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ABSTRACT: Hybrid genome-mining/"*N-NMR was used to target com-

pounds containing piperazate (Piz) residues, leading to the discovery of cave- Caveamide A (1) "O’I v "o o
amides A (1) and B (2) from Streptomyces sp. strain BE230, isolated from ™ e Ho I JK/N J‘\I{lii\g
New Rankin Cave (Missouri). Caveamides are highly dynamic molecules 6\ — ©/ NH

containing an unprecedented p-ketoamide polyketide fragment, two Piz resi-
dues, and a new N-methyl-cyclohexenylalanine residue. Caveamide B (2) ex-
hibited nanomolar cytotoxicity against several cancer celllines and nanomolar

anti-microbial activity against MRSA and E. coli.
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Biologically active microbial natural products are an important
source of inspiration for the development of new anti-microbial and
anti-cancer drugs, but compound rediscovery is a frequent obstacle
to finding new natural product drug leads. Contemporary isolation
campaigns address this issue with a variety of strategies, including
early upstream dereplication,' screening with novel bioassays,” sam-
pling unusual organisms from underexplored habitats,’ and mining
genomes for novel biosynthetic gene clusters (BGCs).*

Our groups have previously reported a combined genome-min-
ing/ SN-NMR approach for the targeted isolation of molecules con-
taining piperazate (Piz), a non-proteinogenic amino acid compris-
ing a cyclic hydrazine.*® Piz is incorporated in a diverse set of non-
ribosomal peptides (NRPs) and hybrid polyketide-NRPs
(PK/NRPs) which frequently exhibit anti-microbial, cytotoxic, anti-
parasitic, and antiviral activities.” Furthermore, most reported Piz-
containing compounds have other uncommon structural features
such as new polyketide fragments, dimeric aryl-aryl coupling, and
other non-proteinogenic amino acids.” We previously proposed that
Piz-containing natural products represent a pool of compounds en-
riched with unusual chemistry and with biological activity,” and that
targeting Piz-containing compounds for isolation is likely to yield in-
teresting molecules.*”
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Figure 1. Enumerated structures of caveamides A (1) and B (2).

Here, we present a validation of this approach, and report the iso-
lation of compounds which, in addition to exhibiting potent bioac-
tivity, also feature a new cyclohexenylalanine (CHA) amino acid res-
idue. We describe challenging structural elucidation, an approach
for configurational assignment in cyclic alkene residues, and nano-
molar anti-microbial and cytotoxic activity. Finally, we further dis-
cuss implications about CHA biosynthesis and set the stage for fur-
ther investigation of the elusive family to which CHA belongs.

Streptomyces sp. strain BE230 was collected from New Rankin
Cave in Eureka, MO as described elsewhere” The strain was



identified as a potential Piz producer via an established PCR screen
(using degenerate oligonucleotides LMPzbB FN2 and LMPzbB
RN1)" that targets Piz synthases. Revealing BE230 as a candidate
producer, this triggered genome-sequencing of the strain (described
elsewhere’) plus LC/MS” scanning for Piz-associated mass features
in growth extracts (essentially as described"'). The production of Piz
compounds by BE230 was finally confirmed by the detection of Piz-
characteristic "N NMR resonances upon cultivation with *N,- L-or-
nithine (L-Orn). We have previously reported the use of 'H-"N-
HSQC and 'H-"N-HSQC-TOCSY to screen for Piz residues, and
used this approach to isolate incarnatapeptins A and B, and den-
tigerumycins F and G.° Here, we also deployed 1D 'H-"N-HSQC
experiments, acquired in a fraction of the time as 2D experiments, to
pre-empt committing to longer data acquisitions (S7).

Production cultures of BE230 were grown as lawns on solid YMS
agar supplemented with L-Orn. A ‘tracer’ extract, prepared from a
batch supplemented with *N>-L-Orn, was combined with larger un-
labeled crude extracts to amplify the characteristic Piz resonances
depicted in S7. After several rounds of separation ($8), a final HPLC
purification step yielded pure 1 and 2 (Figure 1) as glassy solids.
HRMS (ESI) (1) m/z: [M + H]* Calcd for C1xHe;NsO12 875.4873;
Found 875.4875. (2) m/z: [M + Na]* Calcd for C#HeNsO11Na
879.4592; Found 879.4588.

Compounds 1 and 2 each elute as a pair of HPLC peaks, and iso-
lation of the separated peaks followed by reinjection gives the origi-
nating pair of chromatographic peaks (Figure
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Figure 2. Caveamides A (1) and B (2) undergo two simultaneous
exchange processes. (a) HPLC chromatograms depicting 1 and 2 before
purification, and after isolation and subsequent re-injection of separated
isomers. (b) Insets from 'H and '*C NMR data of 1 acquired in DMSO-
ds at 850 MHz, showing exchanging sets of resonances. The isomers of
1 are designated as x, y, a, and b. (c) An Exchange Spectroscopy (EXSY)
experiment inset of the hydroxamic acid OH resonances, where
evidence of exchange is most clearly seen.
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Figure 3: Determination of caveamide A (1) structure. (a) Key NMR correlations, with two pairs of rotamers distinguishable by NOE correlations in
the N-OH-Ala - Piz-2 region. (b) Our proposed structure is corroborated by HRMS/MS fragmentation data acquired by collision-induced dissociation
(CID) at 25 eV, with positive-mode electrospray ionization (ESI+). Peptide fragment ions are labeled according to standard nomenclature,® except a

which denotes a-cleavage at the C-33/35 bond.



2A). The material in each of the peaks give identical NMR spectra,
and in 1 they can be assigned to four roughly equally abundant iso-
meric species (designated as: %, y, g, b) (Figure 2B).

Structural assignments were made with additional information
from gCOSY, tROESY, gHSQC, and gHMBC experiments. NMR
data interpretation was challenging due to the isomer interconver-
sion. Despite the spectral complexity, we were able to determine a
full structure. The challenge is exemplified by a linear hexa-1,3-
dienyl spin-system (C-36 to C-41) where each of the four alkene
proton resonances, assigned H-36 through H-39, show two to four
different chemical shifts with varying amounts of signal overlap. The
spin-system can be disentangled based on HSQC and HMBC cor-
relations (Figure 3A) and shown to extend into a saturated ethyl
fragment (C-40 and C-41), also manifesting as multiple exchanging
signals. An HMBC correlation between H-36 and a ketone carbon
C-35, also producing four distinct chemical shifts (Figure 2B), re-
veals the spin-system to be an a,(,y,8-unsaturated ketone. ROESY
correlations between CH-38 and CH,-40 show the A*** alkene to
be E, and comparative multiplet analysis of the CH-37 proton reso-
nance at 600 MHz and 850 MHz establish the A*** alkene as E as
well (Figure $6). A CH:-CH fragment (C-33/C-34) shows HMBC
correlations with both the ketone and four exchanging amide car-
bonyl resonances (C-32 8c 168.70-169.22), leading to the hypoth-
esis that one of the isomerization processes is spontaneous epimeri-
zation at the acidic a-carbon (C-33). A comprehensive interpreta-
tion of NMR and MS data, described in 837, led to the identification
of L-erythro-B-hydroxyleucine (BHle), D- and L-Piz residues, an N-
OH-alanine residue, and D-serine. Identification of the N-Me-CHA
residue was complicated by cyclic methylene signal overlap from ex-
changing isomers and Piz residues. We deduced its structure based
on the molecular formula, a key HMBC correlation between CH,-
11/C-13, and later by comparison with synthesized standards. Dif-
ferences in ROESY correlations between exchanging N-OH-Ala and
N-Me-CHA systems lead us to propose the second isomerization
process is hindered rotation about the N-4-C-19 tertiary amide
bond. ROESY correlations between CH;3-18 and CHs-21 are only
seen in isomers x/y, and correlations between CHs-21 and CH-10
are only seen in isomers a/b (Figure 4A).

Caveamide B (2) afforded NMR spectra with indications of other
exchange processes likely unrelated to the N-4/C-19 amide. Like-
wise, incarnatapeptin B (3) was also reported as a mixture of con-
formers in the depsipeptide form,® suggesting that the shared
polyketide—pHle-Piz-2 fragment induces a hindered rotation pro-
cess when cyclized. Despite the complex NMR data, we identified
key structural features, including an ester formed across the pHle
residue ($39). Base-mediated hydrolysis of caveamide B (2) yields
1 (S50), leading to the conclusion that the latter is a seco- acid of the
former. This is consistent with MS data, including CID fragmenta-
tion (Figure $42). Furthermore, reducing 2 with NaBH, results in
D-serine no longer being detected by Marfey’s method,"” supporting
our assignment ($49).

Most absolute configurations were straightforward to determine
using Marfey’s method ($34). However, acid-catalyzed isomeriza-
tion and hydration of the N-Me-CHA residue during peptide hy-
drolysis led to scrambled stereochemistry (Figure $30). To circum-
vent this issue, we used stereoselective dibromination® to ‘lock’ the
location of the alkene while preserving stereochemical information.
After dibrominating 1, the expected dibrominated CHA derivative
was detected by Marfey’s method (Figure 4B). All four possible iso-
mers were then chemically synthesized and resolved (S51 and Fig-
ure 4B). The configuration of caveamide-matching isomer was

identified by NMR analysis of Marfey and Mosher'* derivatives. The
other three isomers were also assigned, enabling future researchers
to determine N-Me-CHA configuration by preparing the dibromin-
ated racemic standard and matching the elution order.
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Figure 4. Structure elucidation of N-Me-CHA in compound 1. (a)
Key NMR correlations identifying N-Me-CHA. (b) Bromination
using pyridinium tribromide leads to stereoselective diaxial
substitution, converting N-Me-CHA into an acid-stable residue.
Synthetic racemate was prepared, and isolation of the isomer
matching that of compound 1 allowed configurational assignment
by NMR analyses of its Marfey'>"* and Mosher* derivatives (S60
and S65).

Caveamides belong to the azinothricin family, 19-membered cy-
clic depsipeptides comprising the largest group of Piz-containing
molecules’ (examples given in Figure $32). Caveamides are distinct
from the rest of the azinothricin family by having a CHA residue and
an a,B,y,5-unsaturated ketone. We report the first instance of a free
CHA residue in a peptide. The biosynthesis of CHA is not yet fully
understood, though it is known to be an intermediate in the biosyn-
theses of salinosporamides'® (4) and their closely related congeners,
cinnabaramides.'” CHA originates from a shunt pathway initiated by
a prephenate decarboxylase (PDX), diverting prephenate from pri-
mary metabolism.'® Typically, prephenate is decarboxylated and
aromatized simultaneously en route to tyrosine or phenylalanine.'* In
contrast, PDXs effect decarboxylation but not aromatization, a chal-
lenging transformation yielding intermediates that have been impli-
cated in the biosyntheses of bacilysin,'® aeruginosins,'* and 2,5-dihy-
drophenylalanine (2,5-H.Phe, §),"” in addition to salinospo-
ramides' (Figure §). None of these biosyntheses have yet been fully

characterized, and no other natural products have been
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experimentally verified to be PDX-derived. Therefore, caveamides
likely represent an addition to a rare family of compounds, and pro-
vide another avenue for investigating the presently understudied bi-
osynthesis of PDX-derived natural products.
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Figure §: The putative caveamide BGC (cav) suggests a sub-cluster
of sal genes is responsible for CHA production. (a) Caveamides
share structural similarities with azinothricins such as
incarnatapeptin B (3), and with salinosporamides (4). (b)
Sequence similarities in the caveamide, incarnatapeptin, and
salinosporamide BGCs (cav, inc and sal, respectively) reflect the
structural similarities of their biosynthetic products. A putative
CHA cassette is identified. Diagram generated using clinker,*
highlighting protein sequence identities >30%. (c) Partially
characterized biosynthetic pathways to PDX-derived moieties
known thus far.

In addition to guiding further investigations of PDX-initiated bi-
osyntheses, the isolation of caveamides and their putative BGC ena-
bled us to identify several diverse groups of BGCs in public genomes
bearing homologues to the putative CHA cassette, all co-localized
with NRP synthetase genes (Figure $66). The biosynthetic prod-
ucts of these BGCs are not yet known and present further avenues
for the investigation of CHA biosynthesis and/or isolation of struc-
turally novel compounds.

Caveamides A (1) and B (2) were assayed for anti-microbial ac-
tivity against a panel of pathogens, as well as cytotoxicity in HeLa,
HepG2, LNCaP, and PC3 human cancer cell lines (S68). Where ac-
tivity was detected, the depsipeptide 2 was markedly more potent

than the seco-acid 1,a common trend observed in macrocycles.” Ca-
veamide B (2) showed nanomolar in vitro cytotoxicity against the
human cancer cell lines, at 50-100 nM concentrations. It also
showed in vitro anti-microbial activity against MRSA and Gram-neg-
ative E. coli. at 300 nM concentrations.

The potent bioactivity and unusual chemistry in caveamides un-
derscore the value of targeting Piz-containing compounds for isola-
tion. The discovery of 1 and 2 further demonstrates the utility of the
N-NMR/genome-mining approach for accessing a potentially en-
riched pool of natural products. We described a challenging struc-
tural elucidation, as both 1 and 2 exist as dynamically exchanging
isomers in solution, and the hydrolytically unstable CHA residue ne-
cessitated dibromination and chemical synthesis to configuration-
ally assign. Caveamides represent the first occurrence of CHA as a
free peptide residue, and their discovery along with a putative BGC
provides a critical ‘second data point’ identifying genes potentially
involved in CHA production. Our findings will facilitate further in-
vestigation of CHA biosynthesis and the isolation of more natural
products bearing this rare residue or analogues.
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