1	Critical analysis of polycyclic tetramate macrolactam biosynthetic gene cluster
2	phylogeny and functional diversity
3	Christopher P. Harper ^{a,*} , Anna Day ^{a,*} , Maya Tsingos ^a , Edward Ding ^{a,b} , Elizabeth Zeng ^a ,
4	Spencer D. Stumpf ^{a,c} , Yunci Qi ^{a,d} , Adam Robinson ^{a,e} , Jennifer Greif ^a , Joshua A. V.
5	Blodgett ^{a#}
6	^a Department of Biology, Washington University in St Louis. St Louis, MO
7	Current addresses:
8	^b Columbia University School of Dental Medicine, New York, NY
9	^c Pfizer Inc, Chesterfield, Missouri
10	dUSDA-ARS, New Orleans, LA
11	eTulane School of Medicine, New Orleans, LA
12	*Equal contribution
13	
14	#To whom correspondence should be addressed:
15	Department of Biology, Washington University in St Louis, 133 Rebstock Hall, 1
16	Brookings Dr. CB#1137, St Louis MO 63130. Email: jblodgett@wustl.edu Ph: 1 314 935
17	6233 orcid.org/0000-0002-7080-5870
18	
19	Running Title: Polycyclic Tetramate Macrolactam BGC Diversity
20	

ABSTRACT

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Polycyclic tetramate macrolactams (PTMs or PoTeMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains. and advances in PTM biosynthesis suggests their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. Towards addressing the origins of this complexity and understanding its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs, and PTM- targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery. **IMPORTANCE**: Polycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically-important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet- uncharacterized PTM biosynthetic loci gleaned from

recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggests new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize practical limitations to genomics-based discovery by exposing hidden complexity.

KEYWORDS: polycyclic tetramate macrolactams, phylogeny, biosynthetic gene clusters, comparative metabologenomics

INTRODUCTION

Polycyclic tetramate macrolactams (abbreviated PTMs or PoTeMs) are widely studied antibiotic-like bacterial natural products. They were first discovered in the bioactive fractions of microbial and marine life extracts, but their biosyntheses remained uncharacterized until being linked to discreet biosynthetic gene clusters (BGCs) in *Lysobacter enzymogenes* C3 (1) and *Streptomyces* sp. strain SPB78 (2). Consequently, PTMs embody a relatively scarce example of an antibiotic family produced by both Grampositive and Gram-negative organisms (3, 4). Over time, reports of PTM molecules and their encoding BGCs expanded beyond *Streptomyces* and *Lysobacter* to include several other filamentous actinomycetes (*Kitasatospora, Salinispora, Micromonospora, Saccharopolyspora, Saccharothrix, Umezawaea, Nocardiopsis, Actinokineospora,* and *Actinoalloteichus*), gamma-proteobacteria (*Pseudoalteromonas, Colwellia, Gynuella, and Saccharophagus*), as well as the firmicute *Pelosinus fermentans* (1, 2, 5–14).

Regardless of producer phylogeny, all characterized PTM biosyntheses are initiated via an unusual hybrid-iterative polyketide synthase/ non-ribosomal peptide synthetase (iPKS-NRPS, encoded by ftdB, ikaA, and orthologs) that produces the polyene-tetramate precursor lysobacterene A (or related isomers) (15, 16). However, individual PTM biosynthetic pathways significantly diverge from this point, generally via combinations of oxidative decorations and carbocyclic ring arrangements (Fig 1A). There are now >85 known PTM congeners, and exploring PTM diversity has led to a growing body of valuable structure-activity relationship knowledge (17–19, 5, 20–22, 10, 23–26, 11). Testament to their structural diversity and their presumed interaction with a spectrum of biological targets, PTMs display a range of bioactivities. Examples include antiinflammatory (27), antifungal (2), antibacterial (28), and predicted anticancer (29) activities, making the family compelling for future pharmaceutical and crop protective investigation. PTM BGCs are often targeted for synthetic refactoring to create new chemical matter or to probe their transcriptional regulation towards increasing production (10, 18, 22, 24, 30–32).

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

PTM BGCs typically feature relatively low gene content (3-7 genes), organized in operon-like arrangements clustered around their *ftdB* homologs. These features allow facile recognition in sequenced genomes via directed genome-mining or using targeted PCR screens in environmental isolates (6, 16, 33, 34). The ready availability of PTM cluster sequences has empowered numerous biosynthetic inquiries via classical genetic, biochemical, and synthetic-biological (6, 8, 14–16, 20, 22, 24, 34–38) approaches. As a result, several gross chemical features of PTMs (their polycycle patterns, in particular) are now largely predictable by BGC ORF content and gene identity (17). In brief, PTM

cyclization cascades are driven by two classes of BGC-linked enzymes: flavin-dependent phytoene dehydrogenase homologs (PhyDHs) that form the A- and B-rings (e.g., IkaB, FtdC/FtdD, SGR813/SGR812, PtmB1/PtmB2, or OX1/OX2/OX3 (2, 8, 15, 32, 34)) and whenever present, nicotinamide-cofactor-dependent alcohol dehydrogenase (ADH) homologs (e.g., IkaC, FtdE and OX4) that form C-rings (39). Together, these two groups of enzymes are determinative for differentiating PTMs into polycycle type-classes. Illustrative PTM examples (Fig 1A) include combamide A with a 5/5 ring system (requiring two PhyDH homologs) (30), lysobacteramide B having a 5/5/6 ring system (requiring two PhyDHs and an ADH homolog) (15), and ikarugamycin-like chlokamycin which has a 5/6/5 ring system (requiring a single PhyDH plus an ADH homolog) (25). Finally, genes encoding cytochrome P450s (e.g., *ftdF*, *cftA*, *ikaD*, etc.) (2, 20, 26) and PTM C-25 oxidases (*ftdA* and homologs) (2, 14) are frequently associated with PTM BGCs where they direct oxidative decorations that diversify the class.

Despite the existence of >200 publications on PTM chemistry and biosynthesis, there remains sustained research interest in these molecules. This interest stems from several unusual features that have become hallmarks of the PTM family, including their atypical commonality and conservation across bacterial groups, the relative ease of their (bio)synthetic manipulation, their diverse bioactivities, plus their atypical enzymology. While core PTM cluster architectures are fairly conserved, an increasing number of PTM tailoring genes have been found outside the confines of their *ftdB*-centered BGCs (26, 40), which complicates product prediction. Finally, some PTM BGC-associated genes have biosynthetic functions that remain poorly predicted from sequence analysis alone (Fig 1B-C). Cytochrome P450s can perform not only regiodiverse oxidation chemistries,

but some (e.g., IkaD & CftA) also catalyze multiple oxidation events, leading to unexpected shunt paths (Fig 1C) (6, 20, 26). Some PTM phytoene dehydrogenases are multifunctional too; certain B-ring forming PhyDH enzymes (e.g., FtdC, OX1/OX2) catalyze oxy-insertions while others (e.g., CmbB, PtmB1) apparently do not (Fig 1B) (35). Finally, several other PTM molecular features lack known enzymology, including the chlorine decorations of chlokamycin (18, 25), the terminal olefin of frontalamides (2), the apparent loss of backbone carbons in cylindramide and geodin (41, 42), and the oxidative decoration of PTMs whose BGCs lack CYP450s (18). Finally, because PTM BGCs continue to be encountered in newly sequenced genomes, frequent reassessment of the class becomes necessary.

Here, we describe the systematic classification of PTM BGCs from 302 bacterial strains to document the diversity and distribution of PTM BGCs. Our phylogenetic and genome mining efforts revealed new PTM cluster architectures are discoverable from local soil actinomycetes and indicate most PTM BGCs are vertically transmitted. Our gene-by-gene deconstructive approach was able to detect "hidden" diversity among seemingly syntenic BGCs, and in certain clusters it revealed surprising mosaicism that hints towards infrequent but important horizontal gene transfer. Finally, we demonstrated that predicting biosynthetic outcomes via bioinformatics alone remains challenging. This followed from BGC gene-reduction experiments in *Streptomyces* sp. strain JV180 and *Streptomyces olivaceus* NRRL B-3009, plus the comparison of several other wild strains. This work provides a useful map of systematically classified PTM clusters, while our PTM-targeted metabolomics exposes limitations in using BGC data to predict product diversity.

RESULTS AND DISCUSSION

environmental bacteria. Our searches for PTM BGCs focused on detecting FtdB orthologs because the enzyme is essential for all PTM biosyntheses, its polyketide synthase functions are different from all known type-I iterative PKSs, and FtdBs are readily differentiable from non-FtdB PKS-NRPSs *in silico* (6, 16, 33, 34). The relatively large size of FtdBs (3069-3354 aa; Table S1) lend themselves to well-resolved phylogenetic analysis (Fig 2, Fig S1). Our targeted searches to locate PTM BGCs in public repositories (see Methods) yielded 284 BGCs (after manual dereplication to prevent duplicate analysis, Table S2).

We surmised some PTM BGC types would be rare or under-represented in public databases. To create a more diverse study set, we leveraged an *ftdB*-targeted degenerate-PCR screen (6) to identify PTM BGCs in actinobacterial isolates sourced from local soils. Based on amplicon sequence divergence or perceived scarcity, we selected 18 strains for complete cluster analysis via whole-genome sequencing (see nucleotide accessions). Along with complete PTM BGCs, this yielded *atpD*, *recA*, *rpoB*, and *trpB* sequences for host multi-locus (MLSA) phylogeny. Thus, public and environmental sequences yielded 302 complete PTM BGCs for comparison.

In terms of producer phylogeny, these efforts immediately expanded the catalog of putative PTM producers into the actinobacterial genera *Actinophytocola*, *Amycolatopsis*, *Thermomonospora*, and *Streptosporangium*. Several new proteobacterial producers were also identified including *Chitinimonas*, plus several metagenome assembled genomes (MAG) including *Cellvibrio* from citrus rhizosphere (43),

Thiohalocapsa from a 'pink berry' sulfur cycling consortium (44–46), and a putative Myxococcales bacterium found in wastewater sludge (47) (Fig S2).

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

A deconstructive approach to PTM BGC cataloging. Since the first PTM BGCs were sequenced >10 years ago, efforts to categorize their BGCs have been largely descriptive, guided mostly by synteny and the presence/absence of key biosynthetic genes. In pursuing a systematics-driven analysis of PTM BGC diversity, we assumed synteny-based binning of BGCs would eventually become limiting. This is because certain PTM-linked enzymes (especially cytochrome P450s and phytoene dehydrogenases) catalyze diverse reactions and are thus key drivers of PTM structural diversification (especially in combination). However, these enzymes are difficult to assign accurate functions to, especially in the absence of individual enzyme phylogenies. Accordingly, organizing PTM BGCs into discrete cluster types required particular attention to associated CYP450s (6, 20, 22, 26) and PhyDHs (8, 15, 18, 24, 34, 35, 48). We also avoided the use of concatenated trees (sometimes used to characterize other antibiotic BGCs (49, 50)) due to the high risk of conflating similarly organized but functionally different PTM loci. Thus, maximum-likelihood (ML) phylogenies of individual PTMencoded enzymes (Fig 3, Fig S1, S3-5) were used for accurate, clade-based systematic binning of PTM enzymes and the resulting enzyme histories were used in-composite to identify meaningful enzyme sequence differences and evidence for BGC mosaicism.

PTM tailoring enzyme phylogenies. PTM-associated phytoene dehydrogenase-like (PhyDH) enzymes are named for homologs in carotenoid biosynthesis (CrtI (51)), but despite their specialized roles in PTM polycycle formation (34) (Fig 1B), the literature has lacked a standard, function-based nomenclature for these enzymes. Instead of continuing

historical naming conventions (e.g., OX1, OX2 and OX3; PhyDH1, PhyDH2, etc.), we adopted a phylogeny and function-based nomenclature rooted in the distinct catalyses of PTM PhyDH-like Ring-forming enzymes (Ppr's). Accordingly, the two PhyDHs required for the stepwise formation of a 5/5 ring PTM from FtdB products were termed PprA⁵s (initial cyclopentenyl, A-ring formation) and PprBs (for B-ring formation). In contrast, forming 5/6 polycycles (34) requires a single specialized PhyDH we termed PprA⁵6. Our Ppr ML phylogeny (Fig 3) multifurcates, with PprA⁵s forming discrete clades congruent with FtdB phylogeny. However, a distinct branch emerging from the Ppr polytomy reveals that all known PprA⁵6 proteins (plus several synteny-suggested ones) are monophyletic. Interestingly, this suggests PprA⁵6 arose from ancestral PprA⁵s, suggesting 5/6/5 PTMs may have evolved after their 5/5/6 counterparts.

In contrast, PprBs branch deeply to form several subclades. Finding well-delineated PprB subclades initially suggested the possibility of ascribing precise catalytic function (oxygenation status, in particular) via conservation with literature- characterized members. However, we found non-hydroxylating and hydroxylating PprBs to be polyphyletic (Fig 3), preventing us from building on this idea and contrasting with earlier work in this vein (35). Our PhyDH analyses revealed other insights that may eventually inform catalysis. Most PprAs were distinguished from PprBs by a ~19 aa indel and Crtl homology suggests this region lies within a substrate-binding domain (51). This suggests a basis for differential substrate recognition and serves as useful landmark for parsing PprAs and PprBs from one another. However, we found intriguing exceptions to this pattern in PhyDHs extracted from PTM group 12c (Alteromonadales). Here, the associated PprAs and PprBs both contain a distinct sequence insertion from all other Pprs

(likely contributing to their PhyDH-clade resolution) (Fig 3). Interestingly, the 12c BGC *ppr* genes are arranged in reverse to all other known PTM BGCs (Fig 2). Recent analyses of Pel3, a 12c PprB, showed catalysis of a rare C6 hydroxylating, C7-C14 crosslinking Bring variant during heterologous pseudoamide biosynthesis (48). These observations suggest an atypical evolutionary history for some Pprs, and the need for a more rigorous way of differentiating PTM PhyDHs beyond the indel region. Leveraging our PprA and PprB deep sequence comparisons, we revealed differentially enriched sequence motifs that should further assist classification efforts (Fig 3, Weblogo insets).

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

PTM-associated CYP450s have been intensely studied for understanding PTM oxidative decorations and exploiting the enzymes for molecular diversification. Our CYP450 phylogeny was created from an alignment of 232 CYP450s extracted from within the operon-like arrangements of core PTM BGCs, and those encoded nearby (within 10 kb) these clusters. The decision to include the latter group arises from increasing numbers of PTM-active enzymes (i.e., CYP450 IkaD (26) and HSAF N-methylase (40)) that locate outside of core BGCs, but are sometimes found nearby. Linking these unclustered CYP450s to PTM catalysis will require future experimentation so clade-numbers were not assigned to these particular CYP nodes (Fig S3). The resulting CYP450 ML phylogeny has two main branches, one comprised of CYP107-family enzymes (FtdFs) linked to Group 1 PTM BGCs (I, SGR and frontalamide-type PTMs) (2, 22, 23) plus multiple uncharacterized CYP450s upstream of Group 4 BGCs in certain Kitasatospora. The other main branch featured several subclades of CYP107 P450s with known biosynthetic roles, including CftA (II, clifednamides) (6, 20), IkaD (VII.a, ikarugamycin epoxide) (26), Mg1D (III, combamides B and G) (22), and CbmD (VI, combamides) (30). Other prominent subclades featured characterized CYP105 family members (**IX**, **X**; SahD and SahE of sahamide biosynthesis) (10), yet- uncharacterized CYP450s likely acting in PTM biosynthesis due to gene clustering (**IV**, **V**, **VII.b**, **VIII**), plus BGC proximity-flagged ones (e.g., BE133 CYP(2)). Finally, some *Kitasatospora* CYP450s [*Kspr* CYP(2)] upstream of Group 4 BGCs were considerably diverged from other members of this branch.

FtdAs (PTM C-25 hydroxylases, Fig S4) and FtdEs (alcohol dehydrogenase-like C-ring forming enzymes, Fig S5) are critical for PTM structure determination and bioactivity (2, 39). In contrast to PhyDHs and cytochrome P450s, the catalyses performed by FtdAs and FtdEs are understood to be fairly conserved (14, 18). This suggests against them having pathway-specialized roles. The phylogenies of both enzymes appeared largely concordant with FtdB (Fig S1), suggesting sequence diversity seen in these proteins likely reflects drift and host speciation rather than catalytic diversity. This idea was supported by MLSA phylogeny of concatenated host housekeeping genes (Fig S2), where the most divergent FtdBs (an enzyme of highly conserved function) correlated with the most distant genera. Therefore, when interpreting PTM BGCs, we surmised *ftdA* and *ftdE* presence or absence should be emphasized over lower possibility of catalytic divergence.

A combination of FtdB phylogeny and BGC synteny is useful for estimating PTM diversity. Microbial genome-mining requires the accurate recognition of BGCs and identification of novel clusters. To do this for PTMs, a combination of evidence including traditional synteny, individual enzyme phylogenies and published PTM genetic, biochemical, and structural data were used where possible. BGC types identified using these data were anchored to an FtdB cladogram, resulting in a map that reflects both

sequence relatedness and differential enzyme content (Fig 2). Alpha-numeric identifiers were used to describe groups of BGCs according to their FtdB clades, and BGC variations within those clades. The first digit indicates FtdB branch (with the exceptions of Groups 3, 9 and 12, where groups of divergent-but-similar BGCs were binned). The letter code indicates plasticity (52), observed variability in gene content or arrangement within core BGC architectures. Decimals indicate the presence of potentially important tailoring genes encoded nearby (generally CYP450s).

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

PTM are divisible into two major families based on their polycycle patterns and the specialized enzymology associated with each. One is the 5/6/5 PTMs, and the other is comprised of the 5, 5/5, and 5/5/6 PTMs. Assigning BGCs to the first one was straightforward using the diagnostic presence of a PprA^{5/6} (but no PprB), plus an ADH. BGCs having these hallmarks were found in PTM groups 5, 6, and 11 (Fig 2) and distributed among diverse actinobacterial hosts. Group 5 clusters (5 a-c) were found in a distinct clade of Streptomyces spp (Fig S2) and include known loci for ikarugamycin and its oxidized analogs (capsimycins via lkaD, a type VII.a CYP450) (26). Interestingly, the ikaDs of Group 5 strains all locate downstream of their core ikarugamycin-type BGCs, but show highly variable distances between them (also observed in (37)). Group 6 BGCs were mostly found in *Kitasatospora* and *Streptomyces* thought to be plant-associated (Fig. S2) (53–59). Their BGCs include several clifednamide loci (type II CYP450s, CftA) that include (6b) or lack (6a) ftdAs (6, 20). Interestingly, the S. daliensis group 6c BGC lacks a clustered cftA, thus likely producing ikarugamycin instead of clifednamides. Finally, the Group 11 BGCs from Salinispora arenicola and Micromonospora spp. (Fig S2) lack

CYP450s. Some members produce ikarugamycin (8) or butremycin (9), presumably via cluster types 11b and 11a respectively.

In contrast with 5/6/5 PTMs, predicting the functions of the remaining PTM clusters is more complex. 5/5/6 PTM carbocycles are produced stepwise, with ring A5 first (PprA⁵), then B5 (PprB), then C6 (ADH). Thus, based on several biosynthetic studies (reviewed (17)), BGCs lacking any one of these enzymes must direct lower (or no) polycycle complexity. Thus, the simplest BGC architectures we encountered should produce otherwise-acyclic tetramate polyenes similar to lysobacterene A (i.e., Group 3a (CYP450 adjacent), b (*ftdA*-adjacent), c (*ftdB*-alone)), molecules that are technically not polycyclic macrolactams. Such compounds have never been found as native pathway products. As with most BGCs analyzed here, it remains to be determined if these loci are active or are past relics of genome rearrangement.

PTMs having a single five-membered (A5) carbocycle also remain undiscovered from nature, but have been produced in engineered systems (e.g., lysobacterene B (15), pactamide E (18, 24), sahamides A-D (10)). We identified potential native producers of such compounds among the non-actinobacterial group 12 BGCs (Fig S2, Table S2). Saccharophagus degradans (12a) and Thiohalocapsa sp. PB-PSB1 (12f) could produce PprA-dependent A5 ring PTMs, while Pelosinus fermentans (12d) seems to encode an unprecedented B5 PTM via its lone PprB.

5/5-polycyclic PTMs are produced by natural and pathway-engineered bacteria (10, 12, 13, 15, 30, 48, 60, 61). In native strains they can arise from dedicated pathways, but they are also associated with incomplete 5/5/6 PTMs biosynthesis (31, 32, 62, 63). When mining for dedicated pathways, multiple clusters lacking adjacent ADH homologs

and encoding conserved PprA⁵ and PprBs were detected. *Streptomyces* group 2 BGCs have a clustered *ftdA* and clade **III** CYP450, while the lone group 8 BGC encodes one PprA and two PprB homologs. Group 8 *pprB* multiplicity is unusual and was here-to-fore undocumented in actinomycetes, but it is similar to that of Gram-negative *Lysobacter enzymogenes* C3 (Group 10a). In *L. enzymogenes*, PprB multiplicity drives 5/5/6 polycycle stereo-diversification (15), which could be tested in Group 8. Interestingly, *Lysobacter antibioticus* (Group 10b) also appears to encode a dedicated 5/5 PTM pathway; it lacks one of the PprB homologs and the ADH of *L. enzymogenes*. Multiple other Gram-negative strains encode similar BGCs, including groups 12b and 12c. Finally, Group 9 PTM BGCs of the Nocardiaceae and Pseudonocardiaceae (Fig S2, Table S2) encode several inferred 5/5 PTM pathways (*ftdA*-associated 9b, 9b.2; *ftdA*-minus 9e, 9f).

5/5/6 PTMs were well-documented from a diversity of bacterial producers in the pre-genomic era (62, 64, 65). Several Group 1 BGCs have since been linked with 5/5/6 PTM production. Group 1 BGCs are exceptionally well-represented in genome databases, comprising >50% of our dataset (Fig S1). Perhaps unsurprisingly, the Group 1 BGC architecture was among the first identified during early genome-mining efforts, and 5/5/6 PTMs (and certain biosynthetic intermediates) have been isolated from *Streptomyces* (Fig S2) scattered across multiple Group 1 FtdB subclades. Known Group 1 PTM producers include *Streptomyces* sp. JV180 (maltophilin-like congeners) (38), *S. griseus* IFO13350 (maltophilin-like, and alteramide-like congeners) (24, 32, 38), *Streptomyces* sp. SCSIO40010 (10-epi-maltophilin) (23), multiple strains of *S. albidoflavus* (somamycins, dihydromaltophilin [HSAF], 10-epi-HSAF, xanthobaccin C,

and alteramide stereoisomers) (19, 31, 66, 67), and *Streptomyces* sp. SPB78 (frontalamides) (2).

However, 5/5/6 PTM production is not limited to Group 1. Some bacteria having groups 9a, 9c, and 10a BGCs produce 5/5/6 PTMs identical to certain Group 1 products (7, 24, 65, 68). Interestingly, Group 9a, 9c, and 10a BGCs are similar in terms of gene content but are distributed among highly divergent genera (*Streptomyces*, *Actinoalloteichus*, *Saccharothrix*, *Actinokineospora*, and *Lysobacter*). Most of their known products have a hallmark hydroxyl or carbonyl group on C14. Previous works suggest hydroxylation at this position is PprB-catalyzed in Groups 1 and 10 (i.e., FtdC, OX1, OX2), so we surmise analogous catalyses occur in Groups 9a and c (whose PprBs clade with *Lysobacter* OX1 and OX2). However, the mechanism underlying C14 oxidation to a carbonyl remains unknown.

Streptomyces and Kitasatospora Group 4 BGCs appeared similar to Group 1 5/5/6 clusters but lacked clade I CYP450s. Further, several members (Group 4a, a.2, c) encoded a short gene (ftdG) for a Rieske 2Fe-2S-cluster protein, but this was not definitive for the group (4b.2, 4c.2, 4c.3). Group 4 PTM production has never been examined in native strains, but reconstitution of 4a BGC (excluding ftdG) from Streptomyces sp. SCSIO 02999 in Streptomyces lividans TK64 resulted in the discovery of 5/5/6 pactamides (18) and revealed the existence of C12-non-hydroxylating PprBs. This critically differentiates SCSIO 02999 core PTM biosynthesis from other 5/5/6 PTMs (18). Because Group 4 BGCs lack obviously clustered CYP450s but some pactamides feature oxidative decorations on their polycycles (18), the need for unclustered oxidases is implicated. This highlights CYP450s in the genome neighborhoods of BGCs 4a.2, 4b,

4b.2, 4c.2, 4c.3 for possible involvement (Fig S6). Finally, the biosynthetic role of *ftdG* in Group 4 BGCs remains enigmatic. Initial studies disregarded it as belonging to adjacent xiamycin BGCs (18, 69), but in SCSIO 02999 we noted the start codon of *ftdG* likely overlaps with the stop codon of upstream *adh*, which is common in operons. Furthermore, Group 4a.2 *Kitasatospora* BGCs feature *ftdG*s not juxtaposed with any xiamycin locus, again suggesting *ftdG*s are PTM- associated.

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

Group 7 PTM BGCs show unusual BGC diversification and mosaicism. Group 7 stood out against all other PTM BGC groups in our analysis because it includes five different BGC architectures linked to four different carbocyclic ring patterns (5, 5/5, 5/6/5 and 5/5/6; Fig 4). Group 7 BGCs are carried by several taxonomically disparate strains of Streptomyces (Fig S2), and our use of individual protein phylogenies revealed evidence of unusual mosaicism in the group. For example, group 7 FtdAs (where present) and FtdBs clade similarly between their respective ML phylogenies, but the PprA^{5/6} genes of Groups 7b and 7c appear most closely related to those of group 11 from Micromonosporaceae (Fig 3), suggesting gene flow from outside of the Streptomyces genus contributed group 7 BGCs for 5/6/5 PTMs. In contrast, Groups 7a and 7d harbor pprA⁵ and pprBs, predicting 5/5 and 5/5/6 PTM products, while the sole Group 7e BGC from S. paludis contains only a pprA⁵, thus putatively encoding PTMs with an A5 ring PTM. Interestingly, group 7a (5/5/6 carbocycles) and 7b-c (5/6/5 carbocycles) FtdEs are most related to those of other 5/6/5 clusters (IkaC- branch, Fig S5), again highlighting atypical gene patchworks in these BGCs.

There was also remarkable plasticity in the CYP450 gene positions and their assigned clades in group 7. The CYP450 (IV clade) of group 7a CYP450 is encoded

directly downstream of *ftdB*, a gene arrangement usually associated with 5/6/5 clifednamide BGCs (Group 6a/b). In turn, this unusual cluster outwardly appeared identical to the Group 9d BGC of *Amycolatopsis sulphurea* (Fig 2), but these clusters are non-orthologous because the latter has a clade **VIII** CYP450 (Fig S3). Group 7a and 9b cluster architectures are both new to the PTM literature, with the former being discovered in a streptomycete isolated from our local soils. In contrast with 7a, the remaining group members have CYP450s (clades **V** and **VI**) encoded downstream of their core biosynthetic genes. Most of the BGCs in group 7 remain experimentally uncharacterized, but the *Streptomyces* sp. S10 group 7d cluster was interrogated via synthetic biology to produce combamides (5/5 PTMs oxidatively tailored via clade **VI** CYP450 CmbD, Fig 1A, and Fig S3 (30)).

PTM biosynthesis appears to have a complex history. Vertical inheritance is argued to be the main mechanism of natural product BGC evolution, because on evolutionary timescales horizontal gene transfer (HGT) of large clusters is likely infrequent (70). However, it is also recognized that BGCs and the genes that comprise them can have individual evolutionary paths (even within BGC families (71)). Some PTM BGC types showed clear patterns of vertical transmission. For example, Group 5 clusters were found only within a particular monophyletic clade of *Streptomyces* spp (Fig S2). However, for many other PTM groups, such clear host -BGC concordance was absent. Furthermore, our Group 7 analysis provided compelling evidence for HGT, albeit for a subset of genes (Fig 4) rather than a complete BGC. Among the Group 7 BGCs is a putative ikarugamycin cluster that, remarkably, may have arisen from gene exchange into an ancestral 5/5/6 locus (based on nearest neighbors). It seems ikarugamycin BGCs may

be particularly subject to HGT, owing to their broad stochastic distribution among actinomycete hosts and their linkage with multiple FtdB clades (Fig 2). Finally, we noticed that at least ten PTM BGCs are adjacent to transposase genes, including members of Group 1, 4, 6, 9, and 12. It is intriguing as to what role these may have had in the spread of PTM BGCs. In sum, our analysis of FtdB and host phylogenies suggest an evolutionary history involving both vertical transmission and HGT.

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

New FtdB clade-specific probes are necessary capture PTM diversity. While less common since the advent of inexpensive genome sequencing, degenerate PCR remains a powerful approach for screening environmental microbes for genes and pathways of interest. We have isolated several PTM producing actinobacteria this way, using primers YQ158/YQ159 that target ftdBs ((6) and this study). However, those primers were designed when far fewer FtdB sequences were available and based on the much larger FtdB sequence library presented here, we realized new tools would be required to access the full diversity FtdB sequences. Accordingly, we used a phylogenyguided degenerate oligonucleotide design strategy (see Methods, Table S3) and the resulting primers were validated against a panel of PTM+ bacteria having diverse FtdB sequences (Fig S7). This resulted in new primer sets that facilitated more robust crossclade ftdB amplification than YQ158/159 (i.e., MTftdB1B, MTftdB4, MTftdB3B), while others gave robust amplification of certain ftdB sequences that were difficult to amplify with other primers sets (such as MTftdB6 for Streptomyces sp. SP18CS02 and MTftdB7 for Pseudoalteromonas luteoviolacea). Together, these new tools embody a robust toolset for the targeted discovery of PTM BGCs from environmental bacteria. Finally, sequence fragments of BGCs can be used to extrapolate potential BGC novelty, which

greatly empowers genome mining (i.e., KCDA genes in (72)). To test if the sequences of our new *ftdB* amplicons might predict PTM BGC novelty, a bank of degenerate-primer delimited amplicons was created in silico, and their in-frame translation products were used to build a ML phylogeny (Fig S8). This "amplicon tree" largely recapitulated the topology of the full-length FtdB tree (Fig S1, Fig S8), with some expected loss of resolution. Thus, FtdB amplicon phylogeny can be used to estimate PTM BGC novelty, within the constraints revealed by our FtdB-BGC concordance (Fig 2).

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

Using Group 1 PTM-targeted metabolomics to assess the fidelity of gene-tomolecules prediction. We previously showed actinobacterial strains harboring identical PTM clifednamide BGCs can display a range of congener titers, distributions, and types (6). Group 1 PTM BGCs had yet to be systematically surveyed in this way, and we thus asked how well PTM locus conservation translates into conserved product profiles, especially given how much FtdB diversity is represented within Group 1. To sample PTM Group 1 product diversity across species, we leveraged established PTM- targeted metabolomics to compare five strains that span the group's FtdB diversity: Streptomyces sp. JV180, Streptomyces sp. SPB78, Streptomyces sp. JV186, Streptomyces sp. JV190, and Streptomyces clavuligerus ATCC 27064. Organic extracts from spent culture media of each were analyzed via high pressure liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), with precursor ion scans for m/z 139.2 or 154.2 differentiating 25-deOH and 25-OH PTM congeners (38). The m/z transitions for each putative PTM are listed in Table S4, and product ion scans were performed for the most abundant base masses. The resulting MS² spectra were subsequently used to differentiate mass-similar features via fragment signatures, and to compare these against known PTMs to assign membership to the PTM family. All putative PTMs were orthogonally identified by comparing product profiles against published Group 1 null mutants of *Streptomyces* spp strains SPB78 and JV180.

We found all tested group 1 strains produced highly similar PTM profiles (Fig 5, Fig S11A). Specifically, the tested strains all produced a PTM (1) that is possibly identical to biosynthetic intermediate FI-2 of SPB78 based on retention time, mass transition, and fragmentation pattern (Fig S9), plus another PTM (13) had high similarity to a maltophilin authentic standard (Fig S10, Fig S11A). In addition, several other commonly distributed putative PTM signals (2, 5, 6, 8, 10, 12-16) were revealed by comparison against from PTM null mutants. Furthermore, two minor peaks were shared by only a subset of strains: 3 in JV180, JV186, and JV190, and 11, found in SPB78 and ATCC 27064. Finally, SPB78 generated multiple minor PTM signals not seen in other strains (7, 9).

FtdF- type CYP450s are active when their cognate genes from *S. griseus*, *S. albidoflavus*, and *Streptomyces* sp. SPB78 are heterologously expressed (22), so we expected PTM structural consequences for *S. clavuligerus*, which lacks a typical Group 1 clustered *ftdF* (clade I CYP450). To probe why the latter strain still produces typical Group 1 PTM mass features, we first explored *ftdF*-dependent biosynthesis in *Streptomyces* sp. JV180, a genetically amenable host. This was done by creating two mutants lacking cluster-linked oxidative genes: *Streptomyces* sp. JV180 Δ*ftdA* (JV1520) and double mutant Δ*ftdA*Δ*ftdF* (JV1522) (Fig 5). Mutants in *ftdA* give simplified congener diversity (2), which increases intermediate detection sensitivity by reducing congener complexity. We thus revealed compounds 1, 4, 5, 8 are *ftdF*-dependent, and these were clearly present in *S. clavuligerus* growth extracts (Fig 5). This indicated the *S. clavuligerus*

genome must harbor a functional FtdF ortholog, so BLAST was used to search the *S. clavuligerus* genome for FtdF- similar proteins along with CYP450 phylogeny to further interrogate potential hits (Fig S3). One CYP450 (69% identity to FtdF_{JV180}; EFG04254.1/FtdF_{ATCC27064}) stood out as a potential ortholog, which was encoded on the 1.8MB linear plasmid pSCL4 (73).

EFG04254.1 was cloned to constitutive-expression vector pJMD3 and tested for its ability to rescue *ftdF*-dependent mass features in JV180 Δ*ftdA*Δ*ftdF* (in parallel with a FtdF_{JV180} control). After analyzing the complemented strains (JV2997 and JV3010, respectively), we found both CYP450 genes were functional in restoring production of **1** (FI-2), **4**, **5**, and **8** (Fig 5). The major restored mass feature, **1**, was further scrutinized to confirm its equivalency to products of parent strains via LC/MS and MS/MS fragmentation (Fig S9). JV3010 gave low production of **2** compared to the Δ*ftdA* and WT strains, but this may be a function of strong-constitutive expression (6). Linking EFG04254.1 to native *S*. *clavuligerus* PTM biosynthesis remains to be tested, but our heterologous rescue data show it catalyzes the appropriate reaction, making it a high-confidence candidate.

Group 1 and Group 4 comparative- minimization experiments expose weaknesses in synteny-based molecule prediction. The mutational analysis of JV180 Group 1 biosynthesis revealed product congener profiles can be effectively "collapsed" to a single prominent mass-product after deleting *ftdA* and *ftdF*. We questioned what would happen if we performed a parallel analysis with other gene clusters sharing the same core BGC architecture with Group 1. Would we recover the same biosynthetic intermediate? The Group 4 BGC of *Streptomyces olivaceus* NRRL B-3009 was selected to answer this because its core BGC outwardly matches JV180, with the exception that the Group 4

strain encodes a predicted Rieske 2Fe-2S protein instead of a FtdF-type CYP450. *S. olivaceus* NRRL B-3009 PTMs were previously unanalyzed, but our PTM-targeted metabolomics detected likely products via precursor ion scans, typical UV absorbance profiles, and certain PTM-type MS product ions (Fig 6, Fig S11B-E, Fig S12). As expected for strains having distinct BGC types, the putative PTM profiles of JV180 and B-3009 did not significantly overlap (Fig 6).

To create simplified PTM profiles in *S. olivaceus*, unmarked $\Delta ftdA$ and $\Delta ftdA\Delta ftdG$ mutants were created (JV1521 and JV1560) and analyzed. Like JV180, *ftdA* mutants were expected to cease 25-OH PTM production, which was evidenced in the complete loss of m/z 154.2 product ion signals (Fig S11C). Surprisingly, we observed no differences in the m/z 139.2 precursor profiles for either mutant when compared to parent controls (Fig 6), indicating *ftdG* may not contribute to PTM biosynthesis. This was further investigated via a $\Delta ftdG$ single mutant (JV1208), and like the other mutants, this strain also lacked obvious MS/MS profile differences compared to parent controls (Fig S11B). We thus concluded *ftdG* is inessential for PTM biosynthesis under the conditions tested; any function remains unknown.

The PTM intermediates produced by the "tailoring- minimized" JV180 ΔftdAΔftdF and B-3009 ΔftdAΔftdG strains were then compared via LC/MS/MS, and like their wild-type parents, these mutants again failed to produce overlapping profiles (Fig 6). This suggests the existence of yet-unrecognized contributors to PTM diversity, either hidden within the genes of the PTM BGCs themselves or in host factors outside of their cognate BGCs. Supporting the former idea, the NRRL B-3009 locus is similar to that for pactamides, molecules that lack C14 hydroxyl decorations (but feature other, yet-

unexplained oxidative modifications (18, 35)). Indeed, we detected a PTM signal (31) in NRRL B-3009 extracts which fragments consistently with a C14-deOH analog of 2 (Fig S11D-E, Fig S12A), perhaps identical to pactamide A (*m*/z 481.3). It is thus highly plausible that NRRL B-3009 utilizes a non-hydroxylating PprB, which would partially inform why the Group 1 and 4 "tailoring minimized" strains do not accumulate the same intermediate(s). However, this cannot completely explain the differences in product profiles; the B-3009 double mutant produces several other PTM-like mass features (18-30) in addition to 31, but these too did not match any JV180 congeners (Fig 6, S11B, S12B-D), pointing to other mechanisms of pathway divergence. These data emphasize the need to disambiguate the complex origins of these molecules, especially in terms of extra-BGC enzymology (an increasingly encountered phenomenon (74–76).

Lastly, the LC-MS/MS-based methods used here cannot resolve stereochemistry, a parameter with profound consequences on bioactivity. In light of recent PTM configuration revisions, Jin *et al* have argued for systematic re-investigation of PTM stereochemistry (24). Doing this would undoubtedly shed useful insights into structure, and eventually, refined bioinformatics models. Despite the limitations of MS, metabolomic studies on microbial chemistry are burgeoning (77–80). Because PTM BGCs are fairly common, their products are frequently encountered in these studies, but sometimes incorrectly. For example, specific PTMs have been extrapolated from MS signals whose structures are incongruent with the BGC content (i.e., butremycin from a Group 1 BGC) (81–83). Others indicate both 5/5/6 and 5/6/5 PTMs being produced by individual strains, which is unlikely without supporting genomic evidence (84–87). BGC information is thus urged as a priority dimension of these types of analyses.

METHODS

Strains, primers, plasmids, enzymes, chemicals, and general methods.

Strains used in metabolomics analysis are listed in Table S5; primers and plasmids used in strain construction are listed in Tables S6 and S7. All primers were purchased from Integrated DNA Technologies. All restriction enzymes were purchased from New England Biolabs. Taq polymerase and T4 Ligase were purchased from New England Biolabs or Thermo Fisher Scientific. Novagen KOD Hot Start polymerase was purchased from Millipore Sigma and used for all cloning. FailSafe PCR 2X PreMix D or G (LCG, Biosearch Technologies) were used as buffer for all PCR reactions.

Environmental actinomycete isolation and cultivation. All bacterial isolates used in this study were enriched from a diversity of soils obtained from the Tyson Research Center of Washington University in St Louis, located in Eureka, MO. Isolates *Kitasatospora* sp. strains BE20 and BE303, and *Streptomyces* sp. strains BE133, BE147, BE230, BE282, and BE308 originated from New Rankin Cave sediments. *Kitasatospora* sp. strain SP17BM10 and *Streptomyces* sp. strain SP18ES09 were isolated from grassy rhizosphere soils of New Pond field. *Streptomyces* sp. SP17KL33 (6) and SP18CS02 were isolated from dry glade environments. Enrichment media used to obtain these strains were Humic-acid Vitamin (HV), Arginine Glycerol-Salts(AGS), and Low Tryptone-Yeast (LTY), and enrichments were performed as previously described using air-dried and finely sifted soils(33). All media contained antifungals cycloheximide and nystatin, (50mg/L or 100 mg/L ea) plus either nalidixic acid (25 mg/L) or polymyxin B (10 mg/L) to discourage non-actinomycete microorganisms. Specific enrichment media for each isolate were as follows: HV for strains BE133, BE147,

BE230, BE282, BE303, and BE308; AGS for strains BE20 and SP18CS02; and LTY for SP18ES09. Following isolation, the actinobacterial isolates were grown with vigorous shaking in 50mL conical tubes equipped with 5mL Trypticase Soy Broth and stored at -80°C for further use.

Draft genome sequencing of PTM BGC-harboring environmental isolates.

PTM+ environmental isolates above were identified using an established *ftdB*- targeted degenerate PCR screen (33). Screening amplicons were confirmed via Sanger sequencing at Genewiz using amplification primers YQ158/YQ159 (6). Parent strains of interest were draft sequenced using Illumina Genome sequencing at the Washington University in St. Louis McDonnell Genome Institute, with the TruSeq PCR-free library prep kit (Illumina) and the Sci clone next-generation sequencing (NGS) instrument (Perkin Elmer) essentially as previously reported (88).

PTM BGC mining. AntiSMASH software versions 3, 4, and 5 were used to identify PTM BGCs among fragmentary assembled genomes from Blodgett Lab environmental isolates (89). PTM BGCs were also systematically mined from online sequence databanks including GenBank (National Center for Biotechnological Information, NCBI) and the Joint Genome Institute Integrated Microbial Genomes and Microbiomes (JGI IMG) using BLASTP and TBLASTN tools. For this, the FtdB sequence from *Streptomyces* sp. JV178 (55) was used as a query against all available bacterial finished, permanent, and draft genome sequences. Hits above ~ 40% identity were selected as being potentially associated with PTM clusters, and PTM BGC identities were established through the identification of nearby encoded homologs of other known PTM BGC-associated genes. In addition, all candidate FtdB sequences

were tested for expected ornithine-specific adenylation domains using the PKS/NRPS Analysis website from The Institute for Genome Sciences at U of Maryland and NRPSsp Non-Ribosomal Peptide Synthase substrate predictor (90, 91). BGC linear comparisons were visualized using Clinker (92) where necessary.

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

Phylogenetic analyses of PTM BGC enzymes. For this study, the FtdB and cytochrome P450 trees were created with alignments of all available complete CDS translation products available from GenBank, plus those sequenced from environmental isolates. Specifically, these analyses included a total of 302 FtdBs and 232 CYP450s manual curated to remove exact duplicates. To ensure the quality of the FtdB tree, some FtdB having incomplete or faulty assembly were removed (including all <90% of typical FtdB length as determined by the average the lengths of 6 published FtdB's, plus 6 FtdB's sampling diverse genera found in this study (Table S1). In contrast, the FtdA, PhyDH, and ADH trees were created with enzyme sequences extracted from representative strains drawn from each BGC group (see Fig 2 for BGC group definitions). This was done for figure clarity and to high sequence redundancy. Sequences were aligned using Qiagen CLC Main Workbench v20. Maximum Likelihood trees were created using IQ-TREE2 with the model finder plus setting to determine the best-fitting model and 1000 ultra-fast bootstrapping replicates to assess branch supports. Ultrafast bootstrap threshold was set at 95%, and branches over 99% were bolded for each tree. Trees were visualized in CLC Main Workbench. The best-fit models selected for each tree are listed: FtdA: mtlnv+F+I+G4, FtdB: JTT+F+R10, FtdB amplicon: JTT+F+R10, Ppr: LG+F+R7, ADH: LG+F+R5, Cyp450: LG+F+R5.

Specific outgroups to root each phylogeny were: for PhyDH (IkaB/FtdC), carotene dehydratase family enzyme from *Rhodobacter capsulatus* (CrtI) (CAA77540.1) from (2); for cytochrome p450s, *Bacillus megaterium* BM3 (WP_095379236.1) from (6); for FtdB an iterative Type 1 PKS enzyme from *Saccharopolyspora erythraea* (WP_009944722.1) was used. To identify suitable outgroups to root ADH and FtdA trees, examples of each PTM associated protein were analyzed using BlastP (NCBI) to identify associated protein superfamilies. This revealed candidate non-PTM associated members for each superfamily. For the PTM ADH tree, an oxidoreductase from *Bacillus subtilis* subsp. *subtilis* str. 168 (CAB12574.1) was selected, and for FtdA, the root is a sterol desaturase from *Agrobacterium fabrum* str. C58 (Q7D1P6).

Taxonomic classification PTM BGC-harboring strains. PTM BGC-harboring genomes were downloaded from NCBI, as well as select partial housekeeping sequences (atpD, recA, rpoB, and trpB) of type strains used in previous taxonomic studies (93). AutomIsa2 was used with model finder plus and 1000 ultrafast bootstrap replicates to mine and align sequences, and then build a phylogenetic tree (Best-fit model: GTR+F+R8:atpD+recA,GTR+F+R5:rpoB,TVM+F+R6:trpB) (94). CLC Main Workbench v20.0 was used to visualize alignments and trees. Published phylogenies using MLSA, whole genome analysis, and ANI scores were taken into consideration when analyzing taxonomic classification (93, 95–102).

PTM production and targeted metabolomics. Strains were revived from -80°C cryostocks onto ISP2 agar and incubated 2-3 d at 28°C. Agar plugs with adhering mycelia were used to innoculate single colonies to 3 ml TSB in 24-well plates. Cultures were shaken for 2 days at 28°C (250 rpm) with a sterile 4mm glass bead to disrupt

clumping, 200 µl of each culture was spread to ISP2, ISP4, ISPS, SFM, or YMS agar plates and incubated at 28°C for 6 days. The agar was diced, immersed in ethyl acetate overnight, and solvent was evaporated under vacuum. The dry extracts were resuspended in 500 µl LC-MS grade methanol and filtered before HPLC analysis. Chromatography was performed using a Phenomenex Luna C18 column (75 x 3 mm, 3 μm pore size) installed on an Agilent 1260 Infinity HPLC. For each run, 10 μl of sample was injected and the chromatography conditions were as follows: T = 0, 5% B; T = 1, 5% B; T = 4, 35% B; T = 22, 55% B; T = 26, 100% B; T = 30, 100%; A: water + 0.1% formic acid, B: acetonitrile + 0.1% formic acid; and 0.8 ml/min. An HPLC diode array detector (DAD) monitored PTM production at 320 nm, along with in-line Agilent 6420 Triple-Quad mass spectrometer for MS/MS analysis with ESI in positive mode (ESI+). For PTM-targeted metabolomics, precursor ion scan mode was used to detect molecules m/z 450 – 550 that fragmented (collision energy = 30 V, fragmentation energy = 70 V) into product ions m/z 139.2 and 154.2 as previously (38). Product ion scan mode was then used to detect precursor ions that were identified in the precursor scans, m/z: 493.2, 495.4, 497.4, 509.2, 511.2, 513.2, 525.2, 527.3, 529.0. MS data were analyzed offline using Agilent MassHunter Qualitative Analysis software, where PTMs were identified by correlating baseline-corrected UV profiles with PTM-like fragmentation patterns, established in (2, 6, 38).

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

Genetics: Marker-less gene deletion and rescue experiments Streptomycin counterselections were used to construct unmarked mutants to test gene function essentially as described (6, 38). Briefly, protein S12 (StrR) point mutants of *S. olivaceus* NRRL B-3009 were isolated by plating cells to ISP2 + Str¹⁰, and *rpsL* was amplified

from resistant colonies and sequenced using primers YQ4 and YQ5 (Table S7). The rpsL mutants used as parents for downstream mutation analyses were chosen based on their having had no visible difference in PTM production or growth characteristics from WT. All gene deletions were generated using double homologous recombination as previously described (6, 38). Deletion plasmids were generated by first cloning PCRamplified homologous upstream and downstream regions into linearized pUC19 via NEB Hi-Fi Assembly and verified by Sanger sequencing. Homology cassettes were subcloned to pJVD52.1. Resulting plasmids were introduced into Streptomyces via intergeneric conjugation using JV36, where apramycin-resistant (Apr^R), Str^S exconjugants were selected. These were grown in TSB at 37°C without antibiotics, and double recombinants were identified via PCR after plating to ISP2 + streptomycin. Mutant rescue and heterologous expression were carried out using expression-shuttle vector pJMD3. Inserts were confirmed by Sanger sequencing using primers PermE*-fw and PXS6 or via whole plasmid sequencing by Plasmidsaurus using Oxford Nanopore Technologies. Expression constructs were conjugated into recipients using JV36 by selecting for Apr^R colonies, essentially as previously described (2). Plasmid integration at ΦC31 attB was confirmed using multiplex PCR as done (6). See Table S6 for specific plasmid details.

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

FtdB Clade-based primer design and function tests. A total of 11 degenerate primer sets (see Table S3) were designed based *ftdB* nucleotide sequences drawn from distinct phylogenetic groups of the FtdB ML- tree (Fig S1). Degenerate primers were designed to specifically amplify across the junction of the PKS and NRPS modules of the enzymes using Primers4Clades (103). Primers were designed using the default *get*

primers run mode, and with corrected CODEHOP (codeh_corr) formulations. A set of positive control strains (Table S3) were selected to validate the functionality of the new degenerate primer pairs. *Streptomyces* sp. SP18CS02 has a newly-described cluster architecture, and it was also used to test new primers because the strain saw inconsistent amplification with YQ158/YQ159 (6). Universal 16S rDNA primers 8F/1492R (104) were used to control for template quality. All new degenerate *ftdB* screening primers were used with the following "touchdown" protocol: 2 min at 95 °C, followed by 7 cycles consisting of 20 s at 95 °C, 15 s at 70 °C, and 1 min at 70 °C, decreasing annealing temperature by 2 °C after each cycle. This was followed by 23 cycles consisting of 20 s at 95 °C, 15 s at 54 °C, and 1 min at 68 °C, ending with 5 min at 72 °C. All primer sets yielded expected amplicon sizes based on clade-specific positive-control *ftdB* gene sequences (see Table S3).

Nucleotide accession numbers. The Whole Genome Shotgun Sequencing data have deposited at DDBJ/ENA/GenBank under accessions: JAQYWT000000000 for *Streptomyces sp.* SP18BB07, JAQYWU000000000 for *Streptomyces sp.* BE133, JAQYWV000000000 for *Streptomyces sp.* BE147, JAQYWW000000000 for *Streptomyces sp.* BE230, JAQYWX000000000 for *Streptomyces sp.* BE230, JAQYWY000000000 for *Streptomyces sp.* BE282, JAQYWZ000000000 for *Streptomyces sp.* BE303, JAQYXA000000000 for *Streptomyces sp.* BE308, JAQYXB00000000 for *Streptomyces sp.* SP17BM10, JAQYXC000000000 for *Streptomyces sp.* SP18ES09, JAQYXE000000000 for *Streptomyces sp.* SP18ES09, JAQYXE000000000 for *Streptomyces sp.* JV181, JAQYXG000000000 for *Streptomyces sp.* JV184, JAQYXH000000000 for

Streptomyces sp. JV185, JAQYXI00000000 for Streptomyces sp. JV186, 683 JAQYXJ000000000 for Streptomyces sp. JV190, and JAQYXK000000000 for 684 685 Streptomyces sp. SP17KL33. SUPPLEMENTAL MATERIALS 686 Fig S1 to S9 and Table S1 to S7. 687 688 **ACKNOWLEDGMENTS** We thank John D'Alessandro, Brandon Burger, Eric Song, Bilal Makhdoom, and Carrie 689 Stump for assisting strain isolations, Priya Mullick for cloning assistance, and Catrina 690 Fronick for draft genome assembly. For strains or DNA to validate degenerate PCR 691 toolsets, we thank: Paul Jensen (University of California- San Diego; Salinispora 692 arenicola CNS-205;), Liangcheng Du (University of Nebraska-Lincoln; Lysobacter 693 enzymogenes C3), and Avena Ross (Queen's University-Ontario; Pseudoalteramonas 694 luteoviolacea 2ta16). This work was supported by NSF-CAREER 1846005 to J.A.V.B. 695 696 Undergraduate researcher support is also gratefully acknowledged to: E.Z (Amgen Scholars Award), A. D and M.T (Washington University Biology Summer Undergraduate 697 Research Fellowships). M.T also received a Lynda A. Ceremsak & F. George Davitt 698 699 Undergraduate Biochemistry Fellowship and a WUSTL-Howard Hughes Medical Institute Summer Undergraduate Research Fellowship. J.A.V.B received genome-700 701 sequencing support through a McDonnell Genome Institute 2018 Symposium Pilot 702 Project funded by the Office of the Dean of the School of Medicine, Washington 703 University Institute of Clinical and Translational Sciences (ICTS), and Illumina, Inc. (San 704 Diego, CA).

References:

705

- 1. Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet J, Harris S, Yuen G, Li X-C, Du L.

 2007. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broadspectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother

 51:64–72.
- Blodgett JAV, Oh D-C, Cao S, Currie CR, Kolter R, Clardy J. 2010. Common
 biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically
 diverse bacteria. Proc Natl Acad Sci 107:11692–11697.
- Vior NM, Lacret R, Chandra G, Dorai-Raj S, Trick M, Truman AW. 2018.
 Discovery and biosynthesis of the antibiotic bicyclomycin in distantly related
 bacterial classes. Appl Environ Microbiol 84:e02828-17.
- Bown L, Li Y, Berrué F, Verhoeven JTP, Dufour SC, Bignell DRD. 2017.
 Coronafacoyl phytotoxin biosynthesis and evolution in the common scab
 pathogen *Streptomyces scabiei*. Appl Environ Microbiol 83:e01169-17.
- Jiao Y-J, Liu Y, Wang H-X, Zhu D-Y, Shen Y-M, Li Y-Y. 2020. Expression of the clifednamide biosynthetic pathway in *Streptomyces* generates 27,28-secoderivatives. J Nat Prod 83:2803–2808.
- 6. Qi Y, Ding E, Blodgett JAV. 2018. Native and engineered clifednamide biosynthesis in multiple *Streptomyces* spp. ACS Synth Biol 7:357–362.
- 724 7. Xiangui M, Liping W, Dongyang W, Jie F, Weiming Z. 2017. Polycyclic tetramate 725 macrolactams from the marine-derived *Actinoalloteichus cyanogriseus* WH1-726 2216-6. Chin J Org Chem 37:2352.

- 8. Greunke C, Glöckle A, Antosch J, Gulder TAM. 2017. Biocatalytic total synthesis of ikarugamycin. Angew Chem Int Ed 56:4351–4355.
- Kyeremeh K, Acquah KS, Sazak A, Houssen W, Tabudravu J, Deng H, Jaspars
 M. 2014. Butremycin, the 3-hydroxyl derivative of ikarugamycin and a protonated
 aromatic tautomer of 5'-methylthioinosine from a Ghanaian *Micromonospora* sp.
 K310. 2. Mar Drugs 12:999–1012.
- Zou H, Xia X, Xu Q, Wang H, Shen Y, Li Y. 2022. Discovery of oxidized polycyclic
 tetramate macrolactams bearing one or two rings through combinatorial pathway
 reassembly. Org Lett 24:6515–6519.
- Hoshino S, Wong CP, Ozeki M, Zhang H, Hayashi F, Awakawa T, Asamizu S,
 Onaka H, Abe I. 2018. Umezawamides, new bioactive polycyclic tetramate
 macrolactams isolated from a combined-culture of *Umezawaea* sp. and mycolic
 acid-containing bacterium. 7. J Antibiot (Tokyo) 71:653–657.
- Moree WJ, McConnell OJ, Nguyen DD, Sanchez LM, Yang Y-L, Zhao X, Liu W-T,
 Boudreau PD, Srinivasan J, Atencio L, Ballesteros J, Gavilán RG, Torres Mendoza D, Guzmán HM, Gerwick WH, Gutiérrez M, Dorrestein PC. 2014.
 Microbiota of healthy corals are active against fungi in a light-dependent manner.
 ACS Chem Biol 9:2300–2308.
- 13. Ueoka R, Bhushan A, Probst SI, Bray WM, Lokey RS, Linington RG, Piel J. 2018.
 Genome-based identification of a plant-associated marine bacterium as a rich
 natural product source. Angew Chem Int Ed 57:14519–14523.

- 14. Greunke C, Antosch J, M. Gulder TA. 2015. Promiscuous hydroxylases for the
 functionalization of polycyclic tetramate macrolactams conversion of
 ikarugamycin to butremycin. Chem Commun 51:5334–5336.
- 15. Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. 2018. Biosynthesis of the
 polycyclic system in the antifungal HSAF and analogues from *Lysobacter* enzymogenes. Angew Chem Int Ed 57:6221–6225.
- 16. Antosch J, Schaefers F, Gulder TAM. 2014. Heterologous reconstitution of ikarugamycin biosynthesis in *E. coli*. Angew Chem Int Ed 53:3011–3014.
- Zhang G, Zhang W, Saha S, Zhang C. 2016. Recent advances in discovery,
 biosynthesis and genome mining of medicinally relevant polycyclic tetramate
 macrolactams. Curr Top Med Chem 16:1727–1739.
- Saha S, Zhang W, Zhang G, Zhu Y, Chen Y, Liu W, Yuan C, Zhang Q, Zhang H,
 Zhang L, Zhang W, Zhang C. 2017. Activation and characterization of a cryptic
 gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams.
- 762 Chem Sci 8:1607–1612.
- 19. Hou L, Liu Z, Yu D, Li H, Ju J, Li W. 2020. Targeted isolation of new polycyclic
 tetramate macrolactams from the deepsea-derived *Streptomyces somaliensis* SCSIO ZH66. Bioorganic Chem 101:103954.
- Yang J, Qi Y, Blodgett JAV, Wencewicz TA. 2022. Multifunctional P450
 monooxygenase CftA diversifies the clifednamide pool through tandem C–H bond
 activations. J Nat Prod 85:47–55.

- 21. Ding W, Tu J, Zhang H, Wei X, Ju J, Li Q. 2021. Genome mining and metabolic 769 770 profiling uncover polycyclic tetramate macrolactams from Streptomyces koyangensis SCSIO 5802. Mar Drugs 19:440. 771
- Yan Y, Wang H, Song Y, Zhu D, Shen Y, Li Y. 2021. Combinatorial biosynthesis 772 22. of oxidized combamides using cytochrome P450 enzymes from different 773 polycyclic tetramate macrolactam pathways. ACS Synth Biol 10:2434–2439. 774
- 775 23. Liu W, Zhang W, Jin H, Zhang Q, Chen Y, Jiang X, Zhang G, Zhang L, Zhang W, 776 She Z, Zhang C. 2019. Genome mining of marine-derived *Streptomyces* sp. SCSIO 40010 leads to cytotoxic new polycyclic tetramate macrolactams. Mar 777 Drugs 17:663.

778

- 24. Jin H, Zhang W, Zhang G, Zhang L, Liu W, Zhang C. 2020. Engineered 779 biosynthesis of 5/5/6 type polycyclic tetramate macrolactams in an ikarugamycin 780 781 (5/6/5 type)-producing chassis. Org Lett 22:1731–1735.
- 25. Fukuda T, Takahashi M, Kasai H, Nagai K, Tomoda H. 2017. Chlokamycin, a new 782 chloride from the marine-derived *Streptomyces* sp. MA2-12. Nat Prod Commun 783 12:1223–1226. 784
- 785 26. Yu H-L, Jiang S-H, Bu X-L, Wang J-H, Weng J-Y, Yang X-M, He K-Y, Zhang Z-G, Ao P, Xu J, Xu M-J. 2017. Structural diversity of anti-pancreatic cancer 786 capsimycins identified in mangrove-derived Streptomyces xiamenensis 318 and 787 post-modification via a novel cytochrome P450 monooxygenase. Sci Rep 788 7:40689. 789

- Malcomson B, Wilson H, Veglia E, Thillaiyampalam G, Barsden R, Donegan S, El
 Banna A, Elborn JS, Ennis M, Kelly C, Zhang S-D, Schock BC. 2016. Connectivity
 mapping (ssCMap) to predict A20-inducing drugs and their antiinflammatory
 action in cystic fibrosis. Proc Natl Acad Sci 113:E3725–E3734.
- Jomon K, Kuroda Y, Ajisaka M, Sakai H. 1972. A new antibiotic, ikarugamycin. J
 Antibiot (Tokyo) 25:271–280.
- Jiang S-H, Dong F-Y, Da L-T, Yang X-M, Wang X-X, Weng J-Y, Feng L, Zhu L-L,
 Zhang Y-L, Zhang Z-G, Sun Y-W, Li J, Xu M-J. 2020. Ikarugamycin inhibits
 pancreatic cancer cell glycolysis by targeting hexokinase 2. FASEB J 34:3943–
 3955.
- 30. Liu Y, Wang H, Song R, Chen J, Li T, Li Y, Du L, Shen Y. 2018. Targeted
 discovery and combinatorial biosynthesis of polycyclic tetramate macrolactam
 combamides A–E. Org Lett 20:3504–3508.
- 31. Olano C, García I, González A, Rodriguez M, Rozas D, Rubio J, Sánchez-Hidalgo
 M, Braña AF, Méndez C, Salas JA. 2014. Activation and identification of five
 clusters for secondary metabolites in *Streptomyces albus* J1074. Microb
 Biotechnol 7:242–256.
- 32. Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H. 2013.

 Activation and characterization of a cryptic polycyclic tetramate macrolactam
 biosynthetic gene cluster. 1. Nat Commun 4:2894.

- 33. Cao S, Blodgett JAV, Clardy J. 2010. Targeted discovery of polycyclic tetramate macrolactams from an environmental *Streptomyces* strain. Org Lett 12:4652–4654.
- Zhang G, Zhang W, Zhang Q, Shi T, Ma L, Zhu Y, Li S, Zhang H, Zhao Y-L, Shi
 R, Zhang C. 2014. Mechanistic insights into polycycle formation by reductive
 cyclization in ikarugamycin biosynthesis. Angew Chem Int Ed 53:4840–4844.
- Li X, Wang H, Li Y, Du L. 2019. Construction of a hybrid gene cluster to reveal coupled ring formation—hydroxylation in the biosynthesis of HSAF and analogues from *Lysobacter enzymogenes*. MedChemComm 10:907–912.
- 36. Xu L, Wu P, Wright SJ, Du L, Wei X. 2015. Bioactive polycyclic tetramate
 macrolactams from *Lysobacter enzymogenes* and their absolute configurations by
 theoretical ECD calculations. J Nat Prod 78:1841–1847.
- Zhang W, Zhang G, Zhang L, Liu W, Jiang X, Jin H, Liu Z, Zhang H, Zhou A,
 Zhang C. 2018. New polycyclic tetramate macrolactams from marine-derived
 Streptomyces sp. SCSIO 40060. Tetrahedron 74:6839–6845.
- 38. Qi Y, Nepal KK, Blodgett JAV. 2021. A comparative metabologenomic approach reveals mechanistic insights into *Streptomyces* antibiotic crypticity. Proc Natl Acad Sci 118:e2103515118.
- 39. Li X, Wang H, Shen Y, Li Y, Du L. 2019. OX4 is an NADPH-dependent
 dehydrogenase catalyzing an extended Michael addition reaction to form the sixmembered ring in the antifungal HSAF. Biochemistry 58:5245–5248.

- 40. Luo J, Li X, Wang H, Du L, Shen Y, Li Y. 2022. Identification and characterization
- of the 28-N-methyltransferase involved in HSAF analogue biosynthesis.
- 833 Biochemistry 61:2879–2883.
- 41. Kanazawa S, Fusetani N, Matsunaga S. 1993. Cylindramide: Cytotoxic tetramic
- acid lactam from the marine sponge *Halichondria cylindrata* Tanita & Hoshino.
- 836 Tetrahedron Lett 34:1065–1068.
- 42. Capon RJ, Skene C, Lacey E, Gill JH, Wadsworth D, Friedel T. 1999. Geodin A
- magnesium salt: A novel nematocide from a southern Australian marine sponge,
- 839 *Geodia*. J Nat Prod 62:1256–1259.
- 43. Zhang Y, Xu J, Wang E, Wang N. 2020. Mechanisms underlying the rhizosphere-
- to-rhizoplane enrichment of *Cellvibrio* unveiled by genome-centric metagenomics
- and metatranscriptomics. Microorganisms 8:583.
- 843 44. Wilbanks EG, Jaekel U, Salman V, Humphrey PT, Eisen JA, Facciotti MT,
- Buckley DH, Zinder SH, Druschel GK, Fike DA, Orphan VJ. 2014. Microscale
- sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt
- 846 Marsh. Environ Microbiol 16:3398–3415.
- 45. Wilbanks EG, Doré H, Ashby MH, Heiner C, Roberts RJ, Eisen JA. 2022.
- Metagenomic methylation patterns resolve bacterial genomes of unusual size and
- structural complexity. ISME J 16:1921–1931.
- 46. Kosmopoulos JC, Campbell DE, Whitaker RJ, Wilbanks EG. 2023. Horizontal
- gene transfer and CRISPR targeting drive phage-bacterial host interactions and

- coevolution in "pink berry" marine microbial aggregates. Appl Environ Microbiol 89:e00177-23.
- Lin Y, Wang L, Xu K, Li K, Ren H. 2021. Revealing taxon-specific heavy metalresistance mechanisms in denitrifying phosphorus removal sludge using genomecentric metaproteomics. Microbiome 9:67.
- 48. Li X, Liu Q, Zou H, Luo J, Jiao Y, Wang H, Du L, Shen Y, Li Y. 2023. Discovery and biosynthesis of pseudoamides reveal enzymatic cyclization of the polyene precursor to 5–5 bicyclic tetramate macrolactams. ACS Catal 13:4760–4767.
- Joynt R, Seipke RF. 2018. A phylogenetic and evolutionary analysis of antimycin
 biosynthesis. Microbiology 164:28–39.
- Chase AB, Sweeney D, Muskat MN, Guillén-Matus DG, Jensen PR. 2021.
 Vertical inheritance facilitates interspecies diversification in biosynthetic gene
 clusters and specialized metabolites. mBio 12:e02700-21.
- Schaub P, Yu Q, Gemmecker S, Poussin-Courmontagne P, Mailliot J, McEwen
 AG, Ghisla S, Al-Babili S, Cavarelli J, Beyer P. 2012. On the structure and
 function of the phytoene desaturase CRTI from *Pantoea ananatis*, a membrane peripheral and FAD-dependent oxidase/isomerase. PLoS ONE 7:e39550.
- 52. Claverys J, Prudhomme M, Mortier-Barrière I, Martin B. 2000. Adaptation to the environment: *Streptococcus pneumoniae*, a paradigm for recombination-mediated genetic plasticity? Mol Microbiol 35:251–259.

- Gu L, Zhang K, Zhang N, Li X, Liu Z. 2020. Control of the rubber anthracnose
 fungus *Colletotrichum gloeosporioides* using culture filtrate extract from
 Streptomyces deccanensis QY-3. Antonie Van Leeuwenhoek 113:1573–1585.
- Nguyen HP, Weisberg AJ, Chang JH, Clarke CR. 2022. Streptomyces caniscabiei
 sp. nov., which causes potato common scab and is distributed across the world.
 Int J Syst Evol Microbiol 72:005225.
- Sp. strain JV178, a producer of clifednamide-type polycyclic tetramate
 macrolactams. Genome Announc 6:e01401-17.
- S6. Guan D, Grau BL, Clark CA, Taylor CM, Loria R, Pettis GS. 2012. Evidence that thaxtomin C is a pathogenicity determinant of *Streptomyces ipomoeae*, the causative agent of *Streptomyces* soil rot disease of sweet potato. Mol Plant-Microbe Interactions 25:393–401.
- Planckaert S, Deflandre B, De Vries A-M, Ameye M, Martins JC, Audenaert K,
 Rigali S, Devreese B. 2021. Identification of novel rotihibin analogues in
 Streptomyces scabies, including discovery of its biosynthetic gene cluster.
 Microbiol Spectr 9:e00571-21.
- 889 58. Bown L, Hirota R, Goettge MN, Cui J, Krist DT, Zhu L, Giurgiu C, Van Der Donk
 890 WA, Ju K-S, Metcalf WW. 2023. A novel pathway for biosynthesis of the herbicidal
 891 phosphonate natural product phosphonothrixin is widespread in Actinobacteria. J
 892 Bacteriol 205:e00485-22.

- Armijos-Jaramillo V, Santander-Gordón D, Soria R, Pazmiño-Betancourth M,
 Echeverría MC. 2017. A whole genome analysis reveals the presence of a plant
 PR1 sequence in the potato pathogen *Streptomyces scabies* and other
 Streptomyces species. Mol Phylogenet Evol 114:346–352.
- 897 60. Shigemori H, Bae MA, Yazawa K, Sasaki T, Kobayashi J. 1992. Alteramide A, a 898 new tetracyclic alkaloid from a bacterium *Alteromonas* sp. associated with the 899 marine sponge *Halichondria okadai*. J Org Chem 57:4317–4320.
- 900 61. Bae M-A, Yamada K, Ijuin Y, Tsuji T, Yazawa K, Uemura D. 1996.

 901 Aburatubolactam A, a novel inhibitor of superoxide anion generation from a

 902 marine microorganism. Heterocycl Commun 2:315–318.
- Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H. 1996.
 Maltophilin: A new antifungal compound produced by *Stenotrophomonas maltophilia* R3089. J Antibiot (Tokyo) 49:1101–1104.
- 906 63. Tang B, Laborda P, Sun C, Xu G, Zhao Y, Liu F. 2019. Improving the production 907 of a novel antifungal alteramide B in Lysobacter enzymogenes OH11 by 908 strengthening metabolic flux and precursor supply. Bioresour Technol 273:196– 909 202.
- 910 64. Graupner PR, Thornburgh S, Mathieson JT, Chapin EL, Kemmitt GM, Brown JM,
 911 Snipes CE. 1997. Dihydromaltophilin; a novel fungicidal tetramic acid containing
 912 metabolite from *Streptomyces* sp. J Antibiot (Tokyo) 50:1014–1019.

- 913 65. Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S. 1999. Possible role 914 of xanthobaccins produced by *Stenotrophomonas* sp. strain SB-K88 in 915 suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334– 916 4339.
- 917 66. Quezada M, Licona-Cassani C, Cruz-Morales P, Salim AA, Marcellin E, Capon RJ, Barona-Gómez F. 2017. Diverse cone-snail species harbor closely related 919 Streptomyces species with conserved chemical and genetic profiles, including 920 polycyclic tetramic acid macrolactams. Front Microbiol 8:2305.
- 921 67. Ahmed Y, Rebets Y, Tokovenko B, Brötz E, Luzhetskyy A. 2017. Identification of 922 butenolide regulatory system controlling secondary metabolism in *Streptomyces* 923 *albus* J1074. Sci Rep 7:9784.
- 924 68. Ding L, Zhang S-D, Haidar AK, Bajimaya M, Guo Y, Larsen TO, Gram L. 2021.

 925 Polycyclic tetramate macrolactams A group of natural bioactive metallophores.
- 926 Front Chem 9:772858.
- 69. Li H, Zhang Q, Li S, Zhu Y, Zhang G, Zhang H, Tian X, Zhang S, Ju J, Zhang C.
 2012. Identification and characterization of xiamycin A and oxiamycin gene cluster
 reveals an oxidative cyclization strategy tailoring indolosesquiterpene
 biosynthesis. J Am Chem Soc 134:8996–9005.
- 70. Chevrette MG, Currie CR. 2019. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol 46:257–271.

- 71. Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-
- Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. 2020.
- Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep
- 936 37:566–599.
- 937 72. Shigdel UK, Lee S-J, Sowa ME, Bowman BR, Robison K, Zhou M, Pua KH, Stiles
- DT, Blodgett JAV, Udwary DW, Rajczewski AT, Mann AS, Mostafavi S, Hardy T,
- Arya S, Weng Z, Stewart M, Kenyon K, Morgenstern JP, Pan E, Gray DC, Pollock
- 940 RM, Fry AM, Klausner RD, Townson SA, Verdine GL. 2020. Genomic discovery of
- an evolutionarily programmed modality for small-molecule targeting of an
- intractable protein surface. Proc Natl Acad Sci 117:17195–17203.
- 943 73. Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, Wu L,
- Alam MT, Ronning CM, Nierman WC, Bovenberg RAL, Breitling R, Takano E.
- 2010. The sequence of a 1.8-MB bacterial linear plasmid reveals a rich
- evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol
- 947 2:212–224.
- 948 74. Losada AA, Cano-Prieto C, García-Salcedo R, Braña AF, Méndez C, Salas JA,
- Olano C. 2017. Caboxamycin biosynthesis pathway and identification of novel
- benzoxazoles produced by cross-talk in *Streptomyces* sp. NTK 937. Microb
- 951 Biotechnol 10:873–885.
- 952 75. Tsunematsu Y, Ishikawa N, Wakana D, Goda Y, Noguchi H, Moriya H, Hotta K,
- 953 Watanabe K. 2013. Distinct mechanisms for spiro-carbon formation reveal
- biosynthetic pathway crosstalk. Nat Chem Biol 9:818–825.

- 955 76. Cano-Prieto C, Losada AA, Braña AF, Méndez C, Salas JA, Olano C. 2015.
- 956 Crosstalk of nataxazole pathway with chorismate-derived ionophore biosynthesis
- pathways in *Streptomyces* sp. Tü 6176. ChemBioChem 16:1925–1932.
- 958 77. Avalon NE, Murray AE, Baker BJ. 2022. Integrated metabolomic–genomic
- workflows accelerate microbial natural product discovery. Anal Chem 94:11959–
- 960 11966.
- 78. Kellogg J, Kang S. 2020. Metabolomics, an essential tool in exploring and
- harnessing microbial chemical ecology. Phytobiomes J 4:195–210.
- 963 79. Mannochio-Russo H, Swift SOI, Nakayama KK, Wall CB, Gentry EC,
- Panitchpakdi M, Caraballo-Rodriguez AM, Aron AT, Petras D, Dorrestein K,
- Dorrestein TK, Williams TM, Nalley EM, Altman-Kurosaki NT, Martinelli M,
- Kuwabara JY, Darcy JL, Bolzani VS, Wegley Kelly L, Mora C, Yew JY, Amend
- AS, McFall-Ngai M, Hynson NA, Dorrestein PC, Nelson CE. 2023. Microbiomes
- and metabolomes of dominant coral reef primary producers illustrate a potential
- role for immunolipids in marine symbioses. Commun Biol 6:896.
- 970 80. Aharoni A, Goodacre R, Fernie AR. 2023. Plant and microbial sciences as key
- drivers in the development of metabolomics research. Proc Natl Acad Sci
- 972 120:e2217383120.
- 973 81. Samples RM, Puckett SP, Balunas MJ. 2023. Metabolomics Peak Analysis
- 974 Computational Tool (MPACT): An advanced informatics tool for metabolomics and

- 975 data visualization of molecules from complex biological samples. Anal Chem 976 95:8770–8779.
- 977 82. Pessotti R de C, Hansen BL, Reaso JN, Ceja-Navarro JA, El-Hifnawi L, Brodie 978 EL, Traxler MF. 2021. Multiple lineages of *Streptomyces* produce antimicrobials 979 within passalid beetle galleries across eastern North America. eLife 10:e65091.
- Pinto-Almeida A, Bauermeister A, Luppino L, Grilo IR, Oliveira J, Sousa JR,
 Petras D, Rodrigues CF, Prieto-Davó A, Tasdemir D, Sobral RG, Gaudêncio SP.
 2021. The diversity, metabolomics profiling, and the pharmacological potential of
 actinomycetes isolated from the Estremadura Spur pockmarks (Portugal). Mar
 Drugs 20:21.
- 985 84. Paulus C, Rebets Y, Zapp J, Rückert C, Kalinowski J, Luzhetskyy A. 2018. New 986 alpiniamides from *Streptomyces* sp. IB2014/011-12 assembled by an unusual 987 hybrid non-ribosomal peptide synthetase trans-AT polyketide synthase enzyme. 988 Front Microbiol 9:1959.
- 989 85. Armin R, Zühlke S, Mahnkopp-Dirks F, Winkelmann T, Kusari S. 2021. Evaluation 990 of apple root-associated endophytic *Streptomyces pulveraceus* strain ES16 by an 991 OSMAC-assisted metabolomics approach. Front Sustain Food Syst 5:643225.
- Shaikh AA, Nothias L-F, Srivastava SK, Dorrestein PC, Tahlan K. 2021.
 Specialized metabolites from ribosome engineered strains of *Streptomyces clavuligerus*. 4. Metabolites 11:239.

- 995 87. Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J, De La Flor 996 YT, Ushijima B, Meyer JL, Paul VJ, Garg N. 2022. Metabolomics approaches to 997 dereplicate natural products from coral-derived bioactive bacteria. J Nat Prod 998 85:462–478.
- 999 88. Qi Y, Nepal KK, Greif J, Martini C, Tomlinson C, Markovic C, Fronick C, Blodgett

 1000 JAV. 2020. Draft genome sequences of two polycyclic tetramate macrolactam

 1001 producers, *Streptomyces* sp. strains JV180 and SP18CM02. Microbiol Resour

 1002 Announc 9:e01066-20.
- 89. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T.
 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining
 pipeline. Nucleic Acids Res 47:W81–W87.
- 90. Prieto C, García-Estrada C, Lorenzana D, Martín JF. 2012. NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics 28:426–427.
- 91. Bachmann BO, Ravel J. 2009. Chapter 8. Methods for *in silico* prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data, p. 181–217. *In* Methods in Enzymology. Elsevier.
- 92. Gilchrist CLM, Chooi Y-H. 2021. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37:2473–2475.
- 1013 93. Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR, Ju K-S, Metcalf WW.
 1014 2017. Phylogenetic relationships in the family Streptomycetaceae using multi 1015 locus sequence analysis. Antonie Van Leeuwenhoek 110:563–583.

- 1016 94. Davis EW II, Okrent RA, Manning VA, Trippe KM. 2021. Unexpected distribution
 1017 of the 4-formylaminooxyvinylglycine (FVG) biosynthetic pathway in *Pseudomonas*1018 and beyond. PLOS ONE 16:1–20.
- 95. Guo Y, Zheng W, Rong X, Huang Y. 2008. A multilocus phylogeny of the
 Streptomyces griseus 16S rRNA gene clade: Use of multilocus sequence analysis
 for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159.
- 96. Rong X, Huang Y. 2010. Taxonomic evaluation of the *Streptomyces griseus* clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60:696–703.
- 1026 97. Labeda DP. 2011. Multilocus sequence analysis of phytopathogenic species of the genus *Streptomyces*. Int J Syst Evol Microbiol 61:2525–2531.
- 98. 2012. Bergey's Manual of Systematic Bacteriology. Springer New York, New
 York, NY. Retrieved 3 March 2021.
- 1030 99. Labeda DP, Doroghazi JR, Ju K-S, Metcalf WW. 2014. Taxonomic evaluation of
 1031 Streptomyces albus and related species using multilocus sequence analysis and
 1032 proposals to emend the description of Streptomyces albus and describe
 1033 Streptomyces pathocidini sp. nov. Int J Syst Evol Microbiol 64:894–900.
- 103. Cheng K, Rong X, Pinto-Tomás AA, Fernández-Villalobos M, Murillo-Cruz C,
 Huang Y. 2015. Population genetic analysis of *Streptomyces albidoflavus* reveals

1036		nabitat parriers to nomologous recombination in the diversification of
1037		streptomycetes. Appl Environ Microbiol 81:966–975.
1038	101.	Weisberg AJ, Kramer CG, Kotha RR, Luthria DL, Chang JH, Clarke CR. 2021. A
1039		novel species-level group of Streptomyces exhibits variation in phytopathogenicity
1040		despite conservation of virulence loci. Mol Plant-Microbe Interactions 34:39-48.
1041	102.	Rong X, Doroghazi JR, Cheng K, Zhang L, Buckley DH, Huang Y. 2013.
1042		Classification of Streptomyces phylogroup pratensis (Doroghazi and Buckley,
1043		2010) based on genetic and phenotypic evidence, and proposal of Streptomyces
1044		pratensis sp. nov. Syst Appl Microbiol 36:401–407.
1045	103.	Contreras-Moreira B, Sachman-Ruiz B, Figueroa-Palacios I, Vinuesa P. 2009.
1046		primers4clades: a web server that uses phylogenetic trees to design lineage-
1047		specific PCR primers for metagenomic and diversity studies. Nucleic Acids Res
1048		37:W95–W100.
1049	104.	Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA
1050		amplification for phylogenetic study. J Bacteriol 173:697–703.
1051	<u>Figu</u>	re Legends
1052	Fig 1	. PTM structural diversity. (A) Example PTMs illustrating varying ring
1053	arrangements (brown numbers), tailored decorations (red & pink), and stereochemistry.	
1054	(B) P	TM PhyDHs catalyze an array of A and B ring arrangements. (C) PTMs sometimes
1055	invol	ve multisten CVP450 oxidations, which are difficult to high-formatically predict

Fig 2. A FtdB- PTM BGC concordance. A cladogram representing 302 full-length FtdB sequences was collapsed for clarity and linked to a meta-analysis of associated PTM BGC types, representative strains, and CYP450 clades (see Figs S1 and Fig S3 for associated maximum-likelihood phylogenies). Note representative strains for each architecture are shown; this is not indicative of complete host taxonomy for each BGC type (See Fig S2 and Table S2 for details). Genus names with brackets indicate a potential taxonomic discrepancy with the current naming convention. Asterisks indicate strains examined via PTM-targeted metabolomics in this study. Fig 3. PTM- associated PhyDH ML phylogeny and sequence analysis assist polycycle prediction. Branches are colored according to BGC groups, UF-Bootstrap threshold is 95%, and branches >99% are bolded. Stars denote experimentally characterized non-oxygenating PprBs. Protein domains are colored according to Pantoea ananatis Crtl homology (51), where green is FAD-binding, blue is substratebinding, and orange is a non-conserved membrane helical region. Web logos illustrate amino-acid motifs differentially enriched in PprA or PprB-type PhyDHs. See Table S2 for abbreviations. Fig 4. Group 7 BGCs are predicted to encode for an atypical diversity of PTM **structures.** FtdB protein phylogeny indicates the core biosynthetic enzymes of Group 7 BGCs are closely related, which starkly contrasts with the diverse tailoring gene content seen among individual BGC types. This suggests an unusual and exceptionally diverse array of PTM scaffolds are encoded by Group 7, compared to all other BGC groups identified in this work.

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

Fig 5. Group 1 strains produce consistent PTM congener profiles despite inconsistent ftdF arrangements. The 25-deOH PTM products (LC/MS/MS monitoring m/z 139.2 product ions) of multiple Group 1 BGC strains showed largely overlapping profiles compared to PTM⁻ mutant controls (in grey; JV168 and JV352). ftdF-dependent mass features were identified by comparing these against JV180 ΔftdA and ΔftdAftdF mutants (each with empty vector pJMD3; JV3003 and JV3006). These mutants and data were used to test for CYP450 orthology between an unclustered S. clavuligerus ftdF homolog (FtdF_{ATCC27064}, JV2997) and ectopic native ftdF (FtdF_{JV180}, JV3010). Asterisks indicate probable but very low abundance PTMs. The m/z transitions for numbered peaks are listed in Table S4. Fig 6. Native and tailoring-minimized Group 4 (NRRL B-3009) and Group 1 (JV180) BGCs produce group-specific product profiles. LC/MS/MS monitoring of 25-deOH PTM profiles (m/z 139.2 product ions) produced by Streptomyces sp. JV180 (JV307), JV180 ΔftdA (JV1520), JV180 ΔftdAΔftdF (JV1522), S. olivaceus NRRL B-3009 (JV1101), B-3009 $\Delta ftdA$ (JV1521), and B-3009 $\Delta ftdA\Delta ftdG$ (JV1560) revealed unique product profiles between the tested BGC groups (see text). Asterisks indicate PTMs were detected with certain MS/MS methods, but only in very low amounts. The m/z transitions for numbered peaks are listed in Table S4.

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095