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TORSION INVARIANTS OF COMPLEXES OF GROUPS

BORIS OKUN AND KEVIN SCHREVE

Abstract. Suppose a residually finite group G acts cocompactly on
a contractible complex with strict fundamental domain Q, where the
stabilizers are either trivial or have normal Z-subgroups. Let @Q be
the subcomplex of Q with nontrivial stabilizers. Our main result is a
computation of the homology torsion growth of a chain of finite index
normal subgroups of G. We show that independent of the chain, the
normalized torsion limits to the torsion of @Q, shifted a degree. Under
milder assumptions of acyclicity of nontrivial stabilizers, we show similar
formulas for the mod p-homology growth. We also obtain formulas for
the universal and the usual L2-torsion of G in terms of the torsion of
stabilizers and topology of @Q. In particular, we get complete answers for
right-angled Artin groups, which shows they satisfy a torsion analogue
of Lück approximation theorem.

1. Introduction

Let G be a residually finite group of type F , and let {�k}k2N be a nested
chain of finite index, normal subgroups of G with

T
k
�k = 1. In this paper,

we are interested in the normalized growth of the homology invariants:

b
(2)
i

(G;Fp) = lim sup
k

bi(B�k;Fp)

[G : �k]
, t

(2)
i

(G) = lim sup
k

logtorHi(B�k)

[G : �k]
.

Here bi(B�k;Fp) = dimFp Hi(B�k;Fp) denotes the i
th Betti number with

coe�cients in a field Fp, and logtorHi(B�k) denotes the logarithm of the
order of the torsion subgroup torHi(B�k) of the integral homology.

We will call the first quantity the i
th Fp-L2-Betti number of G, and the

second the i
th torsion growth of G. By Lück’s approximation theorem [30],

if instead of Fp we take rational coe�cients, the first quantity coincides with

the i
th

L
2-Betti number of G, b(2)

i
(G), and therefore is an honest limit and

does not depend on the choice of normal chain. Neither of the these two
properties is known for the quantities above.

If G is L2-acyclic (has b(2)
i

(G) = 0 for all i), one can define a secondary
invariant called the L

2-torsion of G, denoted by ⇢
(2)(G). A conjectural

version [29, Conjecture 1.11] of Lück’s approximation theorem for t
(2)
i

(G)
states that X

i

(�1)it(2)
i

(G) = ⇢
(2)(G).
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Apart from several vanishing results, cf. [1, 2, 21, 29,33], very little is known
about t

2
i
(G). For example, if M3 is a closed hyperbolic 3-manifold, the

conjecture predicts that t
(2)
1 (⇡1(M3)) = 1

6⇡ Vol(M3). In this case, Lê [24]

proved that t
(2)
1 (⇡1(M3))  1

6⇡ Vol(M3), but there is no example of any

aspherical 3-manifold where it is known that t(2)1 (⇡1(M3)) > 0.
Note that the universal coe�cients theorem gives a lower bound

t
(2)
i

(G) + t
(2)
i�1(G) �

⇣
b
(2)
i

(G;Fp)� b
(2)
i

(G)
⌘
log p.

With Avramidi we exploited this in [4] to give examples of nontrivial torsion
growth, by computing the Fp-L2-Betti numbers of right-angled Artin groups
(RAAG’s.) A new feature in this paper is an exact calculation of nonvanishing
torsion growth and verification of the approximation conjecture for RAAG’s.

In fact, we work in greater generality. The natural setting for such
calculations is group actions with strict fundamental domains, with suitable
assumptions on stabilizers. Recall that a strict fundamental domain for a
cellular action on a complex is a subcomplex which intersects each orbit in a
single point. In particular, the quotient by the group action is isomorphic
to the strict fundamental domain; hence it is a finite complex if the action
is cocompact. A general construction of actions with strict fundamental
domain comes from simple complexes of groups, as in [5, Chapter II.12]. For
some examples to keep in mind, note that a Euclidean triangle group acts on
R2 with strict fundamental domain, whereas there is no strict fundamental
domain for the standard action of Z2 on R2.

Homology growth. In Section 5.1, using an equivariant homology spec-
tral sequence, we calculate the Fp-L2-Betti numbers of groups acting on a
contractible complex with strict fundamental domain Q and Fp-L2-acyclic

stabilizers. Our main theorem is a similar calculation for t(2)
i

(G), though we
need stronger assumptions on the stabilizers.

Theorem 1.1. Let G be a residually finite group which acts cocompactly
on a contractible complex with strict fundamental domain Q. Suppose the
stabilizer of any cell fixes it, and that each nontrivial stabilizer has a normal,
infinite cyclic subgroup with type F quotient. Let @Q be the subcomplex of Q
with nontrivial stabilizers. Then

t
(2)
i

(G) = logtorHi�1(@Q).

As with the computation in [4], the lim sup is an honest limit and is
independent of the chain. Our main class of groups which satisfy the
assumptions in Theorem 1.1 are residually finite Artin groups which satisfy
the K(⇡, 1)-conjecture, in particular RAAG’s. Associated to such an Artin
group A is a simplicial complex L called the nerve whose simplices correspond
to special Artin subgroups of finite type, and A acts cocompactly on a
contractible complex called the Deligne complex with strict fundamental
domain isomorphic to the cone on L [8, Section 1.5].
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The stabilizers of simplices are either trivial or isomorphic to Artin groups
of finite type, which have normal infinite cyclic subgroups, and the simplices
in L correspond precisely to simplices in the Deligne complex with nontrivial

stabilizer. Therefore, we have that t(2)
i

(A) = logtorHi�1(L).
For an explicit example, if L is a flag triangulation of RP 2, then our earlier

work with Avramidi showed that the RAAG AL had t
(2)
2 (AL) > 0, and the

work in this paper shows that t(2)2 (AL) = log 2.
Our proof of Theorem 1.1 uses the recent work of Abert, Bergeron, Fraczyk,

and Gaboriau in [1]. They developed a general strategy for showing the

vanishing of t(2)
i

(G) for groups which act on contractible complexes with
“cheap” infinite stabilizers. Here, “cheap” roughly means that finite index
subgroups admit classifying spaces with sublinear (in the index) number
of cells and subexponential norm of boundary maps, see Section 10 of [1].
By using an e↵ective version of Geoghegan’s rebuilding procedure for the
Borel construction [16, Section 6.1], they build classifying spaces for finite
index subgroups of G by gluing together these nice classifying spaces of the
stabilizers, and show the resulting spaces have vanishing torsion growth.

Our argument has two parts. The first part is essentially handled by the
method in [1]. In Section 2, we describe an alternative approach to the
e↵ective rebuilding procedure using iterated mapping cylinders, which we
find simpler. Given a group G as in Theorem 1.1, we construct a classifying
space BG built out of classifying spaces of the stabilizers BG

�. There is a
subcomplex Y which is built from BG

� for � in @Q, and BG = Q [@Q Y .
Since groups with normal infinite cyclic subgroups and type F quotient are
cheap, the lifts Yk of Y to the finite cover B�k have vanishing torsion growth.

The second part of the argument deals with the lifts of Q inside B�k.
There are a linear number of such lifts (note that Q is contractible), and
they are all glued along lifts of @Q inside Yk. Therefore, we have a long
exact sequence relating the homology of B�k, the homology of @Q, and the
homology of Yk. The di�culty here is that torsion does not play very nicely
with exact sequences; unlike Betti numbers, small torsion of a term is not
implied by small torsion of its neighbors. The fact that the norm of the
attaching maps of Q are bounded again by a polynomial independent of
the cover, and that the homology of @Q has an upper bound on its torsion
subgroups, will imply that the torsion in this long exact sequence behaves as
naively expected, which implies the theorem.

L
2-torsion. For many L2-acyclic groups, Friedl and Lück [13] have defined an

algebraic generalization of ⇢(2)(G) called the universal L2-torsion ⌧
(2)
u (G). We

describe this here in a special case. If G is torsion-free and satisfies the Atiyah
conjecture on integrality of L2-Betti numbers, Linnell [27] showed there is a

certain skew field D(G) containing ZG, and b
(2)
i

(G) = dimD(G)Hi(G;D(G)).
Under some additional assumptions on G (satisfied by RAAG’s for instance),
the universal L2-torsion can be identified with the Reidemeister torsion of G
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with coe�cients in D(G). This lives in the Whitehead group Wh(D(G)) and
determines the usual L2-torsion ⇢

(2)(G), but contains more information. For
example, Friedl and Lück [14] showed that it determines a convex polytope
in H1(G;R), and for � 2 H

1(G;R), the thickness of the polytope in the
�-direction is precisely the L2-Euler characteristic of Ker�. If M3 is a closed,
aspherical 3-manifold, then it follows from [28] and Perelman’s proof of
Thurston geometrization that ⇡1(M3) is L2-acyclic; the polytope in this case
is essentially dual to the unit ball of the Thurston norm.

If a group G acts cocompactly on a contractible complex with strict
fundamental domain Q and the stabilizers are either trivial or L

2-acyclic,
then G is L

2-acyclic if and only if @Q is Q-acyclic. In this case, we can

calculate ⌧
(2)
u (G) and ⇢

(2)(G). We refer to Theorem 6.2 for the precise
statement. For RAAG’s based on a Q-acyclic flag complex L, the upshot is
that the universal L2-torsion detects two features of the topology of L. The
first is the product of the torsion groups

Q
|torHi(L)|(�1)i , and the second

is the (reduced) Euler characteristic of links of vertices of L. This second
term could have been predicted by a formula of Davis and the first author
[10] for L

2-Betti numbers of the Bestvina–Brady group (the kernel of the
standard homomorphism AL ! Z which sends each generator to 1):

b
(2)
i

(BBL) =
X

s2L(0)

b̄i�1(Lk(s);Q).

However, the second term does not contribute to the usual L2-torsion
⇢
(2)(AL), and combining this with Theorem 1.1 shows that

X

i

(�1)it(2)
i

(AL) = ⇢
(2)(AL),

so the Lück torsion approximation conjecture holds for RAAG’s. The proof
works for any group satisfying the hypothesis of Theorem 1.1 and some
technical assumptions, see Corollary 6.3), though in general there is not as
clean a description of the universal L2-torsion.

Disclaimer. For simplicity, we will only work with groups of type F . In
particular, in the remainder of the paper, all groups, subgroups and quotients
of normal subgroups will be assumed to be type F . We will say explicitly at
certain points when we do not need this strong an assumption.

Notation. A cellular action is called rigid if the action of the stabilizer
of any cell fixes it. Most of our theorems start with the assumption that
there is a group G which acts cocompactly and rigidly on a contractible
complex Z with strict fundamental domain Q. Note that we can always
take a barycentric subdivision to ensure that the action is rigid. The cell
stabilizers are denoted by G

� and, furthermore, @Q denotes the subcomplex
of Q with nontrivial stabilizers. In these theorems, we will shorten this to
“A group G acts on a contractible complex Z with strict fundamental domain
(Q, @Q)”.
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2. Rebuilding mapping cylinders

In this section, all spaces will be finite CW-complexes. We abuse notation
to improve readability. Given a cellular map f : X ! Y , we will denote by f

the induced map on i-chains for any i. We will also not distinguish between
various di↵erentials in a chain complex, they will all be denoted by @ or
@space when we want to remember the space. By the norm of a linear map
Rn ! Rm we always mean the operator norm with respect to the Euclidean
norm. The norm on chains C⇤ will always come from the standard inner
product where the cells form an orthonormal basis.

Now, let X be a CW-complex and let (F,E) be a CW-pair. Given a
cellular map f : E ! X we can attach F to the mapping cylinder M(f) to
obtain F [E M(f).

Lemma 2.1. The norm of the di↵erential in the chain complex of F [EM(f)
satisfies

k@k  1 + kfk+ k@F k+ k@Ek+ k@Xk.

Proof. The chain complex of F [E M(f) splits orthogonally as

C⇤(F [E M(f)) ⇠= C⇤(F )� C⇤�1(E)� C⇤(X).

The matrix of the di↵erential @ has corresponding block form:
0

@
@F i 0
0 �@E 0
0 �f @X

1

A

where i : E ! F is the inclusion map. Since the norm of a matrix is bounded
by the sum of the norms of its blocks, the claim follows. ⇤

Now suppose we are given homotopy inverses h : X ! X
0, h0 : X 0 ! X,

as well as homotopy inverses g : (F,E) ! (F 0
, E

0) and g
0 : (F 0

, E
0) ! (F,E).

Let � : X ⇥ I ! X be the homotopy between the identity and h
0
h and

� : (F,E)⇥ I ! (F,E) be the homotopy between the identity on (F,E) and
g
0
g.
We want to construct a homotopy equivalent version of F [E M(f) using

X
0
, F

0, and E
0 and have some control on the norms of the homotopy equiva-

lences and the new boundary operator. To this purpose, define f
0 : E0 ! X

0
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by f
0 = hfg

0. Clearly,

(2.1) kf 0k  khkkfkkg0k.

Lemma 2.2. There exist homotopy inverses H : F [E M(f) ! F
0[E0 M(f 0)

and H
0 : F 0 [E0 M(f 0) ! F [E M(f) and a homotopy ⌃ between H

0
H and

the identity on F [E M(f) satisfying

kHk  kgk+ kgEk+ khk+ khkkfkk�k,
kH 0k  kg0k+ kg0Ek+ kh0k+ k�kkfkkg0Ek,
k⌃k  k�k+ k�k+ k�Ek+ k�kkfkk�k.

Proof. There is a commutative diagram:

F E X

F
0

E
0

X
0

g

i

gE

fg
0
g

h

i f
0

The maps g|E ⇥ id : E ⇥ I ! E
0 ⇥ I, g : F ! F

0, and h : X ! X
0 induce a

map between mapping cylinders:

g [ h : F [E M(fg0g) ! F
0 [E0 M(f 0).

By [16, Theorem 4.1.5], g [ h is a homotopy equivalence. Since g
0
g is

homotopic to the identity via �, F [E M(f) is homotopy equivalent to
F [E M(fg0g). The homotopy equivalence

� : F [E M(f) ! F [E M(fg0g)

is given by

�(x, t) =

(
(x, 2t) 0  t  1/2,

f(�(x, 2(1� t))) 1/2  t  1.

on the E ⇥ I, and the identity maps on F and X.
The composition of these homotopy equivalences gives a homotopy equiva-

lence

H : F [E M(f)
��! F [E M(fg0g)

g[h��! F
0 [E0 M(f 0).

To estimate its norm, we use splittings of the chain complexes of F 0[E0 M(f 0)
and F [E M(fg0g), similar to Lemma 2.1. The map on chains induced by
g [ h is block diagonal g [ h = g � gE � h. The matrix of � has block form:

0

@
id 0 0
0 id 0
0 �f� id

1

A

Thus, H = (g [ h)� has matrix:
0

@
g 0 0
0 gE 0
0 �hf� h

1

A
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and the claim follows.
The proof for H

0 is similar. Note that there is another commutative
diagram:

F
0

E
0

X
0

F E X

g
0

i

g
0
E

f
0

h
0

i h
0
hf

Therefore, the induced map g
0 [ h

0 : F 0 [E0 M(f 0) ! F [E M(h0hf) is a
homotopy equivalence. The mapping cylinders F [EM(h0hf) and F [EM(f)
are homotopy equivalent through the explicit homotopy

 (x, t) =

(
(x, 2t) 0  t  1/2,

�(f(x), 2t� 1) 1/2  t  1.

on E⇥I and the identity on F and X. Thus, the matrix for H 0 =  �(g0[h
0)

is 0

@
id 0 0
0 id 0
0 �f id

1

A

0

@
g
0 0 0
0 g

0
E

0
0 0 h

0

1

A =

0

@
g
0 0 0
0 g

0
E

0
0 �fg

0
E

h
0

1

A

There are explicit though somewhat horrendous formulas for the composi-
tion H

0
H and the homotopy ⌃. On the other hand, we only need to estimate

the norm of the induced chain homotopy, so at this point will just observe
that the matrix 0

@
� 0 0
0 ��E 0
0 ��f�E �

1

A

gives a chain homotopy ⌃ between H
0
H and the identity (which the reader

can easily verify). ⇤
Remark. We shall refer to the starting maps g, g0, h, h0 and � as the
rebuilding maps, and H, H

0, ⌃ as the rebuilt maps. We will often be
inductively going through this rebuilding procedure, in which case the rebuilt
maps will become the next stage’s rebuilding maps (along with new maps g
and g

0 from a new pair (F,E).)

2.1. Filtered Complexes. Let X be a CW-complex. A cylindrical filtration
ofX consists of a collection of increasing subcomplexes {Xj}nj=0 withXn = X

and CW-pairs {(Fj , Ej)}nj=1 with maps fj : Ej ! Xj�1 for j > 0 so that

F0 = X0 and Xj = Fj [Ej M(fj).

Now, suppose that we have X with a cylindrical filtration of length n, and
a collection of pairs {(F 0

j
, E

0
j
)}n

j=0 homotopy equivalent to the {(Fj , Ej)}nj=0.
Then by applying Lemma 2.2 repeatedly, we build a homotopic complex
X

0 with a cylindrical filtration, and homotopy inverses H : X ! X
0, H 0 :

X
0 ! X, and a homotopy ⌃ : X ⇥ I ! X between H

0
H and the identity

as rebuilt maps. Let gj : (Fj , Ej) ! (F 0
j
, E

0
j
), g0

j
: (Fj , E

0
j
) ! (Fj , Ej) and
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�j : (Fj , Ej)⇥ I ! (Fj , Ej) be the relevant starting data for our rebuilding.
The next two lemmas are our main source of control for norms of the rebuilt
maps in terms of the rebuilding maps.

Let M be an upper bound for the norms of the attaching maps fj in the
initial filtration. Suppose the norms of rebuilding maps kgjk, kg0jk, k@F 0k
and k�jk are all bounded above by K. Inductive application of Lemmas 2.1
and 2.2, and equation (2.1) gives a polynomial in M and K which bounds
kHk, kH 0k, k⌃k and k@X0k. Regarding it as a polynomial in K gives the
following:

Lemma 2.3. There is a constant C = C(M,n) such that if

kgjk, kg0jk, k�jk, k@F 0
j
k < K

and K > 2, then
kHk, kH 0k, k⌃k, k@X0k < CK

C
.

Now let bX ! X be a cover of X. The cylindrical filtration on X induces
a natural cylindrical filtration on bX, where bXj and the pair ( bFj ,

bEj) are the

preimages of Xj and (Fj , Ej), and bfj is the lift of fj .

Lemma 2.4. The norm of bfj is uniformly bounded, independent of the cover.

Proof. On the level of the universal cover the attaching map is described by
a matrix with Z⇡1 coe�cients. The uniform bound for k bfjk in terms of this
matrix is given by [30, Lemma 2.5]. ⇤

To summarize, given a cylindrical filtration on X, the norm of the rebuilt
maps of any rebuilding of a finite cover of X is bounded by a fixed polynomial
of the maximal norm of the rebuilding maps.

Any regular neighborhood of a subcomplex is a mapping cylinder neigh-
borhood as observed in [23]. Therefore, any filtration of X by subcomplexes
leads to a cylindrical filtration (on the second barycentric subdivision of X)
by taking pairs (Fj , Ej) to be (Xj �N(Xj�1), @N(Xj�1)), where N(Xj�1) is
a regular neighborhood of Xj�1 in Xj . A particularly easy case is a filtration
of X by its skeleta X

j , then we can take (Fj , Ej) to be t(�j
, @�

j) with
the standard attaching maps. It is easy to change such filtration into a
cylindrical filtration and keep the same pairs (Fj , Ej) at the cost of changing
the attaching maps.

Lemma 2.5. Suppose X is filtered by subcomplexes X0 ⇢ X1 ⇢ · · · ⇢
Xn = X where Xj = Fj [fj Xj�1 for a pair (Fj , Ej) and a map fj : Ej !
Xj�1. Then there is a homotopy equivalent complex X

0 with a cylindrical
filtration X

0
0 ⇢ X

0
1 ⇢ · · · ⇢ X

0
n = X and maps f

0
j
: Ej ! X

0
j�1 so that

X
0
j
= Fj [Ej M(f 0

j
).

Proof. Suppose by induction that h : Xj�1 ! X
0
j�1 is a homotopy equiva-

lence and X
0
j�1 has a cylindrical filtration. Set X 0

j
= Fj [Ej M(hfj). Then

X
0
j
is homotopy equivalent to Xj by Lemma 2.2. ⇤
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This applies to the natural filtration on a Borel construction. Suppose
G acts cocompactly and rigidly on a complex Z. Then X = EG⇥G Z has
a natural projection ⇡ : X ! Z/G, and therefore X has a filtration by the
preimages of skeleta of Z/G. This filtration is an iterated adjunction space
where

(Fj , Ej) =
G

�2Z(j)/G

EG/G
� ⇥ (�, @�),

and G
� denotes the stabilizer of a lift of � to Z.

By Lemma 2.5 we can replace this filtration by a cylindrical filtration
and keep the same pairs (Fj , Ej). Furthermore, since EG/G

� is a model
of the classifying space of BG

�, we can rebuild this filtration using any
other collection of models {BG

�}�2Z/G. Adding finiteness assumptions for
stabilizers gives the following lemma.

Lemma 2.6. Suppose that G acts cocompactly and rigidly on a contractible
complex Z. Suppose that all stabilizers have finite BG

�. Then there is a
finite BG with a cylindrical filtration where

(Fj , Ej) =
G

�2Z(j)/G

BG
� ⇥ (�, @�).

Remark 2.7. Similar results to those above could have been obtained using
the e↵ective rebuilding procedure of Abert, Bergeron, Fraczyk, and Gaboriau
in [1, Section 4 and 5]. They did not use mapping cylinders, but rather stacks
of CW-complexes as in [16, Chapter 6]. We included this section to make
this paper more self-contained and because we think the mapping cylinder
approach is simpler.

3. Torsion bounds

In the next section we will use a long exact sequence in our computation of
homology torsion growth. We will need bounds for torsion in the short exact
sequences that come from this. The following two lemmas will be useful.

Lemma 3.1. Let 0 ! A
i�! B

j�! C ! 0 be a short exact sequence of finitely
generated abelian groups.

(i) logtorB  logtorA+ logtorC.
(ii) If A is finite, then logtorB = logtorA+ logtorC.
(iii) If A and B are both free abelian, then logtorC  rkA log e(C), where

e(C) denotes the maximal order of torsion elements in C (the exponent
of torC.)

(iv) In general, logtorB � logtorA+ logtorC � rkA log e(C).

Proof. Subadditivity of logtor (i) is well known and follows immediately from
the left exact induced sequence of torsion subgroups. If A is finite, then the
induced sequence is exact, and we obtain (ii). To prove (iii) choose bases for
A and B so that the matrix of i is diagonal. Then logtorC is the sum of at
most rkA logs of nonzero entries, each of them bounded by log e(C).
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Finally, to prove (iv) consider the following diagram with short exact rows
and columns:

torA torB j(torB)

A B C

A/ torA B/ torB C/j(torB)

i j

i j

i j

We can apply (ii) to the top row and to the right column to conclude that

logtorB = logtorA+ logtorC � logtorC/j(torB).

Then applying (iii) to the bottom row implies that

logtorC/j(torB)  rkA log e(C/j(torB)),

and since j(torB) is torsion we have e(C/j(torB))  e(C). Combining these
gives (iv). ⇤

Lemma 3.2. Let A
f�! B �! C �! D �! E be an exact sequence of finitely

generated abelian groups. Then

0  logtorB/ Im f � logtorC + logtorD  logtorE + rkB log e(D).

Proof. Denote the kernels C 0 := Ker(C ! D) and D
0 := Ker(D ! E). We

have two short exact sequences:

0 ! C
0 ! C ! D

0 ! 0,

0 ! D
0 ! D ! E

0 ! 0.

Applying Lemma 3.1(i) and (iv) to the first sequence gives

logtorC 0 + logtorD0 � rkC 0 log e(D0)  logtorC  logtorC 0 + logtorD0
.

Monotonicity of rk under surjections and of e under injections implies
rkC 0  rkB and log e(D0)  log e(D), so rearranging,

� logtorD0  logtorC 0 � logtorC  � logtorD0 + rkB log e(D).

From the second sequence, using Lemma 3.1(i) and monotonicity of logtor
under injections, we obtain

logtorD0  logtorD  logtorD0 + logtorE.

Adding these inequalities and noting that C 0 = B/ Im f proves the claim. ⇤
We shall also need the following proposition of Gabber, see [1, Proposition

9.1] for a detailed proof.

Proposition 3.3. Suppose that f : Zn ! Zk is a Z-linear map. Then

logtor coker f  rk f logmax(kfk, 1).
In particular, for a finite CW-complex X

logtorHj(X)  rkCj(X)⇥ logmax(k@j+1k, 1).
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4. Examples

Our main computations of homological growth will be for groups acting
on contractible complexes with strict fundamental domain. Such actions
have an equivalent description in terms of simple complexes of groups. We
review a general procedure for constructing such groups and complexes and
two specific examples, see [5, Chapter II.12] for full details.

A simple complex of groups over a poset P is a collection of groups
{G�}�2P and monomorphisms ��⌧ : G� ! G

⌧ so that if � < ⌧ < µ then
��µ = ��⌧�⌧µ. Let G denote the direct limit of this directed system. A
simple complex of groups is strictly developable if the canonical maps G� ! G

are injective.
Now, if a group G acts on a CW-complex Z with strict fundamental domain

Q, then the collection of stabilizers G� of cells in Q is a strictly developable
simple complex of groups (over itself partially ordered by inclusion) and, if
Z is connected and simply connected, then its direct limit is G.

In the opposite direction, given a strictly developable simple complex of
groups over P , let |P| be the geometric realization of P . Every point x 2 |P|
is contained in a simplex corresponding to some chain in P, and we let
�(x) denote the smallest element of such chain. Let U(G, |P|) be the basic
construction associated to this data:

U(G, |P|) = (G⇥ |P|)/ ⇠,

where (g, x) ⇠ (g0, x0) if and only if x = x
0 and gG

�(x) = g
0
G

�(x).
Then G acts on U(G, |P|) with 1 ⇥ |P| as a strict fundamental domain,

which we identify with |P|. The stabilizer of a point (g, x) in U(G, |P|) is
the conjugate gG

�(x)
g
�1. In particular, if ⌧ is a simplex in |P|, then the

stabilizer of ⌧ is the group G
min ⌧ , where min ⌧ is the smallest element in the

chain representing ⌧ .
In general U(G, |P|) is not a contractible complex, but in many inter-

esting cases it is. Since |P| is a retract of U(G, |P|), this at least requires
contractibility of |P|.

A special, but common case is when the poset is the poset S(L) of simplices
of a simplicial complex L ordered by inclusion (including the empty simplex,
one usually assumes G

; = 1.) The geometric realization of this poset is
called the Davis chamber K. It is isomorphic to the cone on the barycentric
subdivision of L. The geometric realization of the poset of nonempty simplices
S0(L) is isomorphic to the barycentric subdivision of L and will be denoted
@K.

Example. Let L be a flag complex, and let {Gv}v2L0 be a collection of
groups. For a simplex � 2 S(L), let G

� =
Q

v2� G
v, and if � < ⌧ , let i�⌧

be the natural inclusion of direct products. The direct limit of this strictly
developable simple complex of groups is the graph product of the {Gv}. For
example, if all vertex groups are infinite cyclic, then GL is a RAAG. For
graph products, the complex U(GL,K) admits a CAT(0) cubical metric, and
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is hence contractible. Furthermore, if each vertex group is residually finite,
then GL is as well [17].

Example. Suppose that A is a (not necessarily right-angled) Artin group
with nerve L. Given a simplex � in L, there is an associated spherical Artin
group A

�, and if � < ⌧ , there is a natural inclusion A
� ! A

⌧ . Furthermore,
the natural map A

� ! A is injective [25]. Therefore, A is the direct limit of
the strictly developable simple complex of groups over S(L) with local groups
A

�. In this case, the basic construction is called the Deligne complex. One
version of the K(⇡, 1)-conjecture for Artin groups states that the Deligne
complex is contractible, and this is known in many cases, see [8]. By Deligne’s
theorem [11], any spherical Artin group has a finite classifying space. We
shall also need the fact that these spherical Artin groups have normal infinite
cyclic subgroups [6, 11]. Spherical Artin groups are known to be linear [9],
and hence residually finite. There are few examples of non-spherical Artin
groups known to be residually finite, see [20].

5. Homological growth

We now compute b
(2)
i

(G;Fp) and t
(2)
i

(G) for certain groups which act on
contractible complexes with strict fundamental domain.

5.1. A spectral sequence for b
(2)
i

(G;Fp). The following theorem general-

izes [4, Theorem 1.1]. We say a group G is Fp-L2-acyclic if b(2)
i

(G;Fp) = 0
for all i and all residual chains of subgroups.

Theorem 5.1. Suppose a residually finite group G acts on a contractible
complex Z with a strict fundamental domain (Q, @Q), so that all nontrivial
stabilizers are Fp-L2-acyclic. Then

b
(2)
i

(G;Fp) = bi(Q, @Q;Fp) = b̄i�1(@Q;Fp),

where b̄i�1(@Q;Fp) is the reduced Fp-Betti number of @Q.

Proof. For each �k, there is an equivariant homology spectral sequence
[7, (7.10), p. 174] converging to Hi+j(�k;Fp), with the E

1-sheet given by:

E
1
ij =

M

�2Q(i)

Hj(G
�;Fp[G/�k]) =) Hi+j(G;Fp[G/�k]) = Hi+j(�k;Fp).

Let ��
k
= G

� \ �k. The terms Hj(G�;Fp[G/�k]) decompose as

Hj(G
�;Fp[G/�k]) =

M

[G:�k]
[G� :��

k
]

Hj(�
�

k
;Fp).

After taking Betti numbers and dividing by [G : �k], the terms corresponding
to nontrivial stabilizers go to zero by assumption, so up to sublinear error
terms in the E

1-sheet are concentrated in the j = 0 row. Therefore, again
up to sublinear error the spectral sequence degenerates at the E

2-sheet.
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Define a coe�cient system V on Q which associates the trivial group to
a simplex in the singular set @Q and Fp[G/�k] to the others. Since Q is
a strict fundamental domain, the chain complex in the j = 0 row E

1
⇤,0 up

to sublinear error is C⇤(Q;V ). Hence the E
1 sheet is concentrated up to

sublinear error in the j = 0 row where it equals H⇤(Q;V ).
There is an exact sequence

0 ! C⇤(@Q;Fp[G/�k]) ! C⇤(Q;Fp[G/�k]) ! C⇤(Q;V ) ! 0.

So we have H⇤(Q;V ) = H⇤(Q, @Q;Fp[G/�k]), and taking Betti numbers

and dividing by [G : �k] gives b
(2)
i

(G;Fp) = bi(Q, @Q;Fp). Finally, the strict
fundamental domain Q is a retract of Z, so it is contractible and therefore
bi(Q, @Q;Fp) = b̄i�1(@Q;Fp). ⇤

Remark 5.2. A similar formula computes b
(2)
i

(G) for groups acting on a
contractible complex with strict fundamental domain (Q, @Q) and stabilizers
either trivial or L2-acyclic (this follows from an equivariant homology spectral
sequence, or the computations in [10]). In this case, G does not have to be
residually finite. In Section 6, we use the fact that such a G is L2-acyclic if
and only if @Q is Q-acyclic.

5.2. Torsion growth. We begin our inductive approach to computing
torsion growth by showing that circles can be rebuilt with precise control
over the norms of the rebuilding maps. This is similar in spirit to [1, Lemma
10.10].

Lemma 5.3. Let C and C0 be two circles cellulated with m edges and n =
bm/kc edges for some integer k < m/2. Then there are homotopy inverses
g : C ! C0

, g
0 : C0 ! C so that gg0 induces the identity on chains and there

is a homotopy � between g
0
g and id so that the norms of g, g0 and � are all

bounded above by 2k.

Proof. Divide C into (n� 1) intervals of length k and one interval of length
< 2k. The map g collapses each interval to a single edge, and the map g

0

maps each edge of C 0 to an interval. The composition g
0
g : C ! C collapses

all but one edge in each interval and maps one edge to the entire interval;
the homotopy � between g

0
g and the identity sends each vertex v to the

interval between v and g
0
g(v). It su�ces to compute the norms of g, g0

and � restricted to a single interval, since chains in disjoint intervals have
orthogonal images. The entries of the induced maps on chains of g, g0 and �

are all ±1, therefore the norms are all bounded by 2k. ⇤
We now can prove our main theorem.

Theorem 5.4. Suppose a residually finite group G acts on a contractible
complex Z with a strict fundamental domain (Q, @Q), so that all nontrivial
stabilizers have normal infinite cyclic subgroups. Then

t
(2)
i

(G) = logtorHi�1(@Q).
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Proof. We are given for each nontrivial stabilizer {G�}�2@Q an exact sequence

1 ! C
� ! G

� ! H
� ! 1,

where C
� is infinite cyclic. We can choose a model for such a BG

� which is
an S

1-fibration over BH
�. Such a BG

� admits a cylindrical filtration where

(Fj , Ej) =
G

⌧2BH�(j)

S
1 ⇥ (⌧, @⌧).

We assume that each fiber circle is cellulated with 1 vertex. For a subgroup
�k in our chain, let G�

k
= G

� \ �k, and C
�

k
= C

� \ �k. Therefore, the cover
BG

�

k
also admits a cylindrical filtration where

(Fj , Ej) =
G

[G� :G�
k
]

[C� :C�
k
]

G

⌧2BH�(j)

S
1 ⇥ (⌧, @⌧).

At this point, the norm of the maps fj in the filtration are uniformly bounded
independent of k and each circle is cellulated with [C� : C�

k
] vertices.

Let mk = min�2@Q{[C� : C�

k
]}. By recellulating the fiber circles with

b[C� : C�

k
]/mkc vertices we can recellulate each BG

�

k
as BG

�

k

0 so that

1

2mk

<
|BG

�

k

0|
|BG

�

k
|  1

mk

,

where |BG| is the total number of cells in BG.
On each pair S1 ⇥ (⌧, @⌧), by Lemma 5.3 we have that the norm of each

rebuilding map is less than 2mk. Therefore, Lemma 2.3 guarantees that for
each k, the log norm of each rebuilt map for BG

�

k

0 is bounded by C log(mk)
for a constant C independent of k.

We now use the Borel construction and a rebuilding procedure as in Lemma
2.6 to construct a model for BG which admits a cylindrical filtration of the
form

(Fj , Ej) =
G

�2@Q(j)

BG
� ⇥ (�, @�); (Fn+1, En+1) = (Q, @Q).

Let Y be the subcomplex of BG constructed at the penultimate stage of
this filtration, and let Yk be its lift to B�k. Then Yk admits a cylindrical
filtration where

(Fj , Ej) =
G

�2@Q(j)

G

[G:�k]
[G� :G�

k
]

BG
�

k
⇥ (�, @�).

Again, at this point, the norm of the maps fj in the filtration are uniformly
bounded independent of k and each circle is cellulated with [C� : C�

k
] vertices.

If we replace BG
�

k
with BG

�

k

0, and use the previously rebuilt maps to

rebuild Yk to Y
0
k
, then the number of cells in Y

0
k
is  |BG|[G:�k]

mk
. Now, we

attach [G : �k]-copies of Q to Y
0
k
to form B�k. The attaching maps f are
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rebuilt versions of the inclusion maps @Q ! Yk. By Lemma 2.3, we have
that

logk@B�kk < D
0 log(mk)

for a constant D0 depending only on BG. Let C = D
0|BG|. We have a short

exact sequence of chain complexes

0 ! C⇤(Y
0
k
) ! C⇤(B�k) ! C⇤(B�k, Y

0
k
) ! 0.

The relative complex excises: C⇤(B�k, Y 0
k
) = �[G:�k]C⇤(Q, @Q). Since Q

is contractible, Hi(Q, @Q) = H̄i�1(@Q) and the corresponding long exact
sequence looks like

M

[G:�k]

H̄i(@Q)
f⇤�! Hi(Y

0
k
) ! Hi(B�k) !

M

[G:�k]

H̄i�1(@Q) ! Hi�1(Y
0
k
).

Note that

logtor
M

[G:�k]

H̄i�1(@Q) = [G : �k] logtor H̄i�1(@Q)),

e
� M

[G:�k]

H̄i�1(@Q)
�
= e(H̄i�1(@Q)).

Therefore, applying Lemma 3.2 to the above sequence and normalizing gives

0  logtor H̄i�1(@Q)� logtorHi(B�k)

[G : �k]
+

logtor(Hi(Y 0
k
)/ Im f⇤)

[G : �k]



logtorHi�1(Y 0

k
)

[G : �k]
+ e(H̄i�1(@Q))

rkHi(Y 0
k
)

[G : �k]
.

By Proposition 3.3, the terms logtorHi�1(Y 0
k
) and rkHi(Y 0

k
) are bounded

by C[G:�k]
mk

log(mk), so we only need to bound logtorHi(Y 0
k
)/ Im(f⇤). This is

the same as bounding the logtor of the cokernel of the map

f + @ :
M

[G:�k]

Zi(@Q)� Ci+1(Y
0
k
) ! Zi(Y

0
k
).

Since Zi(Y 0
k
) is a direct summand of Ci(Y 0

k
), this is the same as the logtor of

the cokernel of the map

f + @ :
M

[G:�k]

Zi(@Q)� Ci+1(Y
0
k
) ! Ci(Y

0
k
).

The rank of the last matrix f + @ is bounded by the number of cells in
Y

0
k
. Therefore, Proposition 3.3 implies that the logtor is again bounded by

C[G:�k]
mk

log(mk). As k ! 1 implies mk ! 1, we are done. ⇤

Remark. In [1, Corollary 10.14], Abert, Bergeron, Fraczyk, and Gaboriau
showed that groups with normal Z-subgroups have what they call cheap
rebuilding property. This is precisely what we used in the above proof:
finite index subgroups can be recellulated with sublinear number of cells
and subexponentially bounded boundary maps. The proof above extends
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to groups acting on contractible complexes with strict fundamental domain
where the stabilizers are either trivial or have their cheap rebuilding property.

Remark. If in Theorem 5.1 (respectively Theorem 5.4) instead of assuming
the existence of a strict fundamental domain, we assume that all stabilizers
are Fp-L2-acyclic (respectively have normal infinite cyclic subgroups with
type F quotient), then the first parts of the arguments show the vanishing of

b
(2)
i

(G;Fp) (respectively t
(2)
i

(G).) The point being that one can still use the
Borel construction and rebuilding to construct models for BG and B�k; for
Theorem 5.1 we get a spectral sequence with all the terms of the E1-sheet
sublinear, and for Theorem 5.4 we get a rebuilt complex with sublinear
growth of cells and polynomially bounded norms of boundary maps.

Remark. For Theorem 5.1, we only need the G-complex Z to be Fp-acyclic,
and for Theorem 5.4, we only need Z to be acyclic. The point being that
the Borel construction EG ⇥G Z can still be used to compute the Fp or
Z-homology of G and �k.

6. Universal L
2
-torsion

Friedl and Lück [13] introduced the universal L2-torsion ⌧
(2)
u of an L

2-
acyclic complex of finitely generated based free ZG-modules. It is an element
of the weak Whitehead group Whw(G) = K

w

1 (G)/ ± G, where the weak
K1-group K

w

1 (G) is an abelian group generated by such complexes with the
usual relations (we use multiplicative notation):

h
0 ! ZG id�! ZG ! 0

i
= 1,

and, if
0 ! A⇤ ! B⇤ ! C⇤ ! 0

is a short exact sequence of such complexes, then

[B⇤] = [A⇤][C⇤].

Furthermore, they showed that Kw

1 (G) can be naturally identified with the
group generated by square matrices over ZG which induce weak isomorphisms
on `

2(G)n with the relations:

[AB] = [A][B] =

✓
A ⇤
0 B

◆�
.

There are two classical generalizations of determinant due to Fuglede and
Kadison, and to Dieudonné, which one can try to apply here. Let N (G) be
the group von Neumann algebra of G-equivariant bounded operators on `

2(G).
The Fuglede–Kadison determinant is defined on N (G) matrices and takes
values in R�0. Let A be such a matrix, thought of as G-equivariant bounded
operator `

2(G)n ! `
2(G)m. Let F : [0,1) ! [0,1) be the associated

spectral density function, defined by

F (�) = sup{dimG L | kA|Lk  �, L is a Hilbert G-submodule of `2(G)n }.
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The Fuglede–Kadison determinant of f , denoted by detG f , is given by

detGA = exp

Z 1

0+
ln(�)dF,

with the convention exp(�1) = 0. The group G is of determinant class if
detGA � 1 for any ZG matrix.

The Fuglede–Kadison determinant detG is not quite a multiplicative map,
but it has enough multiplicativity to preserve relations on the matrix genera-
tors of Kw

1 (G) [31, Theorem 3.14(1) and (2)], and if G is of determinant class
we avoid division by 0 when taking inverses, thus we have a homomorphism

detG : Whw(G) ! R>0. The image of ⌧ (2)u under the composition log detG is
the usual L2-torsion ⇢

(2).
The Dieudonné determinant is a homomorphism from the group of in-

vertible matrices over a skew field to the abelianization of the multiplicative
group of the skew field. It is essentially obtained by doing row reduction and
taking the (abelianized) product of the diagonal entries of the result.

A skew field arises as follows. We can embed N (G) into the algebra of
a�liated operators U(G). The algebra U(G) can be defined algebraically
as an Ore localization of N (G) with respect to the set of non-zero divisors
(N (G) is far from being an integral domain.) Therefore, elements of U(G)
can be expressed as fg�1 where f, g 2 N (G) and g is a weak isomorphism
`
2(G) ! `

2(G). Let D(G) denote the division closure of ZG inside U(G)
(this is the smallest subring of U(G) containing ZG which is division closed,
i.e. elements in D(G) which are invertible in U(G) are already invertible in
D(G).) By work of Linnell [27] a torsion-free group G satisfies the Atiyah
conjecture on integrality of L2-Betti numbers [3, p. 72] if and only if D(G)
is a skew field. In this case, the L

2-Betti numbers of a complex of finitely
generated based free ZG-modules can be computed by tensoring with D(G)
and taking the dimension over D(G), dimD(G), of the resulting homology.
Note that if G has torsion, then ZG has nontrivial zero divisors and cannot
embed into a skew field.

So, assuming that D(G) is a skew field, and also that our complex is
L
2-acyclic, we have that tensoring with D(G) produces an acyclic complex

over D(G), and we can define the Reidemeister torsion ⌧ with coe�cients in
D(G), see [18, Section 4]. It is an element of Wh(D(G)) = K1(D(G))/±G,
which, via the Dieudonné determinant, can be identified with D(G)⇥ab/±G.

By [18, Theorem 4.13] the natural map Whw(G) ! Wh(D(G)) takes ⌧ (2)u to
⌧ .

If X is a free L
2-acyclic cocompact G-CW-complex, then by taking the

universal torsion of the chain complex we obtain ⌧
(2)
u (X;G), If G is torsion-

free and satisfies the Atiyah conjecture we also have ⌧(X;G). These are
simple equivariant homotopy invariants. To get homotopy invariance we
need to assume vanishing of the ordinary Whitehead group Wh(G), see
[13, Theorem 2.5(1)].
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Similarly, if G is of determinant class, then we can define ⇢(2)(X;G). How-
ever, since in this case detGA = 1 for any invertible ZG matrix, and therefore
Wh(G) ⇢ Ker detG, ⇢(2)(X;G) is an equivariant homotopy invariant.

If G is L2-acyclic, and satisfies the appropriate conditions, then by choosing
a finite model for the classifying space and taking the universal cover we

obtain ⌧
(2)
u (G), ⌧(G), and ⇢

(2)(G). These invariants have been computed
explicitly for certain classes of groups, see [15] for a readable summary of
previous computations.

Remark 6.1. Conjecturally all groups are of determinant class. The class
of such groups is known to be very large, it contains all sofic groups [12], so
in particular all residually finite groups. Also, conjecturally all torsion-free
groups satisfy the Atiyah conjecture and have trivial Wh(G). The latter
class is also known to be rather large, in particular it contains all CAT(0)
groups [19]. Comparatively, our knowledge about the Atiyah conjecture is
rather limited.

In the formulas below we will use multiplicative notation for ⌧ (2)u and ⌧ ,
and additive for ⇢(2).

Theorem 6.2. Let G be a group acting on a contractible complex Z with
strict fundamental domain (Q, @Q), so that all nontrivial stabilizers are L

2-
acyclic. Assume G and all stabilizers have Wh = 1, and assume that @Q is
Q-acyclic. Then

⌧
(2)
u (G) =

0

@
Y

i�2

|torHi�1(@Q)|(�1)i

1

A
Y

�2@Q
⌧
(2)
u (G�)(�1)dim�

.

If in addition G is of determinant class, then

⇢
(2)(G) = �

X

i�1

(�1)i logtorHi(@Q) +
X

�2@Q
(�1)dim�

⇢
(2)(G�).

Proof. Since Wh(G) = 0, we can compute ⌧
(2)
u (G) by computing ⌧

(2)
u of

a convenient model for BG. After doing the Borel construction and our
rebuilding procedure, as in Lemma 2.6, we have a finite model for BG with
a cylindrical filtration of the form

(Fj , Ej) =
G

�2@Q(j)

BG
� ⇥ (�, @�); (Fn+1, En+1) = (Q, @Q),

with finite BG
�.

Lifting this filtration to the universal cover gives a G-filtration

; = X�1 ⇢ X0 ⇢ X1 ⇢ · · · ⇢ Xn ⇢ Xn+1 = EG.

Note that for 0  j  n, Xj �Xj�1 is a disjoint union of copies of EG
� ⇥�

�,
� 2 @Q

(j), and the stabilizer of each copy is a conjugate of G
�. Since
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Wh(G�) = 0, we conclude

⌧
(2)
u (Xj , Xj�1;G) =

Y

�2@Q(j)

⌧
(2)
u (G�)(�1)dim�

.

For j = n + 1, EG �Xn is a disjoint union of copies of Q � @Q, freely
permuted by G. Hence,

⌧
(2)
u (EG,Xn;G) = ⌧

(2)
u (Q, @Q; 1) =

Y

i�2

|torHi�1(@Q)|(�1)i
.

The first formula follows from the sum formula applied to short exact se-
quences:

0 ! C⇤(Xj�1) ! C⇤(Xj) ! C⇤(Xj , Xj�1) ! 0.

Applying log detG proves the second formula. ⇤

As in Theorem 5.1 and Theorem 5.4, if we assume that G acts on a
contractible complex Z with all cell stabilizers L2-acyclic, then we do not
require a strict fundamental domain. The proof above shows that in this
case

⌧
(2)
u (G) =

Y

�2Z/G

⌧
(2)
u (G�)(�1)dim�

.

This generalizes the fibration formula [13, Theorem 3.11(5)] and leads to
a more explicit formula in the situation of Theorem 5.4:

Corollary 6.3. Suppose a group G acts on a contractible complex Z with
a strict fundamental domain (Q, @Q), so that each nontrivial stabilizer G

�

has a normal infinite cyclic subgroup Z = hs�i. Assume G and all stabilizers
have Wh = 1, and assume that @Q is Q-acyclic. Then

⌧
(2)
u (G) =

0

@
Y

i�2

|torHi�1(@Q)|(�1)i

1

A
Y

�2Q
i⇤([s� � 1])(�1)dim�

�(G�
/Z)

.

where i⇤ is induced by the inclusion i : G� ! G. If in addition G is of
determinant class, then

⇢
(2)(G) = �

X

i�1

(�1)i logtorHi(@Q).

Proof. The standard cellular chain complex of the universal cover of S1 as a
Z[Z]-module is

0 ! Z[s, s�1]
s�1��! Z[s, s�1] ! 0,

hence ⌧
(2)
u (Z) = [s� 1]. Therefore, by the fibration formula for ⌧ (2)u we have

⌧
(2)
u (G�) = i⇤[s� � 1]�(G

�
/Z) and the first formula follows. By [31, Example

3.22], the Fuglede–Kadison determinant of (s � 1) is 1, which implies the
second formula. ⇤
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The fibration formula implies that if G and H are L
2-acyclic groups, then

⌧
(2)
u (G ⇥H) = 1, as �(G) = �(H) = 0. This leads to a better formula for
graph products of L2-acyclic groups which satisfy all the assumptions of
Theorem 6.2, and a completely precise formula for RAAG’s.

Corollary 6.4. Let GL be a graph product of L2-acyclic groups Gv with
Wh(GL) = Wh(Gv) = 1 based on a Q-acyclic flag complex L. Then

⌧
(2)
u (GL) =

0

@
Y

i�2

|torHi�1(L)|(�1)i

1

A
Y

v2L(0)

⇣
i⇤(⌧

(2)
u (Gv))

⌘� �̄(LkL(v))
.

If in addition G is of determinant class, then

⇢
(2)(GL) = �

X

i�1

(�1)i logtorHi(@Q)�
X

v2L(0)

⇢
(2)(Gv) �̄(LkL(v)).

Proof. If � is a simplex in the boundary of the Davis chamber @K, then its
stabilizer is the product

Q
v2min�

Gv, so its torsion is trivial unless min� is
a single vertex v. Such simplices correspond to the simplices in LkbL(v) =
bLkL(v) (including the empty simplex), shifted by 1 in dimension. This
implies the first formula, and taking Fuglede–Kadison determinant gives the
second. ⇤

In particular, since RAAG’s have Wh = 1 and are residually finite, hence
of determinant class, we have

Corollary 6.5. Let AL be a RAAG based on a Q-acyclic flag complex L.
Let S be the vertex set of L. Then

⌧
(2)
u (AL) =

0

@
Y

i�2

|torHi�1(L)|(�1)i

1

A
Y

s2S
([s� 1])� �̄(LkL(s)) ,

⇢
(2)(AL) = �

X

i�1

(�1)i logtorHi(@Q).

Theorem 5.4 together with Corollary 6.3 show that under hypotheses of
the theorem and the corollary the torsion analogue of Lück approximation
holds. In particular, it holds for RAAG’s.

We now use the fact that RAAG’s satisfy the Atiyah conjecture [26]. For
L
2-acyclic groups which satisfy the Atiyah conjecture, Friedl and Lück [13]

show that ⌧(G) determines a formal di↵erence of polytopes in H1(G;R)
(they also assumed Wh(G) = 1, this was shown to be unnecessary in [22].)
Friedl and Lück’s motivation came from 3-manifold topology, indeed for
fundamental groups of most aspherical 3-manifold @Q, they showed that this
(in this case a single) polytope is dual (up to scaling a by factor of 1

2) to the
unit ball of the Thurston norm on M [13, Theorem 3.35].

Here is a rough description of the process. (See [13, 15] for details.)

Let G
p�! H1(G;Z)/ tor be the canonical surjection. Given any element
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f 2 ZG� 0, we take the convex hull in H1(G;R) of the image of its support
under p:

P (f) = Conv(p(Supp(f))) ⇢ H1(G;R).
Polytopes in H1(G;R) up to translation form an abelian cancellative monoid
under Minkowski sum (where the identity element is a single point.) Denote
by P(G) the associated Grothendieck group to this monoid, its elements
are formal di↵erences of polytopes. An elementary observation is that if
the ring ZG has no zero divisors, then P is a homomorphism of monoids,
P (fg) = P (f) + P (g).

Friedl and Lück show that if G is torsion-free and satisfies the Atiyah
conjecture, then P extends to a group homomorphism

P : D(G)⇥ ! P(G).

Since the target is abelian and elements of G are in the kernel, this descends
to a map on Wh(D(G)). It follows from the homomorphism property, that
although for general elements of D(G)⇥, P is hard to compute, for elements
of the form fg

�1 with f, g 2 ZG it is just the formal di↵erence of the convex
hulls of the images of the supports of f and g under p.

The L2-torsion polytope P (G) of G is defined to be �P (⌧(G)) (the negative
sign is arbitrary, but this makes the L2-torsion polytope into a single polytope
for many groups, such as most 3-manifold groups, see also [22].)

Therefore, Corollary 6.5 gives the following computation of the L
2-torsion

polytope for RAAG’s. We identify H1(AL;R) with RS for S the vertices of
L. Under this identification P (s� 1) is the unit interval in the s-direction,
and we note that Minkowski sum of orthogonal intervals is a cube.

Theorem 6.6. Let AL be a RAAG based on a Q-acyclic flag complex L. Let
S
+ denote the set of generators of AL with �̄(LkL(s)) > 0, and S

� the set
of generators of AL with �̄(LkL(s)) < 0.

Then the L
2-torsion polytope P (AL) is the formal di↵erence of two cubes

C
� � C

+ in H1(AL;R) ⇠= RS. The C
+ cube is contained in RS

+
and for

s 2 S
+ has length in the s-direction equal to �̄(LkL(s)). The C

� cube is
contained in RS

�
and for s 2 S

� has length in the s-direction equal to
� �̄(LkL(s)).

Remark 6.7. If L is a graph, then AL is L2-acyclic if and only if L is a tree.
In this case, AL is a fundamental group of a 3-manifold, and Theorem 6.6
determines the dual of the unit ball of the associated Thurston norm (this
also easily follows from Mayer–Vietoris formulas for ⌧ of an amalgamated
product.) In particular, since �̄(Lk(s)) � 0 for all s, we see that P (AL) is a
single polytope.

Given a polytope P in a vector space V and a homomorphism � : V ! R,
the thickness of P with respect to � is the diameter of its image:

th�(P ) = max
P

��min
P

�.
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This extends naturally to formal di↵erences of polytopes in V by taking the
di↵erence of thicknesses. As explained in [15, p. 73], the results of [14] imply
that if G is an L

2-acyclic type F group satisfying the Atiyah conjecture, then
the L

2-Euler characteristic of the kernel of any epimorphism � : G ! Z is
well-defined and given by

�
(2)(Ker�) = � th�(P (G)).

Meier, Meinert, and VanWyk [32] determined which characters AL ! Z have
kernels of type FP (Q). In particular, we have the following corollary:

Corollary 6.8. Let L be Q-acyclic and � : AL ! Z be an epimorphism so
that �(s) 6= 0 for each generator s 2 S. Then the Euler characteristic of the
kernel �(Ker�) is well-defined, equals to �

(2)(Ker�), and given by

�(Ker�) = �
X

s2S
|�(s)| �̄(LkL(s)).

This formula also holds for certain characters which send some generators
to 0, see [32] for the complete picture.
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