node on the purple
fiber is deformed by a test force F. The resulting displacement is drEM in the
EMT (a), and drO in the original network (b). The adjacent nodes are
assumed to be fixed for the infinite molecular weight limit, which is not
the case for finite molecular weight.
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the linear term of |drEM| dominates and |drEM| = |F>|cc
3/(24k)

is independent of a4. For |F>| c k3/2cc
�3(4a4cc

3 + m)�1/2, the
cubic term of |drEM| dominates and

jdrEMj ¼ jF?j1=3ð4a4‘c3 þ mÞ�1=3‘c: (A7)

Therefore, in order to determine UAH one should focus on the
large |F>| limit.

We now switch to the original network. Without loss of
generality, let the orientation of fiber a be ẑ = (0,0,1), F> be F> =
Fx̂ where x̂ = (1, 0, 0), the orientation of fiber b be n̂ =
(sin(y) cos(f), sin(y) sin(f), cos(y)), and the displacement of
the crosslink be drO. According to eqn (A3), only when drO is
perpendicular to both ẑ and n̂ is the leading order term in the
stretching energy quartic. Otherwise the leading order term
would be quadratic, which is larger than the quartic term as
long as |drO| { cc. Therefore, in order to minimize the total
energy, the displacement of the crosslink is restricted to the
direction n̂0 = (sin(f), �cos(f), 0), which is perpendicular to
both ẑ and n̂. Letting drO = drn̂0, we write down the total energy:

DEO ¼ 6k
‘c3

dr2 þ m
2‘c3

dr4 � Fdr sinðfÞ; (A8)

Minimizing eqn (A8) leads to

12k
‘c3

drþ 2m
‘c3

dr3 ¼ F sinðfÞ: (A9)

Again, we analyze the solution of eqn (A9) in the large F limit,
which is

drO ¼ F sinðfÞ
2m

� �1=3

‘cn̂
0
: (A10)

Taking the average of eqn (A10) with respect to the distribution
of f, P(f) = 1/(2p) (due to the rotational symmetry) gives

hdrOin̂ ¼ 0:46
F

m

� �1=3

‘cx̂: (A11)

Substituting eqn (A11) in eqn (A1) and using eqn (A6) leads to

UAHðvNA?Þ ¼ 2:32
m
‘c3

jvNA?j4; (A12)

which is eqn (14) of the main text.

Appendix B. Details of the energy minimization

We describe here the details of the energy minimization of the
EMT, i.e., minimizing the total energy in eqn (12),

EEM ¼ HEM � gEMsEM: (B1)

In principle, one needs to minimize eqn (B1) with the con-
straints that all other components of the deformation tensor
being zero. However, as we show below, these constraints are
naturally satisfied in our work, hence we are allowed to mini-
mize eqn (B1) without constraints.

Because our goal is to minimize EEM with respect to va, we
start by writing gEM in terms of va

gEM ¼
X
a

ð
dsta? � vaNA? þ

X
a

ð
dstak � vak; (B2)

where ta> = 5f>(nazx̂ � naxn
a
zn̂

a) and ta8 = 5f8n
a
xn

a
zn̂

a. Eqn (B2) is
derived from eqn (9), see ref. 38. As we discussed below eqn (2),
it is convenient to introduce new variables qea/qs = n̂�(qva8/qs) +
|qva>/qs|2/2. Here ea describes the local stretch of the fiber. For
small strain, we have ta8�va8 E ta8e

a, where t8 = 5f8n
a
xn

a
z, hence

eqn (9) is written as

gEM ¼
X
a

ð
dsta? � vaNA? þ

X
a

ð
dstake

a; (B3)

It is instructive to write HEM in eqn (2) in terms of vaNA> and ea,

HEM ¼
XN
a¼1

Hb va?ðsÞ
� �

þHs v
aðsÞ½ � þHK vaNAðsÞ

� �� �

¼
XN
a¼1

Hb vaNA?ðsÞ
� �

þHs eaðsÞ½ � þHK vaNA?ðsÞ
� �� �

:

(B4)

In the second equality we use the fact that in affine deformations
no bending energy evolves, such that Hb[v

a
>(s)] = Hb[v

a
NA>(s)].

Substituting eqn (B3) and (B4) into eqn (B1), we find that
vaNA> and ea are decoupled in EEM. The minimization is then
performed through dEEM/dv

a
NA>= 0 and dEEM/de

a = 0, which
leads to

k
d4vaNA?
ds4

þ FKðvaNA?Þ ¼ s
EM

ta?; (B5a)

m
d2eak
ds2

¼ sEMtak; (B5b)

with natural boundary conditions (the boundary points are free
to move, i.e., can take any value at the boundaries). In
eqn (B5a), the first term is the bending force, and the second
term is the spring force FK = dHK(v

a
NA>)/dvaNA>. Surprisingly, we

find that the bending force can be ignored: for small stress,
because the spring force FK is linear in vaNA>, the solution of
eqn (B5a) is vaNA>(s)B s, and there is no bending force; for large
stress, the spring stiffens and FK B m dominates, such that the
contribution from the bending force can be neglected. There-
fore, eqn (B5) is further simplified to

FK(v
a
NA>) = sEMt

a
>, (B6a)

eakðsÞ ¼
15sEMnaxn

a
zs

NLm
: (B6b)

Eqn (B6b) is derived using the value of f8 in eqn (11). Due to
the nonlinear nature of FK, eqn (B6a) needs to be solved
numerically. For each given sEM, the solution of eqn (B6) is
then substituted into eqn (B3) to find the corresponding gEM.
For large number of fibers N, the summation of all fibers in
eqn (B3) is replaced by an integral with respect to an isotropic
distribution of fiber orientation. Under spherical coordinates
n̂ = (sin(y) cos(f), sin(y) sin(f), cos(y)), the distributions of y
and f are P(y) = sin(y)/2 and P(f) = 1/(2p).

Having described the energy minimization process, let us
check whether the solution satisfies the constraints that all
non-xz components of the deformation tensor are zero. First,
the yz and xy components of the deformation tensor are zero
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because of the mirror symmetry in y direction. To show that the
normal components (xx, yy and zz) are also zero, we exert two
shear stresses sEM and �sEM on the network separately. By
symmetry the normal components of the deformation tensor
should be the same for these two opposite stresses. According
to eqn (B6), we have va(sEM) = �va(�sEM), hence, from eqn (9)
L

EM
ðsEMÞ ¼ �L

EM
ð�sEMÞ. Therefore, the normal components

must be zero, and L
EM

ðsEMÞ is a simple shear deformation,

consistent with the constraints.
These constraints are naturally satisfied because we neglect

fiber buckling by assuming a quadratic stretching energy, see
below eqn (2). If fiber buckling is taken into account, these
constraints must be explicitly taken into account in the mini-
mization. In such a case, one may use the Lagrange multipliers
method to find the non-zero normal stresses corresponding to the
constraints. It is known that there can be non-zero normal stress
associated with the nonlinear stiffening for real networks.46–49

Appendix C. KEM at the critical point

In this section we plot the EMT results of the elasticity exactly at
the critical point, KEM(gc), for various values of ~k ¼ k=ðm‘c2Þ, see
Fig. 6. We find that KEM(gc) for k - 0 is significantly smaller
than its value for k= 0, implying that the small-k limit is
qualitatively different from the zero-k case, consistent with
the numerical evidence in ref. 29.

Appendix D. Derivation of the critical exponent f � /

In this section we derive the critical exponent f � f, which
determines the scaling behavior of K when go gc. Such a regime
is governed by the bending energy only, hence, the stretching
energy and the longitudinal deformation of each fiber can be
neglected, i.e., m - N and ea = 0. Therefore, the microscopic–
macroscopic deformation relation (eqn (B3)) is also simplified to

gEM ’
X
a

ð
dsta? � vaNA? �

X
a

ga; (D1)

where ta> = 5f>(nazx̂ � naxn
a
zn̂

a). Here gEM is decomposed to the
strains of N ‘one-fiber’ systems, each with strain

ga ¼ 180naz x̂� naxn
a
z n̂

a

NL3

ð
dssvaNA?ðsÞ: (D2)

In eqn (D2) we have used eqn (11) as the value of f>.
For simplicity we consider the L c cc limit, which allows us

to write the spring energy HK in the continuum limit
HK vaNA?

� �
¼ ð1=2Þ

Ð
dsgðjvaNA?ðsÞjÞjvaNA?ðsÞj2, where

gðjvaNA?ðsÞjÞ ¼
18k
‘c4

jvaNA?ðsÞj � vc

1 jvaNA?ðsÞj4 vc

8><
>: (D3)

describes a stiffness density of the effective springs. Note that
the stiffness is approximated to be infinity if |vaNA>(s)| 4 vc,
because the in HK a term proportional to the stretching rigidity
enters when |vaNA>(s)|4 vc. In this case the minimization of the
energy is found through eqn (B6a), which leads to deformation
behavior that is different for stress below and above a threshold
value s0 = 36kvc/(bLcc

4), where b = 180|nazx̂ � naxn
a
zn̂

a|/(NL3). For
s o s0, all parts of the fiber obey |v

a
NA>(s)| o vc, corresponding

to the white region of Fig. 7. For s Z s0, some parts of the fiber
stay at the boundary between the white and green regions of
Fig. 7 (|vaNA>(s)| = vc). The resulting strain is

ga ¼
AsEM sEM os0

gac � B=s2 sEM � s0;

(
(D4)

where A = (b2cc
4)/(216kL3), gc

a = bvc/(4L) and B = (108k2vc
3L3)/

(bcc
8). Here, gc

a is the maximum strain of the ‘one-fiber’ system
in the s-N limit, which corresponds to a critical strain of the
network, because it is the largest possible strain without caus-
ing stretching deformation. The corresponding nonlinear elas-
ticity of the ‘one-fiber’ system is (Ka = ds/dga)

Ka ¼
1=A; sEM os0

2s3EM=B; sEM � s0:

(
(D5)

Eqn (D4) suggests that for s o s0 the ‘one-fiber’ system
shows linear elasticity. When s 4 s0 the system stiffens

Fig. 6 The elasticity of the EMT at the critical point, KEM(gc), as function
of ~k. The dashed line indicates the value of KEM(gc) for ~k ¼ 0.

Fig. 7 Illustration of the ‘one-fiber’ system. (a) The system is formed by a
single fiber with deformation field w(s). The green region denotes where
HK* is infinity. (b) Fiber deformation when s o s0. (c) Fiber deformation
when s 4 s0. (d) Fiber deformation when s - N.
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non-linearly and we have Ka B (gc
a � ga)�3/2. Thus, we find that

f � f = �3/2 in the ‘one-fiber’ system.
Having derived the scaling exponent for the ‘one-fiber’

system, let us go back to the EMT network. According to
eqn (D5), for each ‘one-fiber’ system we have gc

a � ga B s�2

for s large enough. Therefore, for the EMT network we have

gc � gEM ¼
X
a

gac � ga
� �

� sEM�2; (D6)

and hence KEM B (gc � gEM)
�3/2.
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