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ABSTRACT

Fundamental to plate tectonics is the subduction of cold and mechanically strong oceanic

plates. While the subducted plates are conventionally regarded to be impermeable to
mantle flow that separate the mantle wedge and the subslab region, isolated openings
(termed slab gaps hereinafter) have been proposed. Here, by combining new shear wave
splitting measurements with results from geodynamic modeling and recent seismic
tomography and geochemical observations, we show that the upper ~200 km of the Cocos
slab in northern Central America is intensively fractured. It is strong enough to produce
typical arc volcanoes and Benioff Zone earthquakes but allows mantle flow to traverse
from the subslab region to the mantle wedge. Upwelling of hot subslab mantle flow through
the slab provides a viable explanation for the behind-the-arc volcanoes that are
geochemically distinct from typical arc volcanoes, and for the puzzling high heat flow, high

elevation, and low Bouguer gravity anomalies observed in the area.

INTRODUCTION

The Cocos Plate is bounded by the East Pacific Rise on the west and the Galapagos
spreading center to the south (Fig. 1). It was formed when the Farallon Plate broke into two

pieces approximately 23 million years ago (Pardo and Suarez, 1995; Dougherty et al., 2012;
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Borgeaud et al., 2019). Compared with most other regions with convergent plate boundary zones,
northern Central America, where the Cocos Plate is subducting beneath the North American and
Caribbean plates, has several puzzling observations including anomalously high topography
(Rogers et al, 2002), high heat flow (Blackwell et al., 1990), low Bouguer gravity anomalies (Fig.
S1), and the presence of intraplate Cenozoic volcanoes in eastern Guatemala and western El
Salvador (Fig. 1). A compilation of measurements from existing geochemical studies indicates
that the primitive-mantle-normalized trace element patterns from samples from the volcanic front
(VF) and behind the volcanic front (BVF) are notably different (Fig. 2A). The VF lavas display
features commonly associated with hydrous magmas derived from a subducting slab, most
notably a distinct negative Nb and Ta anomalies (Baier et al., 2008). Conversely, the absence of
negative Nb and Ta anomalies in the BVF lavas, combined with elevated contents of light rare
earth elements that display a steeper decline from La to Sm when compared to VF, suggest that
the BVF lavas formed from partial melting of a protolith without significant water content.
Another unusual feature of this area is the lack of deep-focus earthquakes and a reduction in
earthquake productivity in the depth range of ~100-200 km relative to the other subduction zones

(Fig. 2B).

Mostly due to poor coverage by seismic stations in the area and the resulting low
resolution of seismic tomographic images, conflicting conclusions regarding the continuity and
geometry of the Cocos slab have been reached by different tomography studies. Based on a
global-scale P-wave velocity model, Rogers (2002) proposed the existence of a slab gap in the
depth range of 200-500 km that horizontally extends for ~900 km from southern Mexico to
Honduras. They attributed the high elevation in the back-arc area to upwelling mantle flow

through this slab gap. This model, however, is inconsistent with more recent tomographic images.
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For instance, a regional-scale full-waveform inversion study (Zhu et al, 2020) revealed a
continuous Cocos slab extending from the surface to a depth of at least 1000 km. The same study
also found that in the top 200 km, the velocity anomaly of the slab is significantly weaker than
that in deeper sections of the slab (Fig. S2), consistent with the reduced seismicity around this
depth (Fig. 2B). Additionally, at depths greater than 80 km, the dominant fast orientation of
seismic anisotropy, which represents the mantle flow direction in the sublithospheric mantle, is
different between the oceanic and continental sides. Specifically, it is trench perpendicular on the
Cocos side and becomes E-W on the Caribbean side with a clear right-turn pattern (Fig. S3). As
detailed below, such a pattern of fast orientations can be explained by a mantle flow system

traversing from the subslab region to the mantle wedge across the fragmenting Cocos slab.

CONSTRAINTS ON THE MANTLE FLOW FIELDS FROM SHEAR

WAVE SPLITTING ANALYSIS

In addition to seismic tomography, numerous studies have demonstrated that the mantle
flow system in the vicinity of a subducting slab can be delineated by analyzing the splitting of
shear waves (Hess, 1964; Silver and Chan 1991; Long and Silver, 2009; Zhou et al., 2018; Kong
et al., 2018). Relative to seismic tomography, shear wave splitting analysis (see Methods) has a
higher lateral and lower vertical resolution. In Nicaragua and Costa Rica, which are located to
the southeast of the study area, the fast orientations from shear wave splitting analysis are largely
trench parallel and can be interpreted to reflect along-trench flow in the mantle wedge and
beneath the slab (Abt et al., 2010). In contrast, the fast orientations in southern Mexico are
dominantly trench perpendicular and are interpreted as reflecting subduction-induced corner flow
in the mantle wedge (Bernal-Lopez et al., 2016) (Fig. 1), as pervasively observed in other

subduction zones worldwide (Long and Silver, 2009).
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The fast orientations from shear wave splitting analysis for the Caribbean Plate are
neither trench parallel nor trench perpendicular (Fig. 3). More intriguingly, observations at
stations located on the southwestern side of the volcanic arc show a clear dependence on the
arriving azimuth of the seismic waves. In particular, the fast orientations tend to be more trench
perpendicular for ray paths arriving at the stations from the southwest (and thus sample the ocean
side of the mantle) than those from other back-azimuths. This pattern is consistent with a
clockwise rotation of the inferred mantle flow directions that is also revealed by results from a
full-waveform inversion (Zhu et al., 2020) (Fig. S3). Another notable feature is a sudden change
in anisotropy orientations across the North American-Caribbean Plate boundaries, where results
in the northern part are more trench-normal that resembles typical wedge flow. This implies an

abnormal flow pattern below the Caribbean Plate in western Central America.

NUMERICAL SIMULATION OF CENOZOIC COCOS SUBDUCTION

To quantitatively evaluate the subduction dynamics of the Cocos plate, we perform
numerical models with data-assimilation (Liu and Stegman, 2011) that satisfy the observed
Cenozoic plate motion history and sea floor ages (see Methods). Tests show that simulations
starting no later than 40 Ma produce similar present-day slab structures at < 800 km depth. Our
results from a case study that covers subduction since 45 Ma show that below the study area, the
central portion of the Cocos slab experienced gradual shallowing since ~30 Ma and eventually
developed a central slab tear along the slab hinge toward the present (Fig. 4). The resulting
present slab geometry, including both a highly extended thin slab with multiple slab holes above
200 km depth and the folded slab pile further down (Fig. 4E), matches the shear wave splitting

measurements (Fig. 3) and recent seismic tomographic results well (Fig. 4F).
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Physically, the progressive dip angle reduction leading to the present fragmenting slab
below our study region reflects the sub-slab pressure accumulation over time: the finite width of
the Cocos Plate allows the sub-slab pressure to be released around the northern and southern
edges of the slab but not in the center. Consequently, the reduced slab dip angle is a result of the
enhanced pressure gradient across the slab below the western part of the Caribbean Plate. The
fast-retreating northern Cocos trench since 30 Ma further enhanced this N-S contrasting slab
movement, facilitating slab flattening and deformation in the study region. Slab buckling with
potential fracturing started to develop along the slab hinge at ~ 20 Ma between 85°W and 93°W
(Figs. 4A and B), representing the failure of the weak and young subducting plate due to sub-slab
overpressure. This process coincides with the mid-Miocene ignimbrite flare up event in Central
America (Sigurdsson et al., 1997; Leckie et al, 2000) and is also similar to what occurred within
the Farallon slab during the mid-Miocene, where the slab tear below Oregon and Nevada led to
abrupt surface uplift, upwelling within the mantle wedge, and the development of the Columbia
River flood basalts (Liu and Stegman, 2012). The observed high topography and low Bouguer

gravity (Fig. S1) above the predicted slab gap in the study area further support this model result.

ONGOING FRAGMENTATION OF THE COCOS SLAB AND ITS

GEODYNAMIC IMPLICATIONS

The realization of a fragmenting Cocos slab that is pervious to mantle flow can reconcile
multiple lines of seemingly contradictory observations. For example, seismic tomography
revealed a broken or significantly weakened upper-mantle slab (Rogers et al., 2002; Zhu et al.,
2020). In contrast, the existence of intermediate depth earthquakes and VF volcanoes are
inconsistent with the existence of a slab window. According to both our simulated present slab

geometry (Fig. 4D), inferences of seismic anisotropy (Fig. 3), as well as the area of low Bouguer
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gravity anomalies (Fig. S1), the fragmented portion of the Cocos slab has an along-trench
dimension of about 700 km, approximately between 86°W and 93°W. In our model, this slab
fragmentation starts at about 60 km depth, immediately beneath the lithosphere of the overriding
plate, as is confirmed by the observation that the anisotropy-indicated flow systems below ~80
km in the sub-slab region and the mantle wedge show a high degree of continuity (Zhu et al.,
2020) (Fig. S3). The maximum depth of the intensively fractured portion is about 200 km, as this
is the depth of suddenly thickened slab thermal structure (Fig. 4E) and increased seismic velocity
anomalies (Zhu et al., 2020) (Fig. 4F and Fig. S2). This is also the depth below which the

earthquake productivity becomes similar to subduction zones globally (Fig. 2B).

The intensively fractured section of the Cocos slab above 200 km depth is mechanically
weaker and warmer than a normal slab due to the strong internal deformation associated with
ongoing fragmentation (Fig. 4). Consequently, this slab portion should have a lower earthquake
productivity (Fig. 2B). Both the reduced mechanical strength and higher temperature of the
intensively fractured portion of the slab may also be responsible for the slightly positive velocity
anomaly relative to the deeper portion as revealed by seismic tomography (Zhu et al., 2020).
This portion of the slab can still carry a sufficient amount of hydrous phases to produce the VF
volcanoes. Meanwhile, the sub-slab mantle material, which is under enhanced dynamic pressure
and has a higher temperature than that in the mantle wedge (Blackwell et al., 1990) (thus more
buoyant), actively migrates upward through the tearing slab hinge to produce the higher-than-
normal heat flow, anomalously high elevation, low Bouguer gravity anomalies (Fig. S1), and the

BVF volcanoes.
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Figure Captions:

Fig. 1. Tectonic setting of northern Central America. The brown squares show the seismic
stations used in the study. The red triangles represent arc-front volcanoes, the black triangles
represent back-arc volcanoes, and the colored dots represent the epicenters and focal depths of
Magnitude 4.5 and greater earthquakes that occurred between 1980 and 2022. The yellow
contour lines show the depths of the Cocos slab. The area outlined by the dashed lines indicates
the approximate extent of the proposed pervious slab. The enclosed region in the inset map
shows the study area, where the contour lines show the ocean floor ages. The red bars represent
results from previous and the present shear wave splitting studies (Abt et al., 2010; Bernal-Lopez

et al., 2016; van Benthem et al., 2013; Russo and Silver, 1994; Masy et al., 2011; Porritt et al.,

2014; Idarraga-Garcia et al., 2016; Castellanos et al., 2016; Pifiero-Feliciangeli and Kendall,

200813, 14, 19-25). The orientations of the bars show the fast polarization orientation, and the

length of the bars is proportional to the splitting time. Plate boundaries from (Bird, 2003).

Fig. 2. Chemical composition and earthquake distribution. (A) BVF and VF average
diagrams with data (Rose and Stoiber, 1969; Carr and Pontier, 1981; Carr, 1984; Walker et al.,
1995; Walker et al., 2000; Patino et al., 2000; Walker et al., 2009; Carr et al., 2014). Primitive
mantle values are from (McDonough and Sun, 1995). (B) Depth variation of the number of M4.0
and greater earthquakes that occurred between 2010 and 2022 for northern Central America (red)
and the whole Earth (blue). The numbers were normalized by the corresponding value at 60 km

depth.
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Fig. 3. Results from shear wave splitting analysis. Individual splitting measurements (red bars)
from this study plotted at the stations and above the ray-piercing points at 50 km depth. The area

outlined by the dashed lines indicates the approximate extent of the proposed pervious slab.

Fig. 4. Modeled Cocos subduction and present slab geometry. (a) Map view slab evolution at
160 km depth from 40 Ma to the present. Colored translucent patterns show slab interiors

(400 °C colder than the ambient mantle). (b) Present slab geometry at 206 km depth, with color
contours outlining the major slab gap at different depths. (c-e) Cross sectional view of
subduction along A-A’ shown in B at different times. Green contours represent the -400 °C
isotherm anomaly. (f) Seismic image of present slab structure along A-A’ [see (Zhu et al., 2020)

and references therein].
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