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ABSTRACT. We study 3-dimensional partially hyperbolic diffeomorphisms that
are homotopic to the identity, focusing on the geometry and dynamics of
Burago and Ivanov’s center stable and center unstable branching foliations.
This extends our study of the true foliations that appear in the dynamically
coherent case [BFFP20]. We complete the classification of such diffeomor-
phisms in Seifert fibered manifolds. In hyperbolic manifolds, we show that
any such diffeomorphism is either dynamically coherent and has a power that
is a discretized Anosov flow, or is of a new potential class called a double
translation.
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1. INTRODUCTION

A diffeomorphism f of a 3-manifold M is partially hyperbolic if it preserves a
splitting of the tangent bundle T'M into three 1-dimensional sub-bundles

TM = E°® E°® E",

where the stable bundle E® is eventually contracted, the unstable bundle E" is
eventually expanded, and the center bundle E° is distorted less than the stable
and unstable bundles at each point. That is, for some n > 0 one has

IDf* sl <1,
IDf*gu@ll > 1, and

IDf"|ps@ll < IDf"|Ee@)ll < 1D gu@ll;

at each x € M.

From a geometric perspective, one can think of partial hyperbolicity as a gen-
eralization of the discrete behavior of an Anosov flow. On a 3-manifold M,
such a flow ® preserves a splitting of the unit tangent bundle T'M into three
1-dimensional sub-bundles

TM =E&Tdao E,

where F° is eventually exponentially contracted, E" is eventually exponentially
expanded, and T'® is the tangent direction to the flow. After flowing for a fixed
time, an Anosov flow generates a partially hyperbolic diffeomorphism of a par-
ticularly simple type, where the stable and unstable bundles are contracted uni-
formly, and the center direction, which corresponds to T'®, is left undistorted.
More generally, there are examples of partially hyperbolic diffeomorphisms of the
form f(z) = ®,(,)(7) where ® is a (topological) Anosov flow and 7: M — Rq is
a positive continuous function; the partially hyperbolic diffeomorphisms obtained
in this way are called discretized Anosov flows.

A partially hyperbolic diffeomorphism is said to be dynamically coherent if
there are invariant foliations tangent to the center stable and center unstable
bundles E¢@ E® and E°@ E". Discretized Anosov flows are dynamically coherent,
since their center stable and center unstable bundles are uniquely integrable. On
the other hand, we show in [BFFP20] that large classes of dynamically coherent
partially hyperbolic diffeomorphisms must in fact be discretized Anosov flows:
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Theorem 1.1 ( [BFFP20, Theorem A] ). Let f: M — M be a dynamically co-
herent partially hyperbolic diffeomorphism on a closed Seifert fibered 3-manifold.
If f is homotopic to the identity, then some iterate is a discretized Anosov flow.

Theorem 1.2 ([BFFP20, Theorem B] ). Let f: M — M be a dynamically coher-
ent partially hyperbolic diffeomorphism on a closed hyperbolic 3-manifold. Then
some iterate is a discretized Anosov flow.

The assumption of dynamical coherence is natural from a geometric perspec-
tive: the way that an Anosov flow distorts its weak stable and weak unstable
foliations is often seen as the defining property of such a flow. In this light, the
preceding results say that on certain classes of manifolds, any diffeomorphism
with a geometric structure reminiscent to that of an Anosov flow must in fact
come from one.

This assumption is much less satisfying from a dynamical perspective, how-
ever. Here the interest in partial hyperbolicity stems from its appearance as a
generic consequence of dynamical conditions, such as stable ergodicity and robust
transitivity (see [BDVO05]), and one is not provided with any invariant foliations.
Although dynamical coherence was once generally expected, a number of recent
results (see, e.g., [RHRHU16, BGHP20, BFFP21]) have shattered that belief.
For instance, in the unit tangent bundle of a hyperbolic surface, we proved in
[BFFP21] that many partially hyperbolic diffeomorphisms are not dynamically
coherent.

In our study of the dynamically coherent case [BFFP20], the key to relating
the inherently local property of partial hyperbolicity with the global structure of
the ambient manifold lay in understanding the geometry and topology of the cen-
ter stable and center unstable foliations, as well as their leafwise and transverse
dynamics. The present article does away with the assumption of dynamical co-
herence. Instead of foliations we work with the center stable and center unstable
“branching foliations” constructed by Burago and Ivanov [BIO8] under certain
orientability conditions. These are generalizations of foliations in which distinct
leaves are allowed to merge together.

A large part of the present paper is concerned with carrying over our under-
standing of the geometry of foliations to branching foliations. We find that much
of the familiar structure still holds in this more general context — sometimes by
direct analogy, and sometimes with considerably more work. At the same time,
there are important points at which branching foliations allow for more varied
behavior than true foliations. A particularly important example of this appears
in Figure 9, where the possibility of merging leaves thwarts one’s ability to use
the qualitative transverse and tangent behavior of a dynamical system to draw
conclusions about its Lefschetz index. We hope that our work will entice those
interested in the theory of foliations to consider the possible uses for branching
foliations.

The following two theorems, which generalize the preceding theorems from
[BFFP20], summarize the major consequences of the present article.

Theorem A. Let f: M — M be a partially hyperbolic diffeomorphism on a
closed Seifert fibered 3-manifold. If f is homotopic to the identity, then it is
dynamically coherent, and some iterate is a discretized Anosov flow.

This is a stronger version of Theorem 1.1, without the a priori assumption of
dynamical coherence. The following corresponds to Theorem 1.2.

Theorem B. Let f: M — M be a partially hyperbolic diffeomorphism on a
closed hyperbolic 3-manifold. Then either
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(i) f is dynamically coherent, some iterate is a discretized Anosov flow; or

(ii) f is not dynamically coherent, and after taking a finite cover' and iterate,
it has center stable and center unstable branching foliations which are R-
covered and uniform, and a lift of f acts as a nontrivial translation on
both of the corresponding leaf spaces.

The existence or non-existence of examples of type (ii) is one of the major
questions coming out of this article. See §2.0.6.
Let us also mention a dynamical consequence of our analysis (Corollary 4.14).

Theorem 1.3. Let f: M — M be a partially hyperbolic diffeomorphism of a
closed 3-manifold M that is homotopic to the identity. If either M is hyperbolic
or Seifert fibered, or the center stable or center unstable branching foliation is
f-minimal, then f has no contractible periodic points (see Definition 4.13).

1.1. Acknowledgments. We thank C. Bonatti, A. Gogolev and A. Hammer-
lindl for interesting discussions. We also thank the referee for their careful read-
ing and thoughtful suggestions which led to significant improvements, especially
in §6.
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S. Frankel was partially supported by National Science Foundation grant num-
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R. Potrie was partially supported by CSIC 618 and ANII-FCE-135352.

2. OUTLINE AND DISCUSSION

After recalling some definitions, we outline the more detailed results that lie
behind our main theorems.

Let f: M — M be a partially hyperbolic diffeomorphism that is homotopic to
the identity on a closed 3-manifold M.

Convention: Throughout this paper we will assume that 71 (M) is not vir-
tually solvable.

Although this assumption is not always necessary, it will simplify certain parts
of the exposition. It does not result in loss of generality, since partially hyperbolic
diffeomorphisms have been completely classified in manifolds with solvable or
virtually solvable fundamental group [HP14, HP15].

A foundational result of Burago and Ivanov (Theorem 3.6) implies that, after
passing to an appropriate finite power and lift, we can assume that there is a pair
of “branching foliations” W and W that are preserved by f and tangent to
the center stable and center unstable bundles £° & E® and E° @ EY.

We outline the theory of these branching foliations in §3, and construct cor-
responding leaf spaces £ and L. Like the leaf spaces of true foliations, these
are simply-connected, possibly non-Hausdorff 1-manifolds that capture the trans-
verse structure of W< and WC" the lifts of W and W*®" to the universal cover.
This is where a large part of our work takes place, studying the dynamics of the
following important class of lifts of f.

Definition 2.1. A lift of f to the universal cover is called good if it moves each
point a uniformly bounded distance and commutes with every deck transforma-
tion.

IThis is only needed to get the existence of f-invariant branching foliations.
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Since f is homotopic to the identity, it has at least one good lift, obtained by
lifting such a homotopy.

Remark 2.2. The diffeomorphisms we consider are in fact isotopic to identity:
Indeed, all the manifolds that appear in this article are irreducible and covered
by R3. Then, the works of many authors (Waldhausen [Wal68] for Haken mani-
folds, Boileau—Otal [BO91] for Seifert manifolds and Gabai—Meyerhoff-Thurston
[GMTO03] for hyperbolic manifolds) give that homotopy implies isotopy. We will
however not use this fact in the sequel, as the existence of a good lift is all that
we use.

2.0.1. Dynamics on leaf spaces. In §4, we study the way that good lifts of f
permute the leaves of the lifted center stable and center unstable branching foli-
ations, and the implications for the structure of their leaf spaces. This extends
[BFFP20, § 3].

The picture is particularly simple when W€ is f-minimal, which means that
the only closed, non empty, f-invariant set which is a union of leaves is M itself.

If W is f-minimal, then:
(%) e Fach good lift fﬁices either every leaf or no leaf of Wwes.
e If some good lift f fixes no leaf, then W is R-covered and
uniform, and f acts as a translation its leaf space.

The same holds for We. In particular, if both W and W are f-minimal,
then one of the following holds for each good lift f of f:

(1) double invariance: f fixes every leaf of both Wes and W,

(2) mixed behavior: f fixes every leaf of either Wes or W<, and acts as a
translation on the leaf space of the other, or

(3) double translation: f acts as a translation on the leaf spaces of both
Wes and W,

This trichotomy applies whenever f is transitive or volume-preserving, where
the associated branching foliations are always f-minimal [BWO05].

When f is a discretized Anosov flow, there is a natural homotopy from the
identity to f that moves points along the orbits of the underlying flow. The good
liftt f that comes from lifting this homotopy fixes every center leaf. In order to
show that a given partially hyperbolic diffeomorphism is a discretized Anosov
flow, we will need to find a good lift with this property. Here, one takes the
center leaves to be the components of intersections between center stable and
center unstable leaves. In particular, we will need find a good lift with doubly
invariant behavior.

2.0.2. Center dynamics in fized leaves. In §5, we study the dynamics of the center
foliation within center stable and center unstable leaves. We obtain the following
crucial tool (See Definition 5.1 and Proposition 5.2):

Suppose that W is f-minimal, and that some good lift fﬁxes every
center stable leaf but no center leaf in M. Then every f-periodic
center leaf in M is coarsely contracted.

If one replaces W with W then one concludes that any f-periodic center
leaf in M is coarsely expanded. This is widely applicable since one can find a
periodic center leaf on any center stable or center unstable leaf with non-trivial
fundamental group (Proposition 5.6).

(%)
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Remark 2.3. In the dynamically coherent case, (xx) leads to a contradiction
that yields a fized center leaf [BFFP20, Proposition 4.4]. In §9 we show that this
holds as well under the assumption of absolute partial hyperbolicity.

2.0.3. Minimality in hyperbolic and Seifert fibered manifolds. In §6, we show the
following, which means that the preceding trichotomy holds whenever the ambient
manifold is hyperbolic or Seifert fibered.

If M is hyperbolic or Seifert fibered, then:

e Each good lift fﬁxes either every leaf or no leaf of Wwes.
() e If some good lift fﬁxes every leaf, then W is f-minimal.
e If some good lift fﬁxes no leaf, then W is R-covered and
uniform, and f acts as a translation on its leaf space.

2.0.4. Double invariance implies dynamical coherence. In §7 we prove the fol-
lowing criterion for when a partially hyperbolic diffeomorphism is a discretized
Anosov flow:

Theorem 2.4. Let f: M — M be a partially hyperbolic diffeomorphism that
is homotopic to the identity. If f admits f-minimal center stable and center
unstable branching foliations, and some good lift f has doubly invariant behavior,
then f is a discretized Anosov flow.

The key is to show that such an f is dynamically coherent. Then [BFFP20,
Theorem 6.1] implies that it is a discretized Anosov flow.

Until this point we have always assumed that the bundles E¢, E¢, and E* have
orientations that are preserved by f so that we can use the result of Burago-Ivanov
to find center stable and center unstable branching foliations. In §7.3, we show
that if a lift of an iterate of f is dynamically coherent and has a good lift g with
doubly invariant behavior, then f is dynamically coherent. This is why Theorems
A and B(i) do not need the orientability conditions.

2.0.5. Seifert fibered and hyperbolic manifolds. We rule out mixed behavior in
Seifert fibered manifolds in §8, and in hyperbolic manifolds in §11-12. Together
with Theorem 2.4, this yields the following;:

Theorem 2.5. Let f: M — M be a partially hyperbolic diffeomorphism homo-
topic to the identity on a closed hyperbolic or Seifert fibered 3-manifold. Assume
that there are center stable and center unstable branching foliations. Then each

good lift of f either
(i) fizes every leaf of both W and 17\70“, or

(ii) acts as a translation on both leaf spaces.

If there is a good lift of type (i), then f is a discretized Anosov flow.

As was already pointed out in [BFFP20, Remark 7.3, there are examples
in Seifert fibered manifolds where every good lift acts as a double translation.
However, we show in §8 that one can always find a finite power of such diffeo-
morphisms with a good lift that has doubly invariant behavior. Together with
the results of §7 this implies Theorem A.

Since every diffeomorphism of a hyperbolic 3-manifold has an iterate homotopic
to the identity one also deduces Theorem B.

Remark 2.6. An analogue of Theorem 2.5 holds under the assumption of f-
minimality together with absolute partial hyperbolicity. See §9.

We believe that Theorem 2.5 should hold, using the same strategy as here,
under the assumption of f-minimality together with the existence of an atoroidal
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piece in the JSJ decomposition of M. We have not pursued this here as it would
require proving results similar to [Thu, Cal00, Fen02] in this setting.

2.0.6. Double translations. This leaves open one major question:

Question. Is there a partially hyperbolic diffeomorphism on a closed hyperbolic
3-manifold whose good lifts act as double translations?

As noted above, there are such examples on Seifert fibered manifolds, but
by Theorem A these are all dynamically coherent and have iterates that are
discretized Anosov flows.

The dynamics of a double translation on a hyperbolic manifold would have to
be coarsely comparable to that of a pseudo-Anosov flow (see §11). The closest
analogues from this perspective are the non dynamically coherent examples on
Seifert manifolds, constructed in [BGHP20], which act as pseudo-Anosov maps
on the base.

2.1. Remarks and references. There are three major areas in which the gen-
eral case differs significantly from the dynamically coherent case:

(1) Unlike the dynamically coherent case (see condition (¥*) in [BFFP20,
§2]), there may be annular center stable leaves which do not contain a
closed center leaf.

(2) In hyperbolic manifolds, we cannot rule out the possibility of double trans-
lations from the general version of the existence of cores that “shadow”
the periodic orbits of the transverse pseudo-Anosov flow (see condition
(x = %) in [BFFP20, §2]).

(3) In hyperbolic and Seifert manifolds, it is more difficult to eliminate the
hypothesis of f-minimality. See Section 6.

We refer to [CRRU18, HP18, Pot18] for surveys on the problem of classifi-
cation of partially hyperbolic diffeomorphisms in dimension 3. There is earlier
work towards classification that does not assume dynamical coherence, but these
articles tend to have two simplifying characteristics: They work with manifolds
on which taut foliations are well understood and amenable to classification, and
on which known partially hyperbolic models are available for comparison. Typi-
cally, dynamical coherence is established under the assumption of non-existence
of invariant tori by using the fact that coarse dynamics separates leaves of the
branching foliations. Neither of these features hold for the classes of manifolds
considered in this article, and dynamical incoherence may appear in several dif-
ferent ways.

For instance, we obtain dynamical coherence in Section 7 when the lift of
the partially hyperbolic diffeomorphism fixes each leaf of the lifted branching
foliations. We also learn more about the structure of the branching foliations in
the non dynamically coherent case, leading, in particular, to case (ii) of Theorem
B. This structure also allows us to better understand the dynamical properties
of the system, even when the manifold is not hyperbolic or Seifert fibered, as can
be seen in Theorem 1.3.

More generally, the framework that we develop for the study of non dynami-
cally coherent partially hyperbolic diffeomorphism is useful outside of the homo-
topy class of the identity.

Below are several tools developed in this article that we wish to emphasize:

(1) In §3 and 4, we develop some of the basic theory necessary for the topolog-
ical study of branching foliations and the diffeomorphisms that preserve
them, including the structure of their leaf spaces.
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(2) In §5.1 we introduce the notion of coarsely contracting and coarsely re-
pelling periodic rays. This should be useful for the study of all partially
hyperbolic diffeomorphisms in 3-manifolds, i.e., including those not ho-
motopic to the identity,

(3) In §6 we study the way that certain special lifts of a partially hyperbolic
diffeomorphism act within a fixed center stable leaf, and find conditions
that guarantee the non-existence of fixed points. This involves under-
standing the behavior of strong stable manifolds through fixed points
under iteration, which may find applications in other contexts.

(4) In §7 we prove uniqueness of (branching) foliations under certain condi-
tions. This is a key to finding results that do not require taking finite
lifts and finite powers. As such, it may also be relevant for the study of
topological obstructions for partially hyperbolic diffeomorphisms — note
that the topological obstructions for the existence of Anosov flows can
depend on taking finite lifts (see, e.g., [Cal07]).

There is other work that shows the uniqueness of branching foliations,
but always in a setting where there is an understood model partially
hyperbolic diffeomorphism for comparison.

(5) In §11, 12 we develop some tools to analyze the transverse geometry of
branching foliations. This combines ideas from the theory of Lefschetz
index, hyperbolic geometry, and the notion of coarsely expanding and
contracting rays in item (2).

The tools in (5) are used in [BFFP21] to prove that a large class of partially
hyperbolic diffeomorphisms in Seifert manifolds are dynamically incoherent. In
addition (2) and (5) are used in [FP18] to obtain fine dynamical consequences of
partial hyperbolicity in 3-manifolds.

3. BRANCHING FOLIATIONS AND LEAF SPACES

In this section we review the existence of center stable and center unstable
branching foliations, and construct corresponding leaf spaces that capture their
transverse topology. We will also construct a “center foliation” and leaf space.

Definition 3.1. A branching foliation of a 3-manifold M is a collection F of
Cl-immersed surfaces, called leaves, each complete in its induced metric, such
that:

(i) Each z € M is contained in at least one leaf;
(ii) No leaf crosses itself;
(iii) Different leaves do not cross each other;
(iv) If L,, are leaves, and z,, € L, converges to a point x € M, then some
subsequence of the L,, converges to a leaf L with z € L. ?

Here, “crossing” is meant in a topological sense — see [BIO8] or [HP18].

Remark 3.2. In this context, “branching” refers to the fact that leaves may
merge. This should not be confused with the typical use of “branching” in the
theory of codimension-1 foliations, where it refers to non-Hausdorff behavior in
the leaf space.

Since a branching foliation has C! leaves that do not cross, it has a well-defined
tangent distribution.

2Here, convergence should be understood in the pointed compact-open topology, i.e., given
a compact set K in L containing x, there is a sequence of compact subsets K, of L,, containing
z, such that K, converges to K in the Hausdorff topology.
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As with foliations, there is a sense in which branching foliations are “locally
product (branched) foliated”: around each point one can find a neighborhood U
with a smooth product structure U ~ D? x [0, 1] such that each leaf of F that
intersects U does so in a collection of discs that are transverse to the [0, 1]-fibration
and meet every [0, 1]-fiber. This follows readily from the fact that branching
foliations are tangent to C'! distributions.

On a compact manifold there is a uniform scale €y, called the local product
structure size, such that every open set of diameter less than ¢y is contained in a
product chart as above.

Definition 3.3. A branching foliation F is well-approzimated by foliations if
there is, for a set of € > 0 accumulating on 0, a family of foliations {F.} with C*
leaves, and a family of continuous maps {h.: M — M}, that have the following
properties (with respect to some fixed Riemannian metric):

(v) The angles between leaves of F and F, are less than ¢;
(vi) The C°-distance between h, and the identity is less than ¢;
(vii) On each leaf of F, the map h, restrict to a local diffeomorphism to a leaf
of F;
(viii) For each leaf L of F there is a leaf L. of F. with h.(L.) = L.

Remark 3.4. Note that while the maps h, restrict to local diffeomorphisms on
leaves, they will fail to be global diffeomorphisms on leaves of F. that map to
self-merging leaves of F. In addition, the h will not be local diffeomorphisms on
M unless F is actually a true foliation.

Definition 3.5. A partially hyperbolic diffeomorphism f : M — M is said to be
orientable if the bundles £°, E* and E° admit orientations that are preserved by

f-
The following is the foundational existence result of Burago-Ivanov:

Theorem 3.6 (Burago-Ivanov [BIO8]). Let f be an orientable partially hyperbolic
diffeomorphism of a 3-manifold M. Then there are f-invariant branching folia-
tions W and W tangent to E° @ E° and E°® E" that are well-approximated
by foliations.

Here, a branching foliation is said to be f-invariant if the image of any leaf
under f is again a leaf.

Note that there is no a priori uniqueness for the center stable and center unsta-
ble branching foliations W and W€ related to a partially hyperbolic diffeomor-
phism. Nevertheless, we will typically fix some pair of such branching foliations
and call them “the” branching foliations for our diffeomorphism. In addition, we
will fix families of approximating foliations W¢* and W¢", with associated maps
denoted by AS® and he“.

On the other hand, since the stable bundle E? is uniquely integrable, a stable
leaf s that intersects a center stable leaf L. must be contained entirely in L.
Consequently, the intersection of any two center stable leaves is saturated by
stable leaves.

Once we have fixed “the” center stable and center unstable branching foliations
We and W, the corresponding lifted foliations on M will be denoted by Wwes

and W<, We may then define center leaves as follows:

Definition 3.7. A center leaf of a partially hyperbolic diffeomorphism is the
projection to M of a connected component of the intersection between a leaf of
W and a leaf of W€,



10 T. BARTHELME, S.R. FENLEY, S. FRANKEL, AND R. POTRIE

Although the collection of center leaves is not a foliation, it is a kind of
codimension-2 branching foliation. We will abuse terminology and call the col-
lection of center leaves the center foliation.

Remark 3.8. Each center leaf is tangent to the central direction E€ but a
complete curve that is tangent to the central direction may not be a center
leaf. Indeed, even when the diffeomorphism is dynamically coherent, the central
direction may not be uniquely integrable. See [RHRHU16] for an example.

N

(A) Two center stable leaves sharing a (B) Distinct center leaves inside a center
region stable leaf

FIGURE 1. The branching of center and center-stable leaves.

3.1. Tautness. In this article, the approximating foliations WS and W have
no compact leaves.

Indeed, suppose that one has a compact leaf L € W¢. Then K := h¢(L) is
a compact leaf of W®. Since the stable bundle E? is uniquely integrable, this
compact surface has a foliation without compact leaves, so it is a torus. According
to [RRU16, Theorem 1.4], there are only a few classes of manifolds that admit
partially hyperbolic diffeomorphisms with tori tangent to E® @ E°¢, all mapping
tori of T2.

Since we assume that 71 (M) is not virtually solvable, it follows that the ap-
proximating foliations have no compact leaves, which implies that they are taut.

3.2. Center stable and center unstable leaf spaces. GiveArl a foliation F
on a manifold M, the set of leaves of the lifted foliation F on M has a natural
topology — the quotient obtained from M by collapsing each leaf to a point — and
the resulting space is called the leaf space of M.

In this section we will define a notion of leaf space for our branching foliations,
where it would not make sense to take the quotient topology. We will see, in fact,
that the leaf spaces of our branching foliations are homeomorphic to those of the
approximating foliations for small enough e.

Much of this section would apply to any codimension-1 branching foliation, of
any dimension, as long as the leaves in the universal cover are properly embedded
R"~1’s in R™. For convenience, however, we will mostly restrict attention to the
branching foliations that we are interested in. This allows for some shortcuts.
For example, in Proposition 3.16 we use the approximating foliations and maps
to see that the leaf space is a 1-manifold as desired, though this could also be
done directly.

3.2.1. Complementary regions and sides. Since M is not finitely covered by S? x
St (as w1 (M) is not virtually solvable), and our branching foliations are well-
approximated by taut foliations, it follows that the universal cover is homeomor-
phic to R?, and the lifted leaves are properly embedded planes [CC00].
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__The complementary regions of a leaf L are the two connected components of
M ~ L. For each complementary region U of a leaf L, the closure U = U U L is
called a side of L.

A coorientation of the branching foliation (which may be thought of as a coori-
entation of its tangent distribution) determines, for each leaf L, a positive and
a negative complementary region which we denote by L® and L®. The corre-
sponding sides are denoted by LT = LP UL and L™ = L® U L. We will fix such
a coorientation throughout.

3.2.2. Leaf spaces. Let us now construct the center stable leaf space L. This
is the set of leaves of W with the topology defined below. The center unstable
leaf space L is constructed similarly.

In the case of a true codimension-1 foliation, each transverse arc in the universal
cover maps homeomorphically to an arc in the leaf space. We will use a similar
idea for branching foliations, and use transverse arcs to construct the topology.
In a true foliation each point in a transverse arc intersects a single leaf; for our
branching foliations we need to “blow up” at some points using the following
definition:

Definition 3.9. Given z € M, let £%(z) C £ denote the set of leaves that
contain z.
Given distinct leaves L # F in £%(z), we will write L <, E whenever Lt D E.

Claim 3.10. For each © € M, <, defines a linear order, with which L4(x) is
order-isomorphic to a closed interval (possibly a single point).

Proof. Assume that £°(z) is not a singleton.

That <, defines a linear order on £%(x) follows from the fact that leaves do
not cross (property (iii) of Definition 3.1). From property (iv), it follows that
this order is complete.

To see that £(x) is order-isomorphic to a closed interval, it suffices to check
that there are no gaps in the order. That is, given L, E € L(x) such that
L <, E, we must find some L' € £%(x) with L <, L' <, F.

Given such L, E, let y be a boundary point of the connected component of
L N E that contains x. Consider a neighborhood B of y with diameter less
than ¢p, the local product structure size of W*®. Since W is product branched
foliated in B, each leaf that intersects BN (LT N E~) must intersect y, and since
leaves do not cross, any such leaf must intersect z. Any such leaf L’ will have
L<,L' <, FE. O

Combined with the linear ordering of points in a transversal, this gives a linear
ordering on the set of leaves that intersect a transversal:

Definition 3.11. Given a transverse arc 7, let L%(7) C L denote the set of
leaves that intersect 7. .

Orient 7 so that it agrees with the coorientation on W¢. Given distinct leaves
K # L in L%(7), we will write K <, L whenever either

e K N7 lies forward of L N7 with respect to the orientation on 7, or
e K and L intersect 7 at the same point x and K <, L.

The following properties of these orderings may be found in [BI08, §7].

Claim 3.12. (1) For each open transverse arc T, <, is a linear order, with
respect to which L(T) is order-isomorphic to an open interval.



12 T. BARTHELME, S.R. FENLEY, S. FRANKEL, AND R. POTRIE

(2) o and T are open transverse arcs, then <, and <. define the same linear
order on L(o) N L(T), which is order-isomorphic to an open interval

(possibly empty).

Definition 3.13 (topology of £). The center stable leaf space is L, with
the topology 7 generated by all open intervals in £%(7) C L, over all open
transverse arcs 7.

From Claim 3.12(2), it suffices to take any collection of open transverse arcs
that intersect every leaf of W¢. Since M is compact, one can take a finite

collection of open transverse arcs in M and consider all of their lifts to M. This
implies in particular that £ is second countable.

Proposition 3.14. The center stable leaf space L is a simply-connected, pos-
stbly non-Hausdorff 1-manifold.

The same applies to L. This is not difficult to prove directly, and it applies
more generally to any codimension-1 branching foliation of a closed n-manifold,
as long as the lifted foliation is by properly embedded R"~!’s in M ~ R". In the
present case, it follows as well from Proposition 3.16 below.

3.2.3. Leaf spaces and approzimating foliations. Let L£&° and L& denote the leaf
spaces of the approximating foliations W¢* and WS, The maps h¢® and hS*
induce functions
Gest L — L7 and g0 L — L7

between the corresponding leaf spaces, which are surjective whenever € is suffi-
ciently small (cf. Definition 3.3).

Since W is a true foliation, its leaf space L££° is a simply-connected, possibly
non-Hausdorff 1-manifold (cf. [BFFP20, Appendix B]).

Remark 3.15. It is possible to modify the proof of [BI0O8, Theorem 7.2], where
the foliations W¢E® and maps h¢® are constructed, so that the g. s are injective in
addition to surjective. With this in hand, one could define the topology on L
to be the one induced by this bijection.

Instead of redoing the entire proof of [BI08, Theorem 7.2], we will use a simpler
fact that can easily be extracted from that proof: The maps h® are “monotone”
in the sense that they preserves the natural linear order on plaques in local charts.

Proposition 3.16. When ¢ is sufficiently small,
(1) the preimage of each point in L% under g s is a closed interval,
(2) ges: L — L is continuous, and
(8) the topology T on L is equivalent to the quotient topology Tc induced by
Ge,s-
The same applies for the center unstable foliations.

Proof. Let €y be the local product sizes of W, and let € < €y/2. Let T¢ be the

quotient topology induced by ge s on L.
(1) Let I C L be the preimage of a leaf L € £, and suppose that I contains
two leaves ﬁl and f/g. We want to show that ?LES takes every leaf between

IAjl and ﬁg to L.

From property (vi) of Definition 3.3, the Hausdorff distance between
IA/1 and ﬁg is less than 2e. Since 2¢ was chosen to be less than the local
product structure size, it follows that the region between Ly and Ly has
leaf space which is a closed interval. By the local monotonicity of ﬁgS, it
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follows that g.s maps the entire region between [:1 and ng to L. This
implies that the preimage of L is an interval, which is closed because %55
is continuous.

(2) Let U C L% be open. Around each point in U one can find an open in-
terval J C U that is the set of leaves intersecting a small open transversal
B. We want to show that g L(J) is open in L.

Let L, be a leaf in ge_sl(J) Then L; intersects /3 (or a slightly bigger

transversal), so all the leaves of VNVGCS close enough to L1 N B intersect
3. Thus an open neighborhood of L; is contained in g;sl(J), and ge s is
continuous.
(3) From (2) it follows that 7 C 7c. Let us prove the other inclusion.
Suppose W € L is an open set in T¢, and let y € W. Then U =
(ge.s)H(W) is an open set containing the closed interval I = (gs) ' (y).
Let L and E be the boundary leaves of I. Then one can find half-open
intervals Iy, Iy C U such that I;NI = L and IgNI = E. Then I;UIUIE
projects to a set in £ which contains an open interval around y in £.
Since this applies for every y € W it follows that W is open in 7.

O

This suffices to show that £° is a 1-manifold. It is possible to modify g¢ s: £ —
L% to be a homeomorphism when e is sufficiently small, but we will not need this
fact.

In the sequel, we fix € small enough so that the previous proposition applies
for both the center stable and center unstable foliations.

3.3. Center “foliations”.

3.3.1. The center foliation within a center stable/unstable leaf. Fix a center stable

leaf L of W. We will describe the topology of the center leaf space, L], restricted
to L. The center leaf within a center unstable leaf is defined in the same manner.

Remark 3.17. Recall from Definition 3.7 that a center leaf in M is defined as
a connected component of the intersection between a leaf of W and a leaf of
weu, Now, the following situation may arise (see Figure 2): Two leaves Uy, Uy
of W and a leaf L of W such that the triple intersection U; N L N Us contains
a connected component of ¢; of U; N L as well as a connected component ¢y of
Us N L. That is, the center leaves c; and cy represents the same set in M. In this
case, we also consider ¢; and ¢y as the same leaf of the center foliation in L.

Definition 3.18 (topology A in £§). Consider a countable set of open transver-
sals 7; which are perpendicular to the center bundle in L, and so that the union
intersects every center leaf in L. Put the order topology in the set I; of center
leaves intersecting 7;. This induces the topology A in L.

Let L be a fixed leaf of Wes. ‘We again fix an € > 0 and consider the ap-
proximating foliation W<, Since W is transverse to L, so is W (for € small
enough). Thus, W induces a 1-dimensional (non branching) foliation F, on L,
and hence its leaf space L7 _ is a 1-dimensional, not necessarily Hausdorff, simply
connected manifold.

The behavior described in Remark 3.17 above leads to the following issue: the
unique center leaf ¢; = cg is approximated by two distinct leaves of F.. Thus, the
leaf space, L, of the center foliation on L is not in bijection with L. However,
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FiGure 2. Different center unstable leaves may intersect a given
center stable leaf in the same center leaf.

we still have a surjective, but not necessarily injective, projection pre: ECL c— LS
as in the previous subsection. Let A, be the quotient topology from the map pre.
Just as in Proposition 3.16 one can prove the following:

Lemma 3.19. The set of center leaves in L through a point x is a closed interval.
Let co be a center leaf in L. Let I = pr—Y(co) C LE. The set I is a closed interval.
If € < €q, then the topologies A and A¢ are the same.

3.3.2. Center foliation in M. Finally, we have to put a topology on the leaf space
L€ of the center foliation in ]T/[:v .

Pick an 0 < € < €g so that WS and WS are transverse to each other. Call F.
the 1-dimensional foliation obtained as the intersection of W¢* and WE*. The leaf
space LS of F. is now a simply connected, possibly non Hausdorff, 2-dimensional
manifold. But as before, there is only a surjective, and not injective, projection
ge: LS — LC.

The map ge is defined in the following way: If ¢ is a leaf of F¢, then it is the
intersection of a leaf U of W and a leaf S of W¢. Then, there exists a unique
connected component ¢ of ge,,(U) N ges(S) that is at distance less than 2¢ from
¢. We define g.(¢) = c.

Once again, the topology B, we put on L is obtained by identifying elements
of L¢ that project to the same element of £¢ and taking the quotient topology.

As done is the previous two subsections 3.2.2 and 3.3.1, in order to prove that
the topology that we put on £¢ makes it a simply connected (not necessarily
Hausdorff) 2-manifold, it is enough to show that the preimages of points by ge
are closed, simply connected sets contained in a local chart of ££. In order to
do that, first notice that L¢ is locally homeomorphic to £ x £, Indeed, any
o € LE is a connected component of Uy N Sy, with Uy € L& and Sy € LE. Now,
if V,, is a small enough open interval in £&* and Vj is a small enough open interval
in £, then for any U € V,, and S € V, the intersection U NS contains a unique
connected component close to ¢g. Using this local homeomorphism, the following
lemma will imply that the topology L€ is as we claimed.

Lemma 3.20. Let ¢y be in L. The set R = g_'(co) is homeomorphic to a closed
rectangle in L& x L.
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Proof. Let ¢1,¢2 € R. Let U; be the leaf in L containing ¢; and let Sy be
the the leaf in £ containing . Let Uy = ge(U1) and Sy = ges(S2). Since
€1,Co € R, the center leaf ¢y is a connected component of U; N Sy. Thus Uy and
S5 must intersect and the intersection contains a unique connected component ¢3
at distance at most 2¢ from cg.

Now, the proof of Lemma 3.19 shows that ¢; and ¢3 are two ends of an interval
in the leaf space of F, restricted to U; that is entirely contained in R. Similarly,
for & and €3 considered as elements of the leaf space of F, restricted to Ss. In
turns, the arguments of the proof of Lemma 3.19 imply that the set R projects to
a closed interval in both £ and £, i.e., it is a closed rectangle in £&° x £, [

Just as in the previous two sections we can also put a topology B on L€ directly
as follows:

Definition 3.21. (topology B on L£¢) In M pick a collection of very small open
rectangles R; which are almost perpendicular to the center bundle, and with
boundary two arcs in a leaves of £ and two arcs in leaves of L. Consider all
lifts R of these to M. The set of center leaves intersecting R is naturally bijective
to an open rectangle and put the topology making this a local homeomorphism.
The topology B is generated by these rectangles.

First we justify why the set of center leaves through R is naturally an open
rectangle. Let L1, Ly be the center stable leaves containing the two arcs in the
boundary of R, and Uy, Us be the corresponding center unstable leaves. The set
of center stable leaves between L1, Lo (not including Lq, L) is naturally ordered
isomorphic to an open interval. This was proved in subsection 3.2.2. The same
for the center unstable foliation. The product is an open rectangle. The set of
center leaves intersecting R is a quotient of this. The sets which are quotiented
to a point are compact subrectangles. The proof is the same as the previous
lemma. Hence the quotient is naturally a rectangle. In addition if a collection
of center leaves intersects two such rectangles R, R’, then the identifications in R
also produce the same identifications in R’ and the order of the center stable and
center unstable foliations in the subsets are the same whether in R or R’. Hence
in the identification, the topologies agree.

Just as in the previous sections one can prove:

Lemma 3.22. For e < €, the topologies B and B¢ are the same.

The main property is to prove is exactly that of Lemma 3.20. The rest follows
just as in the previous subsections.

3.4. From foliations to branching foliations. Using the leaf space, one can
carry over a number of concepts from foliations to branching foliations.

3.4.1. Uniform and R-covered branching foliations. A branching foliation is said
to be R-covered if its leaf space is homeomorphic to R. It is uniform if every two
leaves in the universal cover are a finite Hausdorff distance apart.

By Proposition 3.16 a branching foliation is uniform or R-covered if and only
if its approximating foliations are, for e sufficiently small.

3.4.2. Saturations and minimality. A foliation that is preserved by a homeomor-
phism f is said to be f-minimal if the only closed, saturated, f-invariant sets are
the empty set and the whole manifold. We will define f-minimality identically for
branching foliations, but we must be careful about what we mean by “saturated”:
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Definition 3.23. A set C' C M is W*®-saturated if, for every x € C, there is a
leaf of W* that contains x and is contained in C.

A saturation of a saturated set C' C M is a collection of leaves X C W whose
union is C.

Note that this is much weaker than asking that every leaf intersecting C' is
contained in C. In particular, our notion of saturation has the peculiar property
that the complement of a saturated set need not be saturated (see Figure 3).

In addition, a saturated set may have different saturations. However, a sat-
urated set always has a unique mazimal saturation, consisting of all leaves that
are contained in it.

Definition 3.24. We say that W is f-minimal if the only closed, W -saturated,
and f-invariant subsets of M are () and M.

We emphasize that “closed” is meant as a subset of M, not £.

R

o]

FIGURE 3. L and Lo are two leaves in C', but the region R is not
in C. Then, in parts of R, all the center stable leaves intersect
the branch locus between L and Lo, so have parts in C and parts
not in C' (and therefore M \ C' is not saturated by center stable
leaves).

Saturated sets and saturations are defined similarly in the universal cover.
Here, a saturation can be naturally thought of as a subset of the leaf space L.
However, the topology of a saturated set in M does not necessarily agree with
the topology of a saturation in £¢:

Remark 3.25. Let C' C M be W¢-saturated. Tt is possible for C to be closed
in M, but have a saturation C C £ that is not closed in £°. However, it is easy
to see that C' is a closed in M if and only if its maximal saturation is closed in
L.

It is true but less immediate that the only saturation of M that is closed in
£ is all of L% (Lemma B.1).

3.4.3. Perfect fits. The notion of “perfect fits” from the theory of codimension-1
foliations (see [BFFP20, §4.1]) applies to branching foliations once it is modified
appropriately.

We will need the 2-dimensional version of this concept, in §5, to understand
the center and stable foliations within a center stable leaf. Given a center stable
leaf L, let Cr, and Sy, be the center and stable foliations within L, and let £§ and
L5 be the corresponding leaf spaces.
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Definition 3.26. A leaf ¢ € Cr, and a leaf s € S;, make a CS-perfect fit if they do
not intersect, but there is a local transversal 7 to Cy, through ¢ such that every
leaf in Cr(7) that lies sufficiently close to one side of ¢ (in the linear order <;)
intersects s.

They make a SC-perfect fit if there is a local transversal 7 to Sy, through s
such that every leaf in Sy, (7) that lies sufficiently close to one side of s intersects
c.

We say that ¢ and s make a perfect fit if they make both a CS- and SC-perfect
fit.

Remark 3.27. Note that when defining CS-perfect fits it is important to use
the linear order <, on Cr(7), defined in §3.2.2, since there may be center leaves
on the same side of ¢ as s that merge with c.

Since S, is a true foliation, the linear order <, on Sr,(7) comes directly from
the transversal 7/, so the notion of a SC-perfect fit is exactly as in [BFFP20,
§4.1].

One may equivalently define CS-perfect fits as follows: Given a stable leaf s in
L, let I, C L be the set of center leaves that intersect s. Then c and s makes a
CS-perfect fit if and only if ¢ € 9I,.

Lemma 3.28. Let ¢ and s be center and stable leaves in a center stable leaf L
that make a CS-perfect fit. Then there is a stable leaf s' such that ¢ and s' make
a perfect fit.

The symmetric statement holds for SC-perfect fits.

Proof. This is [BFFP20, Lemma 4.2], whose proof remains valid with the obvious
modifications. O

4. BRANCHING FOLIATIONS AND GOOD LIFTS

Fix a closed 3-manifold M whose fundamental group is not virtually solvable,
a partially hyperbolic diffeomorphism f: M — M homotopic to the identity, and
a good lift f. We will assume that f is orientable (Definition 3.5) so that we
have center stable and center unstable branching foliations W and W which
are well-approximated by taut foliations (Theorem 3.6). This can be achieved by
taking an iterate of f and lifting to a finite cover of M — we will deal with the
effects of replacing f and M in §7. B

In this section we will study the way that a good lift f acts on the lifted
branching foliations WCS, WS in the universal cover M.

4.1. Translation-like behavior. In this section, we will see that the action of

f on the center stable leaf space must look locally like a translation. Identical
statements hold for the center unstable foliation.

Remark 4.1. In fact, the results in this subsection are not really particular to
partially hyperbolic diffeomorphisms. They apply to any diffeomorphism that is
homotopic to the identity that preserves a branching foliation well-approximated
by taut foliations. In addition in this subsection we also do not need to assume
that 71 (M) is virtually solvable.

The key to this section is the following fact:

Lemma 4.2 (Big Half-Space Lemma). Let L be a leaf of Wes. For any R > 0,
there exists a ball of radius R contained in each complementary region of L.
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Proof. This lemma holds for true foliations — see [BFFP20, Lemma 3.3] — so it

suffices to consider a leaf corresponding to L in the approximating foliation VNvgs
for e sufficiently small. O

Remark 4.3. Note that the tautness of the foliation is essential for this result
to hold. The branching foliation in the non-dynamically coherent example of
[RHRHU16], for instance, do not satisfy that lemma.

Definition 4.4 (Regions between leaves). Let K, L € W be distinct leaves. In
the leaf space, £ \ {K, L} consists of three open connected components. Only
one of these components accumulates on both K and L — we call this the open
L -region between K and L. Tts closure in £, which is obtained by adjoining
K and L, is called the closed L®-region between K and L.

Remark 4.5. Note that the subset of M that corresponds to the open L-region
between two leaves may not be open. However, the subset of M that corresponds
to the closed L£%-region between two leaves is closed. It is also connected, but its
interior may not be. See Figure 4.

w
FIGURE 4. The interior of the closed region between leaves may
not be connected.

The following is the equivalent of [BFFP20, Proposition 3.5]. The same proof
applies if one considers complementary regions and regions between leaves as

subsets of M and L as appropriate.
Proposition 4.6. If L € WS is not fized by a good lift f, then

(1) the closed L-region between L and f(L) is an interval,
(2) f takes each coorientation at L to the corresponding coorientation at f(L),
and
(3) the subset of M corresponding to the closed L -region between L and f(L)
is contained in the closed 2R-neighborhood of L, where R = max, 3 d(y, f(y))-

Remark 4.7. In the above proposition, we may a priori have that L and f(L)
merge.

Using Proposition 4.6 we therefore also obtain the equivalent of [BFFP20,
Proposition 3.7].

Proposition 4.8. The set A C L% of leaves that are fixed by f is closed and
m1(M)-invariant. Each connected component I of L%\ A is acted on by f as a
translation, and every pair of leaves in I are a finite Hausdorff distance apart.

In the above proposition, one has to be mindful again that “open” and “closed”
refer to the topology on the leaf space £, and not the topology on M.

When W is f-minimal (Definition 3.24), we deduce the following dichotomy
from Proposition 4.8:
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Corollary 4.9. If W is f-minimal, then either
(1) fﬁxes every leaf of VNVCS, or N
(2) W€ is R-covered and uniform, and f acts as a translation on the leaf
space L.

Proof. Although the proof is conceptually identical to that of the corresponding
result in the dynamically coherent case, [BFFP20, Corollary 3. 10], we will redo
it since the distinction between the topology in £ and M becomes important.

Let A be the set of leaves that are fixed by f Since f commutes with deck
transformation, each deck transformation preserves A. In particular, if I is a
component of £\ A and g € w1 (M), one has either g(I) =1 or g(I) N1 = 0.

So A is invariant under f and deck transformations, saturated by Wcs and
closed in £ (by Proposition 4.8).

Let B C M be the union of the points in all leaves in A, andlet B = 7(B) C M.
Since A is closed in £, B is closed in M and B is closed in M. In addition. B
is f-invariant. Since W is f-minimal, B is either () or M.

If B is empty then A is empty and Proposition 4.8 implies that we are in case
(2).

If B= M then B =M , and we have to prove that A = £. This follows from
the more general Lemma B.1, but it also has the following more direct proof:

Suppose A # L%, Let I be a connected component of £~ A. Let J be the
set of points of M contained in a leaf in I. The sct I is open (in £¢) and f
translates leaves in I. It follows that the interior in M of J is non-empty. These

points in the interior of J are not contained in B. This contradicts B = M. So
A = £ and we are in case (1). O

This immediately implies the trichotomy in §2.0.1.

4.2. Ruling out fixed points. Let us now find conditions under which we show
that our good lift f has no fixed points in M. We will use the following lemma.

Lemma 4.10. Let L € W be a center stable leaf that is fized by f Suppose
that for every y € L one can find a leaf L' € WS that is fized by f and intersects
the unstable leaf through y in a point other than y. Then no nontrivial power of
fﬁxes a point in L.

Proof. Suppose that f” fixes a point x € L for some n # 0. One can assume
after possibly switching signs that n > 0. Then expansion of the unstable leaf u
through x implies that no leaf L’ that intersects u at a point other than x can be
fixed. U

Compare this with the simpler statement in the dynamically coherent setting,
[BFFP20, Lemma 3.13], where it suffices to assume L is not isolated in the set of
fixed leaves.

Corollary 4.11. If fﬁxes every center stable leaf, then it has no fized or periodic
points i M.

This follows immediately from the lemma. We will now exclude the existence
of fixed or periodic points under the assumption of f-minimality.

Theorem 4.12. If W or W is f-minimal, then f does not have any fixed or
periodic points in M.
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Proof. Assume without loss of generality that W is f-minimal. By the di-
chotomy in Corollary 4.9, f either fixes every leaf of W¢, or acts as a translation
on L.

If f fixes every leaf of W the result follows from Lemma 4.10. If f acts as
a translation on £, then for any leaf L of W one has f° (L)yNL = 0 for |i|
sufficiently large. O

A noteworthy consequence is the non-existence of “contractible periodic points”
under the assumption of f-minimality.

Definition 4.13. Let g be a homeomorphism of a manifold homotopic to the
identity. A point p is a contractible periodic point if g"(p) = p for some n # 0
and there is a homotopy H: M x [0,1] — M from the identity to g, such that the
concatenation of the paths H(p,-), H(g(p),-),..., H(¢" ' (p),-) is homotopically
trivial.

Notice that if p is a contractible periodic point of g of period n then there
exists a good lift g of g and a lift p of p such that g"(p) = p. Thus, Theorem 4.12
immediately yields:

Corollary 4.14. If f admits a f-minimal branching center stable or center un-
stable foliation, then f has no contractible periodic points.

This completes the proof of Theorem 1.3 in the f-minimal case. The hyperbolic
and Seifert fibered cases follow from Proposition 6.1.

4.3. Fundamental groups of leaves. The leaves of W and W are immersed
surfaces which may not be injectively immersed. In the universal cover, however,
the leaves of W and W are properly embedded planes (cf. Section 3.2).

It follows that there may be a closed loop in a leaf with a corresponding element
of w1 (M) that fixes no lift of that leaf in the universal cover. These elements are
not useful for our purposes, so we will remove them by convention:

Convention. When working with a fixed lift L of a leaf C' of W or W, we will
say that an element v € 71 (M) is in the fundamental group of C' if it stabilizes
L.

There is another way of seeing this notion of fundamental group arise: Recall
(Theorem 3.6) that the branching foliations are approximated by true foliations
WE and WE and that there exists maps, h¢® and A" mapping leaves of WE* (or
WE) to those of W (or W). Then, a loop is in the fundamental group of a
leaf C of W€ if and only if it is freely homotopic to a loop in a corresponding leaf
Ce of WS, for every e small enough. Notice that if there are several leaves that
project to C, in the universal cover, take a lift L and it follows from Proposition
3.16 that the set of leaves that projects to L is an interval in the leaf space of W&°.
It follows that A% lifts to a equivariant (with respect to the defined fundamental
group of C) diffeomorphism from the boundary leaves of the closed interval to L.
We call such a leaf L. and denote Cc = 7(L,).

In other words, for us, the fundamental group of C' based at y will be exactly
(he*). (m(Ce, yo)) Where hE(yo) = v.

In particular, since WE® and WE are taut foliations without Reeb components,
each leaf is mp-injective in M. Thus, this second interpretation helps explain our
convention: the closed loops in a leaf of W are either in the fundamental group
as we defined it, or they are due to a self-intersection. In that case, they are not
an essential feature of the leaf, as they stopped being closed when pulled-back to
the approximating leaf.
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Following our convention, we will then say that a leaf C' of the branching
foliation is a plane, a cylinder, or a Mobius band if its corresponding approximated
leaf C. is, respectively, a plane, a cylinder, or a Mobius band, for any small enough
€.

Using these conventions, [BFFP20, Proposition 3.14] holds for the leaves of the
branching foliations whenever fhas no fixed points in the leaf (cf. Lemma 4.10).
For ease of reference, we restate it here.

Proposition 4.15. Assume that fﬁxes aleaf L ofWCS then, C' = w(L) has cyclic
fundamental group (thus it is either a plane, an annulus or a Mébius band), or

L has a point fixed by f.

Remark 4.16. Similarly, because of possible self-intersections, we need to be
careful on how to define the path-metric on a leaf of W% or W€,

If C' is a leaf of, say, W, we define a path on C as a continuous curve 7 that
is the projection of a continuous curve 7 in a lift L of C to M. We then define
the path-metric on C' as usual, but considering only the paths as defined before.

Notice that not every continuous curve 1 on C' is a path in the above sense, as
there might not exists any lift of 1 that stays on only one lift of C.

Still the analogue of [BFFP20, Lemma 3.11] holds:
Lemma 4.17. If fﬁxes every leaf of Wes (resp. WC“) then there is K > 0 such

that for every L € W (resp. L € W) we have that dr(z, f(z)) < K.

4.4. Gromov hyperbolicity of leaves. We now prove a version of [BFFP20,
Lemma 3.20] in the non dynamically coherent setting.

Lemma 4.18. If W is f-minimal, and fﬁxes every leaf of WS, Then each
leaf of W€ is Gromov hyperbolic.

Proof. The foliation W is taut. Thus, Candel’s theorem [Can93] asserts that
either all the leaves of W¢* are Gromov hyperbolic or there is a holonomy invariant
transverse measure (of zero Euler characteristic).

Assume for a contradiction that  is a holonomy invariant transverse measure.

Since WS is not f-invariant, we have to adjust the proof given in [BFFP20].

The transverse measure p lifts to a measure ji transverse to Wfs. Thus, @
defines a measure on L£¢°, the leaf space of W¢°.

Let ges: £ — L be the canonical projection between the leaf spaces of W¢*
and W (see section 3.2.2). Let U := (gcs), ft be the corresponding measure on
L. Now v is f-invariant since f is the identity on £, and it is also 71 (M)-
invariant as p is. The support of v in £ is a closed set Z in £ that is f—invariant
and 71 (M )-invariant.

The measure 7 on L% can also be considered as a measure on the set of
transversals to W in M: For any transversal 7 to W in M, we define v(7)
as the v-measure of the set of leaves in £ that intersects 7. Notice that the
measure of a point in M (which can be thought of as a degenerate transversal)
can be positive if the image of that point in £ is an interval. -

Note also that we refrained from calling v a transverse measure to W because
it is by no means holonomy invariant. In fact holonomy itself is not well defined
for a branching foliation. Still ¥ satisfies the property that if 71, 7o are transversals
and every leaf intersecting 71, also intersects 7o, then v(7) < v(72).

Projecting down to M ,the measure v induces a measure v on the set of transver-
sals to W on M.
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Let 7 be any unstable segment in M. Since f fixes every leaf of Wes , the
measure of fi(7) (= v(f%(7))) is equal to v(7) for any integer i. We can choose i
very big and negative so that the length of f(7) is extremely small. Therefore it
is contained in a small foliated box of W, which is the projection of a compact
foliated box of WEs. Tt follows that v(7) is uniformly bounded. In particular this
implies that the v-measure of any unstable leaf in M is bounded above. In turns,
it implies that for any j7 > 0 (assumed big enough), there is an unstable segment
uj of length > j which has v(u;) measure < 1/j. Taking the midpoint of these
segments and a converging subsequence, we obtain a full unstable leaf, call it (,
so that ¢ has v(¢) = 0 (since v(¢) < 1/j for all big enough j).

Let Y be the union of the leaves of W that do not intersect ¢ or any of its
iterates by f. Then Y is a closed subset of M and clearly f-invariant. Let L
be a leaf in W which is in Z, the support of . Then by definition of support
of v, it follows that 7(L) cannot intersect ¢ or any of its iterates by f. Hence
m(L) is in Y. In particular Y is not empty. This contradicts the fact that W is
f-minimal, and hence cannot happen.

This finishes the proof of the lemma. O

5. CENTER DYNAMICS IN FIXED LEAVES

This section deals with the dynamics of center leaves within center stable (and
center unstable) leaves. It is one of the first places where we encounter significant
difficulties compared with the dynamically coherent setting.

In [BFFP20, Proposition 4.4] we found a condition for the existence of center
leaves that are fixed by a good lift, but the proof does not work without dynamical
coherence [BFFP20, Remark 4.8].

Throughout this section we continue to assume that f is orientable (Defini-
tion 3.5).

Definition 5.1. Let ¢ C M be a center leaf that is fixed by f. We say that
c is coarsely contracting if it is homeomorphic to the line, and it contains an
non-empty compact interval I such that for each compact interval J C ¢ whose
interior contains I has the property that f(J) C J.
We say that c is called coarsely exzpanding if it is coarsely contracting for f~1.
We also naturally extend the definition of coarse contraction/expansion to
leaves that are periodic under f.

The following is the main result of this section.

Proposition 5.2. Suppose that W is f-minimal, and there is a good lift j?
that fizes every center stable leaf but no center leaf in M. Then every f-periodic
center leaf in M is coarsely contracting.

Note that a coarsely contracting periodic leaf must contain a periodic point.

If W€ is f-minimal, and there is a good lift f that fixes every center unstable
leaf in M then one concludes that each periodic center leaf is coarsely expanding.

We will see in Proposition 5.6 that one can always find f-periodic center leaves.

5.1. Fixed centers or coarse contraction. We begin with a preliminary re-
sult.

Lemma 5.3. Suppose that fﬁxes every center stable leaf but no center leaf in
M. Then the same holds for every iterate f™ with n # 0.
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Proof. Suppose that f” fixes a center leaf cg for n > 0, and let L be a center stable
leaf that contains ¢y (which is fixed by fby hypothesis). Since f is orientable, f
preserves a transverse orientations to the center and stable foliations on L.

Let A¢ be the axis for the action of f on the center leaf space in L (i.e., the set of
center leaves ¢ such that f(c) separates ¢ from f2(c), sce [BFFP20, Appendlx E]).
Since f“(co) = ¢g, the leaf ¢y cannot be in A°. If ¢ is not in QA° then we can
replace it with the unique center leaf that separates cg from A¢. Thus we can
assume that ¢y € 0A°.

Recall (see [Bar98, Proposition 2.15]) that the boundary of the axis of a homeo-
morphism on a 1-manifold splits into three disjoint sets: the “positive” boundary,
“negative” and “middle” boundary. That is, 0A¢ contains three types of leaves,
the center leaves ¢ such that ¢ and f(c) are non separated on their positive side,
the leaves ¢ such that ¢ and f(c) are non separated on their negativeside, and the
leaves ¢ that are non separated with a leaf ¢’ in A°.

If ¢y was in the “middle” boundary, then we would have that there exists
c € A° not separated with ¢y. Thus ¢ and f”(c’ ) are separated, contradicting
that cop = f" (co). So ¢ must be either in the positive or negative boundary. In
particular, ¢g and f(co) are non separated.

Now, consider the closure of the set of stable leaves intersect cy. There exists
a unique stable leaf sg in the boundary of that set that separates ¢y from f (co)
Therefore, sy must be fixed by f” and hence contains a fixed point z of f”

In particular, we found a periodic point of f , thus, by Brouwer Translation
Theorem (see e.g. [BF93]) f must also admit a fixed point, say y. Since the
center leaves through y form a closed interval (Lemma 3.19), there exists at least
one closed center leaf through y, a contradiction. O

In order to obtain coarsely contracting center leaves we will use the following
tool.

Proposition 5.4. Suppose that fﬁzes every center stable leaf in M, and let L
be a center stable leaf that is also fized by some v € w1 (M) ~ {Id}.

Assume that there exists a properly embedded Cllcurve, 7 C L that is trans-
verse to the stable foliation and fized by both v and f.

° Iff does not act freely on LS then there is a center leaf in L fized by both
f and .

° Iff acts freely on LS then every f-periodic center leaf in w(L) is coarsely
contracting.

Note that in the first case the center leaf projects to an f-invariant closed
center leaf.

Note also that hypothesis of Proposition 5.4 are implied by the conclusion of
the Graph Transform Lemma [BFFP20, Appendix HJ.

We will use the following result from [BFFP20], whose proof works equally
well in the non dynamically coherent case:

Lemma 5.5 (Lemma 4.15 in [BFFP20]). Let ¢ be a center leaf in a center stable

leaf L C M. Suppose that L is Gromov-hyperbolic, and fixed by f and some
nontrivial v € m(M). Moreover, assume that there exist two stable leaves sy, so
on L such that:

(1) The center leaf c is in the region between s1 and sa;
(2) The leaves s1 and sy are a bounded Hausdorff distance apart;
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(8) The leaves ¢, s1 and s9 are all fized by h =" o fm, m # 0.
Then there is a compact segment I C ¢, such that h (if m >0) or h™1 (if m <0)
acts as a contraction on ¢\ I.

Proof of Proposition 5.4. Since f fixes every leaf of W Lemma 4.10 implies
that it fixes no point in M, and hence fixes no stable leaf.

Let S be the stable saturation of the curve 7. Let a = m(7). The curve « is
closed, f-invariant, and tangent to the center bundle.

Case 1 - We start by assuming that f fixes a center leaf ¢ in L.

Suppose that ¢ and 7 do not intersect a common stable leaf. Then ¢ does not
intersect the set S and there is a unique stable leaf s contained in the boundary
of S such that s separates S from c. Since both S and ¢ are f-invariant, so is s.
But then f must admit a fixed point in s, contradiction®.

Therefore there is a stable leaf s intersecting ¢ in y and 7 in z. Iterating
forward by f, we deduce that d(f™(y), f™(z)) converges to zero as y and z are in
the same stable leaf. Since both ¢ and 7 are f—invariant, it implies that ¢ and 7
are asymptotic (note that ¢ and 7 may or may not intersect). Calling av = m(7)
the projection to M, we deduce that 7(c) accumulates onto c. But, as « is closed
and m(c) is a center leaf, we deduce that « is also a center leaf. Hence 7 is the
required center leaf of the first option of the proposition.

Case 2 - Assume now that inacts freely on the center leaf space of L.

According to Lemma 5.3, f™ also acts freely on the center leaf space of L for
any n # 0.

We need to prove now that every center leaf in w(L) that is periodic must be
coarsely contracting.

Let then ¢ be a center leaf in L such that 7(c) = e is periodic under f, say of
period m. Then, for some ~; € m (M) ~ {Id}, we have ¢ = 71 f™(c). (Note that
one can show under our current assumptions that 7(L) projects to an annulus,
so v and 1 are both powers of a particular deck transformation, but we do not
need that fact for the proof). Let

h:=mv0 fm

We now want to show that either c intersects 7, or there exists another center
leaf, also fixed by h, that does.

Suppose first that ¢ intersects S, i.e., there exists a stable leaf intersecting
both ¢ and 7). Since the stable distance is contracted by h, which fixes both ¢
and 7, we obtain that either ¢ and 7 are asymptotic, or they intersect. If ¢ and
7) are asymptotic, then, as in case 1, we deduce that 7 must be a center leaf,
contradicting the fact that f acts freely on the center leaf space. Thus we must
have that c intersects 7).

Suppose now that ¢ does not intersect 7, and thus does not intersect S. Then
there is a unique stable leaf s in S that separates 7} from c¢. That leaf s must
then be invariant by h, so admits a fixed point for A. Then at least one center
leaf, say c1, through that fixed point must be fixed by h. Since c¢; intersects S
and is invariant by h, it must intersect 7).

Thus in any case, we have a center leaf ¢; that intersects 7, is invariant by h,
and, by the above argument has both ends that escapes compacts sets of L.

Let I be the projection of ¢; onto 7 along stable leaves.

3Note the distinction of ¢ being fixed by f as opposed to m(c) periodic under f. It is the first
property which creates a fixed point of f and a contradiction.
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Suppose first that I is unbounded. Then, considering iterates by f™, we deduce
that m(c1) must be asymptotic to 7(7}), so 7 must be a center leaf, which is not
allowed, since fis assumed to act freely on center leaves.

So I is bounded in 7. Let s; and sy be the stable leaves through the two
endpoints of the interval I. Since I is fixed by h, so are s; and so. Moreover, the
center leaf ¢1, as well as ¢ if it is different from ¢y, is in between s; and s.

Now, i acts as a translation on 7), so there exists k € Z such that sy separates
s1 from f¥(s1). By Lemma 4.17, 51 and f¥(s1) are a bounded Hausdorff distance
apart. Thus s; and s are a bounded Hausdorff distance apart. So c satisfies all
the conditions for Lemma 5.5 to hold, thus it is coarsely expanding.

This finishes the proof of Proposition 5.4. U

We are now ready to prove the main result of this section.

Proof of Proposition 5.2. Let e C M be an f-periodic center leaf, and let ¢ C M
be a lift of e. If m > 0 is the period of e, then ¢ and fm(c) both project to e, so
there is an element 4/ € 1 (M) with 7/(f™(c)) = c.

Choose a leaf L € W that contains c¢. Then ~" is in the stabilizer of L,
because fleaves invariant every leaf of WeS. Since fm acts freely on the center
leaf space (cf. Lemma 5.3), 4/ is not the identity.

Since fdoes not have any fixed points, Proposition 4.15 implies that the sta-
bilizer of L in M is infinite cyclic. Thus, there exists v € w1 (M )\ {id} such that
Yo fm (¢) = c for some n € Z, n # 0, and such that v generates the stabilizer of
L. Let

hi:=~"0 f™.
Notice that h is still a partially hyperbolic diffeomorphism and has bounded

derivatives.
Since f acts freely on £, it must also act freely on £5. Let A® be the axis

for the action of f on the stable leaf space £ (see [BFFP20, Appendix EJ). No

stable leaf in M can be closed, so v must also act freely on £7. Since v and .]?
commute, A° is also the axis for the action of 7y on £5. The axis A% can be a line
or a countable union of intervals.

Suppose first that A® is a line. Let s be a stable leaf in A% and p in s.
Then p and vp can be connected by a transversal to the stable foliation, chosen
so that the projection to m(L) is a smooth simple closed curve. Let n be the
union of the v iterates of this segment. Applying the Graph Transform Lemma
[BFFP20, Lemma H.1] to n we obtain a curve 7 which satisfies the properties in
the hypothesis of Proposition 5.4 as desired.

Now suppose that A% is a countable union of intervals

Af = U[si_,s;-"] = UTZ
i€Z ic?,

Our first claim is that there exists s € A%, fixed by h, such that the center leaf
c is between 7y~ 1's and 7s.

Suppose that ¢ intersects some stable leaf s’ in A%, then s’ is in a unique 7; for
some i (the center leaf ¢ cannot intersect two different intervals otherwise ¢ would
intersect two non-separated leaves, which is impossible). Then, since h fixes c,
it also fixes the axis A® and preserves the transverse orientation. It follows that
h(T;) = Tj for all j. In this case we set s = s;. The leaf s is fixed by h and
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there exists k # 0 such that 'yilTi = Tj1p. Thus T; is in between v~'s and vs
and hence, so is c. Recall here that h preserves orientation.

Now, suppose instead that ¢ does not intersect A°. Hence, there is a unique
1 such that sztl U s; separates ¢ from all other stable leaves in A°. We again
set s := s;r. As before, since h fixes both ¢ and A%, and preserves the transverse
orientation, it must fix s also. The same argument as above also shows that c is
between vy~ 1's and 7s.

In either case we have found a stable leaf s (chosen as a positive endpoint of
one of the closed intervals 7T;) that is fixed by h, such that c lies between v~ 1s
and ys. Notice that both s and ’y_l:sv are fixed by h.

The leaf y~1s is between s and f?"(ys) = v 2"*ls (assuming n > 1, oth-
erwise between s and f~2™(vs)). Hence the Hausdorff distance between v~ 1s
and ~s is bounded above by a uniform constant C' > 0, depending only on f and
m.
Thus the center leaf ¢, fixed by h, lies between the stable leaves vs and vy~ !s,
also fixed by h, which are a bounded Hausdorff distance apart. Moreover, the
leaves of W are Gromov-hyperbolic by Lemma 4.18. These are all the conditions
needed to apply Lemma 5.5, so ¢ is coarsely contracting for h. O

5.2. Existence of periodic center leaves. In order to apply Propositions 5.2
and 5.4 we will need some way to find periodic center leaves.

Proposition 5.6. Let f: M — M be a partially hyperbolic diffeomorphism ho-
motopic to the identity. N .

Suppose that some good lift f fives every center stable leaf in M. If L is a
center stable leaf fized by some v € m (M) ~\ {Id}, then there is an f-periodic
center leaf in m(L).

Proof. First notice that if one can prove the above result for a finite cover of
M and a finite power of f, then the same result directly follows for the original
map and manifold. Thus, we may assume that M is orientable, f is orientation-
preserving, and the branching foliations are both transversely orientable.

Given these assumptions, L projects to an annulus in M (Proposition 4.15).
Let v be a generator of the stabilizer of L.

If f fixes a center leaf in L, then it would project to a center leaf fixed by f,
proving the claim. So we assume that f acts freely on the center leaf space in
L. This implies that f also acts freely on the stable leaf space in L, and we can
thus consider the stable axis A C L] of f. Since 7 also acts freely on the stable

leaves, and commutes with f, it has the same set A as its axis. This axis is either
a line or a countable union of intervals.

If the axis is a countable union of intervals, there must be integers n, m such
that h := ~™f™ fixes one of the intervals, and hence a stable leaf s. One cannot
have m = 0, since this would mean that ™ would fix a stable leaf, which is
impossible. So m # 0, and s projects to a periodic stable leaf 7w(s) in M. This
must contain a periodic point, and at least one center leaf through that point is
periodic as desired.

If the axis is a line, then one can use the Graph Transform Lemma [BFFP20,
Appendix H] to see that there is a properly embedded curve in L which is invariant
under f~ and v. Then [BFFP20, Lemma H.3] provides a periodic center leaf as
desired. (|

5.3. Additional result. The intermediate results in this section also provide a
proof of the following result which will be needed later in this article.
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Proposition 5.7. Suppose that fﬁxes every center stable leaf in M, and let
L be a center stable leaf that is also fized by some v € m (M) ~ {Id}. Assume
moreover that there is no center leaf in L fived by f. Then, there is a center leaf

cin L fixed by h = ’y”ofm for some n,m, with m # 0 and two stable leaves s1, s9
on L such that:

(1) The center leaf ¢ separates s1 from sg in L;
(2) The leaves s1 and sy are a bounded Hausdorff distance apart;

(8) The leaves ¢, s1 and s2 are all fivzed by h =~™ o f™, m # 0.

Proof. The conditions imply that (L) is an annulus. Proposition 5.6 implies
that there is a periodic center in m(L).

To prove Proposition 5.7 we revisit the proof of Proposition 5.2. Since there is
no center fixed by f in L, then as in the proof of Proposition 5.2 the map f acts
freely on the stable leaf space. As in that proposition we separate into whether
the stable axis is a line or when it is a Z-union of intervals.

In the first case, as in Proposition 5.2 we produce a curve 7 in L which is
invariant under f and . We will use Proposition 5.4, and the existence of such a
curve 7) is necessary for that. The analysis of Proposition 5.4 has cases depending
on the action of f on the center leaf space — as opposed to the action on the
stable leaf space A®. However in this proposition we are assuming that the action
on the center leaf space in L is free, so this is Case 2 of Proposition 5.4, where
the proof showed the existence of a center leaf ¢ and stable leaves s1, s2 satisfying
the conditions stated in this proposition, except perhaps that ¢ separates s from
S9.

We now show that such a center leaf exists with this additional property.
Suppose that this does not happen for ¢. This can only occur if both ends of
7(c) are in the same end of the annulus 7(L), or in other words, if 7(c) separates
7(L). Since the action of f on the center leaf space in L is free it has an axis
denoted by A€. The leaf ¢ is not in this axis. If the axis A¢ is a real line then
there is a unique center leaf ¢’ in the axis A® which is either non separated from
¢ or is non separated from a leaf which separates ¢ from the axis. In either case
it also follows that h fixes ¢’. We can then redo the analysis with ¢’ instead of c.
It will produce stable leaves si, so fixed by h, with ¢’ between them, and now ¢
separates s1 from sso. If the center axis A€ is a countable union of intervals, there
is a unique consecutive pair of intervals so that c is “between” them. Then the
boundary leaves of these intervals are fixed by h. Choose ¢’ to be one of these
boundary leaves, and redo the proof with ¢’ instead of ¢ to obtain the conclusion
of the proposition.

The other case of this proposition is when the stable axis is a Z-union of
intervals. Here we use the notation of the proof of Proposition 5.2, where A° =
Usezlsi s si] = Uiez Ti- Consider s, which is non separated in the stable leaf
space from s;. There are n,m, m # 0 so that h = 4" o fm fixes all T; and
their boundary leaves. Since sg ,$7 are non separated consider a nearby stable
leaf s which intersects transversals to both of them. Choose ¢ center intersecting
s, saL , and choose ¢ center intersecting s, s; . Starting from ¢ and considering the
centers intersecting s between cyNs and ¢y N s there is a first center leaf, denoted
by ¢ which does not intersect sar . This center is fixed by h. Let 51 = sg , 82 = 5] .
They are both fixed by h. In addition c separates s; from so. Finally s1, s are
a finite Hausdorff distance from each other in L.

This completes the proof of the proposition. O
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6. MINIMALITY FOR SEIFERT AND HYPERBOLIC MANIFOLDS

In this section we will show that when M is hyperbolic or Seifert, the existence
of a single fixed center stable leaf implies that every center stable leaf is fixed.
This is considerably easier in the dynamically coherent case [BFFP20, Proposition
3.15].

We continue to assume that f is orientable.

Proposition 6.1. Suppose that M is hyperbolic or Seifert fibered, and a good lift
f fixes some leaf of We. Then f fizes every leaf of W, W€ is f-minimal, and

every leaf of WE* and W€ s either a plane or an annulus. The same statement

holds for Y.

The main issue to extend the proof of [BFFP20] to the non dynamically co-
herent context is that here we cannot ensure the non-existence of fixed points of
f since Lemma 4.10 does not exclude fixed points when the branching foliation is
not f-minimal. So, we will need to exclude the existence of fixed points for good
lifts. We cannot exclude their existence in general, but we are able to show that
they cannot exist in minimal sub-laminations of W or W<,

6.1. No fixed points for good lifts. Note that the definition of f-minimality
for the whole foliation can be applied to subsets: An W¢-saturated subset of M
is f-minimal if it is closed, non-empty, and f-invariant, and no proper saturated
subset satisfies these conditions.

The goal of this subsection is to prove the following proposition, which does
not assume that M is hyperbolic or Seifert.

Proposition 6.2. Let f be a good lift of f to M. Suppose that A is a non empty
f minimal set of W, such that every leaf L ofA = 7~ Y(A) is fived by f. Then
f has no fixed points in A.

We will prove this proposition by contradiction. So from now on, we assume
that there is a fixed point p of f in a leaf L contained in A. This point projects to
a fixed point 7(p) in M. Note that any leaf L’ of A that intersects the unstable
leaf u(p) through p must have L' Nu(p) = p = L Nu(p). This is because L and
L’ are both fixed, and unstable leaves are expanded.

6.1.1. Many fized points. The following property uses crucially the fact that A is
an f-minimal sublamination.

Lemma 6.3. There exists b > 0 such that any point in a leaf of;{ 1s at distance
at most b (for the path metric on the leaf) from a fized point of f.

Proof. Otherwise, one can find a sequence of discs D; in leaves of A that contain
no fixed points and whose radius goes to co. Up to deck transformations and
subsequences, these disks converge to a full leaf Ly of WE that is contained in
A. Here, the convergence is with respect to the topology of the center stable
leaf space, which also implies convergence as a set of M. The leaf Ly does not
contain any fixed point of f. Indeed, the unstable leaf through a fixed point ¢ in
L1 would eventually intersect one of the discs D;. Since fﬁxes the leaves of 1~\,
this would imply that the leaf through D; merges with L; and that D; contains
the fixed point ¢, a contradiction.

Since L; contains no fixed points, it does not contain the f—ﬁxed point p, and
A = m(L1) does not contain the f-fixed point 7(p). But the closure of A = 7w (L)
in M is A by minimality, so A must accumulate on 7(p). But this means that A
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intersects u(7(p)), which implies that A contains 7(p) as explained above. This
is a contradiction. O

6.1.2. A topological lemma. Let L be a metrically complete, non compact, simply
connected, Riemannian surface.

For a compact subset X C L we denote Fill(X) to be the complement of the
unique unbounded connected component of L\ X. Note that Fill(X) is always
compact as a neighborhood of co in the compactification of L is disjoint from X.
Notice further that, by definition, Fill(X) is a compact connected set which does
not separate the plane.

We will use the following simple properties of Fill(X):

e If X C Y are compact sets then Fill(X) C Fill(Y).
elf g: L — L is a homeomorphism and X C L, then g(Fill(X)) =
Fill(g(X)).

The following lemma will be used in the next section (see Figure 5).

Lemma 6.4. Let L be as above, then for every b > 0 and 6 > 0 there exists
R > 0 and ng > 0 with the following property. Let A, B be topological disks, and
let b1, ..., L, be disjoint curves, with n > ng that join A and B. Suppose that
(i) d(A,B) > 2R, and
(ii) the d-neighborhoods of the curves {; are pairwise disjoint.
Then the region Fill(AU BU /{1 U...U¥,) \ (AU B) contains a disk D of radius

> 4b. Moreover, D can be chosen so that d(D, A) and d(D, B) are larger than
d(A,B)
0 -

%

FIGURE 5. A depiction of Lemma 6.4.

Proof. Using the Jordan Curve Theorem we can reorder the curves so that:

e Fi(AUBU/ U...UL,) =Fill(AUBU/ UL,),
e for 1 < i < n we have that ¢; C Fill(AUBU/l;_1 U¥;11).

Take R > 100b and ng > %. Without loss of generality we can assume that
n is even. This way, we can choose a point = € {,,/, such that d(z, A) > @
and d(z, B) > %485 We claim that B(z,4b) C Fill(AU B U ¢; U f,). By our
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choice of z it will follow that B(x,4b) is at distance larger than d(f(’)B) from A
and B.

To see this, consider r a geodesic ray starting from x and y the first point of
intersection of r with OFill(AUBU/ U...U¥,)\ (AU B). By our ordering, there
are two possibilities:

e either y belongs to 0A U 0B,
e or y belongs to ¢1 U 4,,.

By our assumptions, if y € 0AUJB then the distance d(z,y) > R/4 > 4b. On
the other hand, if y € ¢; then by our choice of reordering we deduce that r must
intersect ¢; for all 1 <4 < n/2. Since the points of intersection are at distance
pairwise larger than § we deduce that d(x,y) > 4b. Similarly, if y € ¢, we also
get d(x,y) > 4b. This completes the proof. O

6.1.3. Proof of Proposition 6.2. We will use the fact that f_l expands stable
length repeatedly. To simplify notation we set g := f~!. The rest of this subsec-
tion is devoted to the proof of Proposition 6.2.

According® to Lemma 4.17 there is a constant K > 0 such that, for any z € L,
we have

dr(z,9(2)) < K,
where dj, denotes the path-metric on L. From now on, during this subsection we
will always work in L so we will drop the subscript and write d := dj.

To finish the proof, our aim will be to show that the fact that f moves points a
bounded distance in L, together with the exponential contraction of length along
the stable leaf s(p) under iteration by f will force an arbitrarily large amount of
“bunching” of s(p), which is impossible for leaves of planar foliations.

Indeed, since s(p) is a leaf of a foliation of the plane, there exists some constants
d,m > 0 such that if I, J C s(p) are closed segments which are at distance larger
than 7 in the s(p) metric, then, their J-neighborhoods are disjoint in L. Now,
this implies in particular that the volume of the d-neighborhood of a segment of
s(p) must grow to infinity with its length (and therefore, the diameter grows to
infinity with the length).

Without loss of generality, we can assume that 4,7 < 1 and K > 1.

To prove Proposition 6.2 we will fix b > 0 as given by Lemma 6.3 and § > 0 by
the considerations above. Lemma 6.4 then gives us values of R > 0 and ng > 0
associated to b and § so that its statement holds. We will fix

’ , 1o

> ma 10R 10b
n>max | 5 .

We introduce the following notation: given any a,b € s(p), we write [a,b]® to
indicate the closed segment along the stable leaf s(p) between a and b oriented
from a to b.

We will then pick points in y, z € s(p) with the following properties:

e d(y,z) > 200Kn
* 9([y,2]") N[y, 2]* = O (equivalently, z € [y, g(y)]*).

The existence of points like this follows from the fact that if yy is any point
in s(p) then the length of ¢*([yo, g(y0)]*) grows to infinity, and thus its diameter
grows too. See Figure 6.

41t is not hard to see that the proof applies to the fixed sublamination.
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FIGURE 6. Choosing points y and z in s(p).

We will pick A; = B(y, Ki) and B; = B(z, Ki) the neighborhoods of radius
K of the points y, z. Given our choices, notice that g(y) € A1, g(z) € By, and,
for any i, g(A;) C Aj+1 as well as g(B;) C Bjt1.

The following holds:

Lemma 6.5. Every arc J C [y,g"(2)]® which is disjoint from A, U By, is com-
pletely contained in a fundamental domain of s(p) for the action of g. More
precisely, there exists £ such that J C [g*(y), g*(2)]* or J C [¢°(2), g (y)]*.

Proof. This is because [y, z|® intersects A; and By so every fundamental domain
as above intersects both A,, and B,,. O

We can apply Lemma 6.4 to get:

Lemma 6.6. We have that Fill(A, U B, Uy, ¢"(2)]*) \ (A1on U Bion) contains a
disk of radius 4b.

Proof. Note that [¢(y), g (y)]® contains at least two segments joining Ajg,
to Biop if 0 < ¢ < n (see Figure 6). Thus there are at least 2n such curves,
which since they are segments separated in s(p) must have pairwise disjoint J-
neighborhoods. Thus, by our choice of constants b, §, K and n above, we can apply
Lemma 6.4 to find a disk of radius > 4b inside Fill(A, UB,U[y, ¢"(2)]) \ (A,UBy,)

which is at distance larger than d(A’fiéB") from A, and B,. Thus, the disk is
contained in Fill(4,, U B, U [y, ¢9"(2)]*) \ (A1on U Bion) as required. O

Using Lemma 6.3 we can find a fixed point ¢ € Fix(g) such that B(q,2b) C
FIH(An U B, U [y, gn(z)]s) \ (AlOn U BlOn)'
We can show the following:

s

Lemma 6.7. There exists an arc J C [y, g"(z)]
holds:

(1) either J intersects Ay only at its endpoints and q € Fill(A,, U J), or,
(2) J intersects By, only at its endpoints and q € Fill(B,, U J).

Moreover, J is contained in o fundamental domain: for some 0 < < n we either
have J C [g°(y), g™ (9)]* or J C [g°(2), " (2))°.

such that one of the following
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Proof. This follows from the fact that Fill(4,, U B, U [y, g"(2)]®) is contained in
a union of sets of this form.

To see this note that Fill(A,,UB,U[y, ¢"(2)]*) = Fill(4, U]y, ¢"(2)]) UFill( B, U
[y, 9"(2)]®) because A, and B, are disjoint topological disks and [y, ¢"(z)]® is
a topological interval. Indeed, by Jordan’s theorem A = Fill(A, U [y, g"(2)]%)
is a topological disk with an arc attached (i.e. the segment [w,¢"(z)]® where
w is the last point of intersection of [y,¢"(z]]* and similarly B = Fill(B, U
[y, g"(2)]?) is a topological disk with an arc attached. One has that Fill(A,,UB,U
[y, g"(2)]*) = Fill(AUB). Since the intersection of these sets is connected (because
their intersection retracts to [y, g"(2)]*) we deduce® that Fill(AU B) = AU B.

The fact that J is contained in a fundamental domain is direct consequence of
the fact that it intersects A,, (or By,) only in its boundaries, and thus Lemma 6.5
can be applied. O

Both cases are analogous, so we will assume from now on that the first option
happens, namely, ¢ € Fill(A,, U J) for a curve J C [y, g"(z)]® which intersects 4,
only at its endpoints and such that J is contained in a fundamental domain of
s(p)-

To reach a contradiction, the idea will be to find fixed points qi,ge which
are sufficiently close, and such that one belongs to Fill(A,, U J) and the other
does not. If we choose them appropriately, we will be able to see that g*(J) will
intersect a geodesic joining ¢; and g for several values of i (before the set g*(A,)
becomes too big). This will produce some accumulation of the arcs g*(J) (which
are segments of s(p) far along s(p)), this is not possible and gives the desired
contradiction.

Lemma 6.8. There are fized points q1,q2 € Fix(g) such that d(q1,q2) < 3b and
we have that q; € Fill(A,, U J) \ Ajo, while g3 ¢ Fill(A, U J).

Proof. We will use Lemma 6.3. By the choice of the point ¢ we can consider an
unbounded geodesic ray r starting at ¢ which is at distance larger than 2b from
A1on. One can cover r by balls of radius b, in each such ball there is a fixed point,
and eventually, the fixed point is not in Fill(A4,, U J) which is a bounded set. So,
there is a pair of such points such that one belongs to Fill(A,, U J) and the other
does not. Their distance is less than 3b. O

We are now ready to prove Proposition 6.2 by finding a contradiction, that
will be produced using the following:

Lemma 6.9. For every 0 < i < n we have that g*(J)N[q1, g2]1 # O where [q1, q2]1
denotes a geodesic segment joining q1 and q2.

Proof. Note first that since d(q1, ¢2) < 3band 1 ¢ A1o, we know that the geodesic
segment [g1, o]z is disjoint from As, (recall that § < 1 and that n > 1%).

Since ¢q; € Fill(A4, U J) is fixed we get that ¢; = ¢*(q1) € ¢*(Fill(A, U J)) =
Fill(g*(An) U g*(J)). Similarly, we get that since qo ¢ Fill(A,, U J) we have that
g2 ¢ Fill(g"(4n) Ug'(J)). , ,

This implies that JFill(¢'(Ay) Ug¢"(J)) must intersect [q1, g2]r. Since ¢g'(Ay) C
A1 which is disjoint from [q1, g2]7, we deduce that g*(J) must intersect [q1, q2] 1,
as we wanted to show. O

SHere we are using the fact from plane topology that generalizes Jordan’s curve theorem
stating that if X, Y are compact connected sets, then their union separates the plane if and only
if their intersection is not connected.
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The contradiction is now the fact that g?(.J) are curves whose d-neighborhoods
are disjoint and all intersect [q1, ¢2] which is a geodesic segment of length < 3b.
This produces n different points at pairwise distance > 0 in [q1, g2z which is a

contradiction since n > 17017‘

6.2. Proof of Proposition 6.1. We are now ready to prove Proposition 6.1.

This proof follows the same structure as the one of [BFFP20, Proposition 3.15]
and we will continuously refer to it. Recall the standing assumption that f is
orientable.

Consider A an f-minimal non empty subset. We need to show that A = M.
We assume by contradiction that A # M.

Since W has no closed leaves and A is f-minimal, there cannot be any isolated
leaves in A (for the topology of the stable leaf space).

Now, Proposition 6.2 allows us to assert that f has no fixed points in leaves
of A. Then, Corollary 6.12 implies that each leaf of A is either a plane or an
annulus.

We fix an € small enough and let A’ be the pull back of A to the approximating
foliation W¢. That is, A’ = (h¢)~1(A). Let V be a connected component of
M\ A.

Claim 6.10. The projection w(V') to M has finitely many boundary leaves.

This is a standard fact in the theory of foliations [CC00, Lemma 5.2.5].
Claim 6.11. FEach leaf L C OV projects to an annulus w(L) in M.

Proof. Suppose that m(L) is a plane. Recall (see [CC00, Lemma 5.2.14]) that
m(V') has an octopus decomposition and a compact core. So for any 6 > 0, the
subset of points in 7(L) that are at distance greater then § from another boundary
component of 7(V) is precompact. Since m(L) is supposed to be a plane, that
subset must be contained in a closed disk D. Then 7(L) \ D is an annulus that
is 0-close to another boundary component, 7(L’) of w(V'). Moreover, the subset
of w(L') that is d-close to m(L) \. D then also has to be an annulus. If 71 (L)
were not a plane it would be an annulus and its non-trivial curve corresponds to
a curve homotopic to the boundary of the closed disk D which is homotopically
trivial in M. Since the leaves of WS are m;-injective, this implies that 7(L') is
also a plane.

Since M is irreducible this implies that 7(V') is homeomorphic to an open disk
times an interval. So w(V') has only two boundary components, both of which are
planes. In particular, the isotropy group of V' is trivial and 7(V") is homeomorphic
to V.

We will now switch to the branching foliation to finish the proof. Let A =
he® (w(L)) and B = h¢ (w(L')). Since we chose € small enough, up to taking &
small enough also, the unstable segments through A ~\ h¢*(D) intersect B, and
their length is uniformly bounded. Moreover, no unstable ray of A can stay
in A% (m(V)). This is because 7(V') is homeomorphic to an open disk times an
interval. So, since D is compact, the length of every unstable segment between A
and B is bounded by a uniform constant. Notice that, since W is a branching
foliation, we may have A N B # (), i.e., some of these unstable segments may be
points. .

Since L and L’ are in OV, which is a connected component of M ~ A , We
have that A, B € 9(M ~ A). So in particular, A and B are fixed by f. Hence,
the set of unstable segments between A and B is also invariant by f. Since
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the length of unstable segments between A and B are bounded above and f
expands the unstable length, all the unstable segments must have zero length.
i.e., A = B. Which implies that V is empty, which contradicts the assumption
that A # M. O

Thus we showed that every component of 7(0V) is an annulus. We can then ap-
ply without change the (topological) arguments of the proof of [BFFP20, Propo-
sition 3.15] to obtain a torus 7', composed of annuli along leaves of W, together
with annuli transverse to WS, that bounds a solid torus U’ in 7(V).

Now consider U = h&¥(U’). Because of the collapsing of leaves, U may not be
a solid torus. If U is empty for any any such component U’, this would directly
contradict the assumption A # M. So for some such complementary component
U’, the set U is not empty and it is contained in a solid torus (the e-tubular
neighborhood of U’ in M). We can then use the same “volume vs. length”
argument on U, exactly as in the end of the proof of [BFFP20, Proposition 3.15],
to get a final contradiction. This ends the proof of Proposition 6.1.

6.3. Some consequences. An important consequence of Proposition 6.2 is the
following;:

Corollary 6.12. Suppose that f is a partially hyperbolic diffeomorphism in M
that is homotopic to the identity. Let ]7 be a good lift of f to M. Suppose that A
is a non empty (saturated) f-minimal subset of W such that every leaf of the
lift A to M is fized by f Then every leaf in the f-minimal set A of W€, is either
a plane or an annulus.

Proof. Let A be a leaf of A and L a lift in M. By Proposition 6.2, L does not
admit any fixed points of f. Hence, f acts freely on the space of stable leaves in
L.

Now, recall that 71(A) can be defined as the elements v € w1 (M) that fix L
(see section 4.3). So if v € m1(A), it must also act freely on the space of stable
leaves in L. As f commutes with every deck transformation, Corollary E.4 of
[BFFP20] (which still applies in the context of branching foliation, as does all
of [BFFP20, Appendix EJ|) implies that 7(A) is abelian, i.e., A is either a plane
or an annulus (again with the understanding that A might actually only be an
immersion of one of these manifolds in M and recalling that all bundles were

assumed to be orientable in this section, so in particular the leaves cannot be
Mobius bands). O

As a consequence, we also get the following result that completes the proof of
Theorem 1.3 as announced.

Corollary 6.13. Suppose that f is a partially hyperbolic diffeomorphism homo-
topic to the identity. Suppose that f is either volume preserving or transitive, or
that M is either hyperbolic or Seifert. Let f be a good lift of f. Then f has no
periodic points. In particular, f has no contractible periodic points.

Proof. Up to finite covers and iterates, we may assume that f preserves the
branching foliations W<, We.

If f acts as a translation on either W or W, then it does not have periodic
points.

Otherwise, since we showed that under our assumptions the branching folia-
tions are f-minimal. The result then follows from Theorem 4.12. O
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7. DOUBLE INVARIANCE IMPLIES DYNAMICAL COHERENCE

In this section we show that if the center-stable and center-unstable branching
foliations are minimal and leafwise fixed by a good lift f: M — M, then, f has to
be dynamically coherent (i.e., the branching foliations do not branch). Therefore,
we will be able to apply the results from the dynamically coherent setting.

The universal cover M of M is homeomorphic to R? (since it admits a par-
tially hyperbolic diffeomorphism, see [BFFP20, Appendix B]). We do not assume
anything further on M in this section.

Recall also that a center leaf is a connected component of the intersection of a
leaf of W and one of W (cf. Definition 3.7).

This section (and the proof of dynamical coherence) is split in three parts.
First, in subsection 7.1, we show that, for an appropriate lift of M and power of
f, double invariance of the foliations implies that the center leaves are fixed. The
lift and power we need to consider here is in order to have everything orientable
and coorientable. Then, in section 7.2, we show that if a good lift fixes every
center leaf, then it must be dynamically coherent. Finally, in section 7.3, we show
that if a lift and power of a partially hyperbolic diffeomorphism is dynamically
coherent and fixes the center leaves, then the original diffeomorphism is itself
dynamically coherent (and a good lift of a power of it will fix every center leaf).

7.1. Center leaves are all fixed. To begin, we would like to show that fﬁxes
every center leaf. The results of §5 already provide at least one fixed center leaf:

Lemma 7.1. Let f: M — M be an orientable partially hyperbolic diffeomorphism
homotopic to the identity with f-minimal branching foliations W< W, If there
is a good lift f that fizes every leaf of We and WC“ then f fizes some center
leaf.

Proof. Suppose that fvﬁxes no center leaf. Since there is at least one non-planar
leaf, Proposition 5.6 provides an f-periodic center leaf ¢ in M. Applying Proposi-
tion 5.2 to Wy shows that c is coarsely contracting, but the same result applied

to Wbmn shows that c is coarsely expanding. This is a contradiction, so fmust
fix a center leaf as desired. (]

Proposition 7.2. Let f: M — M be an orientable partially hyperbolic diffeomor-
phism homotopic to the identity with f-minimal branching foliations YW, W,
If a good lift f of f fixes every leaf of W and W then f fixes every center
leaf.

Proof. Let
Fix% = {c : fle) = ¢},
thought of as a subset of the center leaf space.

The set Fix% is obviously m (M )-invariant. It is also open, by an argument
very similar to the one in [BFFP20, Lemma 6.3]: If ¢ is a fixed center leaf in
a center stable leaf L in M , then for any center leaf ¢’ in L close enough to ¢
(for the topology of the center leaf space in L), there is a strong stable leaf that
intersects ¢, ¢ and f(c’). Now, since fﬁxes the center unstable leaves, ¢’ and
f(c’ ) are on the same center unstable leaf. Since no transversal can intersect the
same leaf twice, it implies that ¢ = f(c’ ). Thus the set of fixed center leaves
within each center stable leaf is open (in the center leaf space within that center
stable leaf). Similarly, the set of fixed center leaves within each center unstable
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leaf is open. Together, these facts imply that the set of fixed center leaves is open
in the center leaf space. N -

Note that since a good lift f fixes every leaf of W then f fixes every leaf
of W¢. In particular f-minimality of W is equivalent to minimality of W.
Hence W is minimal. Similarly for wew 6

To see that f fixes every center leaf, we proceed as in [BFFP20, Lemma 6.4]:
We show first that every center leaf in a center stable leaf (resp. center unstable
leaf) which projects to an annulus has to be fixed (due to our orientability as-
sumptions, leaves cannot project to a Mdbius band). Then the same argument
as in [BFFP20, Lemma 6.4] applies to show that every center leaf has to be fixed.

Let L be any center stable leaf that projects to an annulus, and choose a
generator 7y of the isotropy group of L.

Since the set of fixed center leaves is open in the center leaf spaces of any
center unstable leaf, minimality of W implies that L must have some fixed
center leaves.

We will first prove that if ¢ is a center leaf in L which is in the boundary
of the set of fixed center leaves in L, then m(c) is periodic under f. We will
then show, as in Proposition 5.4, that any periodic leaf in 7(L) must be coarsely
contracting. The same argument applied to the center-unstable leaves yields that
periodic center leaves must also be coarsely expanding, a contradiction.

Since f cannot have fixed points (as f fixes all the leaves of W and WC“)
then f acts freely on the space of stable leaves in L.

We assume, for a contradiction, that not all center leaves in L are fixed. Let
Fixy, be the set (in, £, the center leaf space on L) of center leaves fixed by f.

The set Fixy, is open, and assumed not to be the whole of L. So let ¢; be any
leaf in OFixy,.

Let (c¢,) be any sequence of center leaves in Fixy that converge to ¢;. Then
f(cn) = cn converges to f(c). As the leaf ¢; is not fixed by f, we deduce that
f(c1) is non-separated from c;.

Hence, there exists a (unique) stable leaf s1, which separates f(c;) from ¢; and
makes a perfect fit with ¢; (see section 3.4.3 for the definition of perfect fits in the
non dynamically coherent setting). Then f(s;) makes a perfect fit with f(cy).
Because c¢; and f(cl) are non separated from each other, s; and f(sl) intersect
a common transversal to the stable foliation. It follows that the stable axis of f
acting on L is a line. Thus, since 7 commutes with f, the stable axis of 7 is that
same line. Moreover, both the stable leaves s; and f(s1) are in the axis of f.

Since the stable axis of facting on L is a line, the Graph Transform argument
[BFFP20, Appendix H] applies and we obtain a curve 7), tangent to the center
direction, that is fixed by both v and f.

As s1 makes a perfect fit with ¢; and sy intersects 7, we deduce that there
exists a stable leaf s that intersects both ¢y and 7. Let x = sNn and y = sNe¢y.
We denote by J the segment of s between z and y.

Since 7) projects down to a closed curve m(7), and f decreases stable lengths,
there exist N1, € Z and mq, my € N as large as we want such that the four
points 4™ f™1(z), 4™ f™ (y), 42 f™2(z) and 42 f™2(y) are all in a disk of radius
as small as we want.

6Note that f-minimality and minimality are in fact always equivalent as long as the branching
foliation does not have a compact leaf and without assumptions on f, see Lemma B.2.
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Suppose now that 7”{?’"1 (c1) # "2 me (c1). Then, up to switching nq, m; and
ng, ma, we obtain that ™2 me (c1) intersects ™ fml (J). This is in contradiction
with the fact that ¢; is in OFixy, which is invariant by both fand v.

Thus ~™ fml(cl) = Am2 fm2 (c1). In other words, ¢; is fixed by the map h =
fynfm for some n,m integers, m > 0. (Although not useful for the rest of the
proof, one can further notice that 7 and ¢; intersect, as h decreases the length of
J by forward iterations and both ¢; and 7 are fixed by h.)

Now recall that we built above a stable leaf s; making a perfect fit with ¢;.
And, by our choice of s, the center leaf ¢; is in between s; and so := ffl(sl).

Recall that s; is the unique leaf making a perfect fit with ¢; and separating

c1 from f(c1). Thus h(sy) is the unique leaf making a perfect fit with h(c1) = 1
and separating h(c1) = ¢; from ho f(c1) = f o h(c1) = f(c1). That is, sy is fixed
by h. Using again that h and fcommutes, we deduce that s, is also fixed by h.

Now, the leaves s; and sy are also a bounded distance apart, so Lemma 5.5
holds and we deduce that c;, as well as any other center leaf ¢ that is in between
s1 and s must be coarsely contracting. Note now that any center leaf ¢ in L that
is fixed by some h/ =" f™ is separated from Fix, by a center leaf ¢y C OFixy,
as above. Hence, we proved that every non-fixed periodic leaf in 7(L) is coarsely
contracting.

Therefore, the same argument applied to the center unstable leaf containing ¢y
shows that ¢; must also be coarsely expanding, a contradiction.

So we obtained that every center stable or center unstable leaf L which is fixed
by some non trivial element of 71 (M) has all of its center leaves fixed by f. Since
Fix? is open (in the center leaf space), minimality of the foliations implies that it

contains every center leaf, as in the end of the proof of [BFFP20, Lemma 6.4]. O

7.2. Dynamical coherence. We now want to prove dynamical coherence pro-
vided that a good lift fixes every center leaf. We do not assume that f is ori-
entable, only that it admits branching foliations. We start with the following;:

Lemma 7.3. Let f: M — M be a partially hyperbolic diffeomorphism homotopic
to the identity preserving branching foliations W W, Let f be a good lift that
fizxes every center leaf. Then there is a global bound on the length of every center
segment between a point x and f(l‘)

In the dynamically coherent case this was very easy as the center curves form
an actual foliation and there is a local product picture near any compact segment.
We have to be more careful in the non dynamically coherent setting.

Proof. We assume the conclusion of the lemma fails. Then there exists a sequence
T; 0~f points in M contained in center leaves ¢; such that the length in ¢; from x;
to f(x;) divverges to infinity. Notice that this length depends not only on z; but
also on ¢; since there may be many center leaves through x;. We denote by e;
the segment in ¢; from x; to f(x;).

Up to acting by covering translations we can assume that the x; converge to a
point « € M. Let L; and U; be respectively a center stable and center unstable
leaves containing ¢;. Up to considering a subsequence, we may assume that L;
converges to a center stable leaf L containing x (see condition (iv) of Definition
3.1). Similarly, we can further assume that U; converges to some center unstable
leaf U, with x € U.

For i large enough, all the leaves L; intersect a small unstable segment in u(x).
The set of center stable leaves intersecting this segment is a also a segment (even
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though many different leaves may intersect a given point in u(x)). Hence we may
assume that L; is weakly monotone, and so is U;. Let ¢ be the center leaf through
x contained in L N U. Then f(z) € ¢, and we call e the segment in ¢ from z to
f(a).

Suppose first that L; = L for all big 7. So we may assume L; = L for all i.
Then the center leaves ¢; are all in L and, for i big enough, intersect s(z). Hence
the leaves ¢; are, for ¢ big enough, contained in an interval of the center leaf space
in L. In addition they are converging to ¢ which is a center leaf through = and
f(z). This implies that the length of e; is converging to the length of e and hence
the length of e; is bounded in . Contradiction.

Suppose now that the L; are all distinct from L. Notice that the points z;, and
f (mz) are all in a compact region of M. Since L; converges to L, we have that
u(x;) intersects L for big enough i. We call this nearby intersection y;. Likewise
u(f(x;)) intersects L in f(y;). We want to push the center segments ¢; contained
in U; N L; along unstable segments to center segments in U; N L.

For i big enough, both x; and f(x;) are very near L. Thus, their unstable leaves
u(z;) and u(f(z;)) both intersect L. Let y; be the intersection of u(z;) with L
(recall that this intersection is unique as the center stable branching foliation is
approximated by a taut foliation). Then f(y;) is the intersection of u(f(;)) with
L (since L is fixed by f). Then the intersection of the unstable saturation of
€i with L is a compact segment inside a center leaf between y; and f (yz) (since
f fixes every center leaf). Let b; be this segment between y; and f (yz) The
segments b; also converge to e, so the previous paragraph shows that the lengths
of the b; are bounded. Since the distance between z; and y; converges to zero,
this in turn implies that the lengths of the segments e; are themselves bounded.
Which contradicts our assumption and finishes the proof. O

Lemma 7.4. Let f: M — M be a partially hyperbolic diffeomorphism homotopic
to the identity preserving branching foliations W W, Let f be a good lift that
fizes every center leaf. If c1,co are different center leaves in a single center stable
leaf L € WCS, then c¢1 Ncy = 0.

Proof. Suppose that there are distinct center leave c1, c2 that intersect at a point
x € ¢yNeg. Then f(z) is also in ¢; Neg. If ¢1 coincides with ¢y in their respective
segments from x to f(x), then applying iterates of ]?implies that ¢; = ca, contrary
to assumption.

So we may assume that x is a boundary point of an open interval I in, say, ¢;
which is disjoint from cg, but such that both endpoints are in ¢s. Then ¢q U ¢y
bounds a bigon B with endpoints z,y and a “side” in I. All center segments in
B pass through z and y and they have bounded length (by Lemma 7.3). Each
stable segment intersecting I also intersects the other “boundary” component of
B. See figure 7. B

The stable lengths grow without bound under negative iterates of f. Hence,
since a stable segment can intersect a local foliated disk of the stable foliation in
L only in a bounded length, it follows that the diameter in f"(L) of f"(B) grows
without bound as n goes to —oo. But the length of the center segments in f”(B)
are all bounded according to Lemma 7.3. Moreover, between any two points in
f™(B) there exists a path along (at most) two center leaves (one just follows the
center leaf to one of the endpoint and then switch to the appropriate other center
leaf). Thus the diameter is bounded, which is a contradiction. O
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FIGURE 7. Two centers that merge. The bound on the distance be-

tween x and f(x) forces a behavior like the figure.

Thus we deduce what we wanted to obtain in this section.

Corollary 7.5. Let f: M — M be a partially hyperbolic diffeomorphism homo-
topic to the identity preserving branching foliations W W If some good lift
f fixes every center leaf then f is dynamically coherent.

Proof. By Proposition B.3 it is enough to show that the leaves of the branching
foliations do not merge.

Assume that two center unstable leaves U; and Us merge. Let L be a center
stable leaf intersecting U; and Us at the merging, i.e., L is a leaf through a point z
such that the unstable leaf through x is a boundary component of U; NUs. Then,
connected components of Uy N L and Us N L gives two center leaves that intersect
but do not coincide. This contradicts Lemma 7.4. A symmetric argument gives
that two center stable leaf cannot merge either, proving dynamical coherence of
f. O

7.3. Dynamical coherence without taking lifts and iterates. We now want
to prove that, if a finite lift and finite power of a partially hyperbolic diffeomor-
phism is dynamically coherent, then the original diffeomorphism is itself dynam-
ically coherent. Although we do not know how to prove it in this generality, we
show it when a good lift of the dynamically coherent lift fixes every center leaf,
which is enough for our purposes.

Again, in this subsection we do not assume that f is orientable.

We start by showing a uniqueness result for the pairs of the center stable and
center unstable foliations under some conditions.

Lemma 7.6. Let g: M — M be a dynamically coherent partially hyperbolic
diffeomorphism homotopic to the identity. Let W and W be g-invariant foli-
ations tangent to E°° and E“ respectively. Let W€ be the center foliation asso-
ciated with W and W (defined as in Definition 3.7), and assume that there
exists a good lift g which fixes all the leaves of WW°.

Suppose that WY* and W{" are two g-invariant foliations tangent respectively
to E and E®. Suppose that g also fixes all the leaves of the center foliation
WY, associated with WY° and Wi*.



40 T. BARTHELME, S.R. FENLEY, S. FRANKEL, AND R. POTRIE

Then W< = WS and W = W,

Proof. The argument is similar to the one made in Lemma 7.4.

Let Wcs )7\//6“ be two g—equivariant foliations as in the lemma. We will con-
sider the center foliation V\/1 is defined by taking the connected components of
intersections of leaves of W and W to show that W = W . A symmetric
argument shows that W = Wf“

Since every leaf of both W and VNVf are fixed by g, Lemma 7.3 implies that g
moves points a uniformly bounded amount in both center foliations.

Consider, for a contradiction, a point 2 € M such that Wc(x) # Wf(az) (note
that we are dealing here with actual foliations, not branching ones, so this nota-
tion make sense). Without loss of generality, we can choose x so that the leaves
L= Wcs(x) and L := Wfs () do not coincide in any neighborhood of z.

Let ¢ and ¢; be the center leaves obtained as the connected components of
LN F and Ly N F containing x for some F' € wee.,

By assumption, both ¢ and ¢; are fixed by g, so we are in the exact same set up
as in the proof of Lemma 7.4. Thus we deduce that ¢ = ¢1, a contradiction. [J

We can now state and prove the aim of this section.

Proposition 7.7. Let f: M — M be a partially hyperbolic diffeomorphism such
that f* is homotopic to the identity for some k > 0. Let M be a finite cover
of M which makes all bundles orientable. Let g be a lift to M of a homotopy
of f* to the identity that preserves orientation of the bundles. Suppose that g
is dynamically coherent and that there exists a good lift g of g that fixes all the
center leaves. Then, f is dynamically coherent and f* is a discretized Anosov

flow.

Proof. First we notice that the assumptions of the proposition will be verified for
any further finite cover M of M (because one can take a further lift g of g to M,
it is dynamically coherent and g is a good lift of g too). Hence, without loss of
generality, we may and do assume that M is a normal cover of M.

Let W and W< be the lifts to M of the center stable and center unstable
foliations of g. Our goal is to show that these foliations are 71 (M )-invariant, thus
decending to foliations in M, and that these projected foliations are f-invariant.

Notice that ¢ fixes each leaf of W and We.

The map g is obtained from a lift of a homotopy of f* to the identity. Lifting
that homotopy further to M we get a good lift f* of f* that is also a lift (and
hence a good lift) of g to M. As both § h g and f"? are good lifts of g, there exists

B e m (M) C m (M) such that § = 8f 3 (Note however that g is not necessarily
a good lift of f* as § only commutes with elements of 71(M) and not my(M).)
Moreover, both g and f* move points a bounded distance in M, hence so does

B =g(f*)~1. Lemma A.1 then implies that either 3 is the identity or M is Seifert
(and f is either the identity or a power of a regular fiber).
We split the rest of the proof of dynamical coherence in two cases.

Case 1 — Suppose that M is not a Seifert fibered space.
Then 3 is the identity, which means that g = f. -
Let v be a deck transformation in 71 (M). Define the foliations F3* := yW<,

FI = WVN\/C“, and FY = WVNVC. The leaves of these foliations are all fixed by ¢

because v commutes with f¥ = §. In particular, Lemma 7.6 then implies that
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"yVNVCS = W and VWC“ = We. Since this is true for any element of 71 (M),
these foliations descend to foliations W§7, W5y in M.

Now we need too show that W{7, W5} are also f-invariant. Equivalently, we
need to show that W and W are invariant by any lift fi; of f to M.

Let f1 be a lift of f to M. Notice that f may not be homotopic to the identity,
so fi is not assumed to be a good lift. Let F{* := f; (We) and Fit = froven).

We will first show that f; and g commute. Both fig and gf; are lifts of the
map 1 to M. So (@)~ 1(f1)"gf1 is a deck transformation v € 71 (M). As g
moves points a bounded distance, we have that d(f1(y), 3 f1(y)) is bounded in M.
In addition, f; has bounded derivatives so d(y, (f1)~'gf1(y)) is also bounded in
M. So using again that § is a good lift, we deduce that d(y, (@)Y (f1)19f1(y))
is bounded in M.

Hence v is a deck transformation that moves points a bounded distance. Ap-
plying Lemma A.1 again gives that [ is the identity (since M is not Seifert).
Hence f; and g commute.

Since g fixes every leaf of we (the center foliation in M ) and commutes with
f1, we deduce that g fixes every leaf of fl(Wc). We can again apply Lemma 7.6
to get that f1(W) = We and f1(W) = W<, That is, the foliations W¢ and
Wet are fi-invariant. Since this holds for any lift of f, it implies that W§; and
Wit are f-invariant. Hence f is dynamically coherent with foliations W{j, Wiy.

This completes the proof that f is dynamically coherent when M is not Seifert
fibered.

Case 2 — Assume that M is Seifert fibered. .

In this case, Lemma A.1 implies that 3 = g(f¥)~! is either the identity or
represents a power of a regular fiber of the Seifert fibration. In any case, 8 is
in a normal subgroup of (M) isomorphic to Z. Moreover, as proved earlier,

B € m (M )

Let v € m1 (M) be any deck transformation. As before, consider the foliations
F5P = ')/VNVCS and FIY = ’yVNVC“.

We first claim that these foliations are g-invariant. We show this for F* the
other being analogous. Let L € Wes. We have

g(YL) = BfE(yL) = ByfH(L) = 4B fH(L).
Notice that both }\’; (because it is a lift of g) and [ (because it belongs to

m1(M) and the foliation W is defined in M) preserve the foliation wes Tt
follows that B%!fk(L) € W, so

g(vL) =BT fR(L) € Fse.
Thus F5* is g-invariant.

We now want to show that the foliations FI% FI* and FY := yW¢ are all
leafwise fixed by g¢.

Since M was chosen to be a normal cover of M, any element v € 71 (M) can
be thought of as a difeomorphism of M. Hence we can consider the foliation
F5P =W in M. Note that F7° is tangent to the center stable distribution
E° c TM, since ~ preserves the tangent bundle decomposition, as it is defined
by f in M. The argument above shows that F7* is g-invariant.
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Thus, we can consider g to be a dynamically coherent diffeomorphism for
the pair of transverse foliations F5F and W, Moreover, g is homotopic to the
identity and the good lift ¢ fixes every leaf of W€, Since M is Seifert, mixed
behaviour is excluded (cf. [BFFP20, Theorem 5.1]) and this implies that g must
also fix every leaf of FI7.

The symmetric argument shows that 5" is also fixed by g. So we can apply
Proposition 6.1 to both .7:",‘;5 and .7:",‘;“, implying that they are g-minimal. To apply
the proposition we need that g is orientable. Hence, the center foliation FY is
fixed by g, thanks to Proposition 7.2 (this also uses that g is orientable).

Since all the leaves of F3 are fixed by g, we can finally apply Lemma 7.6 to
deduce that F7* = W and FJ* = W, As this is true for any v, the foliations
Wes and W< descends to foliations Wit and Wi} on M in this case too.

We now again have to show that W4 and Wi} are f-invariant. The argument
is the same for both foliations, so we only deal With Wit

We start with a preliminary step. Let f. be the automorphism of (M)
induced by f. Let

A= m (M) N fu(m (M) 00 (f) 7 (o (M),
The set A is a finite index, normal subgroup of m(M). Moreover, as f* is
homotopic to the identity, f.(A) = A.

As we remarked at the beginning of the proof, we can without loss of generality
prove the result for any further finite cover of M. Thus we choose if necessary
a further cover so that m (M) = A. Since f.(A) = A, the map f lifts to a
homeomorphism f of M.

As in the first case, we let f; be an arbitrary lift of f to M and we define
Fis = fl(VNVCS) and Fi* = fi ()/NVC“) (Note that f is in particular also a lift of
1)

Note as before that both §f; and f1g are lifts of f¥+1 and gf1(9)"'(f1) 'is a
bounded distance from the identity (because g is and f; has bounded derivatives).
So 6 :=gf1(g)"'(f1)~" is an element of 71 (M) a bounded distance from identity.
By Lemma A.1, § represents a power of a regular fiber of the Seifert fibration,
so0 is in the normal Z subgroup of (M) (note that since w1 (M) is not virtually
nilpotent, there exists a unique Seifert fibration on M, see Append1x A).

In addition g gfr and fig g are also lifts of the homeomorphisms g f and f g in M
to M. Hence & is in w1 (M).

Using once more the arguments above, we get that (f1)~16f1(6)~! is a bounded
distance from the identity, and projects to the identity in M (and in M ), hence
it is a deck transformation 1 also contained in the Z normal subgroup of 71 (M).
Thus § and 7 commute. Moreover, 7 is also in 7w (M).

Now we can show that g preserves F{*: Let L in Wes. Then

9(f1(L)) = 0f1(9(L)) = 6 1(L) = f1(nd(L)).
Here nd(L) is in W< because L is in W and 7 is in 7 (M). Hence fy(ndL) is
in f (WCS ) so g preserves Fi¥.

What we proved implies that g preserves f (W) in M. Now consider the pair
of foliations f (W) and W, They are both invariant by g, so g is dynamically

coherent for this particular pair of foliations, and g fixes the leaves of W, So

once again, as M is Seifert, we get that § must also fix every leaf of f; (Wcs) (cf.
[BEFP20, Theorem 5.1]).
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The symmetric argument implies that g fixes every leaf of fl(WC“). Once
again, M being Seifert implies that all the foliations are g-minimal (Proposition
6.1). Hence g also fixes the center foliation f;(WW¢) (Proposition 7.2). So Lemma
7.6 applies and we deduce that fi (W) = We and f (W) = W,

In particular, f preserves the foliations W4 and W5y as wanted. So f is
dynamically coherent.

This finishes the proof that f is dynamically coherent. Once that is known,
then Proposition 6.5 and Proposition G.2 of [BFFP20] implies that f* is a dis-
cretized Anosov flow. This finishes the proof of the proposition. O

8. PROOF OF THEOREM A

Fix a partially hyperbolic diffeomorphism f: M — M that is homotopic to
the identity on a closed Seifert-fibered 3-manifold M. We make no orientability
assumptions. We will show that some iterate of f is a discretized Anosov flow,
completing the proof of Theorem A.

Fix a finite cover M of M so that the lifted center, stable, and unstable bundles
are orientable. Then there is an integer k > 0, such a lift of f* to M will preserve
the orientations of the bundles. In addition, we can find such a lift that is
homotoplc to the identity by lifting a homotopy from f* to the identity. Fix such
a lift g : M — M.

Applying Theorem 3.6, we have g-invariant center stable and center unstable
branching foliations W and W on M.

Lemma 8.1. There exists a lift g of an iterate of g that fizes every leaf of Wes
and also fixes every leaf of YW.

Proof. We will use the following result, found in [BFFP20, Proposition 7.1 &
Remark 7.2].

Proposition 8.2. Let g : M — M be a partially hyperbolic diffeomorphism that
is homotopic to the identity on a Seifert fibered 3-manifold M with orientable
Seifert fibration. Then some iterate of g has a good lift which fizes every leaf of
Wes,

Since M is orientable, the bundles are orientable, and W¢ is a horizontal
foliation (see [BFFP20, Theorem F.3]), it follows that the Seifert fibration is
orientable. Thus there is an integer ¢ > 0 so that the iterate ¢' has a good lift g
which fixes every leaf of Wwes.

Suppose that g fixes one leaf of W°. Then Proposition 6.1 says that W is
g'-minimal and ¢¢ fixes every leaf of W< as desired.

Suppose, then, that ¢* fixes no leaf of W, Then § g fixes no center leaf, and
we can apply Proposition 5.2 to see that every periodic center leaf of g has to
be coarsely contracting. Exchanging roles, and applying Proposition 8.2 to the
center unstable branching foliation we deduce that every periodic center leaf for
g must be coarsely expanding. Notice that although the lifts may be different,
the coarsely expanding and coarsely contracting behavior is for periodic center
leaves of the original map g.

As there must be at least one such periodic center leaf (cf. Proposition 5.6)
this gives a contradiction. (I

Let g . be a good lift of an iterate ¢', i > 0, that fixes every leaf of both Wes and
Wet. Then Proposition 7.2 implies that ¢’ fixes every center leaf, and Corollary



44 T. BARTHELME, S.R. FENLEY, S. FRANKEL, AND R. POTRIE

7.5 says that ¢’ is dynamically coherent. Then Proposition 7.7 tells us that f is
dynamically coherent.

Now that we have reduced to the dynamically coherent case, [BFFP20, Theo-
rem A] says that f has an iterate that is a discretized Anosov flow. This completes
the proof of Theorem A.

Note that the arguments in the proof of Lemma 8.1 also eliminate mixed be-
havior for good lifts in Seifert fibered manifolds.

9. ABSOLUTELY PARTIALLY HYPERBOLIC DIFFEOMORPHISMS

In this section, we explain how one can improve the trichotomy in subsection
2.0.1 eliminating the mixed case, if one uses a strong version of partial hyperbol-
icity.

Definition 9.1. A partially hyperbolic diffeomorphism f: M — M on a 3-
manifold is called absolutely partially hyperbolic if there exists constants A; <
1 < A such that for some ¢ > 0 and every «x € M, we have

IDf ps@y |l < M < IIDf pe || < A2 < IDF g l-

Notice that, although subtle, the difference between being absolutely partially
hyperbolic versus just partially hyperbolic is far from trivial. Here, we just show
that with this stronger property one can significantly simplify the arguments.
However, some previous results have shown significant differences between the two
notions, specifically with regard to the integrability of the bundles (see [BBI09,
RHRHU16, Pot15]).

We will show the following

Theorem 9.2. Let f: M — M be an absolutely partially hyperbolic diffeomor-
phism on a 3-manifold. Suppose that f is homotopic to the identity and preserves
two branching foliations W€ and W that are both f-minimal. Then either

(i) f is a discretized Anosov flow, or,

(ii) W and W are R-covered and uniform and a good lift f of f act as a
translation on their leaf spaces.

In order to prove this theorem, the main step will be to show that, using
absolute partial hyperbolicity, we have an improvement of Proposition 5.2.

Proposition 9.3. Let f: M — M be an_absolutely partially hyperbolic diffeo-
morphism homotopic to the identity and f a good lift of f to M. Assume that
every leaf of Wes s fized by f Let L be a leaf whose stabilizer is generated by
v e m(M)\ {id}. Then, there is a center leaf in L fized by f.

The proof is essentially the same as the one in [HPS18, Section 5.4] but we
repeat it since the contexts are different.

Proof. The proof is by contradiction. Assume that f does not fix any center leaf
in L.

Proposition 5.6 gives that there exists a center leaf periodic by f. Call ¢ a lift
of this center leaf. Using Proposition 5.7 we get two stable leaves s1 and s3 in L
fixed by h :=~™ o f™, a bounded distance apart in L and such that ¢ separates
s1 from so in L. We denote by B the band bounded by s; and so.

Since v is an isometry, the diffeomorphism h is absolutely partially hyperbolic,
and we can (modulo taking iterates) assume that there are constants A\; < A
such that

IDR|gs|| < A1 < A2 < || Dh|ge]|.
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Moreover, there is a constant R > 1 such that ||[Dh~!|| < R in all of L.

For simplicity, we will assume that the distance between s; and s, is smaller
than 1/2 so that the band B is contained in the neighborhood B = Uzes, B1(2)
of radius 1 around s;.

For every positive d there is a constant r(d) > 0 such that for any set of
diameter less than d, the length of a stable leaf contained in this set is at most
r(d). This is because in a foliated box only one segment of a stable segment can
intersect it. This implies that stable leaves (and center leaves as well) are quasi-
isometrically embedded in their neighborhoods of a fixed diameter. So there is
K > 0 so that for any stable segment J contained in B with endpoints z and w
we have

length(J) < Kdg(z,w).

Now, choose n > 0 such that K Qi—g < % and once n is fixed, choose D > 0 so
that § > 2R" + 5.

We now pick points z, w € s1 such that dg(z,w) = D and take J° an arc of s
joining these points. From the choice of K and D we know that length(J*) < K D.
So, it follows that length(h"(J*%)) < KDAT.

Choose a center curve J¢ joining B;(h"(z)) with By (h"(w)) (this can be done
because ¢ separates s; from sg) and call z, and w,, the endpoints in each ball. It
follows that length(J¢) < K2DA? + 2K.

Since the distance between the endpoints of J¢ and h"(2), h™(w) is less than
1, by iterating backwards by h~" we get that d(h™"(z,),2) and d(h~"™(wy),w)
are less than R™.

This implies that

AT 2K
D <dg(z,w) < K*ZLD +2R" + —,
A3 Ay
a contradiction with the choices of n and D. This completes the proof of the
proposition. U

Using this proposition, we can prove Theorem 9.2 in the same way as [BFFP20,
Theorem 5.1].

Proof of Theorem 9.2. Let ]? be a good lift of f. Since W and W€ are f-
minimal, by Corollary 4.9, f either fixes each leaf of W< and WC", or act as
a translation on both leaf space (in which case the foliations are R-covered and
uniform and we are in case (i) of the theorem), or f translates one and fixes the
other.

If fﬁxes the leaves of both W and W then Proposition 7.2 and Corollary
7.5 imply that we are in case (i) of the theorem.

So we have to show that we cannot be in the mixed case. Suppose that fﬁXGS
every leaf of Wwes.

Since M is not T3, there are leaves of YW with non-trivial fundamental group.
Consider the lift L in We of such a leaf, with L invariant by ~ in 71 (M) ~ {Id}.
We can apply Proposition 9.3 to conclude that there is a center leaf ¢ in L that
is fixed by f So, in particular, f needs to fix a center unstable leaf containing

¢ (note that there may be an interval of center unstable leaves intersecting L in
¢, but the endpoints of such interval will then be fixed by f) Thus fhas to also
fix every leaf of weu by Corollary 4.9. O
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10. REGULATING PSEUDO-ANOSOV FLOWS AND TRANSLATIONS

The rest of the paper is concerned with hyperbolic 3-manifolds. We will get
positive results dealing with the non-dynamically coherent case. That is, we
want to understand the dynamics of a homeomorphism acting by translation on
a branching foliation. In order to be able to do that, we first need to build a reg-
ulating pseudo-Anosov flow transverse to the branching foliation. The existence
of such a flow is a relatively immediate consequence of the construction of the
regulating flow and the fact that the branching foliation is well-approximated by
foliations.

Proposition 10.1. Let M be a hyperbolic 3-manifold and F a branching foliation
well-approzimated by foliations Fe such that F (and thus also F. for small €) are
R-covered and uniform. Then, there exists a transverse and regulating pseudo-
Anosov flow ® for F.

Proof. By [Thu, Cal00, Fen02] (see [BFFP20, Theorem D.3]) for any ¢, there
exists a pseudo-Anosov flow ®, transverse to and regulating for F..

Now, as € get small, the angle between leaves of F. and leaves of F becomes
arbitrarily small. N

Then, since both F and F, are R-covered and uniform, for any leaf L € F,
there exists two leaves Ly, Lo € F. such that L is in between L; and Ly (note
that by construction, each leaf of F is the image of a leaf of F¢ by a continuous
map homotopic to identity of M, so, given a leaf L € F there is a leaf L' € F,
at a bounded distance < a; from L. Now using the fact that F¢ is uniform,
choose L1, Ly in ]-"5 on different components of M — L', and so that for any
pel', qe€ Ly, z € Ly, then d(p,q) > a1, d(p,z) > a1. The leaves Ly, Lo satisfy
the required property). As ®. is regulating for F., every orbit of 5; intersects
both Ly and Lo, thus it also intersects L. So every orbit of ;}l intersect every leaf
of F, that is, @, is regulating for F. N

The fact that the flow ®. can be chosen transverse to F follows from the
construction of @, (see [Thu, Cal00, Fen02]). The flow ®. is build by blowing down
certain laminations transverse to J.. Moreover these laminations are transverse
to any foliation that are close enough to F. for a uniform angle. Since the
angle between F and F. gets arbitrarily small, &, will also be transverse. For

a continuous family of R-covered foliations, this property is explicitely stated in
[Cal00, Corollary 5.3.22]. O

Using the regulating pseudo-Anosov flow given by Proposition 10.1, all of
[BFFP20, Section 8] works for a branching foliation without change. Thus we
obtain

Proposition 10.2. Let M be a hyperbolic 3-manifold. Let f: M — M be a
homeomorphism homotopic to the identity that preserves a (branching) foliation

F. Suppose that F is uniform and R-covered, and that a good lift f of f acts as a
translation on the leaf space of F. Let ® be a transverse requlating pseudo-Anosov
flow to F.

Then, for every v € m (M) associated with a periodic orbit of ®, there is
a compact fv—mvamant set T, in M, which intersects every leaf of .7:7, where

M, = M/ {(v) and fy. M., — M., is the corresponding lift of f.
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Moreover, if an iterate fff of f7 fixes a leaf L of .7:"7, and vy fizes all the prongs

of this orbit, then the fized set of ﬁ“ in L is contained in T, N L and has negative
Lefschetz index.

Almost without any change, we also obtain the corresponding version of [BFFP20,
Proposition 9.1]

Proposition 10.3. Let f be partially hyperbolic diffeomorphism in a hyperbolic
3-manifold which preserves a branching foliation W tangent to E. Assume
that a good lift f of f acts as a translation on the foliation W and let % be a
transverse requlating pseudo-Anosov flow. Then, for every v € wi (M) associated
to the inverse periodic orbit of ®°° there are n > 0,m > 0 such that h =~" o fm
fixes a leaf L of W®.

Proof. The only difference is that we cannot say that the action of h in the leaf
space is expanding since collapsing of leaves may change the behavior. However,
the same proof gives the existence of an interval in the leaf space which is mapped
inside itself by h~! giving a fixed leaf as desired. (|

Remark 10.4. Note that in the non dynamically coherent situation, the proof
of [BFFP20, Theorem B] does not give a contradiction: it could happen (and
indeed happens in a situation with similar properties, see e.g., [BGHP20]) that
having a fixed point in a leaf of the foliation, does not force the dynamics on the
leaf space to be repelling around the leaf in terms of the action on the leaf space.
This issue has previously appeared, in particular in Proposition 6.2.

Notice that if one assumes the existence of a periodic center leaf, then we can
easily prove a version of [BFFP20, Theorem B| in the non dynamically coherent
setting.

Proposition 10.5. Let f: M — M be a partially hyperbolic diffeomorphism on
a hyperbolic 3-manifold. Suppose that there exists a closed center leaf ¢ that is
periodic under f. Then f is a discretized Anosov flow.

Proof. We start by replacing f by a power, so that f becomes homotopic to the
identity.

Let f be a good lift of f. We will show that ]? fixes every leaf of Wes and
wee., Then, section 7 above shows that the original f (before taking a power) is
dynamically coherent, hence the result follows from [BFFP20, Theorem B].

Suppose that fdoes not fix every leaf of, say, Wes. Then Corollary 4.9 implies
that the leaf space of W< is R and that ]7 acts as a translation on it.

Let ¢ be a lift of the periodic closed center leaf c. Since c is periodic and ]?acts
as a translation, there exists v € (M), non-trivial such that v(¢) = f*(¢) for
some k. Now c is also closed, so there exists g € m (M) — id such that g(¢) = ¢.
We have that ¢ is distinct from any power of ~, since if L € We is such that
¢ € L we have that g(L) = L # +*(L) for every k # 0.

On the other hand, g o y(¢) = g o fk(a = fk o g(¢) = v(¢) which implies
that 7' o go~ and ¢ fix ¢. This is impossible since M is hyperbolic: if they
both fix ¢ then they have they have the same axis. But the geodesic axes of the
hyperbolic transformations g and v~'gy cannot share an ideal point since g,y
are not contained in a cyclic group. U

Remark 10.6. The arguments here show that the dynamics of the transverse
pseudo-Anosov flow coarsely affects the dynamics of f. In particular, if f is a
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translation with respect to a certain R-covered branching foliation, there must be
a lower bound on the topological entropy of f depending only on the R-covered
branching foliation and the amount of translation of f. It is possible that in
certain hyperbolic 3-manifolds one could control the possible geometries of R-
covered foliations, in which case one could find a uniform lower bound on the
entropy of partially hyperbolic diffeomorphisms that act as translations on their
branching foliations. If such a bound could be obtained, one could deduce that if
the entropy of a partially hyperbolic diffeomorphism is sufficiently low, then the
system must be a discretised Anosov flow.

11. TRANSLATIONS IN HYPERBOLIC 3-MANIFOLDS

In this section we obtain further consequences of having a partially hyperbolic
diffeomorphism act as a translation in a hyperbolic 3-manifold.

We start by recalling the setting. Let f: M — M be a (not necessarily dynam-
ically coherent) partially hyperbolic diffeomorphism on a hyperbolic 3-manifold.
Up to replacing f by a power, we assume that it is homotopic to the identity. Up
to taking a further iterate of f and a lift to a finite cover of M, we can assume
that f admits branching foliations, and that the good lift f acts as a translation
on the leaf space of W,

Let ®°° be a transverse regulating pseudo-Anosov flow to W given by Propo-
sition 10.1. This flow is fixed throughout the discussion.

Then Proposition 10.3 shows that, for any periodic orbit of ®°, there exists a
center stable leaf periodic by f.

11.1. Periodic center rays. We will now produce rays in periodic center leaves
which are expanding. A ray in L is a proper embedding of [0, 00) into L. We say
that a ray is a center ray if it is contained in a center leaf. So a center ray c, is
the closure in L of a connected component of ¢ \ {z} where ¢ is a center curve
and x € c.

Let « in 71 (M) be associated with a periodic orbit dy of the pseudo-Anosov
flow ®*. Let L be a leaf (given by Proposition 10.3) of Wes fixed by h := fy”ofm7
with m > 0.

A center ray ¢, is expanding if h(c;) = ¢, and x is the unique fixed point of
h in ¢; and every y € ¢, \ {x} verifies that h™"(y) — = as n — 4oo. It is
contracting if it is expanding for A1

Proposition 11.1. Assume that a good lift J? of f acts as a translation on the
(branching) foliation Wes. Let & be a requlating transverse pseudo-Anosov flow.
Let v in m (M) associated with a periodic orbit 6y of ®°. Let L be a leaf of Wwes
fixed by h = fy”ofm, where m > 0. Assume that ~y fizes all prongs of a lift of dy to
M. Then there are at least two center rays in L, fived by h, which are expanding.

Remark 11.2. We should stress that we cannot guarantee to get a single center
leaf with both rays expanding. For example it is very easy to construct an example
such that h has Lefschetz index —1 in L, it has exactly 3 fixed center leaves in L,
and only two fixed expanding rays, which are contained in distinct center leaves
(see Figure 9). This situation occurs in the examples constructed in [BGHP20]
in the unit tangent bundle of a surface.

We will use Proposition 11.1 and its proof to eliminate the mixed behavior in
hyperbolic 3-manifolds. It should be noted that this proposition also gives some
relevant information about the structure of the enigmatic double translations
examples which are not ruled out by our study.
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The key point is to understand how each fixed center leaf contributes to the
total Lefschetz index of the map in a center-stable leaf which we can control.
Since the dynamics preserves foliations and one of them has a well understood
dynamical behavior (i.e., in the center stable foliation, the stable foliation is
contracting) we can compute the index just by looking at the dynamics in the
center foliation (see Figure 8).

As remarked above, one do have to be careful when computing the index as
cancellations might happen with branching foliation (see Figure 9).

Index 1 Index 0 Index —1

Ficure 8. Contribution of index of a center arc depending on the
center dynamics

FiGURE 9. Two segments of zero index merge with a point with
index 1 to produce a global -1 index.
We are now ready to give a proof of Proposition 11.1.

Proof of Proposition 11.1. By Proposition 10.2, we know that the fixed point set
of hin L is contained in the lift of T, to M (which intersects L in a compact set)
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and has Lefschetz index 1 — p where p is the number of stable prongs at the fixed
point. In pariicular h has some fixed points in L. N
Let Ly = f™(L). We denote by 7i2: L — Lo the flow along ®° map.

Claim 11.3. Let c¢q, co be two distinct center leaves in L that have a non-trivial
intersection. Suppose that both ci,co are fixed by h, and there exist two distinct
points z,y € c1Nce which are fized by h. Then the center leaves c1 and co coincide
on the segment between z and y.

Proof of Claim 11.3. Let [y, z]., and [y, z]., be the center segments between y
and z in ¢ and ¢y respectively.

Assume for a contradiction that [y, z]., and [y, z]., are distinct. Then, up to
changing y and z, we can assume that the intersection between the open intervals
(y,2)e; and (y, 2), is empty.

Thus, by construction, [y, z]., and [y, z]., intersect only at z and y. We let B
be the bigon in L bounded by [y, z]., and [y, 2]c,.

Note that any stable leaf that enters the bigon B must exit it (otherwise it
would limit in a stable leaf entirely contained in B, which is impossible). Hence,
B is “product foliated” by stable leaves. Since B is compact the length of the
stable segments contained in B is bounded.

Since z,y are fixed by h it follows that B is also fixed by h. Let s be one such
stable segment connecting (z,4)¢, to (z,9)c,. Then, the images of s under powers
of h~! stay in B but must also have unbounded length, contradiction. (]

Let z be a fixed point of A. Recall from Lemma 3.19 that the set of center
leaves through x in L is a closed interval. In particular h fixes the endpoints of
this interval. Hence, x is contained in a center leaf ¢ such that h(c) = c.

Claim 11.4. All the fized points of h in L are contained in the union of finitely
many compact segments of center leaves in L.

Proof of Claim 11.4. Let ¢ be a center leaf fixed by h. Since the fixed points are
contained in a compact set C' (see [BFFP20, Lemma 8.11]), there is a minimal
compact interval J in ¢ which contains all the fixed points of A in c.

Suppose that there exists infinitely many distinct such minimal intervals J; in
center leaves ¢;. Since the fixed points of h in L are in a compact set, we can
choose 1, 5 large enough, so that J; is very close in the Hausdorff distance of L
to Jj. Let z be an endpoint of J;. Then the stable leaf s(z) through z intersects
the center leaf ¢;. As z is fixed by h and so is ¢;, contraction of the stable length
implies that z € c;, thus z € J;.

Hence, both endpoints of J; are on J;. By Claim 11.3, it implies that J; C Jj,
and minimality of the interval J; implies J; = J; which is a contradiction. g

Let {J;,1 < i <ip} be a finite family of compact intervals containing all the
fixed point of h, as given by Claim 11.4. Note that we do not necessarily take
the minimal intervals as constructed in the proof of Claim 11.4, as we want the
following properties for that family.

Claim 11.5. We can choose the collection of intervals {J;,1 < i <ig}, each in
a center leaf fixed by h, satisfying the following properties:

(1) The union J,<;<;, Ji contains all the fived points of h.

(2) The endpoints of each interval J; are fixed by h.

(8) The intervals are pairwise disjoint.
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Proof of Claim 11.5. Let ¢q,...,c, be a minimal collection of center leaves that
contains all fixed points of h in L, as given by Claim 11.4. Let J; be the minimal
compact interval containing all fixed points of h in ¢;.

The family J; then satisfies conditions (1) and (2). So we only have to show
that one can split the intervals J; further so that conditions (3) is also satisfied
(while still satisfying the first two conditions).

Notice that ¢;, ¢; intersect if and only if J;, J; intersect. Thus, we can restrict
our attention to each connected component of the union of the ¢;’s separately.

Up to renaming, assume that Uj<;<pcy is a connected component of Ui<j<pci.

Now we can consider the union of the Ji, ..., J; as a graph, where the vertices
are are the endpoints of the segments J; together with the points where two
segments merge, and the edge are the subsegments joining the vertices. With
this convention, the union of the Jq,..., Ji is then a tree. Otherwise there would
be a bigon in L enclosed by the union, which is ruled out by Claim 11.3.

Let B be this tree. Our goal is to remove enough open segments from the J;’s
so that no vertex of this associated tree has degree 3 or more. Consider a vertex
p in B with degree 3 or more. Then there are two edges e; and es abutting at p
on the same side of p. We claim that e; cannot have points fixed by h arbitrarily
close to p (except for p itself). Otherwise one would have a fixed point y € e; such
that s(y) intersects es. Since ey is contained in a fixed leaf, e2 N s(y) is fixed by
h. This implies (since h decreases stable length) that y is in es. Thus, by Claim
11.3, the intersection of e; and ey would contain the segment [y, p|, contradicting
the fact that they are distinct edges.

Thus, we can remove an open interval (p, z) from, say, ej, where z is fixed by
h but (p, z) has no fixed points. In the new tree, p has index one less than before
and z has index one.

Doing this recursively on each vertex of index strictly greater than 2, we will
obtain, as sought, a disjoint collection of intervals that also satisfy conditions (1)
and (2). O

Now we will look at the index of h on the fixed intervals J;, 1 < i < ig produced
by Claim 11.5. Note that for each such interval J; there are no other fixed points
of h nearby in L. Let ¢ be a leaf fixed by h containing J;.

If h is contracting on ¢ near both endpoints of .J; on the outside then the index
of J; is +1. This is because the stable foliation is contracting under h = 7™ o f™
(since m > 0). Hence h is contracting near J;. If h is expanding on both sides,
the index is —1. If one side is contracting and the other is expanding then the
index is zero.

The global index for h can then be computed by adding the indexes of h on
each of the intervals J;, taking care of cancellations.

Let ¢, 1 < k < kg, be finitely many center leaves, fixed by h and containing
all the J;. We choose this collection to have the minimum possible number of
leaves.

Each leaf ¢j contains finitely many segments J;, so there are exactly two infinite
rays that do not contain any J;. The contribution of c; to the global index of
h (before possible cancellations) will then be —1 if both rays are expanding, 0 if
one is expanding while the other contracts and 1 if both are contracting.

Suppose for a contradiction, that there is at most one expanding ray in L. So
each ¢y, considered separately, has index either 0 or 1.

If there is an expanding ray, let ¢ be a leaf with an expanding ray. Otherwise
let ¢ be any leaf. Now we need to consider how the other leaves and the possible
cancellations impact the global index of h. Let ¢; be a leaf that intersect cj. If
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¢; shares an expanding ray with ¢, then the other ray of ¢; is contracting, and
eventually disjoint from the corresponding ray of c¢x. The fixed set (if any) of
this ray in ¢; has index zero. If ¢; does not share an expanding ray with ¢, then
both rays of ¢; are contracting. The ray that is added to the same end as the
expanding ray of c; contributes index 1. The other ray contributes index 0. In
any case the index, starting at 0 or 1, does not decrease.

Now, if ¢, is another leaf that is disjoint from the set above, then both rays are
contracting and it contributes an index 1. So again the index does not decrease.

Thus, if there is at most one expanding ray, then the index of h is at least
0. This contradicts the fact that the index of A is 1 — p where p > 2, and thus
finishes the proof of Proposition 11.1. O

11.2. Periodic rays and boundary dynamics. Proposition 11.1 gave the ex-
istence of periodic rays that are coarsely expanding. Here we will show that
such a ray has a well-defined ideal point on the circle at infinity of the leaf,
and that it corresponds to the endpoint of a prong of the transverse regulating
pseudo-Anosov flow, &<, N

As previously, we assume that we have a center stable leaf L € W such that
there is a deck transformation 7 for which v o f™(L) = L for some m > 0. We
let Ly = f™(L) and define 72: L — Ly the flow along Pes map. We also take as
before

h::'yofm and ¢ :=yoT9.

Recall that h and g are maps of L that are a bounded distance from each other.
Also g preserves the (singular) foliations G* and G*. We again assume that if g
has a fixed point x¢ in L then ~ is such that g preserves each of the prongs of
G* (o) (resp. G(xo)):

The action of g on the circle at infinity S'(L1) has an even number of fixed
points, which are alternately attracting and repelling. We denote by P the set of
attracting fixed points and by N the set of repelling ones. With these notations,
we get the following.

Proposition 11.6. Let n: [0,00) — L be a contracting fized ray for h. Then
limy oo n(t) exists in S*(L) and it is a (unique) point in N. (Symmetrically, if
1 is an expanding fized ray, its limit point belongs to P.)

Proof. Let y in P and U a small neighborhood of y in LU S'(L) as in [BFFP20,
§8]. If n has a point ¢ in U N L, then h™(q) converges to y as n — 400, S0 7
could not be a contracting ray, a contradiction. So 7 cannot limit on any point
in P. If z is in SY(L) ~ {N U P}, then h"(z) converges to a point in P under
forward iteration. Hence again a small neighborhood Z of z in L U S*(L) is sent
under some iterate inside a neighborhood U as in the first part of the proof. So
any point in Z N L converges to a point in P under forward iteration. Hence 7
cannot limit to a point in S(L) \ {N U P} either. So 7 can only limit on points
in N. Since 7 is properly embedded in L, the set of accumulations points of 7 is
connected, so it has to be a single point. O

12. MIXED CASE IN HYPERBOLIC MANIFOLDS

In this section we show that even in the non-dynamically coherent case, the
mixed behavior is impossible for hyperbolic 3-manifolds. This will be done by
using the study of translations in hyperbolic 3-manifolds developed in sections
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10 and 11 to provide more information on the dynamics of general partially
hyperbolic diffeomorphisms.
The main result of this section is the following.

Theorem 12.1. Let f: M — M be a partially hyperbolic diffeomorphism homo-
topic to the identity on a hyperbolic 3-manifold M. Suppose that there exists a
finite lift and finite power f of f that preserves two branching foliations YW W
and is such that a good lift fﬁxes a leaf of wee, Then, f is a discretized Anosov

flow.

This, together with Proposition 6.1, completes Theorem 2.5.

12.1. The set up. Consider a partially hyperbolic diffeomorphism f as in The-
orem 12.1. _ o

Our goal is to show that the good lift f of f fixes every leaf of W< W, Indeed,
Proposition 7.2 (and Corollary 7.5) then implies that f is dynamically coherent,
so we can then use [BFFP20, Theorem B] to obtain that f is a discretized Anosov
flow. In turns, thanks to Proposition 7.7, we obtain that f itself is dynamically
coherent and a discretized Anosov flow.

Since Proposition 7.7 allows us to use finite lifts and powers, we assume directly
that f = f, that W and W are orientable and transversely orientable and that
J preserves their orientations.

Since f is assumed to fix one leaf of WC“ Proposition 6.1 implies that every leaf
of W is fixed. We will prove that every leaf of W is fixed by f by contradiction.
So, by Proposition 6.1, we can assume that W is R-covered and uniform and
that f acts as a translation on the leaf space of Wes. In particular, there are no
center curves fixed by f .

Then, we can apply Proposition 5.2 to W to deduce that every periodic
center leaf is coarsely expanding.

On the other hand, since f acts as a translation on WCS we can use the results
from sections 10 and 11. Let &% be a regulating pseudo-Anosov flow transverse
to W given by Proposition 10.1.

The flow ®“ is a genuine pseudo-Anosov, that is it admits at least one periodic
orbit which is a p-prong with p > 3 (see [BFFP20, Proposition D.4]).

Now, we choose « in (M), associated to this prong, and apply Proposition
10.3: Up to taking powers, we can assume that h := o fk for some k > 0 fixes
a leaf L of W®. Moreover, the dynamics in L resembles that of the dynamics of
a p-prong, and in particular fixes every prong.

Notice that Proposition 11.1 also provides some center rays which are expand-
ing in L for h. We will need to use some of the ideas involved in the proof of that
proposition (even though the statement itself will not be used).

We summarize the discussion above in the following proposition.

Proposition 12.2. Let f: M — M be a partially hyperbolic diffeomorphism
homotopic to the identity of a hyperbolic 3-manifold M preserving branching fo-
liations W, W,  Suppose that a good lift f fixes a leaf of W and acts as
a translation on We. Then, up to taking finite iterates and covers, there exists
v € m (M) and k > 0 such that a center stable leaf L € Wes s fized by h := fyoka
and its Lefschetz index is Ipiyny(h) = 1 — p with p > 3. Moreover, every center
curve fixed by h in L is coarsely expanding.
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Let v be as in the proposition. Let L be a center stable leaf fixed by h = fyofk
and Ly = f* (L). As previously, we write 712: L — Lo for the map obtained by
flowing from L to Lo along . We set g = 0Ta.

The map g acts on the compactification of L with its ideal circle LU S1(L) the
same way as h does (see sections 10 and 11).

Let 9 be the unique orbit of ®° fixed by v and let x be the (unique) intersection
of § with L. Note that x is the unique fixed point of g. Since we assume that
7 fixes the prongs of d, then h has exactly 2p fixed points in S*(L). These fixed
points are contracting if they correspond to an ideal point of G*(z) and expanding
if they are ideal points of G*(x).

12.2. Proof of Theorem 12.1. To prove Theorem 12.1 we will first show some
properties. Recall from Proposition 11.6 that every proper ray in L € W¢,
fixed by h has a unique limit point in S*(L) (notice that the ray must be either
expanding or contracting). We will show that the fixed rays associated to the
center and stable (branching) foliations have different limit points at infinity.

Lemma 12.3. Let s be a stable leaf in L which is fixed by h. Then the two rays
of s limit to distinct ideal points of L. The same holds if ¢ is a center leaf in L
fized by h.

Proof. We do the proof for the center leaf ¢, the one for stable leaves is analogous,
and a little bit easier (since there is no branching).

By hypothesis, cis fixed by h, hence it is coarsely expanding under A. It follows
that there are fixed points of A in ¢. By Proposition 11.6 each ray of ¢ can only
limit in a point in P C S*(L), where, as previously, P is the set of attracting
fixed points of h in S'(L). Let g1, g2 be the ideal points of the rays. What we
have to prove is that ¢; and ¢o are distinct.

q1 L

FIGURE 10. Rays have to land in different points of S*(L).

Suppose that ¢ = g2. Then ¢ bounds a unique region S in L which limits only
in ¢g € SY(L). The other complementary region of ¢ in L limits to every point
in S1(L). Let z be a fixed point of h in c¢. Then the stable leaf s(z) of z has a
ray s; entering S. It cannot intersect ¢ again, and it is properly embedded in L.
Hence it has to limit in q; as well. See Figure 10.
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But now this ray is contracting for h. This contradicts Proposition 11.6 because
this ray should limit in a point of V. O

Remark 12.4. The proof used strongly that periodic center leafs are coarsely
expanding, in order to induce a behavior at infinity. In the examples of [BGHP20)]
it does happen that different stable curves land in the same ideal point at infinity
in their center stable leaf.

Now we show a sort of dynamical coherence for fixed center rays.

Lemma 12.5. Suppose that c1,ca are distinct center leaves in L which are fized
by h. Then c1,co cannot intersect.

Notice that since f is not necessarily dynamically coherent, the distinct center
leaves c1, co can a priori intersect each other. The proof will depend very strongly
on the fact that center rays fixed by h are coarsely expanding.

Proof. Suppose that ci, co intersect. Since ci,co are both fixed by h, so is their
intersection. Since h is coarsely expanding in each, then ¢y, co share a fixed point
of h. In the the proof of Claim 11.3, we showed that ¢; and co cannot form a
bigon B.

It follows that there is a point z, fixed by h, which is an endpoint of all
intersections of ¢; and co: On one side x bounds a ray e; of ¢; and a ray eg of ¢
such that e; and e are disjoint. For a point y in e; near enough to x, we have
that s(y) must intersects cp. Since stable lengths are contracting under powers
of h, it implies that e; is contracting towards x near = and similarly for es (see
figure 11). But e; is coarsely expanding. Hence there must exist fixed points of
h in ej. Let y € ey be the closest point to x which is fixed by h. Similarly, let z
in ey closest to z fixed by h.

FIGURE 11. Showing the existence of fixed points below z in Lemma
12.5.

The leaves s(y), s(z) are not separated from each other in the stable leaf space
in L.
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Let now ¢ be a center leaf through z, which is between ¢; and ¢, and which is
the first center leaf not intersecting s(y).

Then h(c) = csince s(y) is fixed and ¢ is the first leaf through x not intersecting
s(y). Consider the ray of ¢ starting at  and moving in the direction of y. This
ray is the limit of compact center segments from x to points in s(y). As such this
ray of ¢ can only intersect stable leaves which are between s(z) and s(y). Because
the map h contracts stable lengths it follows that the map h is contracting in this
ray of c¢. This contradicts Proposition 12.2 because this ray is in a center leaf
which is fixed by h. O

Thus far, we showed that distinct center leaves in L, which are fixed by h
do not intersect. Then, the proof of Claim 11.4 also implies that fixed center
leaves cannot accumulate (as accumulation would imply that some fixed leaves
intersect).

We conclude that there are finitely many center leaves in L that are fixed under
h. Each such center leaf is coarsely expanding. For each such center leaf ¢, we
consider a small enough open topological disk containing all the fixed points of h
in ¢, and no other fixed point of h in L. Then, on such disks, the Lefschetz index
of h is —1. Since the total Lefschetz number of A in L is 1 — p it follows that:

Lemma 12.6. There are exactly p — 1 center leaves which are fixed by h in L.

This together with the following lemma will allow us to make a counting ar-
gument to reach a contradiction.

Lemma 12.7. Let ¢q, co be two distinct center leaves in L fixed by h. Let y; € c1
and ya € ¢ be fized points of h. Then s(y1) and s(y2) do not have common ideal
points.

Proof. Suppose, for a contradiction, that there are distinct fixed center leaves ¢,
co satisfying the following: There are points y1 € ¢1 and yo € ¢a, fixed by h, such
that s; = s(y1) and sp = s(y2) share an ideal point in S*(L).

Let ¢ be the common ideal point of the corresponding rays of s; and se. Note
that by Proposition 12.2 the point ¢ cannot be an endpoint of ¢; or co, because
ideal points of fixed centers are contracting in S1(L) and ideal points of fixed
stables are repelling in S'(L).

Let e; be the ray in s; with endpoint y; and ideal point q. Suppose first that
no center leaf intersecting e; intersects es. Let cg be a center leaf intersecting
e1. Iterate ¢y by powers of h=!. It pushes points in s; away from y;. Since the
leaves h~(cp) all intersect s; and none of them intersects sy or cg, the sequence
(h~%(cg)) converges to a collection of center leaves as i — +o00. Then there is only
one center leaf in this limit, call it ¢, which separates all of h™%(cg) from sg. This
c is invariant under h and it has an ideal point in ¢ because it separates h~%(cg)
(recall that h=%(co) Ns1 — q as i — o) from s3. Now ¢ is a repelling fixed point
in S'(L), so ¢ must have an attracting ray, a contradiction with Proposition 12.2.

It follows that some center leaf intersecting e; also intersects es. Let ¢y be one
such center leaf. Now iterate by positive powers of h. Then (hi(cy)) converges
to a fixed center leaf v; through y; and a fixed center leaf vy through y». But
then vy and ¢; are both fixed by h and both contain y;. Lemma 12.5 implies
that ¢; = v1 and ca = v9. In particular v; # vg, and they are non separated from
each other. In this case, consider s the unique stable leaf defined as the first leaf
not intersecting c; that separates s; from sy. Then, as above, h fixes s and has
a fixed point y in s. But a center leaf ¢ through y fixed by h has to intersect
the interior of the ray e;. This intersection point is the intersection of ¢ fixed
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FIGURE 12. A depiction of the main objects in the proof of
Lemma 12.7.

by h, and s; fixed by h. So this intersection point is fixed by h. But this is a
contradiction, because y; is the only fixed point of h in s1. So Lemma 12.7 is
proven. O

We now can complete the proof of Theorem 12.1.

Proof of Theorem 12.1. By Lemma 12.6, there are p — 1 center leaves fixed by h
in L. We denote them by cq,...,cp—1.

Each center leaf has at least one fixed point. Let y;, 1 <7 < p —1 be a fixed
point in ¢;. Then, for each 7, Lemma 12.3 states that s(y;) has two distinct ideal
points zil and zz~2.

Moreover, for every i # j, the ideal points of the stable leaves are distinct by
Lemma 12.7. Tt follows that there are at least 2p — 2 distinct points in S*(L)
which are repelling.

But we also know that there are exactly p points in S*(L) that are repelling
under h. It follows that 2p — 2 < p, which implies p = 2. However, we had that
p > 3, thus obtaining a contradiction.

This finishes the proof of Theorem 12.1. ([

APPENDIX A. SOME 3-MANIFOLD TOPOLOGY

Besides the 3-manifold topology presented in [BFFP20, Appendix A] we will
need an additional result important to understand certain particular deck trans-
formations when one lifts to finite covers.

Lemma A.1. Let M be a closed, irreducible 3-manifold with fundamental group
that is not virtually nilpotent. Suppose that § is a non trivial deck transformation
so that d(x, 5(x)) is bounded above in M. Then M is a Seifert fibered space and
B represents a power of a reqular fiber.
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Proof. First we assume that M is orientable. Then, the JSJ decomposition states
that M has a canonical decomposition into Seifert fibered and geometrically
atoroidal pieces. We lift this to a decomposition of M and construct a tree
T in the following way: The vertices are the lifts of components of the torus
decomposition of M, and we associate an edge if two components intersect along
the lift of a torus. Such a lift of a torus is called a wall. There is a minimum
separation distance between any two walls.

The deck transformation 5 acts on this tree. Let W be a wall. Suppose that
B(W) is distinct from W. But, as subsets of M, the walls W, (W) are a finite
Hausdorff distance from each other. Then 7(W), w(5(W)) are tori in M, and the
region V in M between W, 3(W) projects to m(V') which is T2 x [0,1] in M. If
this happens then M is a torus bundle over a circle. In that case, use that m (M)
is not virtually nilpotent, so the monodromy of the fibration is an Anosov map
of T2. But then no § as above could satisfy the bounded distance property. It
follows that B(W) = W for any wall, and in particular S(P) = P for any vertex
of T.

Now consider a vertex P. Suppose first that 7(P) is homotopically atoroidal.
By the Geometrization Theorem, 7(P) is hyperbolic. If § restricted to P were
to satisfy the bounded distance property, then it would have to be the identity
on P. Hence f itself is the identity, contradiction.

Hence all the pieces of the torus decomposition of M are homotopically toroidal.
Suppose now that there is one such piece 7(P) that is geometrically atoroidal
(but not homotopically atoroidal). The proof of the Seifert fibered conjecture
([CJ94, Gab92]) shows that 7(P) has no boundary and 7(P) is Seifert. In other
words, M = 7(P) is Seifert. So we can assume that all the pieces of the torus
decomposition are geometrically toroidal. Then they are all Seifert fibered. Thus
M is a graph manifold.

We will show that the torus decomposition of M is in fact trivial, proving that
M is Seifert fibered. Suppose it is not true. Then the tree 7 is infinite. Let
Py, Py, P3 be three consecutive lertices in 7. Let W7 be the wall between P; and
P,. Then B(W7) (as a set in M) is a bounded distance from W; and sends the
Seifert fibration of P in W to lifts of Seifert fibers. It follows that 8 = dFa;
where 0 represents a regular fiber in 7(Py), and 1 is a loop in 7(W;). Similarly
if Wy is the wall between P, and P3 then 8 = dias where ag is a loop in 7(W3).
Then «q,as are both in the boundary of w(FP;). The loops representing 5’fa1,
6ag are both in the boundary of m(P). They represent the same element of
m1(M) only when k = ¢ = 0 and a1, a3 are freely homotopic. That means that
P, is a torus times an interval, which is impossible in the torus decomposition in
our situation as explained above.

It follows now that the torus decomposition of M is trivial, which implies that
M is Seifert fibered. Moreover, if the base is not hyperbolic, then (M) is
virtually nilpotent ([Sco83, Theorem 5.3]). But this contradicts the hypothesis
of the lemma.

It follows that the base is hyperbolic. Also 8 induces a transformation in the
universal cover of the base that is a bounded distance from the identity. This
can only happen if this transformation is the identity. Therefore § represents
a power of a regular Seifert fiber in M (notice that non-regular fibers induce a
finite symmetry on the base, thus not the identity, and not a bounded distance
from the identity).

So the Lemma is proven when M is orientable. If M is not orientable, then it
has a double cover My which is orientable. Now 32 lifts to an element of m1(Ma)
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that satisfies the assumption of the lemma. So we can apply the result to Ms and
obtain that My is Seifert. Thus M is doubly covered by a Seifert space, which,
by a result of Tollefson [Tol78|, implies that M itself is Seifert fibered. It follows
that § corresponds to a power of a regular fiber. This finishes the proof of the
lemma. O

APPENDIX B. MINIMALITY AND f-MINIMALITY

We prove that in certain situations minimality is equivalent to f-minimality.
We need the following result which is of interest in itself.

Lemma B.1. Let L be the leaf space of Wes. Let B C L be a closed set of
leaves. Suppose that, for all x € M, there exists a leaf L € B containing x. Then
B = L.

Proof. The lemma is obvious when W is a true foliation (and one does not need
to require B to be closed). However, when W has some branching, one could
possibly have a union of leaves that cover all of M without using all the leaves of
Wes. For closed sets of leaves we show this is not possible.

Let L be a leaf of W, z a point in L and 7 an open unstable segment through
z. The set of leaves of W intersecting 7 is isomorphic to an open interval. Using
the transversal orientation to W, we can put an order on this interval.

By our assumption, every point in 7 intersects a leaf in B. Let L’ be the
supremum of leaves in B, intersecting 7 and smaller than or equal to L. Since B
is closed, we have L' € B. Notice that z is in both L and L'.

We claim that L' = L. If L is not equal to L’ then they branch out. Let y
be a boundary point of LN L'. Let z € L', with z ¢ L be close enough to y so
that its unstable leaf u(z) intersects L. Now take any point w € u(z) in between
z and L Nwu(z). Any leaf Ly € W that contains w must contain y. Hence
(because leaves do not cross), Li also contains x. By definition, it is above L,
thus L is not in B. Since this is true for any leaf through w, it contradicts our
assumption. O

Lemma B.2. When W does not have compact leaves, then f-minimality of
W€ is equivalent to minimality of W®.

Proof. Note that minimality obviously implies f-minimality, so we only need to
show the other implication.

Suppose that W< is not minimal and let C' be the union of a set of W
leaves which is closed and not M. Let WS be an approximating foliation, with
approximating map h¢ sending leaves of W to those of W. Then (h¢*)~1(O)
is a set which is a union of W¢* leaves, which is closed and not M. In particular
it contains an exceptional minimal set D. By [HH87, Theorem 4.1.3] the actual
foliation W¢* has finitely many exceptional minimal sets Bj, ..., Bi. The union
B of these is not M because D # M. The set of leaves in B is a closed set of
leaves denoted by B. Then A = h¢*(B) is a closed subset of M, and A = h&*(B) is
a closed set of leaves, being the image by h¢® of the leaves in B. Let A= 7 1(A),
we stress that this is on the leaf space level, not in terms of sets. This is a closed
subset of L.

Let A; := h&(B;). Every leaf of W which is the image of a leaf in B; is dense
in A;. Using this, it is easy to see that f(A) = A. By f-minimality it follows
that A = M. B

Since A = M then A is a closed subset of £, whose union of points in all
leaves of A is M as A = M. Lemma B.1 implies that A = £, Hence for each
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leaf E of W€ it is the image of a leaf F' in some B;. Conversely every leaf of
WE maps by hS® to a leaf of W,

For each leaf E of W, its preimage (h¢)~!(E) is a closed interval of leaves of
W, No leaf in the interior of the interval can be in a B; as it is a minimal set.
It follows that the complementary regions of B in M are I-bundles. These can
be collapsed to generate another foliation C. Since the B; were minimal sets of
WES then the collapsing of each of these is a minimal set of C. Since the union
is all of M, there can be only one such minimal set, so W is minimal.

But this contradicts the fact that D is an exceptional minimal set of W, [

We state the following criteria for dynamical coherence (which in this setting
is quite obvious).

Proposition B.3 (Proposition 1.6 and Remark 1.10 in [BWO05]). Assume that f
18 a partially hyperbolic diffeomorphism admitting branching foliations W and
W If no two distinct leaves of W or W€ intersect, then f is dynamically
coherent.

APPENDIX C. THE LEFSCHETZ INDEX

Here we define the Lefschetz index and give the main property that we used.
We refer to the monograph by Franks [Fra82, Section 5] for details and other
references.

For any space X and subset A C X, we denote by Hy(X, A) the k-th relative
homology group with coefficients in Z.

Definition C.1. Let V C RF be an open set and F: V C R¥ — R* be a
continuous map such that the set of fixed point of F' is I' C V, a compact
set. Then the Lefschetz index of F, denoted by Ip(F) is an element in Z =
Hy,(RF, RF—{0}), defined as follows. It is the image by (id — F).: Hp(V,V —T) —
Hy(RF, RF — {0}) of the class ur, where ur itself is the image of the generator 1
under the composite Hy(R¥, R¥ — D) — Hp(R¥,RF —T') = Hy(V,V —T). Here
D is a ball containing T'.

It is easy to see that if I' = Fix(F') =T'1 U---UT';, where I'; are compact and
disjoint then Ip(F) = > Iv(F). Here Ip(F) is the index restricted to an open
set V; of V which does not intersect the other I'y,, see [Fra82, Theorem 5.8 (b)].

This technical definition works well with the standard examples. For a sin-
gle hyperbolic fixed point g, the index at ¢ is exactly sgn(det(id — DyF')) (see
[Fra82, Proposition 5.7]), where det is the determinant, and sgn is the sign of the
determinant. Hence in dimension 2 the index of a hyperbolic fixed point when
the orientation of the bundles is preserved is —1. This can be generalized to a
p-prong hyperbolic fixed point to obtain that the index is 1 — p. This is because
the index is invariant by homotopic changes. A p-prong can be easily split into
p— 1 distinct hyperbolic points which are differentiable. In addition for any fixed
set which behaves locally as a hyperbolic fixed point, the index is the same as
the hyperbolic fixed point.

The main property we use is the following.

Proposition C.2 (Theorem 5.8(c) of [Fra82]). Let P be a topological plane
equipped with a metric d. Let g,h: P — P be two homeomorphisms. Suppose
that there exists R > 0 such that:
o For every x € P, one has that d(g(z), h(z)) < R;
o There is a disk D such that, for every x ¢ D, one has that d(x,g(z)) >
2R.
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Then, the total index Iyix(g)(9) = Irix(n)(h)-

See also [KH95, Section 8.6] for an alternate presentation of the Lefschetz

index.

[Bar98|

[BF93]

[BFFP20]

[BFFP21]
[BO91]

[BDV05]

[BGHP20]

[BWOS5)]
[BBIOY]
[BIOS]
[Caloo]
[Cal07]
[Can93]
[CCO0]

[CRRU18]

[CJ94]
[FP18]

[Fen02]

[Frag82]

[Gab92]
[GMTO03]
[HP14]

[HP15]

REFERENCES

T. Barbot, Actions de groupes sur les 1-variétés non séparées et feuilletages de
codimension un, Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), no. 4, 559-597.
Marcy Barge and John Franks, Recurrent sets for planar homeomorphisms, From
Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990),
Springer, New York, 1993, pp. 186-195.

T. Barthelmé, S. Fenley, S. Frankel, and R. Potrie, Partially hyperbolic diffeomor-
phisms homotopic to identity in dimension three, part I: the dynamically coherent
case, ArXiv e-prints (2020).

, Dynamical incoherence for a large class of partially hyperbolic diffeomor-
phisms, Ergodic Theory Dynam. Systems 41 (2021), no. 11, 3227-3243.

M. Boileau and J.-P. Otal, Scindements de Heegaard et groupe des homéotopies
des petites variétés de Seifert, Invent. Math. 106 (1991), no. 1, 85-107.

C. Bonatti, L. J. Diaz, and M. Viana, Dynamics beyond uniform hyperbolicity,
Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005,
A global geometric and probabilistic perspective, Mathematical Physics, II1I.

C. Bonatti, A. Gogolev, A. Hammerlindl, and R. Potrie, Anomalous partially hy-
perbolic diffeomorphisms I11: Abundance and incoherence, Geom. Topol. 24 (2020),
no. 4, 1751-1790.

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on
3-manifolds, Topology 44 (2005), no. 3, 475-508.

M. Brin, D. Burago, and S. Ivanov, Dynamical coherence of partially hyperbolic
diffeomorphisms of the 3-torus, J. Mod. Dyn. 8 (2009), no. 1, 1-11.

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with
abelian fundamental groups, J. Mod. Dyn. 2 (2008), no. 4, 541-580.

D. Calegari, The geometry of R-covered foliations, Geom. Topol. 4 (2000), 457-515
(electronic).

, Foliations and the geometry of 38-manifolds, Oxford Mathematical Mono-
graphs, Oxford University Press, Oxford, 2007.

A. Candel, Uniformization of surface laminations, Ann. Sci. Ecole Norm. Sup. (4)
26 (1993), no. 4, 489-516.

A. Candel and L. Conlon, Foliations. I, Graduate Studies in Mathematics, vol. 23,
American Mathematical Society, Providence, RI, 2000.

P. Carrasco, F. Rodriguez Hertz, J. Rodriguez Hertz, and R. Ures, Partially hy-
perbolic dynamics in dimension three, Ergodic Theory Dynam. Systems 38 (2018),
no. 8, 2801-2837.

A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-manifolds,
Invent. Math. 118 (1994), no. 3, 441-456.

S. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hy-
perbolic 3-manifolds, arXiv e-prints (2018), arXiv:1809.02284.

S. R. Fenley, Foliations, topology and geometry of 8-manifolds: R-covered foliations
and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002), no. 3, 415
490.

J. M. Franks, Homology and dynamical systems, CBMS Regional Conference Series
in Mathematics, vol. 49, Published for the Conference Board of the Mathematical
Sciences, Washington, D.C.; by the American Mathematical Society, Providence,
R. 1., 1982.

D. Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992),
no. 3, 447-510.

D. Gabai, R. Meyerhoff, and N. Thurston, Homotopy hyperbolic 3-manifolds are
hyperbolic, Ann. of Math. (2) 157 (2003), no. 2, 335-431.

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional
nilmanifolds, J. Lond. Math. Soc. (2) 89 (2014), no. 3, 853-875.

, Classification of partially hyperbolic diffeomorphisms in 3-manifolds with
solvable fundamental group, J. Topol. 8 (2015), no. 3, 842-870.




62
[HP18]
[HPS18]

[HHS87]

[KHY5)

[Pot15]
[Pot18]
[RRU16]

[RHRHU16]

[Sco83]
[Thu]
[Tol78]

[Wal68]

T. BARTHELME, S.R. FENLEY, S. FRANKEL, AND R. POTRIE

, Partial hyperbolicity and classification: a survey, Ergodic Theory Dynam.
Systems 38 (2018), no. 2, 401-443.

A. Hammerlindl, R. Potrie, and M. Shannon, Seifert manifolds admitting partially
hyperbolic diffeomorphisms, J. Mod. Dyn. 12 (2018), 193—222.

G. Hector and U. Hirsch, Introduction to the geometry of foliations. Part B, second
ed., Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1987,
Foliations of codimension one.

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical
systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge
University Press, Cambridge, 1995, With a supplementary chapter by Katok and
Leonardo Mendoza.

R. Potrie, Partial hyperbolicity and foliations in T2, J. Mod. Dyn. 9 (2015), 81-121.
Rafael Potrie, Robust dynamics, invariant structures and topological classification,
Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018.
Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 2063-2085.
F. Rodriguez Hertz, J. Rodriguez Hertz, and R. Ures, Center-unstable foliations do
not have compact leaves., Math. Res. Lett. 23 (2016), no. 6, 1819-1832 (English).
F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures, A non-dynamically
coherent example on T*, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016),
no. 4, 1023-1032.

P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5,
401-487.

W. P. Thurston, 3-manifolds, foliations and circles I, ArXiv:math/9712268v1
[math.GT].

J. L. Tollefson, Involutions of Seifert fiber spaces, Pacific J. Math. 74 (1978), no. 2,
519-529.

F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of
Math. (2) 87 (1968), 56-88.

QUEEN’S UNIVERSITY, KINGSTON, ON
Email address: thomas.barthelme@queensu.edu
URL: sites.google.com/site/thomasbarthelme

FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306
Email address: fenley@math.fsu.edu

WASHINGTON UNIVERSITY IN ST. Louis, St. Louis, Mo
Email address: steven.frankel@wustl.edu

CENTRO DE MATEMATICA, UNIVERSIDAD DE LA REPUBLICA, URUGUAY
Email address: rpotrie@cmat.edu.uy
URL: http://wuw.cmat.edu.uy/ rpotrie/



	1. Introduction
	1.1. Acknowledgments

	2. Outline and discussion
	2.1. Remarks and references

	3. Branching foliations and leaf spaces
	3.1. Tautness
	3.2. Center stable and center unstable leaf spaces
	3.3. Center ``foliations''
	3.4. From foliations to branching foliations

	4. Branching foliations and good lifts
	4.1. Translation-like behavior
	4.2. Ruling out fixed points
	4.3. Fundamental groups of leaves
	4.4. Gromov hyperbolicity of leaves

	5. Center dynamics in fixed leaves
	5.1. Fixed centers or coarse contraction
	5.2. Existence of periodic center leaves
	5.3. Additional result

	6. Minimality for Seifert and hyperbolic manifolds
	6.1. No fixed points for good lifts
	6.2. Proof of Proposition 6.1
	6.3. Some consequences

	7. Double invariance implies dynamical coherence
	7.1. Center leaves are all fixed
	7.2. Dynamical coherence
	7.3. Dynamical coherence without taking lifts and iterates

	8. Proof of Theorem A
	9. Absolutely partially hyperbolic diffeomorphisms
	10. Regulating pseudo-Anosov flows and translations
	11. Translations in hyperbolic 3-manifolds
	11.1. Periodic center rays
	11.2. Periodic rays and boundary dynamics

	12. Mixed case in hyperbolic manifolds
	12.1. The set up
	12.2. Proof of Theorem 12.1

	Appendix A. Some 3-manifold topology
	Appendix B. Minimality and f-minimality
	Appendix C. The Lefschetz index
	References

