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TORSION INVARIANTS OF COMPLEXES OF GROUPS

BORIS OKUN AND KEVIN SCHREVE

ABSTRACT. Suppose a residually finite group G acts cocompactly on
a contractible complex with strict fundamental domain @), where the
stabilizers are either trivial or have normal Z-subgroups. Let 9Q be
the subcomplex of @@ with nontrivial stabilizers. Our main result is a
computation of the homology torsion growth of a chain of finite index
normal subgroups of G. We show that independent of the chain, the
normalized torsion limits to the torsion of Q), shifted a degree. Under
milder assumptions of acyclicity of nontrivial stabilizers, we show similar
formulas for the mod p-homology growth. We also obtain formulas for
the universal and the usual L?-torsion of G in terms of the torsion of
stabilizers and topology of Q). In particular, we get complete answers for
right-angled Artin groups, which shows they satisfy a torsion analogue
of Liick approximation theorem.

1. INTRODUCTION

Let G be a residually finite group of type F', and let {I'y }ren be a nested
chain of finite index, normal subgroups of G' with (), 'y = 1. In this paper,
we are interested in the normalized growth of the homology invariants:

bi(BU; Fp) @), 0 1 logtor H;(BT},)
G Ty t,7(G) = hmksup G Thl

Here b;(BT'y;Fp,) = dimg, H;(BT'y;F,) denotes the it" Betti number with
coefficients in a field [, and logtor H;(BI'y) denotes the logarithm of the
order of the torsion subgroup tor H;(BT'y) of the integral homology.

We will call the first quantity the i* Fp—LQ—Betti number of G, and the
second the it" torsion growth of G. By Liick’s approximation theorem [30],
if instead of IF,, we take rational coefficients, the first quantity coincides with

the i'" L2-Betti number of G, bZ@)(G), and therefore is an honest limit and
does not depend on the choice of normal chain. Neither of the these two
properties is known for the quantities above.

b§2) (G;Fp) = limsup
k

If G is L*-acyclic (has b§2)(G) = 0 for all ), one can define a secondary
invariant called the L2-torsion of G, denoted by ,0(2)(G). A conjectural

version |29, Conjecture 1.11] of Liick’s approximation theorem for tz(z)(G)
states that
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Apart from several vanishing results, cf. [1,2,21129,33], very little is known
about t?(G). For example, if M? is a closed hyperbolic 3-manifold, the

conjecture predicts that th) (m(M3)) = & Vol(M3). In this case, Lé [24]
proved that t§2) (m (M?)) < 6%V01(M3), but there is no example of any

aspherical 3-manifold where it is known that t?) (w1 (M3)) > 0.
Note that the universal coefficients theorem gives a lower bound

t2(@) +12,6) = (07(G:Fy) - 47(@)) 1ogp.

With Avramidi we exploited this in [4] to give examples of nontrivial torsion
growth, by computing the IFP—LQ-Betti numbers of right-angled Artin groups
(RAAG’s.) A new feature in this paper is an exact calculation of nonvanishing
torsion growth and verification of the approximation conjecture for RAAG’s.

In fact, we work in greater generality. The natural setting for such
calculations is group actions with strict fundamental domains, with suitable
assumptions on stabilizers. Recall that a strict fundamental domain for a
cellular action on a complex is a subcomplex which intersects each orbit in a
single point. In particular, the quotient by the group action is isomorphic
to the strict fundamental domain; hence it is a finite complex if the action
is cocompact. A general construction of actions with strict fundamental
domain comes from simple complexes of groups, as in [5, Chapter 11.12]. For
some examples to keep in mind, note that a Euclidean triangle group acts on
R? with strict fundamental domain, whereas there is no strict fundamental
domain for the standard action of Z? on R?.

Homology growth. In Section [5.1, using an equivariant homology spec-
tral sequence, we calculate the Fp—LQ—Betti numbers of groups acting on a
contractible complex with strict fundamental domain () and FP—LQ—acyclic

stabilizers. Our main theorem is a similar calculation for tl@)(G), though we
need stronger assumptions on the stabilizers.

Theorem 1.1. Let G be a residually finite group which acts cocompactly
on a contractible complex with strict fundamental domain Q. Suppose the
stabilizer of any cell fixes it, and that each nontrivial stabilizer has a normal,
infinite cyclic subgroup with type F' quotient. Let 0Q be the subcomplex of Q
with nontrivial stabilizers. Then

tf;?) (G) = logtor H;_1(0Q).

As with the computation in [4], the limsup is an honest limit and is
independent of the chain. Our main class of groups which satisfy the
assumptions in Theorem are residually finite Artin groups which satisfy
the K (m,1)-conjecture, in particular RAAG’s. Associated to such an Artin
group A is a simplicial complex L called the nerve whose simplices correspond
to special Artin subgroups of finite type, and A acts cocompactly on a
contractible complex called the Deligne complex with strict fundamental
domain isomorphic to the cone on L [8, Section 1.5].
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The stabilizers of simplices are either trivial or isomorphic to Artin groups
of finite type, which have normal infinite cyclic subgroups, and the simplices
in L correspond precisely to simplices in the Deligne complex with nontrivial
stabilizer. Therefore, we have that t§2) (A) =logtor H;_1(L).

For an explicit example, if L is a flag triangulation of RP?, then our earlier

work with Avramidi showed that the RAAG A; had téQ)(A 1) > 0, and the

work in this paper shows that téQ)(A L) = log2.

Our proof of Theorem [1.1|uses the recent work of Abert, Bergeron, Fraczyk,
and Gaboriau in [1]. They developed a general strategy for showing the
vanishing of tgz)(G) for groups which act on contractible complexes with
“cheap” infinite stabilizers. Here, “cheap” roughly means that finite index
subgroups admit classifying spaces with sublinear (in the index) number
of cells and subexponential norm of boundary maps, see Section 10 of [1].
By using an effective version of Geoghegan’s rebuilding procedure for the
Borel construction [16, Section 6.1], they build classifying spaces for finite
index subgroups of G by gluing together these nice classifying spaces of the
stabilizers, and show the resulting spaces have vanishing torsion growth.

Our argument has two parts. The first part is essentially handled by the
method in [1]. In Section [2, we describe an alternative approach to the
effective rebuilding procedure using iterated mapping cylinders, which we
find simpler. Given a group G as in Theorem we construct a classifying
space BG built out of classifying spaces of the stabilizers BG?. There is a
subcomplex Y which is built from BG? for o in 0Q), and BG = Q Upq Y.
Since groups with normal infinite cyclic subgroups and type F' quotient are
cheap, the lifts Yz of Y to the finite cover BI'y have vanishing torsion growth.

The second part of the argument deals with the lifts of @) inside BI'j.
There are a linear number of such lifts (note that @ is contractible), and
they are all glued along lifts of J@) inside Yj. Therefore, we have a long
exact sequence relating the homology of BI';, the homology of 0Q, and the
homology of Y;. The difficulty here is that torsion does not play very nicely
with exact sequences; unlike Betti numbers, small torsion of a term is not
implied by small torsion of its neighbors. The fact that the norm of the
attaching maps of () are bounded again by a polynomial independent of
the cover, and that the homology of 9@ has an upper bound on its torsion
subgroups, will imply that the torsion in this long exact sequence behaves as
naively expected, which implies the theorem.

L2-torsion. For many L?-acyclic groups, Friedl and Liick [13] have defined an
algebraic generalization of p)(Q) called the universal L?-torsion 7152)(G). We
describe this here in a special case. If G is torsion-free and satisfies the Atiyah
conjecture on integrality of L?-Betti numbers, Linnell [27] showed there is a
certain skew field D(G) containing ZG, and b§2)(G) = dimp ) Hi(G; D(G)).
Under some additional assumptions on G (satisfied by RAAG’s for instance),
the universal L2-torsion can be identified with the Reidemeister torsion of G
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with coefficients in D(G). This lives in the Whitehead group Wh(D(G)) and
determines the usual L?-torsion p(® (@), but contains more information. For
example, Friedl and Liick [14] showed that it determines a convex polytope
in Hi(G;R), and for ¢ € H'(G;R), the thickness of the polytope in the
¢-direction is precisely the L?-Euler characteristic of Ker ¢. If M3 is a closed,
aspherical 3-manifold, then it follows from [28] and Perelman’s proof of
Thurston geometrization that 7 (M3) is L2-acyclic; the polytope in this case
is essentially dual to the unit ball of the Thurston norm.

If a group G acts cocompactly on a contractible complex with strict
fundamental domain @ and the stabilizers are either trivial or L?-acyclic,
then G is L?-acyclic if and only if Q) is Q-acyclic. In this case, we can

calculate 7'152)(6‘) and p®(G). We refer to Theorem [6.2 for the precise
statement. For RAAG’s based on a Q-acyclic flag complex L, the upshot is
that the universal L?-torsion detects two features of the topology of L. The
first is the product of the torsion groups [[|tor H;(L)|"Y", and the second
is the (reduced) Euler characteristic of links of vertices of L. This second
term could have been predicted by a formula of Davis and the first author
[10] for L?-Betti numbers of the Bestvina-Brady group (the kernel of the
standard homomorphism Ar, — Z which sends each generator to 1):

b (BBy) = > bioa(Lk(s); Q).
SEL(O)

However, the second term does not contribute to the usual L2-torsion
p?(ApL), and combining this with Theorem shows that

AP
Z(—l)ltz(' '(Ar) = pP(A),
i
so the Liick torsion approximation conjecture holds for RAAG’s. The proof
works for any group satisfying the hypothesis of Theorem [I.1 and some
technical assumptions, see Corollary |6.3), though in general there is not as
clean a description of the universal L“-torsion.

Disclaimer. For simplicity, we will only work with groups of type F. In
particular, in the remainder of the paper, all groups, subgroups and quotients
of mormal subgroups will be assumed to be type F'. We will say explicitly at
certain points when we do not need this strong an assumption.

Notation. A cellular action is called rigid if the action of the stabilizer
of any cell fixes it. Most of our theorems start with the assumption that
there is a group G which acts cocompactly and rigidly on a contractible
complex Z with strict fundamental domain ). Note that we can always
take a barycentric subdivision to ensure that the action is rigid. The cell
stabilizers are denoted by G? and, furthermore, 9@ denotes the subcomplex
of () with nontrivial stabilizers. In these theorems, we will shorten this to
“A group G acts on a contractible complex Z with strict fundamental domain

(Q,0Q)".
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2. REBUILDING MAPPING CYLINDERS

In this section, all spaces will be finite CW-complexes. We abuse notation
to improve readability. Given a cellular map f : X — Y, we will denote by f
the induced map on ¢-chains for any . We will also not distinguish between
various differentials in a chain complex, they will all be denoted by 0 or
Ospace When we want to remember the space. By the norm of a linear map
R™ — R™ we always mean the operator norm with respect to the Euclidean
norm. The norm on chains C, will always come from the standard inner
product where the cells form an orthonormal basis.

Now, let X be a CW-complex and let (F,E) be a CW-pair. Given a
cellular map f: F — X we can attach F' to the mapping cylinder M(f) to
obtain F'Ug M(f).

Lemma 2.1. The norm of the differential in the chain complex of FUg M (f)
satisfies

10l < T+ [IfI| + 19r I + [0l + llox |-
Proof. The chain complex of F'Ug M (f) splits orthogonally as
Ci(FUp M(f)) = Cu(F) & Cimr1(EB) & Cu(X).

The matrix of the differential d has corresponding block form:

or i@ 0

0 —0g O

0 —f Ox
where ¢ : £ — F'is the inclusion map. Since the norm of a matrix is bounded
by the sum of the norms of its blocks, the claim follows. O

Now suppose we are given homotopy inverses h : X — X', i/ : X' — X,
as well as homotopy inverses g : (F, E) — (F/,E') and ¢’ : (F',E') — (F, E).
Let 0 : X x I — X be the homotopy between the identity and h’'h and
v:(F,E) x I — (F, E) be the homotopy between the identity on (F, E) and
q'g.

We want to construct a homotopy equivalent version of F'Ug M (f) using
X', F’, and E’ and have some control on the norms of the homotopy equiva-
lences and the new boundary operator. To this purpose, define f': B/ — X'
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by f' = hfg'. Clearly,
(2.1) LFE< 1IRIANG'-

Lemma 2.2. There exist homotopy inverses H : FUg M (f) — F'Ug M(f)
and H : F' U M(f") — F Ug M(f) and a homotopy ¥ between H'H and
the identity on F Ug M(f) satisfying

H1 < llgll + llgzll + a1l + AT,
' < Nl + gl + 121+ Nl A gz,
=1 < Ayl + lloll + el + oL AAv-

Proof. There is a commutative diagram:

F i g I9'g X

lg lgE lh

F/ 7 , El I N X/
The maps g|g xid: EXI —=E' xI,g:F— F',and h: X — X’ induce a
map between mapping cylinders:

gUh:FUg M(fg'g) — F' U M(f").

By [16, Theorem 4.1.5], g U h is a homotopy equivalence. Since ¢'g is

homotopic to the identity via v, F Ug M(f) is homotopy equivalent to
FUg M(fg'g). The homotopy equivalence

®: FUp M(f) = FUg M(fd'g)

is given by
2t 0<t<1/2
O(x,t) = (z,2¢) st<1/2,
fy(z,2(1-1))) 1/2<t<L
on the £ x I, and the identity maps on F' and X.

The composition of these homotopy equivalences gives a homotopy equiva-
lence

H:FUp M(f) 2 Fug M(fg'g) 2% F' U M(f).
To estimate its norm, we use splittings of the chain complexes of F' Ug: M (f")

and F Ug M(fg'g), similar to Lemma E The map on chains induced by
g U h is block diagonal g U h = g @ gg @ h. The matrix of ® has block form:

id 0 0

0 4 O

0 —fy id
Thus, H = (g U h)® has matrix:

g 0 0

0 JE 0

0 —hfy h
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and the claim follows.
The proof for H' is similar. Note that there is another commutative

diagram:

f/

F/ i 5 El X/
lg/ lg/E lh/
Fe—i p_MI o x

Therefore, the induced map ¢ UL : F' U M(f") — F Ug M(R'hf) is a
homotopy equivalence. The mapping cylinders FUg M (h'hf) and FUg M (f
are homotopy equivalent through the explicit homotopy

f(z,2¢) 0<t<1/2
V(t) = {a(f(x),Qt— ) 1/2<t<1.

on E x I and the identity on F and X. Thus, the matrix for H' = Wo (¢’ Uh')

id 0 0\ /¢ 0 0 J 0 0
0 id o0 gp ol=[0 ¢ o
0 of id 0o 0 W 0 ofgy N

There are explicit though somewhat horrendous formulas for the composi-
tion H'H and the homotopy ¥. On the other hand, we only need to estimate
the norm of the induced chain homotopy, so at this point will just observe
that the matrix

0% 0 0

0 —YE 0

0 —ofye o
gives a chain homotopy ¥ between H'H and the identity (which the reader
can easily verify). O

Remark. We shall refer to the starting maps g, ¢’, h, A’ and o as the
rebuilding maps, and H, H', ¥ as the rebuilt maps. We will often be
inductively going through this rebuilding procedure, in which case the rebuilt
maps will become the next stage’s rebuilding maps (along with new maps g
and ¢’ from a new pair (F, E).)

2.1. Filtered Complexes. Let X be a CW-complex. A cylindrical filtration
of X consists of a collection of increasing subcomplexes { X;}7_, with X,, = X
and CW-pairs {(Fj,Ej)}?zl with maps f; : Ej — X;_1 for j > 0 so that

Fo = Xo and X; = Fj Ug, M(f;).

Now, suppose that we have X with a cylindrical filtration of length n, and
a collection of pairs {(F7, E)}"_, homotopy equivalent to the {(Fy, E;)}7_,.
Then by applying Lemma |2.2 repeatedly, we build a homotopic complex
X' with a cylindrical filtration, and homotopy inverses H : X — X', H' :
X' — X, and a homotopy ¥ : X x I — X between H'H and the identity
as rebuilt maps. Let g; : (Fy, Ej) — (F}, EY), g; : (F}, EY) — (Fj, Ej) and
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v; « (Fj, Ej) x I — (F}, Ej) be the relevant starting data for our rebuilding.
The next two lemmas are our main source of control for norms of the rebuilt
maps in terms of the rebuilding maps.

Let M be an upper bound for the norms of the attaching maps f; in the
initial filtration. Suppose the norms of rebuilding maps ||g;|, lg;]l, [|0F ||
and ||;|| are all bounded above by K. Inductive application of Lemmas
and @, and equation gives a polynomial in M and K which bounds
| H|, | H'|l, |2]| and ||0x/|. Regarding it as a polynomial in K gives the
following;:

Lemma 2.3. There is a constant C = C(M,n) such that if

lgill g5l Il ogs | < K

and K > 2, then
LH |, (L IS 10| < CK©.

Now let X — X be a cover of X. The cylindrical filtration on X induces
a natural cylindrical filtration on X, where X; and the pair (F}, E;) are the

preimages of X; and (Fj, E;), and ]/‘; is the lift of f;.
Lemma 2.4. The norm of]/“'} s uniformly bounded, independent of the cover.

Proof. On the level of the universal cover the attaching map is described by
a matrix with Zm coefficients. The uniform bound for || f;|| in terms of this
matrix is given by [30, Lemma 2.5]. O

To summarize, given a cylindrical filtration on X, the norm of the rebuilt
maps of any rebuilding of a finite cover of X is bounded by a fixed polynomial
of the maximal norm of the rebuilding maps.

Any regular neighborhood of a subcomplex is a mapping cylinder neigh-
borhood as observed in [23|. Therefore, any filtration of X by subcomplexes
leads to a cylindrical filtration (on the second barycentric subdivision of X)
by taking pairs (Fj, Ej> to be (Xj —N(Xjfl), ON(Xj,l)), where N(Xjfl) is
a regular neighborhood of X;_; in X;. A particularly easy case is a filtration
of X by its skeleta X7, then we can take (Fj, E;) to be U(c7,007) with
the standard attaching maps. It is easy to change such filtration into a
cylindrical filtration and keep the same pairs (F}, ;) at the cost of changing
the attaching maps.

Lemma 2.5. Suppose X s filtered by subcomplexes Xg C X1 C --- C
Xn = X where Xj = F; Uy, Xj1 for a pair (Fj, Ej) and a map f; : E; —
Xj_1. Then there is a homotopy equivalent complex X' with a cylindrical
filtration Xy C X{ C -+ C X, = X and maps f; : E; — X]_; so that

Proof. Suppose by induction that h: X; 1 — X J’-_l is a homotopy equiva-
lence and X ; has a cylindrical filtration. Set X} = F; Ug; M (hf;). Then
X J’ is homotopy equivalent to X; by Lemma (]
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This applies to the natural filtration on a Borel construction. Suppose
G acts cocompactly and rigidly on a complex Z. Then X = FEG xXg Z has
a natural projection 7 : X — Z/G, and therefore X has a filtration by the
preimages of skeleta of Z/G. This filtration is an iterated adjunction space
where

(Fj,E;))= || EG/G x (0,00),
ocZ@) /G
and G? denotes the stabilizer of a lift of o to Z.

By Lemma [2.5 we can replace this filtration by a cylindrical filtration
and keep the same pairs (£}, E;). Furthermore, since EG/G? is a model
of the classifying space of BG?, we can rebuild this filtration using any
other collection of models { BG? },¢z/¢. Adding finiteness assumptions for
stabilizers gives the following lemma.

Lemma 2.6. Suppose that G acts cocompactly and rigidly on a contractible
complex Z. Suppose that all stabilizers have finite BG?. Then there is a
finite BG with a cylindrical filtration where

(Fj,E;))= | | BG? x(0,00).
ocZW /G

Remark 2.7. Similar results to those above could have been obtained using
the effective rebuilding procedure of Abert, Bergeron, Fraczyk, and Gaboriau
in [1, Section 4 and 5]. They did not use mapping cylinders, but rather stacks
of CW-complexes as in [16, Chapter 6]. We included this section to make
this paper more self-contained and because we think the mapping cylinder
approach is simpler.

3. TORSION BOUNDS

In the next section we will use a long exact sequence in our computation of
homology torsion growth. We will need bounds for torsion in the short exact
sequences that come from this. The following two lemmas will be useful.

Lemma 3.1. Let 0 — A5 B 2> C — 0 be a short exact sequence of finitely
generated abelian groups.
(i) logtor B < logtor A + logtor C.

(ii) If A is finite, then logtor B = logtor A + logtor C'.

(iii) If A and B are both free abelian, then logtor C' < rk Aloge(C'), where
e(C) denotes the mazimal order of torsion elements in C' (the exponent
of torC.)

(iv) In general, logtor B > logtor A + logtor C' — rk Aloge(C).

Proof. Subadditivity of logtor (i) is well known and follows immediately from
the left exact induced sequence of torsion subgroups. If A is finite, then the
induced sequence is exact, and we obtain . To prove choose bases for
A and B so that the matrix of 7 is diagonal. Then logtor C' is the sum of at
most rk A logs of nonzero entries, each of them bounded by loge(C).
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Finally, to prove consider the following diagram with short exact rows
and columns:

tor A —— tor B —L— j(tor B)

Lo o

A——B—~ C

L
A/tor A % B/tor B L C/j(tor B)

We can apply @ to the top row and to the right column to conclude that

logtor B = logtor A + logtor C' — logtor C'/j(tor B).
Then applying to the bottom row implies that

logtor C'/j(tor B) < rk Aloge(C/j(tor B)),

and since j(tor B) is torsion we have e(C/j(tor B)) < e(C). Combining these
gives . [l
Lemma 3.2. Let A L B —- C — D — FE be an exact sequence of finitely
generated abelian groups. Then

0 <logtor B/Im f — logtor C + logtor D < logtor E + rk Bloge(D).

Proof. Denote the kernels C’ := Ker(C' — D) and D' := Ker(D — E). We
have two short exact sequences:

0—-C'-C—D —0,
0—-D —-D-—E —0.

Applying Lemma and to the first sequence gives
logtor C" + logtor D' — 1k C'log e(D") < logtor C' < logtor C’ + logtor D'.

Monotonicity of rk under surjections and of e under injections implies
rk ¢’ <1k B and loge(D’) < loge(D), so rearranging,

—logtor D" < logtor C' — logtor C' < — logtor D’ + rk Bloge(D).

From the second sequence, using Lemma @ and monotonicity of logtor
under injections, we obtain

logtor D’ < logtor D < logtor D’ + logtor E.
Adding these inequalities and noting that C’ = B/Im f proves the claim. O

We shall also need the following proposition of Gabber, see |1, Proposition
9.1] for a detailed proof.

Proposition 3.3. Suppose that f : Z" — Z* is a Z-linear map. Then
logtor coker f < rk flog max(||f||,1).
In particular, for a finite CW-complex X
logtor H;(X) < rkC;(X) x log max(||0j4+1],1).
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4. EXAMPLES

Our main computations of homological growth will be for groups acting
on contractible complexes with strict fundamental domain. Such actions
have an equivalent description in terms of simple complexes of groups. We
review a general procedure for constructing such groups and complexes and
two specific examples, see [5, Chapter 11.12] for full details.

A simple complex of groups over a poset P is a collection of groups
{G?},ep and monomorphisms ¢, : G — G” so that if 0 < 7 < p then
bou = PorPry. Let G denote the direct limit of this directed system. A
simple complex of groups is strictly developable if the canonical maps G° — G
are injective.

Now, if a group G acts on a CW-complex Z with strict fundamental domain
@, then the collection of stabilizers G of cells in @) is a strictly developable
simple complex of groups (over itself partially ordered by inclusion) and, if
Z is connected and simply connected, then its direct limit is G.

In the opposite direction, given a strictly developable simple complex of
groups over P, let |P| be the geometric realization of P. Every point = € |P|
is contained in a simplex corresponding to some chain in P, and we let
o(x) denote the smallest element of such chain. Let U(G, |P|) be the basic
construction associated to this data:

UG, [P|) = (G x[P])/ ~,

where (g, z) ~ (¢',2') if and only if z = 2/ and gG°*) = ¢/G@).

Then G acts on U(G,|P|) with 1 x |P| as a strict fundamental domain,
which we identify with |P|. The stabilizer of a point (g,x) in U(G, |P|) is
the conjugate gG°®g~1. In particular, if 7 is a simplex in |P|, then the
stabilizer of 7 is the group G™" 7, where min 7 is the smallest element in the
chain representing 7.

In general U(G,|P|) is not a contractible complex, but in many inter-
esting cases it is. Since |P| is a retract of U(G,|P|), this at least requires
contractibility of |P].

A special, but common case is when the poset is the poset S(L) of simplices
of a simplicial complex L ordered by inclusion (including the empty simplex,
one usually assumes G? = 1.) The geometric realization of this poset is
called the Davis chamber K. It is isomorphic to the cone on the barycentric
subdivision of L. The geometric realization of the poset of nonempty simplices
So(L) is isomorphic to the barycentric subdivision of L and will be denoted
OK.

Example. Let L be a flag complex, and let {G"},cr0 be a collection of
groups. For a simplex o € S(L), let G° =[], G", and if 0 < 7, let iy
be the natural inclusion of direct products. The direct limit of this strictly
developable simple complex of groups is the graph product of the {G"}. For
example, if all vertex groups are infinite cyclic, then G, is a RAAG. For
graph products, the complex U(Gp,, K) admits a CAT(0) cubical metric, and
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is hence contractible. Furthermore, if each vertex group is residually finite,
then Gy, is as well [17].

Example. Suppose that A is a (not necessarily right-angled) Artin group
with nerve L. Given a simplex ¢ in L, there is an associated spherical Artin
group A7, and if 0 < 7, there is a natural inclusion A — A". Furthermore,
the natural map A% — A is injective [25]. Therefore, A is the direct limit of
the strictly developable simple complex of groups over S(L) with local groups
A?. In this case, the basic construction is called the Deligne complex. One
version of the K (m, 1)-conjecture for Artin groups states that the Deligne
complex is contractible, and this is known in many cases, see [8]. By Deligne’s
theorem [11], any spherical Artin group has a finite classifying space. We
shall also need the fact that these spherical Artin groups have normal infinite
cyclic subgroups [6,11]. Spherical Artin groups are known to be linear [9],
and hence residually finite. There are few examples of non-spherical Artin
groups known to be residually finite, see [20].

5. HOMOLOGICAL GROWTH
We now compute 652)(6’; F,) and tEQ)(G) for certain groups which act on
contractible complexes with strict fundamental domain.

5.1. A spectral sequence for b§2) (G;Fp). The following theorem general-

izes |4, Theorem 1.1]. We say a group G is F,-L%-acyclic if bZ@)(G; F,) =0
for all ¢ and all residual chains of subgroups.

Theorem 5.1. Suppose a residually finite group G acts on a contractible
complex Z with a strict fundamental domain (Q,0Q), so that all nontrivial
stabilizers are Fp-L%-acyclic. Then

b (G3Fp) = bi(Q, 0Qs Fp) = b 1(0Q; ),
where b;_1(0Q; Fp) is the reduced F,-Betti number of Q.

Proof. For each T'y, there is an equivariant homology spectral sequence
[7, (7.10), p. 174] converging to H;4;(Tx;F,), with the E'-sheet given by:
Bl = @ Hj(G7F,[G/Th]) = Hiyj(GiFp[G/T]) = Hipj(Ti; ).
e
Let I'] = G° NT'. The terms H;(G?;Fy[G/T']) decompose as
Hj(G7;Fp[G/Th]) = @D Hj(T7:Fy).

[G:Tg]
[GU:FZ]

After taking Betti numbers and dividing by [G : T'x], the terms corresponding
to nontrivial stabilizers go to zero by assumption, so up to sublinear error
terms in the E'-sheet are concentrated in the j = 0 row. Therefore, again
up to sublinear error the spectral sequence degenerates at the E?-sheet.
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Define a coefficient system V on ) which associates the trivial group to
a simplex in the singular set Q) and F,[G/T';] to the others. Since Q is
a strict fundamental domain, the chain complex in the j = 0 row Eio up
to sublinear error is Cy(Q; V). Hence the E* sheet is concentrated up to
sublinear error in the j = 0 row where it equals H,(Q; V).

There is an exact sequence

0 —= CL(0Q;Fp[G/Tk]) = Cu(Q; Fp[G/Ty]) = Ci(Q; V) — 0.
So we have H,(Q;V) = H.(Q,0Q;Fy[G/T}]), and taking Betti numbers

and dividing by [G : T'x] gives b§2)(G; F,) = b:(Q,0Q;F,). Finally, the strict
fundamental domain @ is a retract of Z, so it is contractible and therefore

bi(Q, 0Q; Fp) = bi—1(0Q; Fp). O

Remark 5.2. A similar formula computes bl(-Q)(G) for groups acting on a
contractible complex with strict fundamental domain (Q, 0Q) and stabilizers
either trivial or L?-acyclic (this follows from an equivariant homology spectral
sequence, or the computations in [10]). In this case, G does not have to be
residually finite. In Section @ we use the fact that such a G is L?-acyclic if
and only if 9Q is Q-acyclic.

5.2. Torsion growth. We begin our inductive approach to computing
torsion growth by showing that circles can be rebuilt with precise control
over the norms of the rebuilding maps. This is similar in spirit to |1, Lemma
10.10].

Lemma 5.3. Let C and C' be two circles cellulated with m edges and n =
|m/k| edges for some integer k < m/2. Then there are homotopy inverses
g:C—C' g :C — C so that gq' induces the identity on chains and there
is a homotopy o between ¢'g and id so that the norms of g, ¢’ and o are all
bounded above by 2k.

Proof. Divide C into (n — 1) intervals of length k& and one interval of length
< 2k. The map g collapses each interval to a single edge, and the map ¢’
maps each edge of C’ to an interval. The composition ¢’g : C — C collapses
all but one edge in each interval and maps one edge to the entire interval;
the homotopy o between ¢’g and the identity sends each vertex v to the
interval between v and ¢'g(v). It suffices to compute the norms of g, ¢
and o restricted to a single interval, since chains in disjoint intervals have
orthogonal images. The entries of the induced maps on chains of g, ¢’ and o
are all £1, therefore the norms are all bounded by 2k. ]

We now can prove our main theorem.

Theorem 5.4. Suppose a residually finite group G acts on a contractible
complex Z with a strict fundamental domain (Q,0Q), so that all nontrivial
stabilizers have normal infinite cyclic subgroups. Then

(@) = logtor H;_1(0Q).
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Proof. We are given for each nontrivial stabilizer {G?},cag an exact sequence
1-C7 -G° —-H? =1,

where C7 is infinite cyclic. We can choose a model for such a BG? which is
an S'-fibration over BH®. Such a BG? admits a cylindrical filtration where

(Fj.Ej)= || S"'x(rom)
reBHe ()

We assume that each fiber circle is cellulated with 1 vertex. For a subgroup
I'; in our chain, let G} = G° NT'g, and C7 = C? NI'}. Therefore, the cover
BGY also admits a cylindrical filtration where

(F;,E) = || || S"x(rom)

(G°:GY) reBHo ()
[C7:C7]

At this point, the norm of the maps f; in the filtration are uniformly bounded
independent of k& and each circle is cellulated with [C7 : C7] vertices.

Let mj; = minyepo{[C? : C7]}. By recellulating the fiber circles with
[[C7 : CF]/my] vertices we can recellulate each BGY as BGY' so that

1 _|BGY| _ 1
2my, ’BG%‘ - mk’

where |BG| is the total number of cells in BG.

On each pair S x (7,07), by Lemma@ we have that the norm of each
rebuilding map is less than 2my. Therefore, Lemma guarantees that for
each k, the log norm of each rebuilt map for BGY' is bounded by C'log(my)
for a constant C independent of k.

We now use the Borel construction and a rebuilding procedure as in Lemma
to construct a model for BG which admits a cylindrical filtration of the
form

(Fj,Ej)= || BG" x(0,00); (Fut1,Eni1) = (Q,0Q).
O'E&Q(])
Let Y be the subcomplex of BG constructed at the penultimate stage of

this filtration, and let Yy be its lift to BI'x. Then Y, admits a cylindrical
filtration where

(F.E)= || || BG} x(0,00).
]

ccoQW) [GTkU
[GU:Gk]

Again, at this point, the norm of the maps f; in the filtration are uniformly
bounded independent of k£ and each circle is cellulated with [C7 : C7] vertices.

If we replace BG] with BGY{’, and use the previously rebuilt maps to
rebuild Y} to Y/, then the number of cells in Y} is < % Now, we
attach [G : I'y]-copies of @ to Y/ to form BI'j. The attaching maps f are
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rebuilt versions of the inclusion maps dQ — Yj. By Lemma [2.3, we have
that
log||dpr, || < D"log(my)
for a constant D’ depending only on BG. Let C' = D'|BG|. We have a short
exact sequence of chain complexes
0 — Ck(Y}) = Cu(BT'y) — C(BTy,Y)) — 0.

The relative complex excises: C (BI'y,Y;) = @ar, C«(Q,0Q). Since Q
is contractible, H;(Q,0Q) = H;_1(0Q) and the corresponding long exact
sequence looks like

P H:(0Q) Iy HAY]) — Hy(BLy) — P Hi-1(0Q) — Hi1(Y).

[G:Ty] [G:T'y]
Note that
logtor @) H;—1(0Q) = [G : T logtor H; _1(Q)),
[G:T'k]
e( P Hi-1(0Q)) = e(H;-1(0Q)).
[G:T'y]

Therefore, applying Lemma to the above sequence and normalizing gives
logtor H;(BTy) = logtor(H;(Y})/Im f) <
(G : Ty (G : Ty -
logtor Hzfl(Yk?) — rk Hz (Yk,)
H;,_1(0Q))———"==.
S TGy CHAO) T
By Proposition [3.3} the terms logtor H;_1(Y}) and rk H;(Y}) are bounded

by C[G L] log(my,), so we only need to bound logtor H;(Y})/Im(f.). This is
the same as bounding the logtor of the cokernel of the map

f+0: @ zi(0Q) ® Ciya(Yy) — Zi(Y).
[G:T]

Since Z;(Y}) is a direct summand of C;(Y})), this is the same as the logtor of
the cokernel of the map

fF+0: @ Zi(0Q) & Cipa (YY) — Ci(Y7).
[G:T%]

The rank of the last matrix f + 0 is bounded by the number of cells in

Y). Therefore, Proposition @ implies that the logtor is again bounded by
c [G Fk}

0 < logtor H;_1(0Q) —

log(my). As k — oo implies my — 0o, we are done. O

Remark. In [1, Corollary 10.14], Abert, Bergeron, Fraczyk, and Gaboriau
showed that groups with normal Z-subgroups have what they call cheap
rebuilding property. This is precisely what we used in the above proof:
finite index subgroups can be recellulated with sublinear number of cells
and subexponentially bounded boundary maps. The proof above extends
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to groups acting on contractible complexes with strict fundamental domain
where the stabilizers are either trivial or have their cheap rebuilding property.

Remark. If in Theorem [5.1| (respectively Theorem instead of assuming
the existence of a strict fundamental domain, we assume that all stabilizers
are Fp—LQ—acyclic (respectively have normal infinite cyclic subgroups with
type F' quotient), then the first parts of the arguments show the vanishing of
bgz)(G; [F,) (respectively t§2)(G).) The point being that one can still use the
Borel construction and rebuilding to construct models for BG and BI'y; for
Theorem [5.1 we get a spectral sequence with all the terms of the F;-sheet
sublinear, and for Theorem [5.4) we get a rebuilt complex with sublinear
growth of cells and polynomially bounded norms of boundary maps.

Remark. For Theorem we only need the G-complex Z to be F,-acyclic,
and for Theorem [5.4, we only need Z to be acyclic. The point being that
the Borel construction EG Xg Z can still be used to compute the F, or
Z-homology of G and T'.

6. UNIVERSAL L2-TORSION

Friedl and Liick [13] introduced the universal L*-torsion 7'752) of an L%
acyclic complex of finitely generated based free ZG-modules. It is an element
of the weak Whitehead group Wh*(G) = K{'(G)/ £ G, where the weak
Kj-group K}’(G) is an abelian group generated by such complexes with the
usual relations (we use multiplicative notation):

072G % 726 50| =1,
and, if
0—- A, —- B, —>Cy,—0

is a short exact sequence of such complexes, then
[B.] = [A[CL].

Furthermore, they showed that K{’(G) can be naturally identified with the
group generated by square matrices over ZG which induce weak isomorphisms
on /2(G)"™ with the relations:

s =18 = | (5 5]

There are two classical generalizations of determinant due to Fuglede and
Kadison, and to Dieudonné, which one can try to apply here. Let N (G) be
the group von Neumann algebra of G-equivariant bounded operators on £2(G).
The Fuglede-Kadison determinant is defined on N (G) matrices and takes
values in R>g. Let A be such a matrix, thought of as G-equivariant bounded
operator £2(G)" — (2(G)™. Let F : [0,00) — [0,00) be the associated
spectral density function, defined by

F(A) = sup{dimg L | [[41]| € A, L is a Hilbert G-submodule of *(G)" }.
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The Fuglede-Kadison determinant of f, denoted by detg f, is given by

detg A = exp/ In(\)dF,
0+

with the convention exp(—oco) = 0. The group G is of determinant class if
detg A > 1 for any ZG matrix.

The Fuglede-Kadison determinant detg is not quite a multiplicative map,
but it has enough multiplicativity to preserve relations on the matrix genera-
tors of K}"(G) |31, Theorem 3.14(1) and (2)], and if G is of determinant class
we avoid division by 0 when taking inverses, thus we have a homomorphism
detg : Wh*(G) — Rsg. The image of 7'1(02) under the composition log det¢ is
the usual L2-torsion p(2).

The Dieudonné determinant is a homomorphism from the group of in-
vertible matrices over a skew field to the abelianization of the multiplicative
group of the skew field. It is essentially obtained by doing row reduction and
taking the (abelianized) product of the diagonal entries of the result.

A skew field arises as follows. We can embed N (G) into the algebra of
affiliated operators U(G). The algebra U(G) can be defined algebraically
as an Ore localization of N'(G) with respect to the set of non-zero divisors
(N(G) is far from being an integral domain.) Therefore, elements of U(G)
can be expressed as fg~! where f,g € N(G) and g is a weak isomorphism
2(G) — *(Q). Let D(G) denote the division closure of ZG inside U(G)
(this is the smallest subring of U(G) containing ZG which is division closed,
i.e. elements in D(G) which are invertible in U(G) are already invertible in
D(G).) By work of Linnell [27] a torsion-free group G satisfies the Atiyah
conjecture on integrality of L2-Betti numbers [3, p. 72] if and only if D(G)
is a skew field. In this case, the L?-Betti numbers of a complex of finitely
generated based free ZG-modules can be computed by tensoring with D(G)
and taking the dimension over D(G), dimp ), of the resulting homology.
Note that if G has torsion, then ZG has nontrivial zero divisors and cannot
embed into a skew field.

So, assuming that D(G) is a skew field, and also that our complex is
L?-acyclic, we have that tensoring with D(G) produces an acyclic complex
over D(G), and we can define the Reidemeister torsion 7 with coefficients in
D(G), see |18| Section 4]. It is an element of Wh(D(G)) = K1(D(G))/ £ G,
which, via the Dieudonné determinant, can be identified with D(G)}},/ £ G.

By |18, Theorem 4.13] the natural map Wh*'(G) — Wh(D(G)) takes 2 to
T.

If X is a free L2-acyclic cocompact G-CW-complex, then by taking the
universal torsion of the chain complex we obtain 7'152) (X;@G), If G is torsion-
free and satisfies the Atiyah conjecture we also have 7(X;G). These are
simple equivariant homotopy invariants. To get homotopy invariance we
need to assume vanishing of the ordinary Whitehead group Wh(G), see
[13, Theorem 2.5(1)].
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Similarly, if G is of determinant class, then we can define p®(X; G). How-
ever, since in this case detg A = 1 for any invertible ZG matrix, and therefore
Wh(G) C Kerdetg, p®(X; @) is an equivariant homotopy invariant.

If G is L?-acyclic, and satisfies the appropriate conditions, then by choosing
a finite model for the classifying space and taking the universal cover we
obtain Tu(2)(G), 7(G), and p®(G). These invariants have been computed
explicitly for certain classes of groups, see [15] for a readable summary of

previous computations.

Remark 6.1. Conjecturally all groups are of determinant class. The class
of such groups is known to be very large, it contains all sofic groups [12], so
in particular all residually finite groups. Also, conjecturally all torsion-free
groups satisfy the Atiyah conjecture and have trivial Wh(G). The latter
class is also known to be rather large, in particular it contains all CAT(0)
groups [19]. Comparatively, our knowledge about the Atiyah conjecture is
rather limited.

(2)

In the formulas below we will use multiplicative notation for 7,/ and T,
and additive for p?.

Theorem 6.2. Let G be a group acting on a contractible complex Z with
strict fundamental domain (Q,0Q), so that all nontrivial stabilizers are L*-
acyclic. Assume G and all stabilizers have Wh = 1, and assume that 0Q is
Q-acyclic. Then

T2(G) = H|torHi_1(6Q)\(*1)i IT -2« ~ydimo

1>2 o€

If in addition G is of determinant class, then

pO(G) = = (~1) logtor H(0Q) + 3 (~1)%*pD(Gy).

i>1 c€e0Q

Proof. Since Wh(G) = 0, we can compute 752)(G) by computing 72 of

a convenient model for BG. After doing the Borel construction and our
rebuilding procedure, as in Lemma we have a finite model for BG with
a cylindrical filtration of the form

(F;, Ej) |_| BG? x (0,00);  (Fny1, Eng1) = (Q,0Q),
c€dQ)

with finite BG?.
Lifting this filtration to the universal cover gives a G-filtration

(b:X_lCXQCXlC"'CXnCXn—i-l:EG'

Note that for 0 < j < n, X; — X;_; is a disjoint union of copies of EG? x 0°,
o € 0QY), and the stabilizer of each copy is a conjugate of G?. Since
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Wh(G?) = 0, we conclude

(X5, X6 = [ APE)C
UE(‘?Q(J)

1)dim o

For j =n+1, EG — X, is a disjoint union of copies of Q) — 9Q), freely
permuted by G. Hence,

T(EG, X, G) = 7$2(Q,0Q;1) = [ [ Itor Hi—1(8Q)|™V".
i>2
The first formula follows from the sum formula applied to short exact se-
quences:
0= Cu(Xj-1) = Cu(Xj) = Cu(X;, Xj—1) = 0.

Applying log detg proves the second formula. O

As in Theorem [5.1) and Theorem [5.4, if we assume that G acts on a
contractible complex Z with all cell stabilizers L?-acyclic, then we do not
require a strict fundamental domain. The proof above shows that in this

case
dlm o
= [ :

c€Z/G

This generalizes the fibration formula |13, Theorem 3.11(5)] and leads to
a more explicit formula in the situation of Theorem

Corollary 6.3. Suppose a group G acts on a contractible complex Z with
a strict fundamental domain (Q,0Q), so that each nontrivial stabilizer G°
has a normal infinite cyclic subgroup 7. = (s,). Assume G and all stabilizers
have Wh = 1, and assume that 0Q is Q-acyclic. Then

(e H|toer 1(8Q)| Y H ix( (=14 I (G7/Z)

i>2 oeR

where i, is induced by the inclusion i : G° — G. If in addition G is of
determinant class, then

PP (G) = - Z(—l)ilogtor H;(0Q).

i>1

Proof. The standard cellular chain complex of the universal cover of S! as a
Z[Z])-module is

0— Z[s, s = Z[s, s — 0,

hence 7.°) (Z) = [s — 1]. Therefore, by the fibration formula for 7.2 we have

7'52)(6‘“) = ix[s5 — 1]X(G7/2) and the first formula follows. By [31, Example
3.22], the Fuglede-Kadison determinant of (s — 1) is 1, which implies the
second formula. g
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The fibration formula implies that if G and H are L2-acyclic groups, then
7'752)(G x H) =1, as x(G) = x(H) = 0. This leads to a better formula for
graph products of L2-acyclic groups which satisfy all the assumptions of
Theorem and a completely precise formula for RAAG’s.

Corollary 6.4. Let G, be a graph product of L*-acyclic groups G, with
Wh(Gr) = Wh(G,) =1 based on a Q-acyclic flag complex L. Then

[Jior (@) T ()

i>2 veL(©)

If in addition G is of determinant class, then

PP(GL) == (=1 logtor H;(0Q) — > p®(Gy) ¥(Lky(v)).

i1 veL©)

Proof. If o is a simplex in the boundary of the Davis chamber 0K, then its
stabilizer is the product [[,cnin o Go, S0 its torsion is trivial unless mino is
a single vertex v. Such simplices correspond to the simplices in Lkyz, (v) =
bLkz(v) (including the empty simplex), shifted by 1 in dimension. This
implies the first formula, and taking Fuglede-Kadison determinant gives the
second. O

In particular, since RAAG’s have Wh = 1 and are residually finite, hence
of determinant class, we have

Corollary 6.5. Let A;, be a RAAG based on a Q-acyclic flag complex L.
Let S be the vertex set of L. Then

H|t0r H;_( ’( 1 H (Is — 1])*)2(141%(5)) 7

i>2 ses
PP (AL) = = (~1)'logtor H;(9Q).
i>1

Theorem [5.4 together with Corollary [6.3 show that under hypotheses of
the theorem and the corollary the torsion analogue of Liick approximation
holds. In particular, it holds for RAAG’s.

We now use the fact that RAAG’s satisfy the Atiyah conjecture [26]. For
L2-acyclic groups which satisfy the Atiyah conjecture, Friedl and Liick [13]
show that 7(G) determines a formal difference of polytopes in H;(G;R)
(they also assumed Wh(G) = 1, this was shown to be unnecessary in [22].)
Friedl and Liick’s motivation came from 3-manifold topology, indeed for
fundamental groups of most aspherical 3-manifold 9@, they showed that this
(in this case a single) polytope is dual (up to scaling a by factor of %) to the
unit ball of the Thurston norm on M [13, Theorem 3.35].

Here is a rough description of the process. (See [13,/15] for details.)

Let G & Hy(G;7Z)/tor be the canonical surjection. Given any element
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f € ZG — 0, we take the convex hull in H1(G;R) of the image of its support
under p:

P(f) = Conv(p(Supp(f))) C Hi(G;R).

Polytopes in H1(G;R) up to translation form an abelian cancellative monoid
under Minkowski sum (where the identity element is a single point.) Denote
by P(G) the associated Grothendieck group to this monoid, its elements
are formal differences of polytopes. An elementary observation is that if
the ring ZG has no zero divisors, then P is a homomorphism of monoids,
P(fg) = P(f) + P(g).

Friedl and Liick show that if G is torsion-free and satisfies the Atiyah
conjecture, then P extends to a group homomorphism

P:D(G)* = P(G).

Since the target is abelian and elements of GG are in the kernel, this descends
to a map on Wh(D(G)). It follows from the homomorphism property, that
although for general elements of D(G)*, P is hard to compute, for elements
of the form fg~' with f,g € ZG it is just the formal difference of the convex
hulls of the images of the supports of f and g under p.

The L?-torsion polytope P(G) of G is defined to be —P(7(G)) (the negative
sign is arbitrary, but this makes the L?-torsion polytope into a single polytope
for many groups, such as most 3-manifold groups, see also [22].)

Therefore, Corollary gives the following computation of the L2-torsion
polytope for RAAG’s. We identify H;(Ar;R) with RS for S the vertices of
L. Under this identification P(s — 1) is the unit interval in the s-direction,
and we note that Minkowski sum of orthogonal intervals is a cube.

Theorem 6.6. Let Ay, be a RAAG based on a Q-acyclic flag complex L. Let
ST denote the set of generators of Ar, with X(Lkz(s)) > 0, and S~ the set
of generators of Ar, with x(Lkr(s)) < 0.

Then the L?-torsion polytope P(AL) is the formal difference of two cubes
C~ —Ct in H(AL;R) 2 RS, The CT cube is contained in RS™ and for
s € St has length in the s-direction equal to x(Lkp(s)). The C~ cube is
contained in RS and for s € S~ has length in the s-direction equal to

— X(Lkp(s))-

Remark 6.7. If L is a graph, then Ay, is L?-acyclic if and only if L is a tree.
In this case, Ay, is a fundamental group of a 3-manifold, and Theorem [6.6
determines the dual of the unit ball of the associated Thurston norm (this
also easily follows from Mayer—Vietoris formulas for 7 of an amalgamated
product.) In particular, since y(Lk(s)) > 0 for all s, we see that P(Ayr) is a
single polytope.

Given a polytope P in a vector space V and a homomorphism ¢ : V — R|
the thickness of P with respect to ¢ is the diameter of its image:

thg(P) = m};axcb —min ?.
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This extends naturally to formal differences of polytopes in V' by taking the
difference of thicknesses. As explained in [15, p. 73], the results of [14] imply
that if G is an L2-acyclic type F group satisfying the Atiyah conjecture, then
the L?-Euler characteristic of the kernel of any epimorphism ¢ : G — Z is
well-defined and given by

X (Ker ¢) = — thy(P(G)).

Meier, Meinert, and VanWyk [32] determined which characters Ay, — Z have
kernels of type F/P(Q). In particular, we have the following corollary:

Corollary 6.8. Let L be Q-acyclic and ¢ : A, — Z be an epimorphism so
that ¢(s) # 0 for each generator s € S. Then the Euler characteristic of the
kernel x(Ker ¢) is well-defined, equals to x® (Ker ¢), and given by

X(Ker ¢) = =Y "|o(s)| X(Lk(s))-

seS

This formula also holds for certain characters which send some generators
to 0, see [32] for the complete picture.
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