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ABSTRACT

Deep neural networks are susceptible to model piracy and adversarial
attacks when malicious end-users have full access to the model param-
eters. Recently, a logic locking scheme called HPNN has been proposed.
HPNN utilizes hardware root-of-trust to prevent end-users from ac-
cessing the model parameters. This paper investigates whether logic
locking is secure on deep neural networks. Specifically, it presents
a systematic I/O attack that combines algebraic and learning-based
approaches. This attack incrementally extracts key values from the
network to minimize sample complexity. Besides, it employs a rigorous
procedure to ensure the correctness of the extracted key values. Our
experiments demonstrate the accuracy and efficiency of this attack
on large networks with complex architectures. Consequently, we con-
clude that HPNN-style logic locking and its variants we can foresee
are insecure on deep neural networks.
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1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in
various applications. However, DNN models are suffering from in-
tellectual property (IP) piracy and security threats. Adversaries are
motivated to extract the parameters of a DNN model for two main
reasons. Firstly, training a new model is expensive. a) Deep learning
is data-hungry, while the data can be proprietary or require enormous
efforts to collect; b) the expertise in tweaking the architecture, the
learning algorithm, and the hyper-parameters is essential for deep
learning; c¢) the training process demands substantial computational
resources and a long time. Secondly, the exposure of the model pa-
rameters poses severe threats to the security and confidentiality of
that model. With access to a leaked model, an adversary can launch a)
the evasion attack [5] and the data poisoning attack [26] to abuse or
deceive the victim model, or b) the inversion attack [9] to reconstruct
sensitive training examples from the model.

Nowadays, many Al tasks are executed on dedicated hardware
accelerators, such as TPU, NPU, GPGPU, and acceleration modules.
Accordingly, hardware root-of-trust has been adopted to protect intel-
lectual properties and mitigate vulnerabilities in DNNs. In this setting,
a secret key is stored on hardware in a tamper-proof memory [3], a
Trusted Platform Module (TPM) [20], or a Hardware Security Module
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(HSM) [25]. An adversary cannot retrieve the stored key directly, even
with physical access to the hardware. An incorrect key will signifi-
cantly alter the functionality of the DNN model, thus reducing the
prediction accuracy and thwarting information leakage. A combina-
tion of a hardware accelerator, a key storage module, and a pre-stored
key serves as a copy of license to access the service provided by the IP
owner. A DNN model and its future parameter updates can be released
publicly on cloud platforms. Only the subscribers who have acquired
valid licenses can fully restore the functionality of the DNN model.

Logic locking [24, 27] is a prominent and well-established technique
to safeguard hardware designs. It embeds binary key bits into an
integrated circuit’s netlist (a network of logic gates). The original
functionality of that circuit can be restored only when a correct key is
inserted. Logic locking achieves four objectives simultaneously [32]: i)
locking robustness ensures that inferring a correct key is prohibitively
expensive; ii) structural robustness means that removing or bypassing
the locking module is impossible; iii) locking efficiency implies that
the locking scheme introduces only a minimal overhead and requires
only a small number of key bits; iv) end-to-end protection guarantees
that the design is protected from all parties in the supply chain.

Hardware Protected Neural Network (HPNN) [7] is a pioneering
work that applies the methodology of logic locking on DNN models.
HPNN selects a small subset of neurons in the hidden layers of the DNN
as the key-protected neurons. A key bit is associated with every such
neuron, controlling whether to flip the sign of the pre-activation value.
A DNN model is trained as a function of a pre-selected key pattern.
In this way, model parameters and key bits are closely entangled.
HPNN has addressed the limitations of several existing techniques.
For example, DNN watermarking [1, 11] cannot prevent illegal private
uses. Input, output, and convolutional kernel obfuscations [10, 18]
are susceptible to removal attacks and unauthorized reproduction by
end users, because their key bits are not entangled with learnable
parameters. General public-key encryption on model parameters [30]
will incur huge overheads.

It is demonstrated that reverse engineering HPNN through training
is not worthwhile: starting from a random incorrect key, an adversary
has to spend even more computational resources to fine-tune the
model than training one from scratch [7]. Other approximate attacks,
including a well-crafted attack based on genetic algorithm [2], achieve
low accuracy on HPNN-encrypted networks. However, our study
reveals that an adversary can directly recover the correct key with
an I/O attack. Specifically, a malicious end-user can query a working
model it possesses with carefully selected input examples, and thus
infer the associated key bits from the outputs. In this way, it can
replicate the model without the permission of the IP owner.

This paper presents a systematic attack algorithm against HPNN
and other feasible encryption schemes we can foresee that use logic
locking. It leverages the hierarchical nature of DNNs and the sym-
metric property of the ReLU activation function to reduce sample
complexity significantly. In addition, it employs a rigorous validation
and correction mechanism to ensure the correctness of the extracted
key. Experiments show that our attack algorithm can scale to large
DNNs and generalize to complex network architectures.
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Figure 1: (a) The Rectified Linear Unit (ReLU) activation function. The
function is at the critical point if its input equals 0. (b) An unprotected
neuron (upper) and a protected neuron (lower) of HPNN. The inserted
flipping unit negates the pre-activation value of the protected neuron
when the key value equals 1.

Our main contributions are:

o We establish a theoretical framework for security analysis of logic-
encrypted deep ReLU networks;
o We develop an algebraic approach to infer the value of a single key
bit when the network is contractive;
e We propose a learning-based approach as well as a validation and
correction procedure to extract the key value of a hidden layer when
the network is expansive;
e We evaluate the accuracy, scalability, and generality of the attack
algorithm on practical networks.

2 BACKGROUND

2.1 Preliminaries

A DNN model can be represented as a function f : X — Y, which
takes inputs from the input space X C R¥ and returns outputs to
the output space ¥/ C RY. A k-layer deep neural network [6] f is
an alternating sequence of linear transformations and a total of k
non-linear activation functions: f = fyyy 00 o fr0--- 0o o fi.In this
equation, the i-th hidden layer is given by a linear transformation f;
followed by an element-wise ReLU activation function o. Specifically,
fi(xi—1) = AW x;_1+bD is an affine transformation, in which the post-
activation hidden state xj_1 € RY%-1isa d;j—1-dimensional vector, the
weights A ¢ Rdixdi-1 jg 5 g; by dj—1 matrix, and the biases b; € R4
is a d;-dimensional vector. Notice that the final output layer fi,; is
not followed by activation functions. All parameters, represented as
AW and b forie1,--- ,k+1, can be updated during training.
The above formulation assumes that all the hidden layers are fully
connected layers. In reality, a neural network may also contain convo-
lutional and pooling layers, residual connections [12], and attention
units [28], but such a network can also be represented as linear trans-
formations locally. Additionally, a softmax layer can be attached to the
output layer. In this case, given an input example x € X, we call x4
the logits of f(x) and y = softmax(xyy;) the output vector of f(x).
Each component of ¢ is a ReLU activation function [17] defined
as ¢(z) = max(z,0). ReLU has established itself as the default choice
for deep learning because DNNs with ReLUs can be optimized more
efficiently [21]. As shown in Figure 1(a), a ReLU is a piecewise linear
function. We denote the j-th neuron in the i-th hidden layer as 7; ;.

It computes x;; = ¢(Aj(.i)x,-_1 + b](.i)), where A;i) is the j-th row
of A() and bj(.i) is the j-th element of p(® Particularly, we refer to
zjj = Aﬁ.i)xi_l + b;i) as the pre-activation value of n; ;. We say that
ni,j is at its critical point if z; j = 0. Moreover, a neuron is inactive if
zij < 0 and is active if z; j > 0.

2.2 HPNN Implementation

The actual implementation of HPNN is depicted in Figure 1(b). HPNN
embeds several flipping units into a DNN model or the underlying

hardware accelerator. Every unit modifies the pre-activation value of
the associated neuron:

zij = (-1)Kii (A;i)xi—l + bﬁi)), Kij € {0,1}. (1)

We call (-1)Kis € {+1,-1} the row sign of n; ;. While the key is fixed
during the training, all the weights and biases of the model are updated
depending on the value of the key.

2.3 Adversary Model

The adversary is a malicious end-user or insider who can download
the model architecture and all the parameters from a cloud platform or
receive them from the IP owner. The adversary cannot read or probe
the key from an instance of the hardware accelerator because it is
stored in a tamper-proof memory or a trusted platform module. Despite
this, once the model is installed onto the hardware, the adversary can
query this oracle model with arbitrary inputs a reasonable number of
times. It can then observe the logits or the output vector produced by
the model.

This adversary model is equivalent to the standard model for logic
locking [27, 32]. It is even weaker than the assumptions made in the
HPNN paper [7], given that it does not require access to a subset of
the training data.

The adversary aims to obtain a correct key, denoted as K*. When
such a key is embedded into the hardware, the encrypted DNN model
should be functionally equivalent to the original model. Once the
adversary acquires such a key, it can replicate and distribute the DNN
model without permission from the IP owner. The adversary can also
compromise a remote mission-critical system that uses the same DNN
model by launching an adversarial attack on the local model.

3 ALGORITHM

3.1 Overview

We propose a systematic attack algorithm for all feasible DNN logic
locking schemes we can foresee. It is based on the mathematical frame-
work we established for the security analysis of deep ReLU networks
(§3.2).

The main algorithm leverages divide-and-conquer to minimize sam-
ple and computational complexities (§3.8). Starting from the first hid-
den layer, it targets one layer in every iteration. For each hidden layer,
the algorithm attempts to infer key bits one at a time with an accurate
and lightweight algebraic approach (§3.3). When such an attempt fails
for some key bits (§3.4), the algorithm initiates a learning-based attack
to predict the key values (§3.6). Once all the key values are extracted
for a hidden layer, the algorithm executes a rigorous validation and
correction procedure to fix potential errors (§3.7). According to our ex-
periments, the attack algorithm can scale to large DNNs and generalize
to complex network architectures.

Finally, §3.9 explains how the attack algorithm can be applied to
general logic-encrypted DNNs. As such, we conclude that standard
logic locking is insecure on DNNs.

3.2 Geometric View of Deep ReLU Networks

We exploit the geometric properties of DNN models to launch our
attack. Each neuron induces a (P — 1)-dimensional hyperplane in the
P-dimensional input space of that model. The hyperplane comprises
points in the input space such that the neuron’s corresponding ReLU
activation function is at the critical point. Figure 2(b) displays the
hyperplanes of a 2-layer DNN model.

The hyperplanes of a DNN model split the input space into disjoint
linear regions. Given an input example, one can compute the pre-
activation values for all neurons of the model through a single forward
pass. We use an activation pattern vector m) e {0, l}di to represent
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Figure 2: (a) Activation statuses of a 2-layer DNN model. The corre-
sponding activation patterns are mW = (110) and m® = (010). The
dashed path represents a sensitizable path from an intermediate node
to the output node. (b) Geometric view of hyperplanes induced by the
DNN model in (a). Each dashed line (resp. bent solid line) is induced by
a ReLU in the first (resp. second) hidden layer.
the activation statuses for all the neurons in the i-th hidden layer. The
Jj-th element of that vector, mjl), is1 ifA](.l)xi_l +l7](.l) > 0, otherwise it
is 0. Figure 2(a) shows a 2-layer DNN model and its activation patterns
for an input example. Two input examples are within the same linear
region if they share the same activation patterns across all hidden
layers.

Every linear region is associated with a unique affine transformation
from the input space [6]. Given the activation patterns of a linear
region, one can recursively compute the weights and the biases of the
transformation, layer by layer:

MO =m0, 40 = 40, 50 =0, @

AW = A (A0-1)  p(=1)y 3)
b = AD (H-1) y py(i=1)) 4 (D) (4)

In the above equations, * denotes element-wise multiplication be-
tween matrices, and M(?) is the mask matrix obtained by broadcasting
m® to all columns of A, Intuitively, according to the activation
patterns, the above recursive formulas select either the inactive or the
active region for all ReLU activation functions. We refer to A (resp.
b(1)) as the product weight matrix (resp. product bias vector) of a level-i
linear region.

It can be seen that the linear regions exhibit a hierarchical structure:
a region in one layer depends upon its predecessor regions in the
previous layers. Hence, we can derive the following lemma for HPNN:

LEMMA 1. The hyperplane induced by n; j is exclusively determined
byA<1), . ,A(i), b(l), . ,b(i) and the row signs in layers 1 through
i—1

Proor. The hyperplane induced by 7; j consists of those points
Xo in the input space such that i(Aj.l)xi_l + b](.’)) =0, where xj_1 =
(A(i_l)xo + l;(i_l)) «mUD f i > 1. According to the definition
of m() and Formulas 1-4, xi—1 only depends on x itself and the
weights, biases and row signs of layers 1 through i — 1. Notice that the
hyperplane does not depend on any row signs in layer i. O

3.3 Key Inference with Basis Vector

Notice that the ReLU function is muted in the inactive region. Let us
suppose that an adversary has the capabilities to i) find a witness to
the hyperplane induced by a designated ReLU function, ii) move along
a direction from the hyperplane so that the inputs to any other ReLU
functions on the same hidden layer remain unchanged, and iii) ensure
that the designated ReLU function is sensitizable to the output nodes.
The adversary can then immediately infer the key bit associated with
the designated neuron. In a nutshell, if the output of the DNN model
changes accordingly, the designated ReLU function should be moving
in the active region. If it remains unchanged, the ReLU stays inactive.

Algorithm 1 The Key Bit Inference Function

1: Input: white-box network f, oracle network O, key-protected
neuron 7; j, decrypted key values of preceding layers Kj;- - K}

: Output: Kl* ;

x° « search_critical_point(n;;)

. Observe m(l), S ,m(i_l) with a forward pass from x°

> §3.5

. Compute A(Y) according to Formulas 2-3

: ejj < the j-th standard basis vector in RY

: Find a v; j using least squares s.t. A(’-)vi,j =ejj
. if v; j does not exist then return L

: if O(x°) # O(x° + € - v; j) then return 0

: if O(x°) # O(x° — € - v; j) then return 1

o I N L~V I )

[
(=1

11: return L

Formally, let us consider the pre-activation hidden space of the
i-th hidden layer, RY . Let e j denote the j-th standard basis vector
of R% and let zz ;€ R% be a critical point of ni,j- With a sufficiently
small € [6], it is guaranteed that the e-neighborhood of zz j does not
intersect with any hyperplanes induced by other neurons. In other
words, all the points in this neighborhood belong to the same linear
region. Moving along e; j within the neighborhood can only change
z; j but not any other pre-activation values of the same hidden layer
because, by definition, e; ; is parallel to the j-th coordinate of R% and
orthogonal to any other coordinates. Therefore, we can derive the
following lemma:

LEMMA 2. Let e; j represent the j-th standard basis vector ofRdi,
vi,j € R represent a pre-image of e; j, and x°(n; ;) € RF represent
a critical point of n; j. Then Kl*] = 0 implies that O(x°(n;j) — € -
vi,j) = O(x°(ni;)), and KZj = 1 implies that O(x°(nij) + € - v;j) =
O(x°(nij))-

Proor. If K ; = 0, the pre-activation value z; ; (x) is within the
inactive region of the ReLU activation function for both x1 = x°(n; ;)
and x2 = x°(#;,j) — € - v; j. Besides, moving along v; ; does not change
any other pre-activation values of the same hidden layer, as e; ; is
orthogonal to other coordinates in the hidden space. Because all el-
ements of z; remain unchanged, the oracle network must produce
identical outputs for both input samples.

The same reasoning applies to the Kl* ; = Lcase. O

Algorithm 1 illustrates how we implement the key bit inference
procedure. It starts by finding a critical point x° of the targeted neuron
(Line 3). Then it computes the product weight matrix associated with
the level-i linear region where x° is located (Line 4-5). Given the
product weight matrix AW we are able to compute the pre-image
vector v; j € RP for e;, j- In practice, we find the pre-image with least
squares (Line 7), which is a built-in function provided by statistics
and deep learning frameworks such as SciPy [29] and PyTorch [19].
Finally, the algorithm determines the key bit through queries to the
oracle network (Line 9-10). Notice that the statements on Line 9 and
Line 10 are contra-positive to their counterparts in Lemma 2. In some
rare cases (e.g., when the condition of Lemma 3 does not hold), all the
three values obtained from the oracle queries are close to each other.
In that circumstance, we attempt to find another x° and start over the
entire procedure.

3.4 Sensitization to Input and Output Spaces

In this section, we investigate the sensitization problems surrounding
our attack algorithm. First, does a pre-image always exist for every
basis vector and every input example? In reality, a DNN can be expan-
sive [22] at some specific locations. In a nutshell, if d; < d; for some



[ < i, then v; ; does not exist for every e; ; because AW is not an onto
mapping. Furthermore, inactive neurons reduce the chance of finding
av; j. For a randomly initialized network, about half of the neurons in
a hidden layer are inactive for a given input example. This situation
worsens when the network encounters a “dying ReLU” problem [15].
Hence, we need a complementary approach to address these issues.

Second, is every hyperplane observable from the primary output
nodes? With a little abuse of terminology, we refer to every flat piece
of a bent hyperplane as a boundary. Intuitively, a boundary may be
covered by subsequent layers. The following lemma discusses when a
boundary is sensitizable to an output:

LeEMMA 3. Consider a set of compatible activation patterns and the
corresponding linear region. In addition, consider a boundary of the
hyperplane induced by n; j on the linear region. This boundary is sensi-
tizable to an output node y, if there exists a consecutive path fromn; j
(exclusive) to y such that all neurons along the path are active.

For instance, in Figure 2(a), the last neuron in the first hidden
layer is observable from y because such a consecutive path to y exists
from that neuron. In a modern DNN architecture [16], most neurons
in hidden layers have multiple successor neurons. Consequently, an
intermediate neuron is unlikely to have no sensitizable path to any
output nodes.

3.5 Finding Critical Points of a Neuron

Algorithm 1 relies on an essential utility function to find a witness
x° € X to a designated hyperplane. As discussed in §3.2, a hyperplane
generally has P — 1 dimensions. As a result, a 1-dimensional line is
likely to intersect with the hyperplane in the input space at least
once [31]. In addition, Lemma 1 states that the hyperplane of a neuron
is exclusively determined by the key bits in the preceding layers.
Because our algorithm proceeds layer by layer, the current information
in the white-box network f is sufficient for our purpose.

The search_critical_point algorithm starts by randomly select-
ing a straight line in the input space. Afterward, it draws random
samples along the line and tracks the pre-activation values z; ; of the
associated neuron 7; j. Once it detects two consecutive samples that
yield opposite signs for z; j, it performs a standard binary search on
the line segment between the two samples. Upon completion, it finds
a sample on the designated hyperplane.

3.6 Learning-based Attack

The key_bit_inference procedure may not be successful for every
key bit due to the problems mentioned in §3.4. In that circumstance,
K contains L elements. We perform a supervised learning_attack
on those remaining bits.

We first convert an HPNN-encrypted network model to a contin-
uous function. Particularly, we substitute every flipping unit with
a scalar multiplication operator. This operator multiplies the pre-
activation value z; ; with a real number K l’] € [—1,1]. We then create
a training dataset using the oracle network. Specifically, we randomly
generate a set of unlabeled input examples x1, - - - , x, € X and query
the oracle for the corresponding outputs. During the training process,
we fix all the weights and biases of the white-box network. Moreover,
for all the key bits in the preceding layers and the non- L key bits in
the i-th layer, we enforce Kil,j to be —1 (resp. 1) if the original Kj ; is 1
(resp. 0). Upon termination, we replace a L with a 0 if Kl’ ; is apositive
number and with a 1 otherwise.

However, the learning-based approach cannot guarantee absolute
correctness for the extracted key bits. Meanwhile, a single bit of error
can devastate our attack on subsequent layers. In this regard, we must
validate the correctness of K} before proceeding to the next layer.

3.7 Validating the Correctness of Key Vectors

From Lemma 1, the hyperplane induced by 5;41,; is uniquely deter-
mined by the key bits in layers 1 through i. Moreover, Lemma 3 proves
that hyperplanes are nearly always observable from the output nodes.
Leveraging these facts, we can devise an algorithm to check the cor-
rectness of K. Intuitively, if K}’ is correct, for a level-(i +1) hyperplane
of the white-box network, we can almost always find the exact hyper-
plane of the oracle network at the same location in the input space.
On the contrary, if Klf" is incorrect, it is almost impossible to find any
hyperplanes with the oracle network at that location, given the high
dimensionality of the input space.

Therefore, the key_vector_validation algorithm iterates through
all the neurons in the (i + 1)-th layer. For each neuron, the algorithm
searches through the white-box network for a witness x° to the in-
duced hyperplane. It then samples a set of points within a small neigh-
borhood of x°, queries the oracle for the corresponding outputs, and
verifies whether all the outputs are on the same linear surface. A hy-
perplane crossing the neighborhood must exist if those points belong
to more than one linear region. To tolerate uncertainties such that i)
an unrelated hyperplane coincides with the neighborhood, or ii) the
hyperplane is not sensitizable to the output, a key vector can pass the
validation if overlaps of hyperplanes are detected for a majority of the
neurons.

Validating the key vector for the last hidden layer requires special
treatment, as its next layer (the output layer) has no ReLU activation
functions. However, we can directly compare the outputs of the two
networks for a set of input examples. This is feasible because all
remaining key bits are already determined at the time.

3.8 The DNN Decryption Algorithm

Algorithm 2 The DNN Decryption Algorithm

1: Input: white-box network f, oracle network O

2: Output: a correct key K*

3: Let K* be a 2-D array with k rows

4 for1 <i<kdo > for each hidden layer
5 for1<j<ddo > for each neuron
6: if n; ; is key-protected then

7: L t K}, < key_bit_inference(r; ;) > §3.3
8: K[ « learning_attack(K}) > §3.6
9: while not key_vector_validation(K;) do > §3.7
10: K} «error_correction(K})

11: return K*

Algorithm 2 summarizes the main procedure of our attack algorithm.
The original decryption problem is successively broken down into
the decryption of a single hidden layer to minimize the sample and
computational complexities. This strategy is made possible because i)
all the preceding layers are already decrypted, and ii) the decryption
of the current layer is independent of the unknown key bits in the
subsequent layers.

For every hidden layer, the algorithm traverses all the key-protected
neurons and attempts the highly efficient key_bit_inference pro-
cedure (Line 7). Such an attempt may fail on a subset of the neurons.
In that case, the algorithm initiates the learning_attack to extract
these key bits (Line 8).

The algorithm checks the extracted key values K before it moves
to the next hidden layer (Line 9). If K} cannot pass the validation
due to the learning_attack, the algorithm enters a heuristic error
_correction procedure (Line 10). Concretely, it first computes the
confidence level for each key bit, defined as the absolute value of Kl’ j
from the learning_attack. A higher confidence level generally im-
plies that the learned key value is more likely to be correct. Throughout



its execution, the procedure maintains a counter of Hamming Distance,
whose initial value is 1. In ascending order of the confidence level,
the procedure attempts to flip each bit within the limit of Hamming
Distance. The counter is incremented by 1 if all attempts fail for the
current Hamming Distance.

The next theorem proves the correctness of the DNN decryption
algorithm.

THEOREM 4. The DNN decryption algorithm will eventually termi-
nate. Upon termination, it will always return a correct key.

PrROOF. Termination: The key_vector_validation procedure can
be executed at most 2/Xil times for the i-th hidden layer, because
each time the error_correction procedure eliminates one incorrect
assignment to Kj. Other procedures can be executed a finite number
of times.

Correctness: A row of K* is confirmed only when it passes the rigorous
key_vector_validation process. Therefore, the final K* must be
correct. ]

3.9 General Security Analysis for DNN Logic
Locking

The DNN decryption algorithm can be adapted to defeat a broad
category of logic locking schemes on DNN models. As far as we can
foresee, a defender can a) choose another arithmetic operator instead
of the negation operator; or b) modify a single element within the
weight or bias matrices instead of the pre-activation value; or ¢) embed
key bits to convolutional or max-pooling layers rather than fully
connected layers.

All these schemes can be reduced to the standard form that our
algorithm can easily handle. For case a), an adversary can propagate
the operator to the subsequent layers. For instance, as for a multi-
plication operator, an adversary can propagate the multiplier to all
the successive neurons. Then it can focus on only the fan-out cone in
the next hidden layer to extract the associated key bit. On the other
hand, for case b), modifying elements of A;l) or b;.l) only changes the
geometry of the hyperplane h; j, but not any of h; i, k # j. Similarly,
for case c), the modifications only affect the hyperplanes in a local
region. Because there is less inter-dependency between the protected
neurons in the same hidden layer, an adversary can further leverage a
divide-and-conquer strategy to minimize the attack complexity.

4 EXPERIMENTS

4.1 Implementation

We implement the DNN decryption algorithm with PyTorch [19]. We
use parallelism to accelerate its computation. For search_critical
_point and key_bit_inference, we initiate multiple instances of
these procedures simultaneously for multiple neurons on the same
hidden layer. For error_correction, we make several guesses of the
key vector at a time and execute key_vector_validation to verify
them in parallel. Besides, we use the built-in Jacobian matrix for any
computations related to the product weight matrix AW to achieve
high efficiency.

While the algorithms described in §3 assume a sequential DNN
architecture, it can be easily adapted to accommodate more diverse
network topologies, including residual connections and attention units.
Generally speaking, we process the hidden layers in a topological order.
If a hidden layer has multiple preceding layers, all key bits in those
layers must be processed beforehand.

As for the learning_attack, we substitute each Kl’j with a sigmoid
function. The sigmoid function has a [—-1, 1] range, which coincides

with that of a key bit. We choose the mean squared error between the
output vectors of the encrypted network and the oracle network as
the loss function. During training, we periodically settle down those
key bits that have reached the confidence threshold.

4.2 Experimental Setup

We assess the proposed algorithm on the following DNN architec-
tures: a) MLP, a multilayer perceptron with 2 hidden layers; b) LeNet,
a ReLU variant of LeNet-5 [14]; c) ResNet, the 18-layer version of
Residue Network [12]; and d) V-Transformer, a ReLU variant of Vision
Transformer [8] (ViT) with 12 self-attention blocks. We conduct all
experiments on a Linux workstation with a 2.4GHz CPU and an Nvidia
RTX A6000 graphics card.

We apply HPNN to encrypt the aforementioned DNNs. Given a
specific key size, we i) equally distribute the key bits to all designated
hidden layers, ii) embed key bits to a set of neurons randomly selected
from every hidden layer, and iii) assign a value for every key bit
uniformly at random. After that, we train the DNN models as functions
of the keys until they converge. We launch two types of attacks on
the resulting DNN models: a) a monolithic learning-based attack,
which only applies the method described in §3.6; and b) the proposed
comprehensive DNN decryption algorithm (Algorithm 2).

We use four metrics to measure the effectiveness and efficiency of
the attacks: a) accuracy, which is the percentage of correct predictions
on the testing dataset; b) fidelity [13], which is the percentage of exactly
recovered key bits; c) execution time; and d) query complexity, which is
the total number of queries made to the oracle network. Extracting a
model with high accuracy could facilitate IP piracy, whereas extracting
a model with high fidelity also enables adversarial attack. Table 1
shows our evaluation results. To compute the baseline accuracy, we
randomly generate 16 incorrect keys for every network model and
then compute the average of their accuracy.

4.3 The Monolithic Learning-based Attack

For every network model, this attack first generates a set of input
examples and then queries the oracle network for corresponding out-
put vectors. It terminates when either i) all key bits have reached
the confidence threshold, or ii) neither the accuracy nor the fidelity
increases for a number of consecutive epochs.

Table 1 shows that the learning-based attack is effective for smaller
networks with small key sizes, but becomes less effective as the key
size grows. For larger networks, the learning attack alone cannot
achieve high fidelity regardless of the key size. We tried various hyper-
parameter settings and got similar results. Hence, we resort to the
DNN decryption algorithm for large key sizes.

4.4 The DNN Decryption Attack

With an orchestration of the key_bit_inference, learning_attack,
key_vector_validation and error_correction procedures, our
proposed algorithm achieves 100% fidelity in all instances.

Figure 3 breaks down the total execution time among these pro-
cedures. The percentage of the time consumed by each procedure is
related to the network architecture. Since the MLP network is highly
contractive (784 input nodes and 256/64 neurons in the first/second
fully connected layer), key_bit_inference alone can easily decrypt
all three instances. Only a negligible amount of time is spent on
key_vector_validation. In contrast, all the remaining network ar-
chitectures are expansive at some locations. For LeNet, learning
_attack can recover almost all key bits. The remaining key bits are
recovered by key_vector_validation and error_correctionina
small amount of time. For ResNet and V-Transformer, learning_attack
is less effective due to larger model capacities. Therefore, most of



Table 1: Experiment results of attacks against logic locking on DNNs.

DNN Key (bits) Original ~ Baseline Monolithic Learning-based Attack DNN Decryption Attack
(Dataset) Accuracy Accuracy | Accuracy Fidelity Time (s) # Queries | Accuracy Fidelity Time (s) # Queries
MLP 32 98.1% 27.6% 98.1% 100.0% 2.70 1,000 98.1% 100.0% 0.18 156
(MNIST) 64 98.1% 10.4% 78.6% 93.8% 5.26 1,000 98.1% 100.0% 0.25 252
128 98.1% 7.5% 58.5% 87.6% 5.31 1,000 98.1% 100.0% 0.35 444
LeNet 32 99.0% 86.7% 99.0% 100.0% 9.16 2,000 99.0% 100.0% 6.48 1,166
(MNIST) 64 99.0% 49.9% 98.9% 96.9% 16.46 2,000 99.0% 100.0% 7.49 1,262
128 99.0% 16.4% 88.6% 85.9% 16.51 2,000 99.0% 100.0% 10.02 1,464
ResNet 64 95.2% 95.2% 95.2% 57.8% 1,138.69 10,000 95.2% 100.0% 256.16 17,296
(CIFAR-10) 128 95.2% 95.1% 95.2% 58.6%  1,308.11 10,000 95.2% 100.0% 346.54 28,096
196 95.2% 94.9% 95.1% 56.6%  1,807.58 10,000 95.2% 100.0%  1,246.71 122,744
V-Transformer 64 98.9% 98.7% 98.8% 56.2%  6,830.77 10,000 98.9% 100.0% 954.27 12,864
(CIFAR-10) 128 98.9% 98.4% 98.7% 54.7%  8,250.18 10,000 98.9% 100.0%  1,444.86 18,912
196 98.9% 98.0% 98.7% 54.6%  7,855.54 10,000 98.9% 100.0%  6,705.39 95,808
MLP LeNet ResNet V-Transformer REFERENCES

[ validation & correction

3 key bit inference [ learning attack
Figure 3: Breakdown of execution time among procedures for different

network architectures and key sizes.

the execution time is spent on key_vector_validation and error
_correction.

5 RELATED WORK

5.1 I/0 Attacks on Logic Locking

The SAT attack [27] and its SMT variant [4] are the most prevalent
and potent I/O attacks against logic locking. In every iteration, it
i) calls a SAT solver for a distinguishing input pattern, ii) queries
the oracle circuit for the corresponding output pattern, and iii) adds
the I/O pair and a fresh copy of the circuit to the SAT solver as a
new constraint. The attack terminates when no more distinguishing
input patterns exist, and a correct key can then be extracted from the
SAT solver. At a glance, the same method can be applied to the DNN
decryption problem. Unfortunately, a deep ReLU network cannot be
encoded as Boolean formulas but rather has to be encoded as mixed-
integer linear equalities. Due to this gap, attacking a locked DNN
model monolithically is not computationally feasible.

5.2 Reverse Engineering Deep ReLU Networks

Differential attacks [6, 13, 23] consistently query an oracle network to
recover the weights and biases of the original network. While these
studies provide valuable insights into deep ReLU networks, even the
state-of-the-art implementation [6] requires more than 22! queries to
partially reconstruct a DNN with less than 1,000 neurons. They are
also struggling with DNNs that have more than three hidden layers.

6 CONCLUSION

This paper presents the first attack on logic-encrypted DNNs using for-
mal techniques. It combines algebraic and learning-based approaches
to extract a correct key of a victim DNN. The experimental results
indicate that it can scale to large DNNs and complex network architec-
tures. Our findings suggest that binary key bits are vulnerable when
embedded in deep ReLU networks. We believe they should be embed-
ded in the computational units within AT accelerators, thus enabling
more correlations between key bits and more significant impacts on
the final outputs. We leave this problem to our future research.
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