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Abstract— Automated vehicles (AVs) have the potential to
revolutionize the transportation industry. While extensive re-
search has been conducted to explore the benefits of AVs
on traffic flow, commercially available adaptive cruise con-
trol (ACC) vehicles with advanced driver assistance features
have been shown adverse effects on traffic flow. As vehicle
automation advances, electric vehicles (EVs) equipped with
ACC are emerging as an alternative to traditional internal
combustion engine (ICE) vehicles. However, there is still a
limited understanding of the differences in vehicle dynamics
between EV-ACC and ICE-ACC vehicles.

This study utilizes microscopic car-following models to de-
scribe the vehicle dynamics of EV-ACC vehicles. The model
parameters are calibrated based on an experiment conducted
with commercially available EV-ACC vehicles. The calibra-
tion results indicate that the optimal velocity relative velocity
(OVRV) model outperforms the intelligent driver model (IDM)
in most gap settings by up to 37%, suggesting that the OVRV
model can effectively capture the driving behavior of EV-ACC
vehicles. However, simulations of a string of vehicles imply that
the IDM is more accurate in capturing amplifications due to
velocity disturbances. Therefore, the development of higher-
fidelity microscopic car-following models specifically for EV-
ACC vehicles is necessary.

I. INTRODUCTION

The emergence of automated vehicles (AVs) has the
potential to revolutionize the transportation landscape. The
behavior of AVs at the microscopic level significantly im-
pacts macroscopic traffic dynamics. Previous studies have
employed traffic simulations to evaluate the effects of both
fully automated vehicles (e.g., SAE Level 5) and partially
automated vehicles with driver-assist enabled features [1]–
[3]. In recent decades, advanced driver assistance (ADAS)
features such as adaptive cruise control (ACC) (e.g., SAE
Level 1-2) have become commercially available, with the
majority of vehicles now offering this technology. While
fully automated vehicles have offered multiple benefits on
traffic flow, e.g., string stable traffic flow [4], higher highway
throughput [2], lower fuel consumption and emissions [5],
recent studies have found that these benefits are likely
not been shown on commercially available ACC vehicles.
Specifically, Shang and Stern [3] investigate the impacts of
commercially available ACC vehicles on traffic flow and find
that they may reduce highway throughput.
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Fig. 1: Illustrative plots showing approximate side-by-side
comparison of torque and power generation for ICE vehicles
and EVs showing that EVs can provide maximum power
under typical driving conditions.

In parallel to advancements in vehicle automation, vehicle
electrification is another disruptive development in the au-
tomotive industry. Increasingly, electric vehicles (EVs) are
becoming viable as an alternative to internal combustion
engine (ICE) vehicles. Many of these electric vehicles come
equipped with driver assist features such as ACC.

While many aspects of EVs are similar to ICE vehicles,
they have some key mechanical differences, making their
vehicle-level dynamics distinct. Specifically, as engine speed
(revolutions per minute) increases, an internal combustion
engine gradually increases torque output. This higher engine
speed is necessary to achieve high power output on an ICE
vehicle, since power is the product of engine speed and
torque. In most driving scenarios, people drive at moderate
engine speeds (3,000 revolutions per minute maximum in
most situations) to achieve fuel-efficient driving, as shown
in Fig. 1. This is also true for most ACC controllers, which
generally rely on low engine speeds for most of the driving to
reduce fuel consumption. As a result, ACC vehicles generally
are unable to utilize the full power capabilities of the ICE
vehicles they are controlling.

In contrast, electric motors, which power EVs, are capable
of producing high initial torque at low revolutions as shown
in Fig. 1. Thus, EVs are able to provide higher acceleration
under typical driving conditions, making EV-ACC vehicles
more reactive to changes in the traffic conditions around
them. Additionally, EVs utilize regenerative braking, which
allows for stronger braking capabilities without delay. As a
result, EV-ACC vehicles can potentially drive with shorter
inter-vehicle spacing and accelerate faster than ICE-ACC
vehicles, even in oscillatory traffic conditions.

Microscopic car-following models can describe a vehi-
cle driving behavior with an ordinary differential equation
(ODE), and can be used for examining traffic flow impacts
through simulations [6]. Since the 1960s [7], the develop-
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ment of numerous microscopic car-following models has
focused on accurately describing different aspects of traffic
flow including the development of stop-and-go waves [8],
and collision-free driving [9], among other features.

Calibrated car-following models have shown to be a useful
tool in assessing the impacts of ICE-ACC vehicles via
microscopic simulations [2]–[4], [10]–[12]. Similarly, these
calibration approaches may also be extended to EV-ACC
vehicles with EV-ACC data collected in field experiments.

While considerable research has modeled ICE-ACC dy-
namics and validated the widely-used microscopic car-
following models [12]–[14], it is still unclear if those models
have capabilities to capture the EV-ACC driving behavior
seen in mass-market vehicles as well.

To this end, we highlight the contributions of this study
as follows:

• We analyze the collected EV-ACC car-following field
experiment data and use it to calibrate commonly-used
ACC car-following models.

• We present calibrated model parameter values that may
contribute to the transportation community for future
use in the simulation-based studies.

• We have also conducted simulation analyses to estimate
traffic wave amplification with EV-ACC vehicles, and
compare this to ICE-ACC vehicles.

The remainder of this article is outlined as follows. In
Section II, the EV car following data are introduced and
analyzed. We present mathematical models for modeling EV-
ACC vehicle dynamics in Section III. In Section IV, we
review the calibration process and simulation approach in
this study. In Section V, numerical analyses are conducted
to validate the performance of microscopic car-following
models calibrated with the EV-ACC data. This article is
concluded in Section VI with a future study direction.

II. EV CAR FOLLOWING DATA

To understand and model EV-ACC vehicle dynamics at the
microscopic (following setting) level, we use experimentally
collected trajectory data collected from a commercially-
available EV-ACC vehicle. The EV-ACC data used for model
calibration is collected by co-author Kan as part of an
extensive data collection campaign. More details on the full
data collection protocol are available in [15], [16], and a
brief description of the data collection is provided next for
completeness.

Car following experiments are conducted in a controlled
setting using an (ICE) lead vehicle that drives a pre-
determined speed profile under human control, and an EV-
ACC vehicle that follows the lead vehicle with ACC engaged.
The lead vehicle used in the experiments is a 2021 Toyota
Camry with a 3,310 lb curb weight and maximum power
output of 203 horsepower at 6,600 rpm from a 2.5-liter
naturally aspirated engine. The following vehicle (the EV-
ACC subject vehicle used in this study) is a 2022 Hyundai
IONIQ 5 with a 4,414 lb curb weight and 225 hp, 258
ft-lb electric motor. Both the ICE lead vehicle and EV-
ACC following (subject) vehicle are shown in Figure 2. The

Fig. 2: ICE lead vehicle (left) and EV-ACC test vehicle
(right) used for data collection experiments.

Fig. 3: Data collection setup mounted on vehicle wind-
shield with Racebox GPS receiver and data logging on the
dashboard-mounted smartphone.

Hyundai IONIQ 5 was selected based on its availability as a
widely sold electric vehicle from a reputable manufacturer.
Moreover, the weight to peak power ratio of this vehicle is
comparable to that of many commonly sold traditional gas-
powered vehicles. While it is likely that the results found for
the IONIQ 5 will hold for other EVs, further data collection
is needed to confirm this.

In each car following experiment, the position of both the
lead vehicle and (EV-ACC) following vehicle was recorded
using a Racebox GPS logger, which is capable of recording
data at up to 25 Hz with a horizontal accuracy of 10 cm. The
individual vehicle position is then used to compute the inter-
vehicle spacing via the Haversine distance formula. The data
collection setup, including the Racebox GPS receiver and
smartphone used for data collection are shown in Figure 3.

During each experiment, both vehicles start with an initial
distance, and then accelerate (under human control) to a
pre-defined speed. After reaching the pre-defined free-flow
speed, the driver of the EV-ACC following vehicle activated
the ACC feature and manually accelerated slightly above the
setpoint speed to ensure the vehicles reached the equilibrium
(ACC) spacing. This stabilization process is intended to
mimic the equilibrium flow conditions at capacity when
vehicles are driven sufficiently close for ACC to be engaged.

Once an equilibrium steady-state flow was achieved, the
driver of the lead vehicle manually decelerated to a lower
congested speed, and remained at that speed for 10 seconds
before returning to the free-flow speed.

In total, four different free-flow speeds were tested: 97
km/hr (60 mph), 89 km/hr (55 mph), 72 km/hr (45 mph),
and 56 km/hr (35 mph). For each of these free-flow speeds,
3 to 4 congested speeds were tested. An example of one
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Fig. 4: Sample lead vehicle pre-determined speed profile with

one free-flow speed and five different congested speeds. Note

the shaded red area represents times at which the EV-ACC

vehicle is reaching a free-flow equilibrium before the next

congested speed is tested.

Fig. 5: General car following setup showing lead vehicle

being followed by an (electric) vehicle.

speed profile for the lead vehicle, with five different con-

gested speeds, is shown in Figure 4. Each series of speed

fluctuations were repeated 8 times, with two repetitions for

each possible space-gap setting (short gap, medium gap, long

gap, and extra-long gap). This resulted in a total of 136 speed

fluctuations in the dataset.

III. MODELING CAR-FOLLOWING DYNAMICS

In this section, we present the car-following models that

will be calibrated using the collected EV-ACC data.

A. Generic function

Car following models also referred to as microscopic

models, are often used to describe the driving dynamics

of individual vehicles. The general concept of car-following

models dates back to the 1960s [17], and is based on the idea

that the acceleration (or speed) of a particular vehicle is based

on the behavior of the vehicle in front of it (also referred to

as the lead vehicle). Specifically, as shown in Figure 5 and

the generic car following model form presented in (1), the

following vehicle acceleration a(t) at time t is a function of

the inter-vehicle spacing s(t) at time t, the following vehicle

speed v(t), at time t, and the relative speed with respect to

the lead vehicle ṡ(t) = v�(t) − v(t), at time t, with lead

vehicle speed v�(t). For simplicity of notation, the time index

is often omitted.

a(t) = f(s(t), v(t), ṡ(t)), (1)

The functional form in (1) can describe a wide range of

previously introduced car-following models. For a summary

of different car following models, the interested reader is

referred to [18].

B. OVRV

Inspired by the constant time gap (CTH) ACC control

policy [19], [20] often used in the design of ICE-ACC

vehicles, the optimal velocity, relative velocity (OVRV) car

following model has been widely used to model ICE-ACC

vehicle dynamics, and has been shown to accurately describe

their car following behavior [11], [21], [22]. The model

combines a constant time gap policy with a relaxation to

the lead vehicle speed:

a(t) = k1 (s− η − τv) + k2(vl − v), (2)

where model parameter values θOVRV = [k1, k2, η, τ ]
� can

be adjusted to match a specific following vehicle’s driving

dynamics. Notably, k1 and k2 are velocity gain and velocity

difference gain, respectively. Parameter τ is the time head-

way, and η represents the stopping distance.

C. IDM

Another commonly used car following model for de-

scribing both human drivers and ICE-ACC vehicles is the

intelligent driver model (IDM) [9]. The IDM is capable of

describing both symmetric car-following behavior, where ac-

celeration and braking are the same, as well as an asymmetric

car-following behavior, where braking and acceleration dif-

fer. Moreover, the IDM has been extensively used to describe

ICE-ACC dynamics with high accuracy [12], [23].

The IDM takes the form:

a(t) = α

(
1−

(
v

v0

)δ

−
(
ŝ(v, ṡ)

s

)2
)

(3)

ŝ(v, ṡ) = s0 + τv − vṡ

2
√
αβ

(4)

where model parameter values θIDM = [v0, τ, δ, s0, α, β]
�

are subjected to calibrate for a specific car-following profile.

Of note, θIDM can be physically interpreted: v0 is the desired

speed that a vehicle may drive; τ is the time headway; δ is

an acceleration exponent; s0 is the stopping distance; α and

β are maximum acceleration and comfortable braking rate,

respectively.

IV. CALIBRATION AND SIMULATION

In this section, we review the calibration process and the

simulation approach to obtain the vehicle dynamics.

A. Calibration approach

The objective of model calibration is to obtain the best-fit

θ by minimizing the error between the simulated trajectories

and experimental data such that the simulated dynamics are

close to the experimental data as much as possible. While

many approaches to obtain the best-fit parameter values are

available [24], the batch optimization approach is commonly

used in the transportation community [12], [14], [23].

With the experimentally collected leader-follower trajec-

tory data presented in Section II, we minimize the spacing

root mean square error (RMSE) between the simulated

trajectory and the experimental data. Notably, reducing the

spacing RMSE will simultaneously reduce the velocity error

due to the inherently spacing-velocity relationship [23].

Therefore, the spacing RMSE is given as
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No
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Fig. 6: Batch calibration approach where a simulation, using
the current candidate parameter values, is used to compute
the RMSE, and the parameter values are updated via gradient
descent until simulated trajectories are sufficiently similar to
observed experimental trajectory data.

minimize
s,v,θ

: RMSE =
√

1
T
∑T

0 (sm(t)− s(t))2

subject to: a(t) = f(θ, s, v, ṡ),
ṡ(t) = vℓ,m(t)− v(t),
s(0) = sm(0),
v(0) = vm(0),
θ ∈ θc,

(5)

where T denotes the final time stamp of the training
period, the subscript m denotes the simulated trajectory, the
subscript l denotes the lead vehicle profile, s(0) and v(0)
are the initial spacing and speed, respectively. Of note, we
rewrite a(t) defined in (1) for the variation of θ which holds
physical bounds in θc.

The batch calibration process is illustrated in Fig. 6. Ini-
tially, an initial guess for the parameter values are input into
the calibration. Then, we obtain the simulated trajectories
using the current candidate parameter values. When compar-
ing the simulated trajectories and the experimental data, we
calculate the spacing RMSE with (5). Finally, to obtain the
best-fit model parameter values, the current parameter values
are updated via gradient descent until simulated trajectories
are sufficiently similar to the observed experimental trajec-
tory data. The calibration process was carried out with the
package of scipy.optimize.minimize in Python.

B. Simulation approach

The simulation process is adopted from Euler’s method
which indicates the continuous time model can be discretized
into time steps ∆t:[

s
v

]
t+∆t

=

[
s
v

]
t

+

[
ṡ
a

]
t

∆t, (6)

where s, v, a, and ṡ are defined above.

V. MODEL VALIDATION AND COMPARISON

In this section, we begin by presenting the calibration
results as well as the parameter values for the IDM and
OVRV models obtained by simulation on the experimental
trajectory data. To compare the performance of each model
under different spacing settings numerically, we calculate
the spacing RMSE for each scenario. Then, the results are
validated by showing the simulated spacing and speed for
the medium and long settings. Moreover, the amplification

analysis and comparisons are conducted on the calibrated
models using a simulated string of vehicles that behave based
on the parameter values of the IDM and OVRV models.

A. Calibration results

As introduced in Section II, model Parameter values of
the IDM and OVRV model are calibrated for four different
gap settings: ‘short’, ‘medium’, ‘long’, and ‘xlong’ (i.e.,
extra-long). The RMSE values are calculated by (5) using
the collected data and the simulated trajectories. We present
model parameter values and the RMSE for each model under
different gap settings in Table I.

To obtain the best-fit model parameter values for EV-ACC
vehicles, we slice the data into six subsets used for training
purposes. Each training dataset is 200 s long for each gap
setting. To avoid data overfitting, we calibrate each model on
the shorter training set and test model performance on the
entire dataset. The model parameter values listed in Table I
are calibrated from the training set with the lowest spacing
RMSE.

To validate the parameter values for the IDM and OVRV
model, speed and spacing are reproduced using the best-fit
parameter values for each gap setting. Fig. 7 and 8 show
the simulated trajectories and the experimental trajectories
for the medium and long gap settings. Numerically, the
comparisons of the RMSE between different settings show
that the OVRV model has better performance than the IDM
at medium, long, and xlong gap settings, where the RMSE
is reduced by 37%, 7%, and 8%, respectively. However, in
the short gap setting, the RMSE of the IDM is 13% lower
than that in the OVRV model.

As the value for RMSE in the medium setting simulation
shows, the OVRV outperforms IDM by 37%. This difference
in the performance can be observed in Fig. 7a between
seconds 10 to 20, when the following vehicle is accelerating.
The IDM simulated speed has a slight delay in accelerating
in comparison to OVRV simulation and the experimental
data. The effect of that can be observed in Fig. 7b when
this delay in accelerating produces a large gap between
the IDM simulated spacing and the experimental spacing
between seconds 10 to 50. The nonlinear acceleration and
deceleration described by IDM are out of place for EVs,
which could yield constant power and braking regardless of
the vehicle speed.

The RMSE value for the long gap setting shows that the
performance of the OVRV is almost the same as the IDM.
As Figure 8a demonstrates, the OVRV simulation has some
small overshoots when the following vehicle is decelerating.
In contrast, the IDM matches the EV-ACC vehicle speed
observed in the experimental data. The effect of this behavior
can be seen better in Figure 8b. When the vehicle is
initially decelerating, the simulated OVRV spacing lags the
experimental spacing. However, there is a gap between the
IDM simulated spacing and the experimental spacing when
the vehicle is accelerating between seconds 20 to 30.

Overall, the plots in Fig. 7 and 8 show that both models
accurately capture the EV-ACC following dynamics. While
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Gap setting
IDM OVRV

v0 τ s0 δ α β RMSE k1 k2 τ η RMSE
(m/s) (s) (m) - (m/s2) (m/s2) (m) (s−2) (s−1) (s) (m) (m)

Short 33.37 1.56 2.04 3.99 2.06 9.00 1.06 0.06 0.35 1.00 9.66 1.23
Medium 33.34 1.63 2.02 4.02 2.01 8.97 1.46 0.08 0.54 1.03 11.88 1.06

Long 33.36 1.67 2.41 3.96 1.86 8.96 0.44 0.06 0.38 1.24 12.40 0.41
Xlong 33.30 2.17 5.23 3.66 1.65 8.98 0.51 0.05 0.39 1.53 15.00 0.47

TABLE I: Parameter values for different gap settings in IDM and OVRV.

(a) The IDM and OVRV simulation on the velocity of the following
vehicle for medium gap setting.

(b) The IDM and OVRV simulation on the spacing of the following
vehicle for medium gap setting.

Fig. 7: Performance comparison of IDM and OVRV on the

data of the medium gap setting.

(a) The IDM and OVRV simulation on the velocity of the following
vehicle for long gap setting.

(b) The IDM and OVRV simulation on the spacing of the following
vehicle for long gap setting.

Fig. 8: Performance comparison of IDM and OVRV on the

data of the long gap setting.

the OVRV is slightly better at reproducing the spacing

observed in the experiments, IDM appears to better match

the lack of speed overshoot of the following vehicle. This

suggests that further microscopic model development might

be needed to accurately model EV-ACC vehicles.

B. Amplification analysis of a string of vehicles

To compare the performance of calibrated models EV-

ACC vehicles with ICE-ACC vehicles, we conducted sim-

ulations of a string of 10 vehicles with a pre-defined

velocity of the lead vehicle. For the EV-ACC vehicles,

the model parameter values are short gap setting sets in

Table I. For the ICE-ACC vehicles, the model parameter

values are adopted from the short gap (minimum) setting

in [23], where θOVRV = [0.05, 0.26, 9.4, 0.58]� and θIDM =
[43.6, 1.0, 13.5, 8.0, 0.9, 9.0]�, respectively. This simulation

experiment will allow us to understand how EV-ACC ve-

hicles might impact traffic flow, as compared to ICE-ACC

vehicles.

Fig. 9 depicts the simulations of a string of EV-ACC

vehicles and ICE-ACC vehicles with the OVRV model and

the IDM, respectively. With the definition of string stability

in mind, the increase of wave amplification implies more

string instabilities. On the contrary, the dissipation of waves

suggests less string instabilities. Specifically, when simulat-

ing the OVRV model for the EVs and the ICE vehicles in

Figs. 9a and 9b, the reduction in wave amplification over

the platoon of ICE-ACC vehicles is not as pronounced as

EV-ACC vehicles.

Overshooting in the OVRV model may overestimate the

amplification which suggests that further microscopic model

development might be needed to fully capture the true

amplification.

VI. CONCLUSIONS

This study employs widely used microscopic car-following

models to describe the vehicle dynamics of EV-ACC ve-

hicles. The model parameters are calibrated based on an

experiment conducted with commercially available EV-ACC

vehicles. While the calibration results show that the OVRV

model outperforms the IDM in most of the gap settings

indicating the OVRV can capture the driving behavior of

EV-ACC vehicles, the IDM is better suited for describing

the lack of following vehicle speed overshoot observed in the

experimental data collected on EV-ACC vehicles. The results

show that, while current models are capable of describing

the dynamics of EV-ACC vehicles, new, high-fidelity models

are needed to accurately describe all aspects of EV-ACC car

following.
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(a) Simulation of a string of EV-ACC vehicles using the OVRV model.

(b) Simulation of a string of ICE-ACC vehicles using the OVRV
model.

Fig. 9: Simulation of a string of vehicles with the calibrated
parameter values in Table I for EV-ACC vehicles and the
model parameter values adopted from [23] for ICE-ACC
vehicles. (a) and (b) are simulations with the OVRV model.

The calibration results provide valuable insights into the
vehicle dynamics of EV-ACC vehicles. In future research, the
study will focus on developing higher-fidelity microscopic
car-following models for EV-ACC vehicles.

The preliminary results presented in this manuscript sug-
gest that EV-ACC vehicles may reduce traffic wave amplifi-
cation, which may result in an increase in traffic throughput.
Follow-up work will investigate the impacts of EV-ACC
vehicles on traffic flow in more detail. Furthermore, explor-
ing the combined effects of human-driven vehicles, ICE-
ACC vehicles, and EV-ACC vehicles in a mixed autonomy
environment, which may become a reality in the near future,
would be an interesting avenue to explore.
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