
Evaluating the Security of Logic Locking
on Deep Neural Networks

You Li∗

you.li@u.northwestern.edu
Northwestern University

Evanston, IL, USA

Guannan Zhao∗

gnzhao@u.northwestern.edu
Northwestern University

Evanston, IL, USA

Yunqi He
yunqi.he@u.northwestern.edu
Northwestern University

Evanston, IL, USA

Hai Zhou
haizhou@northwestern.edu
Northwestern University

Evanston, IL, USA

ABSTRACT

Deep neural networks are susceptible to model piracy and adversarial

attacks when malicious end-users have full access to the model param-

eters. Recently, a logic locking scheme called HPNN has been proposed.

HPNN utilizes hardware root-of-trust to prevent end-users from ac-

cessing the model parameters. This paper investigates whether logic

locking is secure on deep neural networks. Specifically, it presents

a systematic I/O attack that combines algebraic and learning-based

approaches. This attack incrementally extracts key values from the

network to minimize sample complexity. Besides, it employs a rigorous

procedure to ensure the correctness of the extracted key values. Our

experiments demonstrate the accuracy and efficiency of this attack

on large networks with complex architectures. Consequently, we con-

clude that HPNN-style logic locking and its variants we can foresee

are insecure on deep neural networks.

CCS CONCEPTS

• Security and privacy→ Security in hardware.

KEYWORDS

IP protection, Logic locking, Reverse engineering neural networks

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in

various applications. However, DNN models are suffering from in-

tellectual property (IP) piracy and security threats. Adversaries are

motivated to extract the parameters of a DNN model for two main

reasons. Firstly, training a new model is expensive. a) Deep learning

is data-hungry, while the data can be proprietary or require enormous

efforts to collect; b) the expertise in tweaking the architecture, the

learning algorithm, and the hyper-parameters is essential for deep

learning; c) the training process demands substantial computational

resources and a long time. Secondly, the exposure of the model pa-

rameters poses severe threats to the security and confidentiality of

that model. With access to a leaked model, an adversary can launch a)

the evasion attack [5] and the data poisoning attack [26] to abuse or

deceive the victim model, or b) the inversion attack [9] to reconstruct

sensitive training examples from the model.

Nowadays, many AI tasks are executed on dedicated hardware

accelerators, such as TPU, NPU, GPGPU, and acceleration modules.

Accordingly, hardware root-of-trust has been adopted to protect intel-

lectual properties and mitigate vulnerabilities in DNNs. In this setting,

a secret key is stored on hardware in a tamper-proof memory [3], a

Trusted Platform Module (TPM) [20], or a Hardware Security Module

∗Equal contribution.
This work is partially supported by the NSF under grants 2113704 and 2148177.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the Owner/Author.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3658248

(HSM) [25]. An adversary cannot retrieve the stored key directly, even

with physical access to the hardware. An incorrect key will signifi-

cantly alter the functionality of the DNN model, thus reducing the

prediction accuracy and thwarting information leakage. A combina-

tion of a hardware accelerator, a key storage module, and a pre-stored

key serves as a copy of license to access the service provided by the IP

owner. A DNNmodel and its future parameter updates can be released

publicly on cloud platforms. Only the subscribers who have acquired

valid licenses can fully restore the functionality of the DNN model.

Logic locking [24, 27] is a prominent and well-established technique

to safeguard hardware designs. It embeds binary key bits into an

integrated circuit’s netlist (a network of logic gates). The original

functionality of that circuit can be restored only when a correct key is

inserted. Logic locking achieves four objectives simultaneously [32]: i)

locking robustness ensures that inferring a correct key is prohibitively

expensive; ii) structural robustness means that removing or bypassing

the locking module is impossible; iii) locking efficiency implies that

the locking scheme introduces only a minimal overhead and requires

only a small number of key bits; iv) end-to-end protection guarantees

that the design is protected from all parties in the supply chain.

Hardware Protected Neural Network (HPNN) [7] is a pioneering

work that applies the methodology of logic locking on DNN models.

HPNN selects a small subset of neurons in the hidden layers of the DNN

as the key-protected neurons. A key bit is associated with every such

neuron, controlling whether to flip the sign of the pre-activation value.

A DNN model is trained as a function of a pre-selected key pattern.

In this way, model parameters and key bits are closely entangled.

HPNN has addressed the limitations of several existing techniques.

For example, DNN watermarking [1, 11] cannot prevent illegal private

uses. Input, output, and convolutional kernel obfuscations [10, 18]

are susceptible to removal attacks and unauthorized reproduction by

end users, because their key bits are not entangled with learnable

parameters. General public-key encryption on model parameters [30]

will incur huge overheads.

It is demonstrated that reverse engineering HPNN through training

is not worthwhile: starting from a random incorrect key, an adversary

has to spend even more computational resources to fine-tune the

model than training one from scratch [7]. Other approximate attacks,

including a well-crafted attack based on genetic algorithm [2], achieve

low accuracy on HPNN-encrypted networks. However, our study

reveals that an adversary can directly recover the correct key with

an I/O attack. Specifically, a malicious end-user can query a working

model it possesses with carefully selected input examples, and thus

infer the associated key bits from the outputs. In this way, it can

replicate the model without the permission of the IP owner.

This paper presents a systematic attack algorithm against HPNN

and other feasible encryption schemes we can foresee that use logic

locking. It leverages the hierarchical nature of DNNs and the sym-

metric property of the ReLU activation function to reduce sample

complexity significantly. In addition, it employs a rigorous validation

and correction mechanism to ensure the correctness of the extracted

key. Experiments show that our attack algorithm can scale to large

DNNs and generalize to complex network architectures.

ReLU

ReLU

i-th hidden layer

x

f(x)

active regioninactive region

critical point (x○)

(a) (b)
Figure 1: (a) The Rectified Linear Unit (ReLU) activation function. The

function is at the critical point if its input equals 0. (b) An unprotected

neuron (upper) and a protected neuron (lower) of HPNN. The inserted

flipping unit negates the pre-activation value of the protected neuron

when the key value equals 1.

Our main contributions are:

• We establish a theoretical framework for security analysis of logic-

encrypted deep ReLU networks;

• We develop an algebraic approach to infer the value of a single key

bit when the network is contractive;

•We propose a learning-based approach as well as a validation and

correction procedure to extract the key value of a hidden layer when

the network is expansive;

• We evaluate the accuracy, scalability, and generality of the attack

algorithm on practical networks.

2 BACKGROUND

2.1 Preliminaries

A DNN model can be represented as a function 𝑓 : X → Y, which

takes inputs from the input space X ⊆ R𝑃 and returns outputs to

the output space Y ⊆ R𝑄 . A 𝑘-layer deep neural network [6] 𝑓 is

an alternating sequence of linear transformations and a total of 𝑘
non-linear activation functions: 𝑓 = 𝑓𝑘+1 ◦ 𝜎 ◦ 𝑓𝑘 ◦ · · · ◦ 𝜎 ◦ 𝑓1. In this

equation, the 𝑖-th hidden layer is given by a linear transformation 𝑓𝑖
followed by an element-wise ReLU activation function 𝜎 . Specifically,

𝑓𝑖 (𝑥𝑖−1) = 𝐴(𝑖)𝑥𝑖−1+𝑏
(𝑖) is an affine transformation, in which the post-

activation hidden state 𝑥𝑖−1 ∈ R𝑑𝑖−1 is a 𝑑𝑖−1-dimensional vector, the

weights 𝐴(𝑖) ∈ R𝑑𝑖×𝑑𝑖−1 is a 𝑑𝑖 by 𝑑𝑖−1 matrix, and the biases 𝑏𝑖 ∈ R
𝑑𝑖

is a 𝑑𝑖 -dimensional vector. Notice that the final output layer 𝑓𝑘+1 is
not followed by activation functions. All parameters, represented as

𝐴(𝑖) and 𝑏 (𝑖) for 𝑖 ∈ 1, · · · , 𝑘 + 1, can be updated during training.

The above formulation assumes that all the hidden layers are fully

connected layers. In reality, a neural network may also contain convo-

lutional and pooling layers, residual connections [12], and attention

units [28], but such a network can also be represented as linear trans-

formations locally. Additionally, a softmax layer can be attached to the

output layer. In this case, given an input example 𝑥 ∈ X, we call 𝑥𝑘+1
the logits of 𝑓 (𝑥) and 𝑦 = softmax (𝑥𝑘+1) the output vector of 𝑓 (𝑥).

Each component of 𝜎 is a ReLU activation function [17] defined

as 𝜙 (𝑧) = max(𝑧, 0). ReLU has established itself as the default choice

for deep learning because DNNs with ReLUs can be optimized more

efficiently [21]. As shown in Figure 1(a), a ReLU is a piecewise linear

function. We denote the 𝑗-th neuron in the 𝑖-th hidden layer as 𝜂𝑖, 𝑗 .

It computes 𝑥𝑖, 𝑗 = 𝜙 (𝐴
(𝑖)
𝑗 𝑥𝑖−1 + 𝑏

(𝑖)
𝑗), where 𝐴

(𝑖)
𝑗 is the 𝑗-th row

of 𝐴(𝑖) and 𝑏
(𝑖)
𝑗 is the 𝑗-th element of 𝑏 (𝑖) . Particularly, we refer to

𝑧𝑖, 𝑗 = 𝐴
(𝑖)
𝑗 𝑥𝑖−1 + 𝑏

(𝑖)
𝑗 as the pre-activation value of 𝜂𝑖, 𝑗 . We say that

𝜂𝑖, 𝑗 is at its critical point if 𝑧𝑖, 𝑗 = 0. Moreover, a neuron is inactive if

𝑧𝑖, 𝑗 ≤ 0 and is active if 𝑧𝑖, 𝑗 > 0.

2.2 HPNN Implementation

The actual implementation of HPNN is depicted in Figure 1(b). HPNN

embeds several flipping units into a DNN model or the underlying

hardware accelerator. Every unit modifies the pre-activation value of

the associated neuron:

𝑧𝑖, 𝑗 = (−1)𝐾𝑖,𝑗 (𝐴
(𝑖)
𝑗 𝑥𝑖−1 + 𝑏

(𝑖)
𝑗), 𝐾𝑖, 𝑗 ∈ {0, 1}. (1)

We call (−1)𝐾𝑖,𝑗 ∈ {+1,−1} the row sign of 𝜂𝑖, 𝑗 . While the key is fixed

during the training, all the weights and biases of the model are updated

depending on the value of the key.

2.3 Adversary Model

The adversary is a malicious end-user or insider who can download

the model architecture and all the parameters from a cloud platform or

receive them from the IP owner. The adversary cannot read or probe

the key from an instance of the hardware accelerator because it is

stored in a tamper-proofmemory or a trusted platformmodule. Despite

this, once the model is installed onto the hardware, the adversary can

query this oracle model with arbitrary inputs a reasonable number of

times. It can then observe the logits or the output vector produced by

the model.

This adversary model is equivalent to the standard model for logic

locking [27, 32]. It is even weaker than the assumptions made in the

HPNN paper [7], given that it does not require access to a subset of

the training data.

The adversary aims to obtain a correct key, denoted as 𝐾∗. When

such a key is embedded into the hardware, the encrypted DNN model

should be functionally equivalent to the original model. Once the

adversary acquires such a key, it can replicate and distribute the DNN

model without permission from the IP owner. The adversary can also

compromise a remote mission-critical system that uses the same DNN

model by launching an adversarial attack on the local model.

3 ALGORITHM

3.1 Overview

We propose a systematic attack algorithm for all feasible DNN logic

locking schemes we can foresee. It is based on the mathematical frame-

work we established for the security analysis of deep ReLU networks

(§3.2).

The main algorithm leverages divide-and-conquer to minimize sam-

ple and computational complexities (§3.8). Starting from the first hid-

den layer, it targets one layer in every iteration. For each hidden layer,

the algorithm attempts to infer key bits one at a time with an accurate

and lightweight algebraic approach (§3.3). When such an attempt fails

for some key bits (§3.4), the algorithm initiates a learning-based attack

to predict the key values (§3.6). Once all the key values are extracted

for a hidden layer, the algorithm executes a rigorous validation and

correction procedure to fix potential errors (§3.7). According to our ex-

periments, the attack algorithm can scale to large DNNs and generalize

to complex network architectures.

Finally, §3.9 explains how the attack algorithm can be applied to

general logic-encrypted DNNs. As such, we conclude that standard

logic locking is insecure on DNNs.

3.2 Geometric View of Deep ReLU Networks

We exploit the geometric properties of DNN models to launch our

attack. Each neuron induces a (𝑃 − 1)-dimensional hyperplane in the

𝑃-dimensional input space of that model. The hyperplane comprises

points in the input space such that the neuron’s corresponding ReLU

activation function is at the critical point. Figure 2(b) displays the

hyperplanes of a 2-layer DNN model.

The hyperplanes of a DNN model split the input space into disjoint

linear regions. Given an input example, one can compute the pre-

activation values for all neurons of the model through a single forward

pass. We use an activation pattern vector𝑚 (𝑖) ∈ {0, 1}𝑑𝑖 to represent

x0

x1

1

1

0

0

1

0

x0

x1

y

(a) (b)

Figure 2: (a) Activation statuses of a 2-layer DNN model. The corre-

sponding activation patterns are𝑚 (1) = (1 1 0) and𝑚 (2) = (0 1 0) . The

dashed path represents a sensitizable path from an intermediate node

to the output node. (b) Geometric view of hyperplanes induced by the

DNN model in (a). Each dashed line (resp. bent solid line) is induced by

a ReLU in the first (resp. second) hidden layer.

the activation statuses for all the neurons in the 𝑖-th hidden layer. The

𝑗-th element of that vector,𝑚
(𝑖)
𝑗 , is 1 if𝐴

(𝑖)
𝑗 𝑥𝑖−1+𝑏

(𝑖)
𝑗 > 0, otherwise it

is 0. Figure 2(a) shows a 2-layer DNN model and its activation patterns

for an input example. Two input examples are within the same linear

region if they share the same activation patterns across all hidden

layers.

Every linear region is associatedwith a unique affine transformation

from the input space [6]. Given the activation patterns of a linear

region, one can recursively compute the weights and the biases of the

transformation, layer by layer:

𝑀
(𝑖)
𝑗,: =𝑚 (𝑖)

𝑗 , 𝐴(1) = 𝐴(1) , 𝑏 (1) = 𝑏 (1) , (2)

𝐴(𝑖) = 𝐴(𝑖) (𝐴(𝑖−1) ∗𝑀 (𝑖−1)), (3)

𝑏 (𝑖) = 𝐴(𝑖) (𝑏 (𝑖−1) ∗𝑚 (𝑖−1)) + 𝑏 (𝑖) . (4)

In the above equations, ∗ denotes element-wise multiplication be-

tween matrices, and𝑀 (𝑖) is the mask matrix obtained by broadcasting

𝑚 (𝑖) to all columns of 𝐴(𝑖) . Intuitively, according to the activation

patterns, the above recursive formulas select either the inactive or the

active region for all ReLU activation functions. We refer to 𝐴(𝑖) (resp.

𝑏 (𝑖)) as the product weight matrix (resp. product bias vector) of a level-𝑖
linear region.

It can be seen that the linear regions exhibit a hierarchical structure:

a region in one layer depends upon its predecessor regions in the

previous layers. Hence, we can derive the following lemma for HPNN:

Lemma 1. The hyperplane induced by 𝜂𝑖, 𝑗 is exclusively determined

by 𝐴(1) , · · · , 𝐴(𝑖) , 𝑏 (1) , · · · , 𝑏 (𝑖) and the row signs in layers 1 through

𝑖 − 1.

Proof. The hyperplane induced by 𝜂𝑖, 𝑗 consists of those points

𝑥0 in the input space such that ±(𝐴
(𝑖)
𝑗 𝑥𝑖−1 + 𝑏

(𝑖)
𝑗) = 0, where 𝑥𝑖−1 =

(𝐴(𝑖−1)𝑥0 + 𝑏 (𝑖−1)) ∗ 𝑚 (𝑖−1) if 𝑖 > 1. According to the definition

of 𝑚 (𝑖) and Formulas 1-4, 𝑥𝑖−1 only depends on 𝑥0 itself and the

weights, biases and row signs of layers 1 through 𝑖 − 1. Notice that the

hyperplane does not depend on any row signs in layer 𝑖 . �

3.3 Key Inference with Basis Vector

Notice that the ReLU function is muted in the inactive region. Let us

suppose that an adversary has the capabilities to i) find a witness to

the hyperplane induced by a designated ReLU function, ii) move along

a direction from the hyperplane so that the inputs to any other ReLU

functions on the same hidden layer remain unchanged, and iii) ensure

that the designated ReLU function is sensitizable to the output nodes.

The adversary can then immediately infer the key bit associated with

the designated neuron. In a nutshell, if the output of the DNN model

changes accordingly, the designated ReLU function should be moving

in the active region. If it remains unchanged, the ReLU stays inactive.

Algorithm 1 The Key Bit Inference Function

1: Input: white-box network 𝑓 , oracle network O, key-protected

neuron 𝜂𝑖, 𝑗 , decrypted key values of preceding layers 𝐾∗
1,· · ·,𝐾

∗
𝑖−1

2: Output: 𝐾∗
𝑖, 𝑗

3: 𝑥◦ ← search_critical_point(𝜂𝑖, 𝑗) ⊲ §3.5

4: Observe𝑚 (1) , · · · ,𝑚 (𝑖−1) with a forward pass from 𝑥◦

5: Compute 𝐴(𝑖) according to Formulas 2-3

6: 𝑒𝑖, 𝑗 ← the 𝑗-th standard basis vector in R𝑑𝑖

7: Find a 𝑣𝑖, 𝑗 using least squares s.t. 𝐴
(𝑖)𝑣𝑖, 𝑗 = 𝑒𝑖, 𝑗

8: if 𝑣𝑖, 𝑗 does not exist then return ⊥

9: if O(𝑥◦) ≠ O(𝑥◦ + 𝜖 · 𝑣𝑖, 𝑗) then return 0

10: if O(𝑥◦) ≠ O(𝑥◦ − 𝜖 · 𝑣𝑖, 𝑗) then return 1

11: return ⊥

Formally, let us consider the pre-activation hidden space of the

𝑖-th hidden layer, R𝑑𝑖 . Let 𝑒𝑖, 𝑗 denote the 𝑗-th standard basis vector

of R𝑑𝑖 and let 𝑧◦𝑖, 𝑗 ∈ R
𝑑𝑖 be a critical point of 𝜂𝑖, 𝑗 . With a sufficiently

small 𝜖 [6], it is guaranteed that the 𝜖-neighborhood of 𝑧◦𝑖, 𝑗 does not

intersect with any hyperplanes induced by other neurons. In other

words, all the points in this neighborhood belong to the same linear

region. Moving along 𝑒𝑖, 𝑗 within the neighborhood can only change

𝑧𝑖, 𝑗 but not any other pre-activation values of the same hidden layer

because, by definition, 𝑒𝑖, 𝑗 is parallel to the 𝑗-th coordinate of R𝑑𝑖 and

orthogonal to any other coordinates. Therefore, we can derive the

following lemma:

Lemma 2. Let 𝑒𝑖, 𝑗 represent the 𝑗-th standard basis vector of R𝑑𝑖 ,

𝑣𝑖, 𝑗 ∈ R𝑃 represent a pre-image of 𝑒𝑖, 𝑗 , and 𝑥
◦(𝜂𝑖, 𝑗) ∈ R𝑃 represent

a critical point of 𝜂𝑖, 𝑗 . Then 𝐾
∗
𝑖, 𝑗 = 0 implies that O(𝑥◦(𝜂𝑖, 𝑗) − 𝜖 ·

𝑣𝑖, 𝑗) = O(𝑥◦(𝜂𝑖, 𝑗)), and 𝐾
∗
𝑖, 𝑗 = 1 implies that O(𝑥◦(𝜂𝑖, 𝑗) + 𝜖 · 𝑣𝑖, 𝑗) =

O(𝑥◦(𝜂𝑖, 𝑗)).

Proof. If 𝐾∗
𝑖, 𝑗 = 0, the pre-activation value 𝑧𝑖, 𝑗 (𝑥) is within the

inactive region of the ReLU activation function for both 𝑥1 = 𝑥◦(𝜂𝑖, 𝑗)
and 𝑥2 = 𝑥◦(𝜂𝑖, 𝑗) − 𝜖 · 𝑣𝑖, 𝑗 . Besides, moving along 𝑣𝑖, 𝑗 does not change
any other pre-activation values of the same hidden layer, as 𝑒𝑖, 𝑗 is
orthogonal to other coordinates in the hidden space. Because all el-

ements of 𝑧𝑖 remain unchanged, the oracle network must produce

identical outputs for both input samples.

The same reasoning applies to the 𝐾∗
𝑖, 𝑗 = 1 case. �

Algorithm 1 illustrates how we implement the key bit inference

procedure. It starts by finding a critical point 𝑥◦ of the targeted neuron
(Line 3). Then it computes the product weight matrix associated with

the level-𝑖 linear region where 𝑥◦ is located (Line 4-5). Given the

product weight matrix 𝐴(𝑖) , we are able to compute the pre-image

vector 𝑣𝑖, 𝑗 ∈ R
𝑃 for 𝑒𝑖, 𝑗 . In practice, we find the pre-image with least

squares (Line 7), which is a built-in function provided by statistics

and deep learning frameworks such as SciPy [29] and PyTorch [19].

Finally, the algorithm determines the key bit through queries to the

oracle network (Line 9-10). Notice that the statements on Line 9 and

Line 10 are contra-positive to their counterparts in Lemma 2. In some

rare cases (e.g., when the condition of Lemma 3 does not hold), all the

three values obtained from the oracle queries are close to each other.

In that circumstance, we attempt to find another 𝑥◦ and start over the

entire procedure.

3.4 Sensitization to Input and Output Spaces

In this section, we investigate the sensitization problems surrounding

our attack algorithm. First, does a pre-image always exist for every

basis vector and every input example? In reality, a DNN can be expan-

sive [22] at some specific locations. In a nutshell, if 𝑑𝑙 < 𝑑𝑖 for some

𝑙 < 𝑖 , then 𝑣𝑖, 𝑗 does not exist for every 𝑒𝑖, 𝑗 because 𝐴
(𝑖) is not an onto

mapping. Furthermore, inactive neurons reduce the chance of finding

a 𝑣𝑖, 𝑗 . For a randomly initialized network, about half of the neurons in

a hidden layer are inactive for a given input example. This situation

worsens when the network encounters a “dying ReLU” problem [15].

Hence, we need a complementary approach to address these issues.

Second, is every hyperplane observable from the primary output

nodes? With a little abuse of terminology, we refer to every flat piece

of a bent hyperplane as a boundary. Intuitively, a boundary may be

covered by subsequent layers. The following lemma discusses when a

boundary is sensitizable to an output:

Lemma 3. Consider a set of compatible activation patterns and the

corresponding linear region. In addition, consider a boundary of the

hyperplane induced by 𝜂𝑖, 𝑗 on the linear region. This boundary is sensi-

tizable to an output node 𝑦, if there exists a consecutive path from 𝜂𝑖, 𝑗
(exclusive) to 𝑦 such that all neurons along the path are active.

For instance, in Figure 2(a), the last neuron in the first hidden

layer is observable from 𝑦 because such a consecutive path to 𝑦 exists

from that neuron. In a modern DNN architecture [16], most neurons

in hidden layers have multiple successor neurons. Consequently, an

intermediate neuron is unlikely to have no sensitizable path to any

output nodes.

3.5 Finding Critical Points of a Neuron

Algorithm 1 relies on an essential utility function to find a witness

𝑥◦ ∈ X to a designated hyperplane. As discussed in §3.2, a hyperplane

generally has 𝑃 − 1 dimensions. As a result, a 1-dimensional line is

likely to intersect with the hyperplane in the input space at least

once [31]. In addition, Lemma 1 states that the hyperplane of a neuron

is exclusively determined by the key bits in the preceding layers.

Because our algorithm proceeds layer by layer, the current information

in the white-box network 𝑓 is sufficient for our purpose.

The search_critical_point algorithm starts by randomly select-

ing a straight line in the input space. Afterward, it draws random

samples along the line and tracks the pre-activation values 𝑧𝑖, 𝑗 of the
associated neuron 𝜂𝑖, 𝑗 . Once it detects two consecutive samples that

yield opposite signs for 𝑧𝑖, 𝑗 , it performs a standard binary search on

the line segment between the two samples. Upon completion, it finds

a sample on the designated hyperplane.

3.6 Learning-based Attack

The key_bit_inference procedure may not be successful for every

key bit due to the problems mentioned in §3.4. In that circumstance,

𝐾∗
𝑖 contains ⊥ elements. We perform a supervised learning_attack

on those remaining bits.

We first convert an HPNN-encrypted network model to a contin-

uous function. Particularly, we substitute every flipping unit with

a scalar multiplication operator. This operator multiplies the pre-

activation value 𝑧𝑖, 𝑗 with a real number 𝐾 ′
𝑖, 𝑗 ∈ [−1, 1]. We then create

a training dataset using the oracle network. Specifically, we randomly

generate a set of unlabeled input examples 𝑥1, · · · , 𝑥𝑛 ∈ X and query

the oracle for the corresponding outputs. During the training process,

we fix all the weights and biases of the white-box network. Moreover,

for all the key bits in the preceding layers and the non-⊥ key bits in

the 𝑖-th layer, we enforce 𝐾 ′
𝑖, 𝑗 to be −1 (resp. 1) if the original 𝐾𝑖, 𝑗 is 1

(resp. 0). Upon termination, we replace a ⊥ with a 0 if 𝐾 ′
𝑖, 𝑗 is a positive

number and with a 1 otherwise.

However, the learning-based approach cannot guarantee absolute

correctness for the extracted key bits. Meanwhile, a single bit of error

can devastate our attack on subsequent layers. In this regard, we must

validate the correctness of 𝐾∗
𝑖 before proceeding to the next layer.

3.7 Validating the Correctness of Key Vectors

From Lemma 1, the hyperplane induced by 𝜂𝑖+1, 𝑗 is uniquely deter-

mined by the key bits in layers 1 through 𝑖 . Moreover, Lemma 3 proves

that hyperplanes are nearly always observable from the output nodes.

Leveraging these facts, we can devise an algorithm to check the cor-

rectness of𝐾∗
𝑖 . Intuitively, if 𝐾

∗
𝑖 is correct, for a level-(𝑖 +1) hyperplane

of the white-box network, we can almost always find the exact hyper-

plane of the oracle network at the same location in the input space.

On the contrary, if 𝐾∗
𝑖 is incorrect, it is almost impossible to find any

hyperplanes with the oracle network at that location, given the high

dimensionality of the input space.

Therefore, the key_vector_validation algorithm iterates through

all the neurons in the (𝑖 + 1)-th layer. For each neuron, the algorithm

searches through the white-box network for a witness 𝑥◦ to the in-

duced hyperplane. It then samples a set of points within a small neigh-

borhood of 𝑥◦, queries the oracle for the corresponding outputs, and
verifies whether all the outputs are on the same linear surface. A hy-

perplane crossing the neighborhood must exist if those points belong

to more than one linear region. To tolerate uncertainties such that i)

an unrelated hyperplane coincides with the neighborhood, or ii) the

hyperplane is not sensitizable to the output, a key vector can pass the

validation if overlaps of hyperplanes are detected for a majority of the

neurons.

Validating the key vector for the last hidden layer requires special

treatment, as its next layer (the output layer) has no ReLU activation

functions. However, we can directly compare the outputs of the two

networks for a set of input examples. This is feasible because all

remaining key bits are already determined at the time.

3.8 The DNN Decryption Algorithm

Algorithm 2 The DNN Decryption Algorithm

1: Input: white-box network 𝑓 , oracle network O

2: Output: a correct key 𝐾∗

3: Let 𝐾∗ be a 2-D array with 𝑘 rows

4: for 1 ≤ 𝑖 ≤ 𝑘 do ⊲ for each hidden layer

5: for 1 ≤ 𝑗 ≤ 𝑑𝑖 do ⊲ for each neuron

6: if 𝜂𝑖, 𝑗 is key-protected then

7: 𝐾∗
𝑖, 𝑗 ← key_bit_inference(𝜂𝑖, 𝑗) ⊲ §3.3

8: 𝐾∗
𝑖 ← learning_attack(𝐾∗

𝑖) ⊲ §3.6
9: while not key_vector_validation(𝐾∗

𝑖) do ⊲ §3.7
10: 𝐾∗

𝑖 ← error_correction(𝐾∗
𝑖)

11: return 𝐾∗

Algorithm 2 summarizes themain procedure of our attack algorithm.

The original decryption problem is successively broken down into

the decryption of a single hidden layer to minimize the sample and

computational complexities. This strategy is made possible because i)

all the preceding layers are already decrypted, and ii) the decryption

of the current layer is independent of the unknown key bits in the

subsequent layers.

For every hidden layer, the algorithm traverses all the key-protected

neurons and attempts the highly efficient key_bit_inference pro-

cedure (Line 7). Such an attempt may fail on a subset of the neurons.

In that case, the algorithm initiates the learning_attack to extract

these key bits (Line 8).

The algorithm checks the extracted key values 𝐾∗
𝑖 before it moves

to the next hidden layer (Line 9). If 𝐾∗
𝑖 cannot pass the validation

due to the learning_attack, the algorithm enters a heuristic error
_correction procedure (Line 10). Concretely, it first computes the

confidence level for each key bit, defined as the absolute value of 𝐾 ′
𝑖, 𝑗

from the learning_attack. A higher confidence level generally im-

plies that the learned key value is more likely to be correct. Throughout

its execution, the procedure maintains a counter of Hamming Distance,

whose initial value is 1. In ascending order of the confidence level,

the procedure attempts to flip each bit within the limit of Hamming

Distance. The counter is incremented by 1 if all attempts fail for the

current Hamming Distance.

The next theorem proves the correctness of the DNN decryption

algorithm.

Theorem 4. The DNN decryption algorithm will eventually termi-

nate. Upon termination, it will always return a correct key.

Proof. Termination: The key_vector_validation procedure can

be executed at most 2 |𝐾𝑖 | times for the 𝑖-th hidden layer, because

each time the error_correction procedure eliminates one incorrect

assignment to 𝐾𝑖 . Other procedures can be executed a finite number

of times.

Correctness: A row of 𝐾∗ is confirmed only when it passes the rigorous

key_vector_validation process. Therefore, the final 𝐾∗ must be

correct. �

3.9 General Security Analysis for DNN Logic
Locking

The DNN decryption algorithm can be adapted to defeat a broad

category of logic locking schemes on DNN models. As far as we can

foresee, a defender can a) choose another arithmetic operator instead

of the negation operator; or b) modify a single element within the

weight or bias matrices instead of the pre-activation value; or c) embed

key bits to convolutional or max-pooling layers rather than fully

connected layers.

All these schemes can be reduced to the standard form that our

algorithm can easily handle. For case a), an adversary can propagate

the operator to the subsequent layers. For instance, as for a multi-

plication operator, an adversary can propagate the multiplier to all

the successive neurons. Then it can focus on only the fan-out cone in

the next hidden layer to extract the associated key bit. On the other

hand, for case b), modifying elements of 𝐴
(𝑖)
𝑗 or 𝑏

(𝑖)
𝑗 only changes the

geometry of the hyperplane ℎ𝑖, 𝑗 , but not any of ℎ𝑖,𝑘 , 𝑘 ≠ 𝑗 . Similarly,

for case c), the modifications only affect the hyperplanes in a local

region. Because there is less inter-dependency between the protected

neurons in the same hidden layer, an adversary can further leverage a

divide-and-conquer strategy to minimize the attack complexity.

4 EXPERIMENTS

4.1 Implementation

We implement the DNN decryption algorithm with PyTorch [19]. We

use parallelism to accelerate its computation. For search_critical
_point and key_bit_inference, we initiate multiple instances of

these procedures simultaneously for multiple neurons on the same

hidden layer. For error_correction, we make several guesses of the

key vector at a time and execute key_vector_validation to verify

them in parallel. Besides, we use the built-in Jacobian matrix for any

computations related to the product weight matrix 𝐴(𝑖) to achieve

high efficiency.

While the algorithms described in §3 assume a sequential DNN

architecture, it can be easily adapted to accommodate more diverse

network topologies, including residual connections and attention units.

Generally speaking, we process the hidden layers in a topological order.

If a hidden layer has multiple preceding layers, all key bits in those

layers must be processed beforehand.

As for the learning_attack, we substitute each𝐾 ′
𝑖, 𝑗 with a sigmoid

function. The sigmoid function has a [−1, 1] range, which coincides

with that of a key bit. We choose the mean squared error between the

output vectors of the encrypted network and the oracle network as

the loss function. During training, we periodically settle down those

key bits that have reached the confidence threshold.

4.2 Experimental Setup

We assess the proposed algorithm on the following DNN architec-

tures: a) MLP, a multilayer perceptron with 2 hidden layers; b) LeNet,

a ReLU variant of LeNet-5 [14]; c) ResNet, the 18-layer version of

Residue Network [12]; and d) V-Transformer, a ReLU variant of Vision

Transformer [8] (ViT) with 12 self-attention blocks. We conduct all

experiments on a Linux workstation with a 2.4GHz CPU and an Nvidia

RTX A6000 graphics card.

We apply HPNN to encrypt the aforementioned DNNs. Given a

specific key size, we i) equally distribute the key bits to all designated

hidden layers, ii) embed key bits to a set of neurons randomly selected

from every hidden layer, and iii) assign a value for every key bit

uniformly at random. After that, we train the DNNmodels as functions

of the keys until they converge. We launch two types of attacks on

the resulting DNN models: a) a monolithic learning-based attack,

which only applies the method described in §3.6; and b) the proposed

comprehensive DNN decryption algorithm (Algorithm 2).

We use four metrics to measure the effectiveness and efficiency of

the attacks: a) accuracy, which is the percentage of correct predictions

on the testing dataset; b) fidelity [13], which is the percentage of exactly

recovered key bits; c) execution time; and d) query complexity, which is

the total number of queries made to the oracle network. Extracting a

model with high accuracy could facilitate IP piracy, whereas extracting

a model with high fidelity also enables adversarial attack. Table 1

shows our evaluation results. To compute the baseline accuracy, we

randomly generate 16 incorrect keys for every network model and

then compute the average of their accuracy.

4.3 The Monolithic Learning-based Attack

For every network model, this attack first generates a set of input

examples and then queries the oracle network for corresponding out-

put vectors. It terminates when either i) all key bits have reached

the confidence threshold, or ii) neither the accuracy nor the fidelity

increases for a number of consecutive epochs.

Table 1 shows that the learning-based attack is effective for smaller

networks with small key sizes, but becomes less effective as the key

size grows. For larger networks, the learning attack alone cannot

achieve high fidelity regardless of the key size. We tried various hyper-

parameter settings and got similar results. Hence, we resort to the

DNN decryption algorithm for large key sizes.

4.4 The DNN Decryption Attack

With an orchestration of the key_bit_inference, learning_attack,
key_vector_validation and error_correction procedures, our

proposed algorithm achieves 100% fidelity in all instances.

Figure 3 breaks down the total execution time among these pro-

cedures. The percentage of the time consumed by each procedure is

related to the network architecture. Since the MLP network is highly

contractive (784 input nodes and 256/64 neurons in the first/second

fully connected layer), key_bit_inference alone can easily decrypt

all three instances. Only a negligible amount of time is spent on

key_vector_validation. In contrast, all the remaining network ar-

chitectures are expansive at some locations. For LeNet, learning
_attack can recover almost all key bits. The remaining key bits are

recovered by key_vector_validation and error_correction in a

small amount of time. For ResNet andV-Transformer, learning_attack
is less effective due to larger model capacities. Therefore, most of

Table 1: Experiment results of attacks against logic locking on DNNs.

DNN
Key (bits)

Original Baseline Monolithic Learning-based Attack DNN Decryption Attack

(Dataset) Accuracy Accuracy Accuracy Fidelity Time (s) # Queries Accuracy Fidelity Time (s) # Queries

MLP
32 98.1% 27.6% 98.1% 100.0% 2.70 1,000 98.1% 100.0% 0.18 156

(MNIST)
64 98.1% 10.4% 78.6% 93.8% 5.26 1,000 98.1% 100.0% 0.25 252

128 98.1% 7.5% 58.5% 87.6% 5.31 1,000 98.1% 100.0% 0.35 444

LeNet
32 99.0% 86.7% 99.0% 100.0% 9.16 2,000 99.0% 100.0% 6.48 1,166

(MNIST)
64 99.0% 49.9% 98.9% 96.9% 16.46 2,000 99.0% 100.0% 7.49 1,262
128 99.0% 16.4% 88.6% 85.9% 16.51 2,000 99.0% 100.0% 10.02 1,464

ResNet
64 95.2% 95.2% 95.2% 57.8% 1,138.69 10,000 95.2% 100.0% 256.16 17,296

(CIFAR-10)
128 95.2% 95.1% 95.2% 58.6% 1,308.11 10,000 95.2% 100.0% 346.54 28,096
196 95.2% 94.9% 95.1% 56.6% 1,807.58 10,000 95.2% 100.0% 1,246.71 122,744

V-Transformer
64 98.9% 98.7% 98.8% 56.2% 6,830.77 10,000 98.9% 100.0% 954.27 12,864

(CIFAR-10)
128 98.9% 98.4% 98.7% 54.7% 8,250.18 10,000 98.9% 100.0% 1,444.86 18,912
196 98.9% 98.0% 98.7% 54.6% 7,855.54 10,000 98.9% 100.0% 6,705.39 95,808

Figure 3: Breakdown of execution time among procedures for different

network architectures and key sizes.

the execution time is spent on key_vector_validation and error
_correction.

5 RELATEDWORK

5.1 I/O Attacks on Logic Locking

The SAT attack [27] and its SMT variant [4] are the most prevalent

and potent I/O attacks against logic locking. In every iteration, it

i) calls a SAT solver for a distinguishing input pattern, ii) queries

the oracle circuit for the corresponding output pattern, and iii) adds

the I/O pair and a fresh copy of the circuit to the SAT solver as a

new constraint. The attack terminates when no more distinguishing

input patterns exist, and a correct key can then be extracted from the

SAT solver. At a glance, the same method can be applied to the DNN

decryption problem. Unfortunately, a deep ReLU network cannot be

encoded as Boolean formulas but rather has to be encoded as mixed-

integer linear equalities. Due to this gap, attacking a locked DNN

model monolithically is not computationally feasible.

5.2 Reverse Engineering Deep ReLU Networks

Differential attacks [6, 13, 23] consistently query an oracle network to

recover the weights and biases of the original network. While these

studies provide valuable insights into deep ReLU networks, even the

state-of-the-art implementation [6] requires more than 221 queries to

partially reconstruct a DNN with less than 1,000 neurons. They are

also struggling with DNNs that have more than three hidden layers.

6 CONCLUSION

This paper presents the first attack on logic-encrypted DNNs using for-

mal techniques. It combines algebraic and learning-based approaches

to extract a correct key of a victim DNN. The experimental results

indicate that it can scale to large DNNs and complex network architec-

tures. Our findings suggest that binary key bits are vulnerable when

embedded in deep ReLU networks. We believe they should be embed-

ded in the computational units within AI accelerators, thus enabling

more correlations between key bits and more significant impacts on

the final outputs. We leave this problem to our future research.

REFERENCES
[1] Yossi Adi et al. 2018. Turning your weakness into a strength: Watermarking deep

neural networks by backdooring. In USENIX Security. 1615–1631.
[2] Manaar Alam et al. 2022. Nn-lock: A lightweight authorization to prevent ip threats

of deep learning models. ACM JETC 18, 3 (2022), 1–19.
[3] Ross Anderson. 2020. Physical Tamper Resistance. 483–521 pages.
[4] Kimia Zamiri Azar et al. 2019. SMT attack: Next generation attack on obfuscated

circuits with capabilities and performance beyond the SAT attacks. CHES, 97–122.
[5] Battista Biggio et al. 2013. Evasion attacks against machine learning at test time. In

ECML PKDD. Springer, 387–402.
[6] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. 2020. Cryptanalytic extraction

of neural network models. In CRYPTO. 189–218.
[7] Abhishek Chakraborty, Ankit Mondai, and Ankur Srivastava. 2020. Hardware-

assisted intellectual property protection of deep learning models. In DAC. 1–6.
[8] Alexey Dosovitskiy et al. 2021. An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale. In ICLR.
[9] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion attacks

that exploit confidence information and basic countermeasures. In CCS. 1322–1333.
[10] Brunno F Goldstein et al. 2021. Preventing DNN model IP theft via hardware

obfuscation. IEEE JETCAS (2021), 267–277.
[11] Jia Guo and Miodrag Potkonjak. 2018. Watermarking deep neural networks for

embedded systems. In ICCAD. 1–8.
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR.
[13] Matthew Jagielski et al. 2020. High accuracy and high fidelity extraction of neural

networks. In USENIX Security. 1345–1362.
[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based

learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.
[15] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. 2019. Dying relu and

initialization: Theory and numerical examples. arXiv:1903.06733 (2019).
[16] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. 2017. The

expressive power of neural networks: A view from the width. In NIPS.
[17] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted

boltzmann machines. In ICML. 807–814.
[18] Brooks Olney and Robert Karam. 2022. Protecting Deep Neural Network Intellectual

Property with Architecture-Agnostic Input Obfuscation. In GLSVLSI. 111–115.
[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. In NIPS.
[20] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. 2006. vTPM: virtualizing the

trusted platform module. In USENIX Security. 305–320.
[21] Prajit Ramachandran, Barret Zoph, and Quoc V Le. 2017. Searching for activation

functions. arXiv preprint arXiv:1710.05941 (2017).
[22] Stefano Recanatesi et al. 2019. Dimensionality compression and expansion in deep

neural networks. arXiv:1906.00443 (2019).
[23] David Rolnick and Konrad Kording. 2020. Reverse-engineering deep relu networks.

In ICML. 8178–8187.
[24] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. 2008. EPIC: Ending piracy of

integrated circuits. In DATE. 1069–1074.
[25] Maria Sommerhalder. 2023. Hardware Security Module. Trends in Data Protection

and Encryption Technologies (2023), 83–87.
[26] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. 2017. Certified defenses for

data poisoning attacks. In NIPS.
[27] Pramod Subramanyan, Sayak Ray, and Sharad Malik. 2015. Evaluating the security

of logic encryption algorithms. In HOST. 137–143.
[28] Ashish Vaswani et al. 2017. Attention is all you need. In NIPS.
[29] Pauli Virtanen et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing

in Python. Nature methods 17, 3 (2020), 261–272.
[30] Mingfu Xue et al. 2021. Intellectual property protection for deep learning models:

Taxonomy, methods, attacks, and evaluations. IEEE TAI 3, 6 (2021), 908–923.
[31] Xiaodong Yang et al. 2021. Reachability analysis of deep ReLU neural networks

using facet-vertex incidence.. In HSCC. 19–21.
[32] Hai Zhou, Amin Rezaei, and Yuanqi Shen. 2019. Resolving the trilemma in logic

encryption. In ICCAD. 1–8.

