

1 Oxygen fugacity of global ocean island basalts

2
3 **Lori N. Willhite^{1*}, Ricardo Arevalo, Jr.¹, Phil Piccoli¹, John C. Lassiter², Devin Rand³,**
4 **Matthew G. Jackson³, James M.D. Day⁴, Robert W. Nicklas⁴, Marek Locmelis⁵, Thomas J.**
5 **Ireland⁶, and Igor S. Puchtel¹**

6 **Affiliations**

7 ¹Department of Geology, University of Maryland, College Park, MD 20742

8 ²Jackson School of Geosciences, University of Texas, Austin, TX 78712

9 ³Department of Earth Science, University of California, Santa Barbara, CA 93117

10 ⁴Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093

11 ⁵Missouri University of Science & Technology, Rolla, MO 65409

12 ⁶Department of Earth and Environment, Boston University, Boston, MA

13

14

15 Corresponding author: Lori Willhite (lnw@umd.edu)

16 **Key Points:**

- 17 • Oxygen fugacity generally does not correlate with radiogenic isotopic compositions that
18 trace recycled material in mantle-derived rocks
- 19 • HIMU and EM2 ocean island basalts are more oxidized than EM1 or geochemically
20 depleted ocean island basalts and mid-ocean ridge basalts
- 21

22 **Abstract**

23 Mantle plumes contain heterogenous chemical components and sample variable depths of
24 the mantle, enabling glimpses into the compositional structure of Earth's interior. In this study we
25 evaluate ocean island basalts (OIB) from nine plume locations to provide a global, systematic
26 assessment of the relationship between fO_2 and He-Sr-Nd-Pb-W-Os isotopic compositions. Ocean
27 island basalts from the Pacific (Austral Islands, Hawaii, Mangaia, Samoa, Pitcairn), Atlantic
28 (Azores, Canary Islands, St. Helena) and Indian Oceans (La Réunion) reveal that fO_2 in OIB is
29 heterogeneous both within and among hotspots. Taken together with previous studies, global OIB
30 have elevated and heterogeneous fO_2 (average = +0.5 Δ FMQ; 2SD = 1.5) relative to prior estimates
31 of global mid-ocean ridge basalts (MORB; average = -0.1 Δ FMQ; 2SD = 0.6), though many
32 individual OIB overlap MORB. Specific mantle components, such as HIMU and EM2 that are
33 defined by radiogenic Pb and Sr isotopic compositions compared to other OIB, respectively, have
34 distinctly high fO_2 based on statistical analysis. Elevated fO_2 in OIB that sample these components
35 is associated with higher whole-rock CaO/Al₂O₃ and olivine CaO content, which may be linked to
36 recycled carbonated oceanic crust. EM1-type and geochemically depleted OIB are generally not
37 as oxidized, possibly due to limited oxidizing potential of the recycled material in the EM1
38 component (e.g., sediment) or lack of recycled materials in geochemically depleted OIB. Despite
39 systematic offset of the fO_2 among EM1-, EM2-, HIMU-type OIB, geochemical indices of
40 lithospheric recycling, such as Sr-Nd-Pb-Os isotopic systems, generally do not correlate with fO_2 .

41

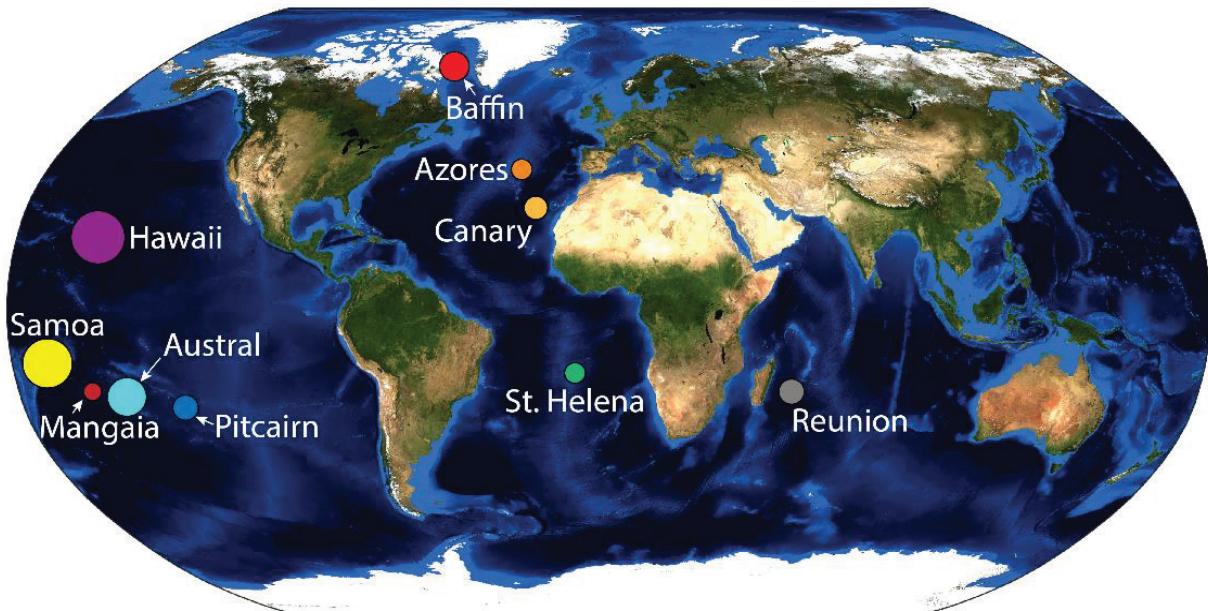
42 **Plain Language Summary**

43 Rocks from Earth's surface are mixed back into the interior during crustal recycling. For example,
44 plate tectonics results in subduction of oceanic crust back into the mantle. Recycling of surface
45 materials might oxidize the interior of the Earth. Mantle plumes, which are buoyantly rising
46 portions of the mantle that create ocean islands like Hawaii, Iceland, Samoa, etc., contain the
47 chemical and isotopic characteristics associated with recycled materials in their sources. Here we
48 investigate rocks from mantle plumes that have heterogeneous isotopic compositions as a result of
49 incorporating different types of recycled lithosphere to test whether their oxygen fugacity varies
50 systematically with the type of recycled crust in their source. We show that some types of mantle
51 plume-derived rocks, called HIMU and EM2 characterized by their extreme isotopic compositions,

52 are more oxidized than the EM1 or typical, geochemically depleted rocks from mantle plumes and
53 from spreading centers in the oceans. These results link recycled materials to oxidation of Earth's
54 mantle.

55 1 Introduction

56 In planetary systems, oxygen fugacity ($f\text{O}_2$) is a chemical parameter that affects the
57 speciation, geochemical behavior, and physical distribution of multivalent trace elements among
58 key chemical reservoirs, such as Earth's metallic core, rocky mantle and crust, liquid water ocean,
59 and gaseous atmosphere. For example, mantle $f\text{O}_2$ influenced the speciation of volcanic gases that
60 made up Earth's early atmosphere (French, 1966; Kump et al., 2001; Hirschmann, 2012). Mantle
61 $f\text{O}_2$ and dynamics may be linked to the oxygenation of the atmosphere (Kasting et al., 1993;
62 Andrault et al., 2018; Kadoya et al., 2020; Ortenzi et al., 2020; O'Neill and Aulbach, 2022). Plate
63 tectonics has been invoked to explain why Earth is more oxidized and has more $f\text{O}_2$ variability
64 compared to Mars (Righter and Drake, 1996). Rocks from Earth's surface are mixed back into the
65 mantle, potentially modifying and regulating the $f\text{O}_2$ of the interior (e.g., Kasting et al., 1993;
66 Lécuyer and Ricard, 1999; Evans, 2012). If recycling of lithosphere is responsible for regulating
67 and/or modifying mantle $f\text{O}_2$, there may be a link between plate tectonics, mantle $f\text{O}_2$, and
68 planetary habitability (Cockell et al., 2016).


69 The presence of recycled lithosphere in plume components has been identified using
70 radiogenic isotopic compositions like $^{87}\text{Sr}/^{88}\text{Sr}$, $^{143}\text{Nd}/^{144}\text{Nd}$, $^{187}\text{Os}/^{188}\text{Os}$, and $^{206,207,208}\text{Pb}/^{204}\text{Pb}$.
71 These isotopic ratios have been used to define mantle components, including enriched mantle 1
72 (EM1), enriched mantle 2 (EM2), high- μ (HIMU; where $\mu = ^{238}\text{U}/^{204}\text{Pb}$), which may result from
73 recycling of different types of lithosphere (Zindler and Hart, 1986; Hart et al., 1992; Hofmann,
74 1997). By contrast, relatively well preserved mantle domains (i.e., that have not been modified by
75 mixing with significant mass of recycled materials) host primitive isotopic signatures, such as high
76 $^3\text{He}/^4\text{He}$ and anomalous $\mu^{182}\text{W}$ (Kurz et al., 1982; Zindler and Hart, 1986; Hart et al., 1992; Farley
77 et al., 1992; Mundl et al., 2017; Jackson et al., 2020). Recycled lithosphere in mantle plume sources
78 might have played a role in generating higher $f\text{O}_2$ observed at Hawaii, Iceland, Canary, and Cape
79 Verde relative to MORB (Moussallam et al., 2014, 2016, 2019; Shortle et al., 2015; Helz et al.,
80 2017; Brounce et al., 2017; Hartley et al., 2017; Taracsák et al., 2022; Nicklas et al., 2022b).
81 However, not all individual OIB lavas are oxidized relative to MORB, which may reflect a lesser

82 proportion of oxidized material and/or different types of recycled material in their respective
83 source regions; and/or, derivation via petrogenetic processes that lower fO_2 , such crustal
84 assimilation (Bounce et al., 2022; Nicklas et al., 2022a). Chemical fingerprints of crustal and
85 mantle materials in OIB, particularly He-Sr-Nd-W-Os-Pb isotopic compositions, allow for
86 exploration of prospective links between mantle fO_2 and lithosphere recycling.

87 To probe the roles of distinct Earth materials in the evolution of fO_2 in the planet's interior,
88 this study systematically explores the fO_2 of a diverse, global suite of plume-derived lavas from
89 the Canary, Samoa, La Réunion, Hawaii, Azores, Pitcairn, St. Helena, and Macdonald hotspots
90 (**Figure 1**). Mangaia and the Austral Islands of Rapa Iti and Raivavae, which are all products of
91 the Macdonald hotspot, are considered individually because the lavas from Mangaia have
92 distinctly high fO_2 (and loss on ignition, indicating high degrees of alteration and warranting
93 cautious interpretation). Despite forming part of a continental flood basalt province, lavas from
94 Baffin Island are also included in this survey because they sample the proto-Iceland plume and
95 offer useful insights relative to OIB due to their high- ^3He / ^4He —a signature of ancient mantle
96 preservation (Starkey et al., 2009; Willhite et al., 2019).

97 This study leverages the olivine-melt partition coefficient of redox-sensitive V ($D_V^{ol/melt}$)
98 to characterize the fO_2 of global mantle components, including depleted mantle, EM1, EM2, and
99 HIMU. Vanadium primarily exists as a +3 or +4 cation in terrestrial magma systems (Borisov et
100 al., 1987; Gaetani and Grove, 1997). Under oxidizing conditions, a higher proportion of V exists
101 at the higher valence state, resulting in a net change in the size-to-charge ratio that renders V
102 largely incompatible in olivine during melt crystallization (Canil, 1997). By contrast, under
103 reducing conditions V^{3+} can substitute more readily for Mg^{2+} and Fe^{2+} in the olivine lattice.
104 Experimental studies have shown that V partitioning between olivine and melt is relatively
105 insensitive to bulk composition, pressure, and temperature during basalt petrogenesis (Canil, 1999;
106 Canil and Fedortchouk, 2001; Righter et al., 2006b, 2006a; Suzuki and Akaogi, 1995; Wang et al.
107 2019). Olivine is an early crystallizing phase in magmatic systems and V is relatively immobile
108 during metamorphism (Condie, 1976). Due to these characteristics, fO_2 signatures recorded by the
109 most primitive (i.e., most Mg-rich and earliest crystallizing) olivine are representative of the
110 original magma and resistant to post-magmatic processes, such as low-to-moderate degrees of

111 oxide accumulation (<5 modal %), sulfur saturation, degassing, or metasomatism (Locmelis et al.,
 112 2019).

113

114 **Fig 1. Map of global OIB localities with new fO_2 data presented in this study.** The size of the circle at each site
 115 corresponds to the number of analyses from that hotspot. Earth image is from the NASA Earth Observatory *Blue*
 116 *Marble* series.

117 2 Materials and methods

118 2.1. OIB in this study

119 The 56 rocks studied here compose a global sample suite of OIB from nine mantle-plume-
 120 associated hotspots: Azores, Canary, Hawaii, Iceland (proto-Iceland plume lavas from Baffin
 121 Island), Macdonald (including Mangaia and the Austral Islands of Raivavae and Rapa Iti), Pitcairn,
 122 La Réunion, Samoa, and St. Helena. Samples were selected based on the availability of previously
 123 published major, minor, and trace element data, as well as isotopic compositions (see
 124 **Supplementary Tables S1 and S2, respectively**). Primitive samples with limited evidence of
 125 pyroxene fractionation were targeted. Forty-two samples have whole-rock MgO contents greater
 126 than 9.0 wt. %; seven samples from Baffin Island are vitrophyres with MgO wt. % between 7.9
 127 and 9.4; and three samples (KOO-01; PIT-3, CE-13) are slightly more evolved (5.2 to 7.7 wt. %

128 MgO). Four lavas do not have published whole-rock MgO wt. %. Both subaerial and submarine
 129 lavas are included (**Table 1**). Photomicrographs and scans of epoxy-mounted rock fragments are
 130 provided for a subset of the lavas (**Supplementary Figures S1-S2**).

131 **Table 1.** New oxygen fugacity data and most primitive olivine Fo# measured in each OIB.

Location	Sample	Eruption environment	Mantle component	¹ Olivine Fo#	ΔNNO	ΔFMQ	2SD ²
Austral	RPA488	subaerial	EM1	83	0.6	1.3	0.2
Austral	RPA502	subaerial	EM1	84	0.5	1.2	0.3
Austral	RPA367	subaerial	EM1	83	-0.1	0.6	0.3
Austral	RVV318	subaerial	HIMU	84	-0.1	0.6	0.5
Austral	RVV321	subaerial	HIMU	84	0.0	0.7	0.2
Austral	RV310	subaerial		83	0.5	1.3	0.4
Austral	RV346	subaerial	HIMU	82	0.8	1.5	0.8
Azores	TR0802	subaerial		91	1.0	1.7	0.3
Azores	PX0802	subaerial		84	0.3	1.1	0.7
Azores	PX0801	subaerial		84	0.6	1.4	0.3
Baffin	PD13	submarine		89	-0.1	0.6	0.7
Baffin	PD-14	submarine		85	0.0	0.8	0.3
Baffin	PD-19	submarine		89	-0.1	0.6	0.4
Baffin	PD-21	submarine		87	0.1	0.8	0.4
Baffin	PD-24	submarine		89	0.5	1.2	0.5
Baffin	PD-29	submarine		88	0.5	1.2	0.2
Baffin	PD-64	submarine		85	0.0	0.8	0.9
Canary	LP-01	subaerial		82	0.7	1.4	0.3
Canary	LP-09	subaerial	HIMU	86	1.6	2.4	1.0
Canary	EH-07	subaerial		79	1.4	2.2	0.7
Canary	EH-10	subaerial		76	0.6	1.3	0.5
Hawaii	H-2	submarine		90	0.5	1.2	0.3
Hawaii	H-7	submarine		89	0.6	1.4	0.6
Hawaii	H-9	submarine		88	0.4	1.1	0.8
Hawaii	H-11	submarine		88	0.6	1.3	0.4
Hawaii	H-27	submarine		87	0.1	0.8	0.9
Hawaii	H-P	submarine		87	0.2	0.9	0.1
Hawaii	Kil-1-18	submarine		90	0.9	1.7	0.3
Hawaii	Kil-2-3	submarine		89	0.6	1.3	0.7
Hawaii	Kil-2-4	submarine		88	0.9	1.6	0.7
Hawaii	Kil-3-1	submarine		88	0.8	1.5	0.2
Hawaii	Kil-1840-2	subaerial		87	0.3	1.0	0.7
Hawaii	KOO-01	subaerial		83	-0.3	0.4	0.9
Hawaii	KOO-17A	subaerial		89	-0.1	0.7	0.5
Hawaii	K500-5B	submarine		90	0.5	1.2	0.5

Hawaii	K497-6	submarine		87	-0.1	0.6	0.4
Mangaia	MG1002	subaerial	HIMU	81	1.5	2.2	0.2
Mangaia	MG1001	subaerial	HIMU	81	1.7	2.4	0.2
Pitcairn	PIT-11	subaerial	EM1	80	0.3	1.1	0.3
Pitcairn	PIT-8	subaerial	EM1	80	-0.1	0.6	0.5
Pitcairn	PIT-3	subaerial	EM1	79	0.2	0.9	0.3
Reunion	RU0714	subaerial		88	0.6	1.3	0.1
Reunion	RU0710	subaerial		88	1.3	2.0	0.5
Reunion	RU0702	subaerial		83	0.5	1.2	0.4
Samoa	T16	subaerial	EM2	85	0.7	1.5	0.2
Samoa	T25	subaerial	EM2	84	1.2	1.9	0.3
Samoa	T33	subaerial	EM2	86	0.9	1.6	0.5
Samoa	AVON3-78-1	submarine	EM2	83	0.9	1.6	0.5
Samoa	AVON3-76-9	submarine	EM2	84	0.7	1.5	0.9
Samoa	AVON3-68-11	submarine	EM2	90	0.4	1.1	0.3
Samoa	AVON3-63-11	submarine	EM2	90	1.5	2.2	0.4
Samoa	OFU-04-03	subaerial	EM2	84	0.9	1.6	0.1
St. Helena	CE-3		HIMU	84	-0.2	0.5	0.3
St. Helena	CE-9	subaerial	HIMU	83	-0.1	0.7	0.2
St. Helena	CE-10		HIMU	82	-0.2	0.6	0.4
St. Helena	CE-13	subaerial	HIMU	74	0.18	0.90	0.03

132 The $f\text{O}_2$ shown here is calculated using the partition coefficient of V between modelled parental melt and V
 133 measured in the most primitive (highest Fo#) olivine from each sample, which includes all grains whose Fo# is
 134 within analytical uncertainty of the highest Fo# olivine. Data for all olivines and other trace elements analyzed in
 135 this study can be found in the supplementary material.

136 ¹Samples that do not have a mantle component listed are considered geochemically depleted (see Section 2.7.).

137 ¹Fe and Mg were measured via electron probe microanalysis; olivine V concentrations were measured via laser-
 138 ablation medium-resolution inductively coupled plasma mass spectrometry (see methods).

139 ²Uncertainties represent either the external reproducibility of $f\text{O}_2$ calculated among primitive olivine from a single
 140 sample or the average prediction uncertainty of each calculated $f\text{O}_2$ (see Section 2.6.), whichever is greater. Samples
 141 with a single olivine analysis have only the prediction uncertainty from the calculated $f\text{O}_2$.

143 2.2. Olivine and basaltic matrix major element analyses

144 Basaltic samples were cut, mounted in one-inch diameter epoxy mounts, and abraded with
 145 alumina powder (down to 1 um particle size) so that visible olivine crystals were exposed and
 146 polished. The polished samples were cleaned via Milli-Q water (18.2 MΩ·cm) in an ultrasonic
 147 bath, and carbon coated for electron probe microanalysis (EPMA) using the *JEOL 8900R* electron
 148 microscope in the *Advanced Imaging and Microscopy Laboratory* at the University of Maryland,
 149 USA. All analyses were performed using a 15 kV potential and 20 nA current measured at the

150 faraday cup. Matrix and olivine analyses were acquired using a 10 and 2 micron diameter beam,
151 respectively.

152 To determine the major element composition of basaltic matrices, the crystalline
153 groundmass of each sample was analyzed using four lines comprising ten equally spaced analytical
154 spots. Analytical uncertainties were typically less than 2%. Phenocrystic olivine was avoided during
155 measurement of the matrix composition in order to determine how V partitions between olivine
156 and the melt. Primary standards for the matrix analyses included Makapuhi Lava Lake basalt glass
157 (USNM: VG-99), Indian Ocean basalt glass (USNM: 113716) and Broken Hill rhodonite (USGS
158 PXBX).

159 Depending on the size of the phenocryst, each olivine grain was analyzed in one to three
160 sites located away from features such as microfractures, reaction rims, and/or inclusions when
161 observed; each site was characterized by four independent spot measurements. When only a single
162 site was analyzed, the olivine core was sampled. For grains that were large enough, the core and
163 rim were targeted to investigate chemical gradients in zoned olivine, though few samples exhibited
164 appreciable differences in V concentrations between the core and rim. Primary standards for the
165 olivine analyses included San Carlos (USNM 111312/444) and Rockport (USNM 85276) olivines,
166 and Kakanui hornblende (USNM 122142).

167 2.3. Olivine and basaltic matrix trace element analyses

168 First-row transition elements (FRTE; Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) and Ga and
169 Ge were measured in olivine grains ($n = 257$ grains) and sample matrix (i.e., crystalline
170 groundmass) by laser ablation (LA-) and medium-resolution inductively coupled plasma mass
171 spectrometry (ICPMS) using either the *New Wave UP213* laser system coupled to the *Thermo*
172 *Fisher Scientific Element 2* mass spectrometer housed in the *Plasma Lab* at the University of
173 Maryland, or the *Photon Machines Analyte G2* laser system coupled to the *Nu AttoM* mass
174 spectrometer housed in the *Planetary Environments Lab* at NASA Goddard Space Flight Center,
175 Maryland, USA. Each sample was characterized following the analytical protocol of Arevalo et
176 al. (2011), whereby multiple reference materials (i.e., USGS basaltic reference glasses BHVO-2G,
177 BIR-1G and BCR-2G) were used to build a sensitivity calibration curve, rather than relying on
178 only a single bracketing standard to quantify elemental abundances. The measured isotopes for
179 each element were ^{45}Sc , $^{47,49}\text{Ti}$, ^{51}V , $^{52,53}\text{Cr}$, ^{55}Mn , $^{56,57}\text{Fe}$, ^{59}Co , $^{60,62}\text{Ni}$, $^{63,65}\text{Cu}$, $^{66,67,68}\text{Zn}$, $^{69,71}\text{Ga}$,

180 $^{72,73,74}\text{Ge}$, ^{75}As , ^{77}Se , and ^{43}Ca as the internal standard. Laser parameters used were: 2 – 3 J/cm²
181 fluence; 10 Hz repetition rate; and a spot size between 150 – 250 microns in diameter to maximize
182 count rates. The plasma source of the mass spectrometer was tuned to maximize ionization, as
183 monitored by ^{43}Ca and ^{232}Th count rates, while maintaining limited oxide production
184 ($^{232}\text{Th}^{16}\text{O}/^{232}\text{Th} \leq 0.20\%$). New olivine and matrix data are provided in **Supplementary Table S3**
185 and **S4**, respectively.

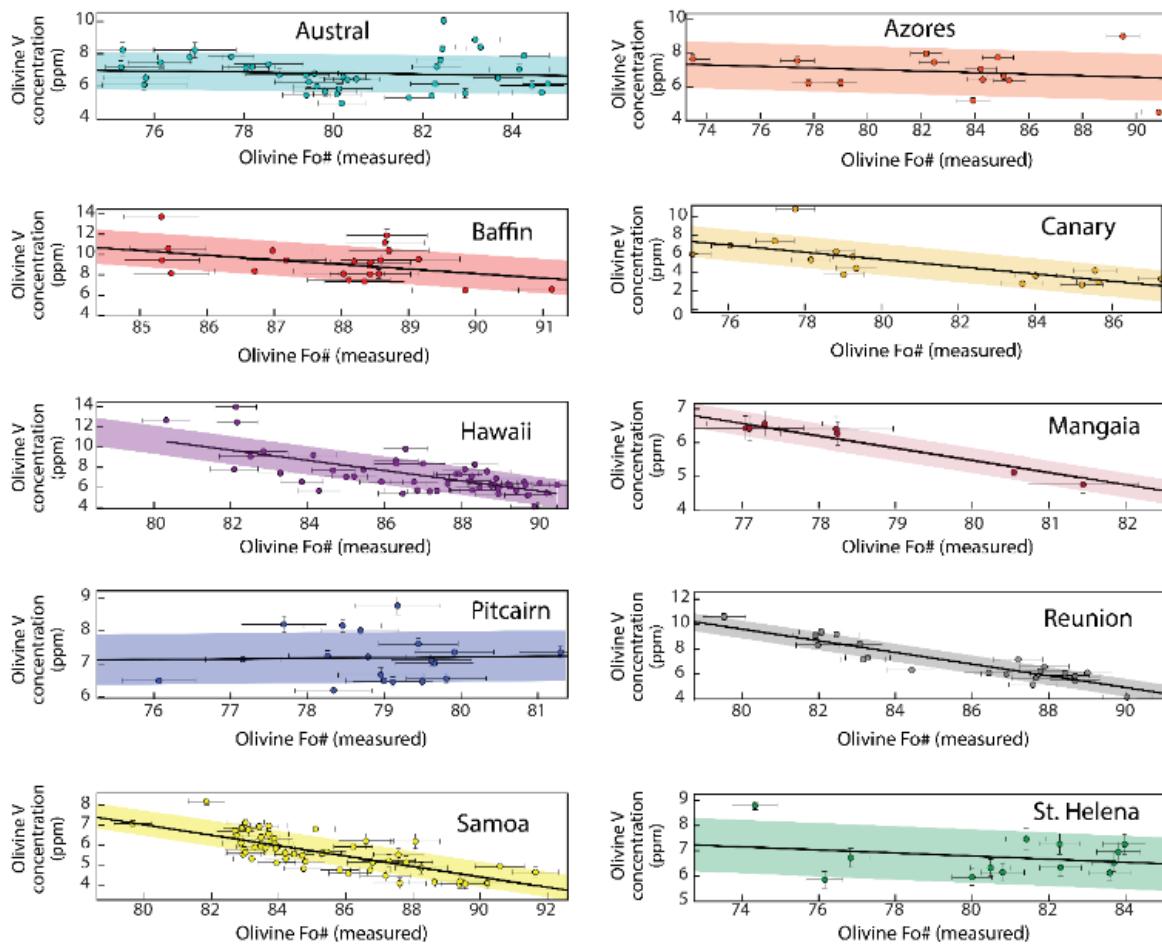
186 *2.4. Petrologic modelling to determine olivine V partition coefficients*

187 The measured V, MgO, and FeO abundances in each matrix and olivine pair are used as
188 starting points to model the parental melt of each respective olivine. The aim of the model is to
189 determine the V concentration and Mg# of each olivine's parental melt and determine $D_V^{ol/melt}$.
190 To model the melt composition that is in equilibrium with each individual olivine, olivine is
191 iteratively added or subtracted from the measured matrix composition. Each iteration adds 0.1%
192 of the equilibrium olivine composition to the matrix. The FeO and MgO composition of the
193 equilibrium olivine is calculated based on an Fe-Mg partitioning coefficient of 0.31 (Roeder and
194 Emslie, 1970). Here, the total FeO of the matrix is used to calculate the Fe-Mg partition coefficient
195 because the $\text{Fe}^{2+}/\text{Fe}^{3+}$ of the matrix is unknown. This can result in a higher calculated $f\text{O}_2$; thus,
196 the final calculated $f\text{O}_2$ may reflect a maximum estimate for the parental melt. Paired $\text{Fe}^{2+}/\text{Fe}^{3+}$
197 and $D_V^{ol-melt}$ may be an improvement for future studies. The SiO₂ of equilibrium olivine in each
198 step is calculated by subtracting the FeO and MgO wt. % from 100. . The V concentration of the
199 equilibrium olivine at each melt stage is based on empirical relationships observed between olivine
200 forsterite content and V concentration for each locality (**Figure 2**). As the equilibrium olivine
201 composition changes throughout the model, the empirical regressions are used to determine the
202 corresponding olivine V concentration. Regression parameters used to calculate V concentration
203 as a function of olivine Fo# (Fo# = molar Mg/(Mg + Fe)) for each locality are recorded in
204 **Supplementary Table S5**. The model is further described in the schematic in **Supplementary**
205 **Figure 3** and resulting parental melt V concentration and final olivine V concentration are reported
206 in **Supplementary Table S6**.

207 Other major elements (e.g., TiO₂, Al₂O₃, MnO, CaO, Na₂O, K₂O, and P₂O₅), do not affect
208 the modelled olivine composition or the calculated V partition coefficient; therefore, the matrix
209 was not characterized by EPMA in this study. In order to provide a parental melt composition for

210 all major elements, the published whole-rock data are used. Throughout the petrologic model,
 211 olivine dilutes the TiO_2 , Al_2O_3 , MnO , CaO , Na_2O , K_2O , and P_2O_5 as the olivine FeO , MgO , and
 212 SiO_2 is added to the matrix. In each iteration of the model, the TiO_2 , Al_2O_3 , MnO , CaO , Na_2O ,
 213 K_2O , and P_2O_5 content are reduced by 0.1% as 0.1% olivine is added. The full parental melt
 214 compositions are reported in **Supplementary Table S6**.

215 *2.5. Oxygen fugacity calculation*


216 The relationship between oxygen fugacity and $D_V^{ol/melt}$ has been empirically derived
 217 (Canil, 1997; Canil and Fedortchouk, 2001; Mallmann and O'Neill, 2009, 2013; Wang et al.,
 218 2019). Experimental data are limited in the higher $f\text{O}_2$ range that is observed in OIB leading to
 219 higher uncertainties in the higher $f\text{O}_2$ range. This affects the calculations reported here (details
 220 provided below). Experimental calibrations at higher $f\text{O}_2$ would increase the fidelity and reduce
 221 the uncertainty of quantitative $f\text{O}_2$ derivations in future work. This study uses the regression
 222 equation (**Equation 1**) from Nicklas et al. (2019) that includes data from previous experimental
 223 studies compiled in Nicklas et al. (2018). In this equation, $f\text{O}_2$ is calculated relative to the nickel-
 224 nickel oxide buffer (ΔNNO).

225 $\text{Log } D_V^{ol-melt} = -2.50 \pm 0.23 \times \Delta\text{NNO} - 1.501 \pm 0.064 \quad (r^2 = 0.94) \quad (\text{Eq. 1})$

226 The final reported $f\text{O}_2$ for each sample is the average determined by the most primitive
 227 (highest Fo#) olivine(s) from that rock (**Table 1**). Using only the most primitive olivines as
 228 representative of the earliest solids derived from the parental melt limits potential effects of
 229 clinopyroxene and oxide fractionation on the olivine V concentration. Out of caution, olivine with
 230 anomalous Ti, Cu, or Cr contents (defined outside $3 \times$ the interquartile range) are not used to
 231 calculate oxygen fugacity to avoid the possibility that an oxide or sulfide inclusion was sampled
 232 by the laser during LA-ICPMS. A total of 200 primitive olivines are used to calculate the $f\text{O}_2$ of
 233 the 56 lavas in this study (**Supplementary Table S7**). In arc lavas, V partitioning is dependent on
 234 temperature (T) and melt polymerization (quantified as the ratio of non-bridging oxygen to total
 235 tetrahedrally coordinated cations, NBO/Tot) in addition to oxygen fugacity (Wang et al., 2019),
 236 per the expression:

237 $\Delta\text{FMQ} = (\text{Log } D_V^{ol-melt} + 2.3 - \left(\frac{1871}{T(K)}\right) + 0.24 \times \left(\frac{\text{NBO}}{\text{Tot}}\right))/-0.258 \quad (\text{Eq. 2})$

238 **Equation 2** is used to calculate $f\text{O}_2$ relative to the fayalite-magnetite-quartz buffer. For the
 239 subset of lavas in this study that have complete major element datasets ($n = 50$), we applied both
 240 **Equation 1 and 2** to check for consistency (**Supplementary Table S8**). All but one lava (Samoa
 241 sample AVON3-68-11) have overlapping $f\text{O}_2$ within uncertainty using the two empirical
 242 relationships (**Supplementary Figure S4**). Sample AVON3-68-11 has the highest NBO/Tot and
 243 melting temperature calculated using Petrolog3 software (Danyushevsky and Plechov, 2011).
 244 Given that both equations give consistent $f\text{O}_2$ for almost all lavas, this study uses **Equation 1** to
 245 include the lavas that do not have complete major element data.

246

247 **Fig 2. Linear regressions for each locality used to carry out petrologic models** (see methods for details). The
 248 shaded fields represent the prediction uncertainty (RMSE) obtained using the Jack-knifing technique described in
 249 section 2.6. The prediction uncertainty is the error associated with using a Fo# to predict a V concentration to model
 250 the parental melt. This uncertainty is propagated through the melt model and calculation of $f\text{O}_2$. Regression parameters
 251 for each locality are given in **Supplementary Table S1**.

252

253 *2.6. Evaluation of Uncertainty*

254 In order to investigate the statistical robustness of possible distinctions in fO_2 between
255 different OIB localities (as well as individual samples from the same locality), a comprehensive
256 analysis of uncertainties and error propagation is essential. To constrain the uncertainty associated
257 with the linear regression for olivine V ppmw versus Fo# (Step 1 in the petrologic modelling;
258 **Supplementary Figure 3**), we employ cross validation (or jack-knifing) and Monte Carlo
259 sampling of the analytical errors associated with each olivine and matrix measurement. To include
260 the analytical errors associated with measurement of olivine V concentration and Fo#, we employ
261 Monte Carlo sampling of the V and Fo# uncertainties during each iteration of the Jack-knifing
262 routine. In each iteration of the Jack-knifing routine, each datum can fall anywhere within the 95%
263 confidence interval of its analytical uncertainty. Jack-knifing iteratively leaves out one data point
264 at a time and the number of iterations is equal to the total number of data.

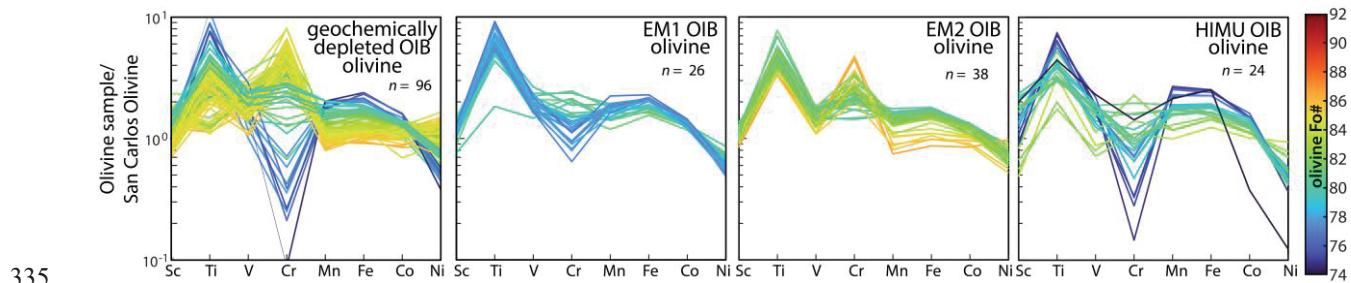
265 The final regression parameters for each locality are the means of the sampled parameters,
266 and the final error is the root mean square error (RMSE) of the regression line relative to the
267 validation point (i.e., the datum that is left out in any given iteration). The RMSE is propagated
268 through the petrologic model provided here to constrain the uncertainty on the modelled V
269 partition coefficient between olivine and parental melt, which is then propagated through
270 **Equation 1**. The parameter uncertainties for **Equation 1** reported in Nicklas et al. (2018) are
271 incorporated into the final calculation. The final uncertainty for each rock is either the external
272 reproducibility (i.e., the standard deviation of the fO_2 from different olivines within the rock) or
273 the prediction uncertainty from the fO_2 calculation (described here), whichever is greater. The fO_2
274 and uncertainty for each rock is reported in **Table 1**.

275 Olivine from St. Helena, Azores, Pitcairn, and Austral have regressions with high p values
276 (**Figure 2**), which indicate olivine Fo# and olivine V concentration are not well correlated. This
277 likely indicates that the individual samples defining each curve are not cogenetic. However, the
278 data can still be used to model the parental melt because the petrologic model only needs to predict
279 the V concentration of the equilibrium olivine in each step within the 95% confidence interval.
280 Thus, the model still determines the V concentration of the equilibrium olivine for the parental
281 melt within the confidence interval. High p values and scatter in the data will lead to higher
282 uncertainties associated with the linear regression, which are propagated through the model.

283 *2.7. Grouping lavas into mantle components*

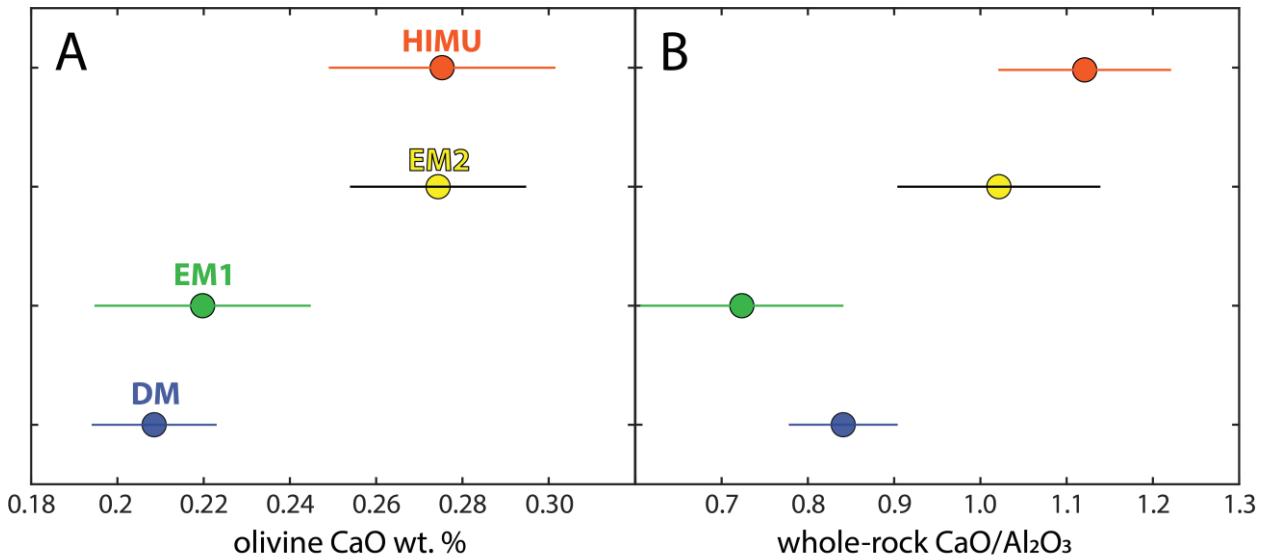
284 To simplify the investigation of the effect of recycled materials on fO_2 , we examine
285 individual mantle components by grouping lavas from this study and our compilation of previous
286 studies into HIMU, EM1, EM2, or geochemically depleted OIB to identify if these components
287 have distinct fO_2 . Lavas are considered HIMU if their $^{206}\text{Pb}/^{204}\text{Pb}$ is >20 (e.g., Jackson et al., 2018).
288 EM1 lavas are identified by moderately to highly radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ and unradiogenic
289 $^{143}\text{Nd}/^{144}\text{Nd}$ with a Sr-Nd slope of ~0.28 ; EM2 lavas are categorized by extreme $^{87}\text{Sr}/^{86}\text{Sr}$ and
290 moderate $^{143}\text{Nd}/^{144}\text{Nd}$ with a Sr-Nd slope of ~0.06 (Zindler and Hart, 1986). **Supplementary**
291 **Figure 5** illustrates the distinct trajectories that define EM1 and EM2 lavas in this study. Lavas
292 that have $^{87}\text{Sr}/^{86}\text{Sr} < 0.7044$, $^{143}\text{Nd}/^{144}\text{Nd} > 0.5128$, and $^{206}\text{Pb}/^{204}\text{Pb} < 20$ are grouped together as
293 geochemically depleted lavas. The geochemically depleted group may include lavas that have
294 isotopic compositions described as “FOZO” (focus zone), which is the isotopic composition where
295 OIB Sr-Nd-Pb arrays appear to converge (Hart et al., 1992). Lavas that have “FOZO” compositions
296 are grouped with geochemically depleted lavas here because they do not contain definitive
297 evidence of recycled material in their sources based on canonical isotopic signatures. This is not
298 meant to imply that all grouped lavas are derived from a uniform or shared physical reservoir. For
299 the purpose of discerning fO_2 among types of recycled material, we assume individual lavas belong
300 to only one mantle component (i.e., samples are not mixtures of multiple components). The
301 component type assigned to each lava in this study is given in **Table 1** and illustrated in
302 **Supplementary Figure 5**.

303 *2.8. Statistical tests*


304 To test the statistical independence of different localities and mantle components with
305 respect to inferred source fO_2 , quantified relative to the fayalite-magnetite-quartz buffer (ΔFMQ),
306 we used a one-way analysis of variance (ANOVA) test. The one-way ANOVA test compares mean
307 values to test whether data in categorical groups (in this case, OIB localities) have the same mean
308 (the null hypothesis), or if at least one group has a distinct mean. To test the significance of
309 correlations between fO_2 and isotope systems (He-Sr-Nd-W-Os-Pb), we use the square of
310 Pearson’s correlation coefficients (r^2) and the associated p value. P-values quantify the probability
311 that the regression can predict the dependent variable (i.e., an isotopic composition) by
312 incorporating the independent variable (i.e., fO_2) better than by relying on a degenerate model

(e.g., the average value of the dependent variable). In this case, p values greater than 0.05 indicate that the regression is not statistically significant at the 95% confidence interval, while p values less than 0.05 indicate that the correlation is significant at the 95% confidence interval. In this study, a significant p value means that fO_2 can predict a given isotopic, trace element, or major element composition better than relying on the average composition. Because Pearson's correlation coefficients assume a linear relationship, we also investigated non-parametric correlation tests, such as Spearman's correlation coefficient and Kendall's Tau; the findings remain the same.

3 Results


3.1. New OIB olivine analyses

New olivine FRTE and Ga, Ge compositions are reported in **Supplementary Table S3** and visualized in **Figure 3**. Forsterite number varies from 74 to 92. Olivines with the lowest and most variable Fo# are from HIMU-type lavas (81.4 ± 7.4 2SD). Geochemically depleted OIB have the highest average Fo# olivine (86.4 ± 7.2 2SD). Vanadium concentrations range from 2.7 to 13.7 ppmw in the global dataset. Mean olivine V concentrations are statistically lower in HIMU and EM2 lavas according to the one-way ANOVA test. Olivines from EM1 and geochemically depleted lavas have similar mean olivine V concentrations. HIMU- and EM2-type lavas are also distinguished from EM1 and geochemically depleted OIB based on olivine CaO that is resolvedly higher in HIMU and EM2 OIB (**Figure 4**). Olivine Ni concentrations are highest and most variable in geochemically depleted OIB, with concentrations ranging from 1100 to 4800 ppmw Ni (0.14 to 0.61 wt. % NiO). The highest Ni contents in olivine in the global dataset are from Hawaii and Baffin Island. Lavas that are HIMU- and EM1-type have olivine with the lowest Ni concentrations on average.

Fig 3. Olivine first-row transition element compositions normalized to the San Carlos olivine reference material. Olivines are grouped according to the mantle components of their host lava.

338

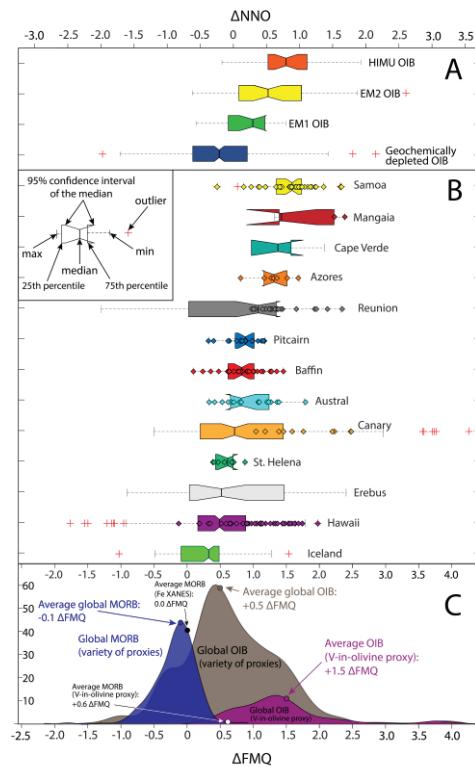
339

340 **Fig 4. HIMU and EM2 lavas have high olivine CaO and HIMU has high whole-rock CaO/Al₂O₃.** (A) ANOVA
 341 results showing the mean (circles) and 95% confidence interval (lines) for the olivine CaO wt. % of each mantle
 342 component. If confidence intervals do not overlap, then the respective components have statistically distinct means.
 343 (B) ANOVA results for whole-rock CaO/Al₂O₃ illustrating statistically higher CaO/Al₂O₃ in HIMU lavas compared
 344 to geochemically depleted OIB and EM1.

345

346 *3.2. Oxygen fugacity of global OIB*

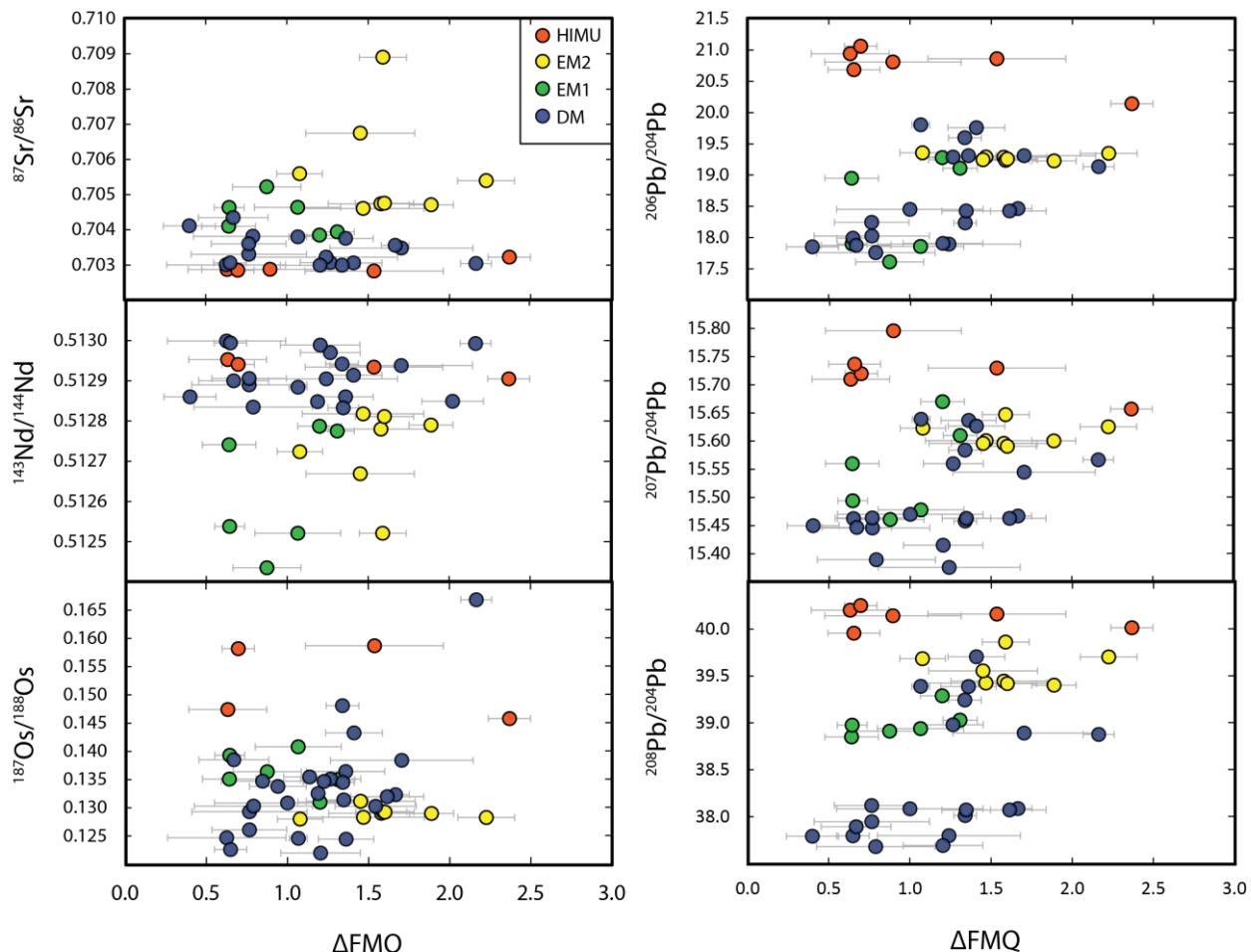
347 The average $f\text{O}_2$ of global OIB in this study is $+1.2 \pm 0.5$ (2SD) ΔFMQ , in agreement with
 348 the EM-type and HIMU-type OIB average of $+1.5 \pm 0.8$ ΔFMQ determined by Nicklas et al.
 349 (2022). Though $f\text{O}_2$ uncertainties and heterogeneity within and among OIB groups is large, making
 350 it difficult to draw definitive conclusions, statistical tests indicate that some OIB localities and
 351 mantle components have distinct $f\text{O}_2$. A summary of which plume locations are statistically distinct
 352 is illustrated in **Supplementary Figure S6**. When the new data presented here are combined with
 353 a compiled OIB dataset (**Supplementary Table S9**), the mean $f\text{O}_2$ of OIB is $+0.6 \pm 1.1$ ΔFMQ .
 354 Lavas designated as HIMU have the highest average $f\text{O}_2$ of $+1.5$ ΔFMQ (± 3.0 2SD) and are
 355 distinctly oxidized compared to all other mantle components using a one-way ANOVA test
 356 (**Figure 5**). EM2 lavas have the second highest $f\text{O}_2$ ($+0.7 \pm 0.7$ ΔFMQ) and are oxidized relative
 357 to geochemically depleted lavas (-0.3 ± 1.1 ΔFMQ) but are not distinct from EM1 ($+0.2 \pm 0.6$


358 ΔFMQ). The $f\text{O}_2$ of OIB is elevated relative to the range for MORB mantle (+0.3 to +0.9 ΔFMQ)
359 estimated using the same proxy and methodology (Nicklas et al., 2019), as well as the global
360 MORB average ($-0.1 \pm 0.3 \Delta\text{FMQ}$) using a variety of other $f\text{O}_2$ proxies (**Figure 5; Supplementary**
361 **Table 10**). The variance of $f\text{O}_2$ among all OIB is greater than the variance among MORB samples,
362 possibly related to OIB source heterogeneity and/or complex petrogenesis.

363 Using an independent samples t-test, there is no apparent difference between the $f\text{O}_2$
364 inferred from submarine ($n = 23$) versus subaerial ($n = 31$) OIB in the dataset presented here. Lavas
365 from Mangaia have notably high LOI—i.e., 6.8 wt.% and 8.8 wt.%—reflecting subaerial alteration
366 (**Supplementary Figure S7**). Though V is robust to subaerial alteration, the calculated $f\text{O}_2$ of the
367 Mangaia samples in this study could be affected if SiO_2 , FeO_T , or MgO were decreased or
368 increased by alteration, as this would affect the calculated parental melt composition to determine
369 the V partition coefficient. The $f\text{O}_2$ of the Mangaia samples is within error when calculated using
370 Equation 1 and Equation 2. Given that Equation 2 requires the ratio of non-bridging oxygen to
371 total tetrahedrally coordinated cations, the consistency of the calculated $f\text{O}_2$ for Mangaia gives
372 confidence that the major element composition, and therefore, $f\text{O}_2$, has not been severely affected
373 by subaerial alteration. The $f\text{O}_2$ of Mangaia lavas should be verified in fresh samples, which are
374 unfortunately rare on this ~ 20 Ma island.

375

376 *3.3. Oxygen fugacity does not correlate with isotopic composition*


377 There are no correlations between $f\text{O}_2$ and He-Sr-Nd-W-Os-Pb isotopic compositions when
378 OIB are taken together globally (**Figure 6**). When OIB are separated by mantle component (e.g.,
379 HIMU, EM1, EM2) or by plume location, few correlations exist. The $f\text{O}_2$ of geochemically
380 depleted OIB correlates positively with radiogenic $^{206,207,208}\text{Pb}/^{204}\text{Pb}$ and negatively with
381 radiogenic $^{187}\text{Os}/^{188}\text{Os}$; however, this trend is primarily controlled by Hawaiian lavas. In Canary,
382 $f\text{O}_2$ is positively correlated with $^{87}\text{Sr}/^{86}\text{Sr}$; this correlation is also present when all HIMU-type lavas
383 are grouped together. Global HIMU also has a negative correlation between $f\text{O}_2$ and $^{143}\text{Nd}/^{144}\text{Nd}$.
384 For Baffin Island lavas, only $^{207}\text{Pb}/^{204}\text{Pb}$ is correlated with $f\text{O}_2$. Summaries of the Pearson's tests
385 between $f\text{O}_2$ and each isotopic system, to visualize statistically significant correlations in the
386 current dataset, are given by location and by mantle component in **Supplementary Figure S8 and**
387 **S9**, respectively.

388

389 **Fig. 5.** Box and whisker plot illustrating the $f\text{O}_2$ distributions of lavas in this study (Table 1) and previously published
 390 lavas (Supplementary table S9) grouped by mantle component (A) and by plume location (B). All individual rock
 391 data from this study only are superimposed as diamonds on top of each box. Data are considered outliers if they fall
 392 outside of the “whiskers” defined by $1.5 \times$ the interquartile range. Outliers in these plots are not excluded from
 393 discussion or plots as they are considered real, high (or low) $f\text{O}_2$ recordings. Note that the top axis is $f\text{O}_2$ given as
 394 ΔNNO and the bottom axis is ΔFMQ . Boxes are ordered by median $f\text{O}_2$. (C) Kernel probability density function for
 395 global MORB (Supplementary table S10) compared to global OIB —including this study and the compiled dataset.
 396 The purple distribution is the $f\text{O}_2$ of OIB determined via the V-in-olivine proxy to illustrate that this method generally
 397 produces higher $f\text{O}_2$ compared to other proxies.

398

399

400 **Fig 6. Oxygen fugacity plotted against isotopic compositions for each mantle component.** See Supplementary
 401 Data S7 for isotope compilation and references. Error bars represent the 1SD. Supplementary Figure S10 shows the
 402 same plots with data color coded by plume locality instead of mantle component.

403

404

405 *3.4. Offset between fO_2 determined by different proxies*

406 Previous studies (e.g., Taracsák et al., 2022) have shown that the fO_2 values recorded by
 407 OIB via the $D_V^{ol/melt}$ proxy are higher than fO_2 determined by other techniques, such as X-ray
 408 absorption near edge structure (XANES) spectroscopic measurements of Fe^{+3}/Fe^T and S speciation
 409 (Figure 5C). In the compiled global OIB database there are 509 previously published fO_2 data: 94
 410 data are derived from $D_V^{ol/melt}$ and 390 data are calculated from XANES or micro-XANES
 411 measurements of Fe^{+3}/Fe^T (see Supplementary Table S9). This study adds an additional 56 fO_2

412 measurements via the $D_V^{ol/melt}$ proxy. The average fO_2 observed in the data set presented here is
413 $+1.2 \Delta\text{FMQ}$, similar to the average value for all OIB fO_2 measurements derived from $D_V^{ol/melt}$
414 systemics (i.e., $+1.5 \Delta\text{FMQ}$; Nicklas et al., 2019; Nicklas et al., 2022; Taracsák et al., 2022). In
415 contrast, the average fO_2 determined in OIB via XANES and micro-XANES is $+0.4 \Delta\text{FMQ}$
416 (Moussallam et al., 2014, 2016, 2019; Shorttle et al., 2015; Helz et al., 2017; Bounce et al., 2017,
417 2022; Hartley et al., 2017). Other techniques in the compilation ($n = 25$)—including titrimetric
418 determination of Fe^{2+} , X-ray fluorescence for Fe^T , MgO thermogeobarometry, etc.—yield even
419 lower fO_2 with a average of $+0.3 \Delta\text{FMQ}$.

420 The maximum estimates by XANES are generally in agreement with the fO_2 determined
421 using $D_V^{ol/melt}$. For example, using the 2SD of the average, the observed of fO_2 of Canary ($2.5 \Delta\text{FMQ} \pm 2.0$), Hawaii ($1.2 \Delta\text{FMQ} \pm 0.8$), and Reunion ($1.1 \Delta\text{FMQ} \pm 1.1$) determined by
423 $D_V^{ol/melt}$ overlap the maximum fO_2 observed using XANES for these localities (1.4, 2.0, and 0.08
424 ΔFMQ , respectively). The average fO_2 for lavas from Kilauea in this study ($+1.5 \Delta\text{FMQ}$) is within
425 the range of fO_2 observations in the least degassed Kilauea melt inclusions and glasses (0.7 to 2.0
426 ΔFMQ), as determined by XANES (Moussallam et al., 2016; Helz et al., 2017). Sulfur degassing
427 at Kilauea reduces the residual melt; therefore, the maximum observed fO_2 may be closer to the
428 source composition (Moussallam et al., 2016, 2019; Humphreys et al., 2022). The olivines from
429 Kilauea in this study are more primitive (Fo# 86.3 to 90.5) compared to those that hosted the melt
430 inclusions examined via XANES (Fo# 77.5 to 82.5; (Moussallam et al., 2016). Earlier crystallizing
431 olivines are less affected by S degassing (which would serve to lower the magma fO_2 through the
432 loss of an oxidizing agent). Further, diffusive equilibration of $\text{Fe}^{3+}/\Sigma\text{Fe}$ in olivine-hosted melt
433 inclusions will create offset between the fO_2 that is “locked in” by the $D_V^{ol/melt}$ proxy (Humphreys
434 et al., 2022). The precision of the XANES method allows for tracking the evolution of fO_2 in the
435 melt system; paired XANES and $D_V^{ol/melt}$ observations provide greater context to the fO_2
436 systematics of OIB. The fO_2 observed in this study is closer to the maximum observed by XANES
437 in the least degassed samples (Moussallam et al., 2016; Helz et al., 2017; Humphreys et al., 2022).
438 For added context, a previous investigation of Canary Islands OIB using XANES on relatively
439 undegassed, olivine-hosted melt inclusions estimated a mantle source fO_2 of $+2.0 \Delta\text{FMQ}$
440 (Moussallam et al., 2019), consistent with the average Canary fO_2 determined in this study ($+1.8 \Delta\text{FMQ}$). Canary lavas in this study range from $+1.4$ to $+2.4 \Delta\text{FMQ}$, which overlaps with Canary

442 lavas from other studies using the sample proxy ($D_V^{ol-melt}$) that range from +1.3 to +3.9 Δ FMQ
443 (Taracsák et al., 2022; Nicklas et al., 2022b). Thus, differences between the range of fO_2
444 determined via $D_V^{ol/melt}$ systematics versus that derived from (micro-)XANES techniques may
445 represent a sampling bias in which prior XANES work focused on samples with variable extents
446 of degassing to understand the evolution of fO_2 during petrogenesis.

447 4 Discussion

448 4.1. Petrologic influence on calculated fO_2 in OIB

449 While this study primarily aims to investigate the link between lithospheric recycling and
450 mantle fO_2 , it is critical to evaluate the effects of OIB petrogenesis and the influence of ancient
451 mantle domains on fO_2 in global OIB. Oxygen fugacity is influenced by mantle potential
452 temperature such that higher mantle potential temperatures produce lower fO_2 even with a fixed
453 $Fe^{3+}/\Sigma Fe$ of the peridotite source (Gaetani, 2016). A difference in mantle potential temperatures
454 among plume localities, and between plume and mid-ocean ridges, is unlikely to explain the
455 variability observed in global OIB. First, fO_2 does not vary systematically with mantle potential
456 temperature among plume localities; a negative correlation would be expected if mantle potential
457 temperature was the main control of the average fO_2 of OIB (Supplementary Figure 11). Second,
458 the mantle plumes localities studied here have mantle potential temperatures that are, on average,
459 approximately 130 °C hotter than ridges (Bao et al., 2022). Hotter mantle potential temperautes at
460 plumes would predict lower fO_2 ; however, typically the plumes studied here overlap or have higher
461 fO_2 than MORB (Figure 5). The effect of mantle potential temperature, if any, is less than the
462 uncertainties of the fO_2 observed in this study.

463 Whether partial melting influences the fO_2 determined by the $D_V^{ol-melt}$ proxy in global OIB
464 requires consideration. Within any hotspot location, the calculated fO_2 does not vary systematically
465 with MgO , TiO_2 , or Na_2O content of the parental melt (Supplementary Table S6), which are
466 sensitive to melt degree. La/Sm and La/Yb , which are inversely correlated with degree of partial
467 melting, do not vary systematically with fO_2 within individual hotspot locations. There is a weak
468 relationship between La/Sm and fO_2 in the global dataset ($r^2 = 0.1$, p value <0.1). The absence of
469 correlations between fO_2 and other incompatible major element composition (both whole rock and
470 parental) and trace elements indicates degree of partial melting does not control the fO_2 determined

471 by $D_V^{ol-melt}$ within hotspot lavas. Therefore, the weak trend between fO_2 and La/Sm globally may
 472 instead be primarily related to source enrichment. If source enrichment has an effect on fO_2 , the
 473 relationship between La/Sm and fO_2 may be attenuated by the modification of the source La/Sm
 474 due to fractionation of La and Sm during partial melting. The mechanisms and conditions of
 475 melting, as well as mineralogical differences, among OIB may be important in controlling the fO_2
 476 of plume-derived melts; further work is needed to assess these effects in detail. Effects less than
 477 one log unit are difficult to ascertain in this study given the uncertainties when using the $D_V^{ol-melt}$
 478 proxy in OIB.

479 The CaO/Al₂O₃ of the melt system remains relatively constant during olivine crystallization
 480 but decreases during pyroxene crystallization. Clinopyroxene (and orthopyroxene) generally has a
 481 higher $D_V^{mineral-melt}$ compared to olivine at the same fO_2 and temperature (Wang et al., 2019).
 482 Pyroxene fractionation after primitive olivine crystallization would remove V from the melt
 483 resulting in a higher measured $D_V^{ol-melt}$ (and therefore, lower calculated fO_2). A *negative*
 484 correlation between fO_2 and CaO/Al₂O₃ would provide evidence that the calculated fO_2 was
 485 affected by clinopyroxene fractionation. Within the dataset presented here, there are no global or
 486 local (i.e., within an individual plume locality) negative correlations between whole rock
 487 CaO/Al₂O₃ and fO_2 . A detailed investigation of a greater number of cogenetic samples from each
 488 locality may better illuminate the effects of clinopyroxene fractionation on fO_2 determination using
 489 $D_V^{ol-melt}$. There is, however, a *positive* correlation between CaO/Al₂O₃ and fO_2 in the global
 490 dataset as well as within the Hawaiian and Canary plumes (e.g., Supplementary Figure S12).
 491 Within all Hawaiian lavas and within individual Hawaiian volcanic centers, there is no relationship
 492 between CaO/Al₂O₃ and MgO content. This suggests there is no significant effect from pyroxene
 493 fractionation in the Hawaiian lavas. Three of the four Canary lavas are described as ankaramites
 494 that derive from a pyroxenite-rich mantle source (Day et al., 2009). Therefore, rather than pyroxene
 495 fractionation during petrogenesis, the positive relationship between CaO/Al₂O₃ and fO_2 in OIB
 496 may be related to the plume source (e.g., carbonated recycled materials and/or pyroxenite), which
 497 is discussed below.

498 4.2. *The role of lithospheric recycling in elevated OIB fO_2*

499 Subduction, accumulation, and redistribution of lithosphere in the Earth's mantle has been
 500 invoked to account for the chemical divergence between MORB—which are byproducts of

501 decompression melting of the upper mantle—and OIB that may sample mantle domains as deep
502 as the core-mantle boundary (Gast, 1968; Morgan, 1971; Hofmann and White, 1982; Foley, 2011).
503 It has been suggested that subduction of lithosphere leads to higher fO_2 in the mantle (Kasting et
504 al., 1993; Lécuyer and Ricard, 1999; Evans, 2012; Brounce et al., 2019). It has been shown that
505 subducted lithosphere retains the majority of its oxidized material during subduction (Brounce et
506 al., 2019) and that a large mass of recycled lithosphere remains oxidized relative to ambient mantle
507 at ≥ 300 km depth due to the survival of carbonates in carbonated eclogites (Yaxley and Green,
508 1994; Foley, 2011). Thus, recycled lithosphere in plume sources has been cited to explain
509 observations of elevated fO_2 in OIB compared to global MORB (Moussallam et al., 2014, 2016,
510 2019; Shorttle et al., 2015; Helz et al., 2017; Brounce et al., 2017; Hartley et al., 2017; Taracsák
511 et al., 2022; Nicklas et al., 2022b).

512 The offset between fO_2 observed in MORB and OIB may be attributed to oxidation of
513 plume sources by lithosphere recycling. The influence of recycled material on the fO_2 of mantle-
514 derived magmas is complicated; the addition of recycled material may increase *or* decrease the fO_2
515 of melt systems. For example, prior studies have shown that geochemical enrichment of MORB
516 sources by addition of crustal sediments may serve to locally *lower* the fO_2 of enriched MORB (E-
517 MORB), as evidenced by systematically lower fO_2 observed in E-MORB using XANES (Cottrell
518 and Kelley, 2013). Reduced carbon from ancient anoxic ocean sediments leads to reduction of
519 ferric iron during decompression melting and petrogenesis. The opposite is observed at the
520 Reykjanes Ridge, where plume-influenced MORB become systematically oxidized and
521 geochemically enriched as the ridge approaches mainland Iceland (Shorttle et al., 2015; Novella
522 et al., 2020). The proximity of Reykjanes Ridge basalts to the Icelandic mantle plume suggests
523 that the plume could be the source of higher fO_2 material; it has been interpreted that the oxidized
524 component is entrained oceanic crust in the plume (Shorttle et al., 2015; Novella et al., 2020).

525 The two examples described above demonstrate that different crustal compositions can
526 effectively reduce or oxidize the mantle sources. Ancient pelagic sediments, which contain
527 abundant reduced carbon, may reduce the mantle while oceanic crust, which contains a greater
528 proportion of ferric iron than ambient mantle, may be more likely to oxidize the ambient mantle.
529 Since global OIB overlap MORB fO_2 but extend to much higher fO_2 , lithospheric recycling does
530 not reduce plume sources to a greater extent than MORB sources as no known OIB have lower

531 fO_2 than MORB. Lithospheric recycling may oxidize plume sources to a greater extent than is
532 observed in the MORB mantle, perhaps because the proportion and/or chemical compositions of
533 lithospheric material added to plume sources after subduction are distinct from recycled material
534 in the shallower MORB mantle.

535 Mantle components, which are thought to result in part from recycling of different types of
536 lithospheric material, provide an opportunity to test whether different types of recycled materials
537 cause net oxidation or reduction in plume sources. For example, EM1 lavas have been speculated
538 to contain recycled oceanic crust with pelagic sediment from the seafloor or delaminated lower
539 continental crust (McKenzie and O’Nions, 1983; Weaver, 1991; Garapić et al., 2015). The EM2
540 lavas have isotopic and trace element signatures consistent with a contribution of recycled
541 terrigenous sediment or metasomatized lithosphere (Workman et al., 2004; Jackson et al., 2007).
542 HIMU lavas are often attributed to recycling of a chemically-modified oceanic crustal package
543 such as carbonated eclogite (Hofmann, 1997; Moreira and Kurz, 2001; Stracke et al., 2005;
544 Dasgupta et al., 2007). Ocean island basalts that are geochemically depleted generally lack
545 observable signatures from lithospheric recycling and are likely the least chemically modified by
546 recycling compared to other OIB. Lavas in this study are grouped into these mantle components
547 based on their isotopic compositions (see **Section 2.7.**). We investigated the fO_2 systematics of
548 each group.

549 4.2.1. *HIMU lavas*

550 In the global suite presented here, HIMU has the highest and most variable fO_2 . The
551 average HIMU fO_2 ($1.5 \pm 3.0 \Delta\text{FMQ}$) is statistically higher than both enriched mantle types, as
552 well as the geochemically depleted lavas (**Figure 5**). HIMU lavas also host olivine with the greatest
553 CaO wt. % and whole-rocks with the highest CaO/Al₂O₃ (**Figure 4; Supplementary Figure S12**).
554 The addition of volatile, oxidizing agents, like C⁴⁺ and S⁶⁺, in subducted carbonated lithosphere
555 has been invoked to account for the highly oxidized and volatile-rich HIMU lavas in El Hierro,
556 Canary (Taracsák et al., 2022). Reduction of carbonate and sulfate will lead to oxidation of silicates
557 as observed in arc settings (Rielli et al., 2017). Recycled, carbonated oceanic crustal materials in
558 the HIMU source can explain the radiogenic Pb isotopic compositions and elevated CaO/Al₂O₃ of
559 HIMU-type lavas (Dasgupta et al., 2007; Jackson and Dasgupta, 2008). Relatively high olivine
560 CaO wt. % has been previously argued to reflect carbonatitic metasomatism in the HIMU source

561 (Weiss et al., 2016). Our global dataset supports recycling of carbonated materials, such as oceanic
562 crust in the form pyroxenite, to produce elevated fO_2 , CaO/Al₂O₃, and olivine CaO content in
563 HIMU-type OIB. HIMU lavas show a positive correlation between fO_2 and ⁸⁷Sr/⁸⁶Sr and negative
564 correlation with ¹⁴³Nd/¹⁴⁴Nd, which supports the existence of a geochemically-enriched, high fO_2
565 end-member in the plume source; however, there is no reason that a carbonated component would
566 necessarily produce a correlation with ¹⁴³Nd/¹⁴⁴Nd. High La/Sm, associated with higher fO_2
567 (**Section 4.1**) in OIB, likely points to the link between material with long-term geochemical
568 enrichment (like recycled oceanic or continental crust) and high fO_2 . Variations in Fe and C
569 content and speciation in the subducting slab, as well as subduction environment and timing of
570 recycling, likely play a role in decoupling fO_2 from tracers of recycled materials and creating
571 scatter in the observed dataset.

572 HIMU lavas from St. Helena are distinctly less oxidized than HIMU lavas from the
573 Macdonald (including Mangaia and Austral lavas) and Canary hotspots. Distinct fO_2 observed in
574 St. Helena compared to other HIMU lavas may reflect a different composition of recycled material
575 in the St. Helena plume source; however, high whole-rock CaO/Al₂O₃ and olivine CaO content
576 are observed in St. Helena lavas. Heavy Zn isotopic compositions, which are linked to recycled
577 surficial carbonates, are observed in St. Helena and other HIMU-type lavas (Zhang et al., 2022).
578 These observations support a carbonated recycled crust in the St. Helena plume source, so it is
579 unclear why St. Helena lavas in this study are among the lowest fO_2 in the global dataset (**Figure**
580 **5**). Complex subduction processes affect the redox potential of subducting material and may also
581 decouple fO_2 from time-integrated radiogenic isotopic compositions. For example, partial melting
582 during subduction could reduce the Fe³⁺/Fe_{tot} and C content of the subducting slab before it is
583 entrained in a mantle plume.

584 4.2.2. Enriched mantle (EM1 and EM2) OIB

585 Previous studies of fO_2 in geochemically-enriched OIB have considered EM1 and EM2
586 lavas together (Nicklas et al., 2022b). Here, the fO_2 of EM1-type and EM2-type lavas are
587 considered separately for the first time. The EM1 lavas (average = 0.2 ± 0.6 ΔFMQ) have
588 statistically lower fO_2 than HIMU but are not distinct from EM2 or geochemically depleted OIB
589 (**Figure 5**). The EM1 type of recycled material, likely recycled pelagic sediments based on their
590 high Th/U and Lu/Hf required to explain the time-integrated Nd, Hf, Pb isotopic compositions of

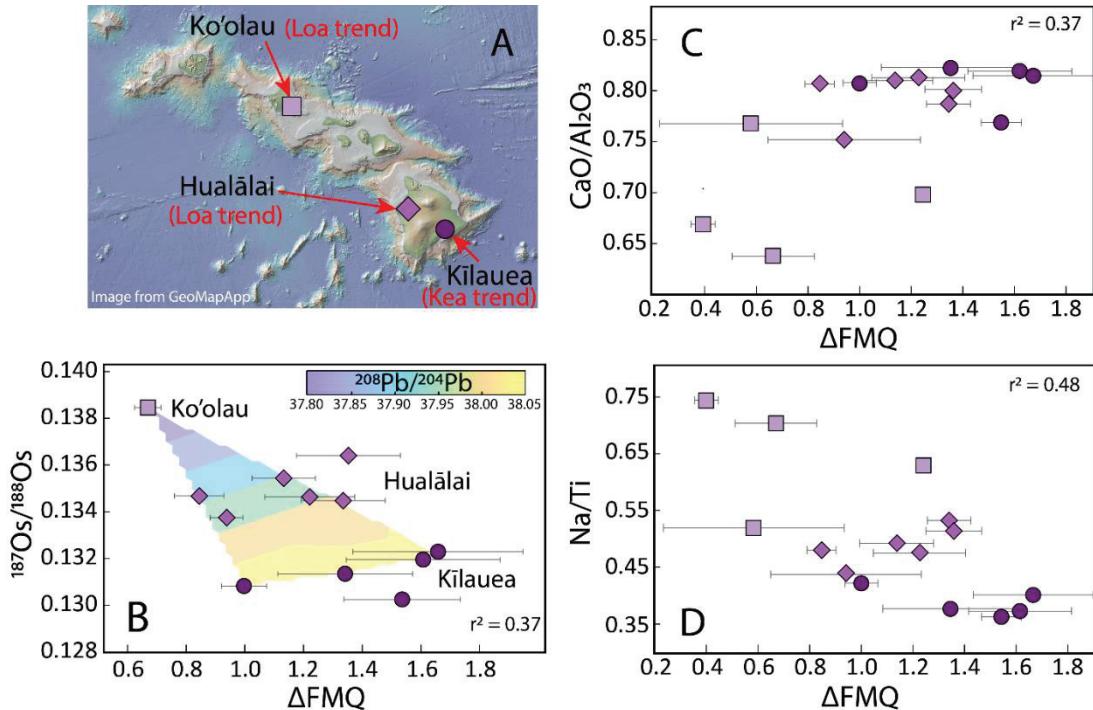
591 EM1, may not have the potential to significantly oxidize the mantle source despite imparting
592 radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ on the lavas. As discussed earlier, sediments can lower mantle $f\text{O}_2$ depending
593 on their depositional environment (Cottrell and Kelley, 2013).

594 EM2 OIB (average = $0.7 \pm 0.7 \Delta\text{FMQ}$) are oxidized relative to geochemically depleted
595 OIB (average = $-0.3 \pm 1.1 \Delta\text{FMQ}$) but less so than HIMU. Though continental sediments have
596 been invoked to account for the radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ signatures of EM2-type lavas, recycled
597 sediments do not contribute as much to the net redox budget of recycle material compared altered
598 oceanic crust and serpentinized lithosphere (e.g., Evans, 2012). Continentally-derived sediments
599 may be present in EM2 plumes but might not have the capacity to drive oxidation of the mantle
600 source. Recycled lithosphere that has been metasomatized by carbonatitic fluids can also account
601 for the isotopic signatures of EM2 lavas in Samoa (Hauri et al., 1993; Workman et al., 2004). Like
602 HIMU-type lavas, EM2-type OIB generally exhibit higher $\text{CaO}/\text{Al}_2\text{O}_3$ and olivine CaO content
603 than EM1 or geochemically depleted OIB (**Figure 4**). These chemical characteristics are similar
604 to HIMU-type lavas and could result from carbonatite metasomatism in their mantle source or
605 recycling of carbonated pyroxenite (Canil et al., 1994; Jackson and Dasgupta, 2008; Weiss et al.,
606 2016). Despite few correlations between $f\text{O}_2$ and radiogenic isotopic compositions, there are
607 statistical $f\text{O}_2$ distinctions among lavas linked to different mantle components. Decoupling of $f\text{O}_2$
608 and lithophile isotopic systems may occur during shallow plume dynamics such as the separation
609 and rapid ascent of carbonatite or volatile-rich fluids relative to the silicate plume that carries
610 lithophile trace elements (Valbracht et al., 1996; Hammouda and Laporte, 2000). If carbonated
611 recycled material increases the $f\text{O}_2$ of plume sources, then preferential melting of high $f\text{O}_2$
612 carbonatite or CO_2 -rich fluid in the shallow plume may cause physical separation from the
613 lithophile trace elements in silicate that link to lithospheric recycling (Valbracht et al., 1996;
614 Hammouda and Laporte, 2000; Hofmann et al., 2011).

615 4.2.3 Depleted mantle OIB

616 Depleted mantle OIB extend to the most reducing conditions and overlap with MORB $f\text{O}_2$.
617 These lavas exhibit robust positive correlations between $f\text{O}_2$ and $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, and
618 $^{208}\text{Pb}/^{204}\text{Pb}$, as well as negative correlation between $f\text{O}_2$ and $^{187}\text{Os}/^{188}\text{Os}$. However, these
619 relationships are primarily controlled by Hawaiian lavas (Supplementary **Figure S10**). Radiogenic

620 Os and unradiogenic Pb in Ko'olau has been associated with recycled pelagic sediment that may
621 have experienced U loss in oxidized marine environments (Lassiter and Hauri, 1998). The pelagic
622 sediment signature trends toward lower fO_2 , which suggests that pelagic sediment reduces the
623 plume source with a similar mechanism to that observed in E-MORB (Cottrell and Kelley, 2013).

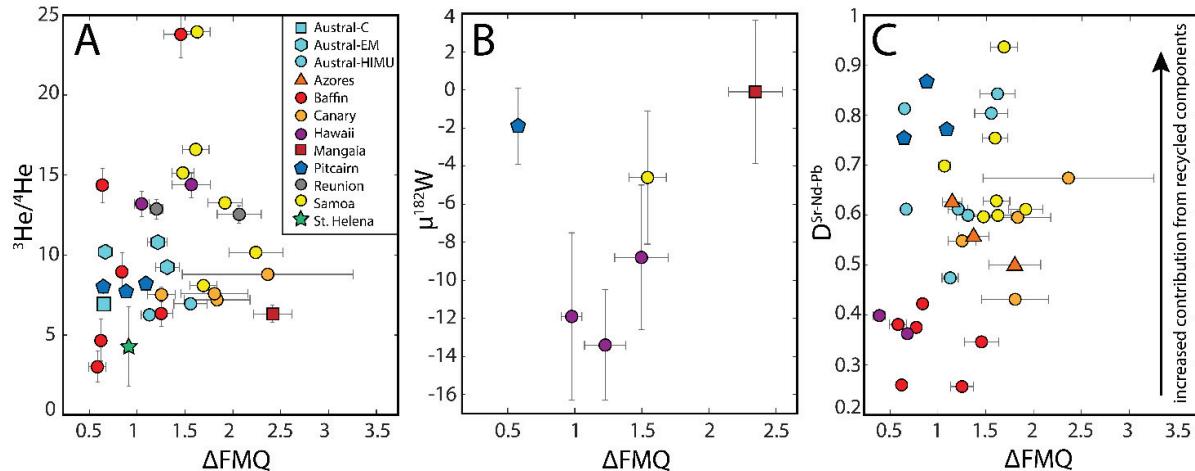

624 Another recycling model has been suggested to explain the major element and lithophile
625 isotopic compositions of Ko'olau lavas: the Ko'olau source may contain greater proportion of
626 recycled eclogite compared to Kīlauea and Hualālai (Hauri, 1996). Archean eclogites are reducing
627 compared to the modern mantle (Aulbach et al., 2019), and if present as recycled material in the
628 Ko'olau mantle source, could lower the fO_2 in Ko'olau lavas relative to Kīlauea and Hualālai.

629 The spatio-temporal trend towards higher fO_2 from Ko'olau to Hualālai and Kīlauea
630 (**Figure 7**) may also reflect the introduction of an oxidized component, such as hydrothermally-
631 altered lower oceanic crust or lithospheric mantle to the Hawaiian plume. Considering Hawaiian
632 lavas extend to higher fO_2 than MORB, a relatively oxidized component is required to explain fO_2
633 up to +1.7 Δ FMQ (**Figure 5**). Multiple processes and recycled materials may be at play in the
634 Hawaiian plume to explain the range of fO_2 observed.

635 An inverse correlation between fO_2 and $^{207}\text{Pb}/^{204}\text{Pb}$ in Baffin Island is opposite to the
636 positive trend observed in Hawaii (Supplementary **Figure S10**). Geochemically depleted isotopic
637 signatures (i.e., low $^{87}\text{Sr}/^{86}\text{Sr}$ and high $^{143}\text{Nd}/^{144}\text{Nd}$) along with MORB-like $^{187}\text{Os}/^{188}\text{Os}$ in Baffin
638 lavas can be attributed to a depleted mantle source that does not contain significant contributions
639 from recycled materials. Further, since only $^{207}\text{Pb}/^{204}\text{Pb}$ correlates significantly with fO_2 , and not
640 $^{206}\text{Pb}/^{204}\text{Pb}$, $^{208}\text{Pb}/^{204}\text{Pb}$, or any other radiogenic isotope system in this study, lithospheric recycling
641 does not explain the variability in fO_2 of Baffin Island lavas.

642 Baffin Island is unique in the global suite because the plume lavas erupted through Archean
643 and paleo-Proterozoic continental crust (Saunders et al., 2013). Using Nb/Th and Ce/Pb as
644 identifiers of crustal assimilation (e.g., Willhite et al., 2019), where low Nb/Th (<13) and low
645 Ce/Pb (<20) are indicative of crustal assimilation, all of the Baffin Island lavas in this study have
646 been at least moderately affected by crustal contamination (**Supplementary Figure S13**).
647 However, crustal contamination does not appear to have modified the oxygen fugacity of the
648 Baffin lavas as there is no significant correlation between fO_2 and Nb/Th, Ce/Pb, or $^{87}\text{Sr}/^{86}\text{Sr}$,
649 $^{206}\text{Pb}/^{204}\text{Pb}$, $^{208}\text{Pb}/^{204}\text{Pb}$, etc. The two lavas with the lowest Ce/Pb are offset to higher fO_2 ; however,

650 those two samples have the *highest* Nb/Th, which is inconsistent with crustal assimilation. Thus,
 651 the Pb- $f\text{O}_2$ trend observed in Baffin does not likely reflect lithospheric recycling or crustal
 652 assimilation.


653
 654 **Fig 7. (A)** Bathymetry map made using GeoMapApp (www.geomapapp.org) showing the three volcanic centers that
 655 have new $f\text{O}_2$ data presented in this study. **(B)** Osmium isotopic compositions of the Hawaiian lavas in this study
 656 negatively correlate with $f\text{O}_2$ ($r^2 = 0.37$), whereas $^{206,207,208}\text{Pb}/^{204}\text{Pb}$ positively correlate with $f\text{O}_2$ ($r^2 = 0.76, 0.51, 0.77$,
 657 respectively). The colored contours reflect a linear interpolation among $^{208}\text{Pb}/^{204}\text{Pb}$ data. There is also a spatio-
 658 temporal trend with increasing $f\text{O}_2$ and $^{206,207,208}\text{Pb}/^{204}\text{Pb}$ and decreasing $^{187}\text{Os}/^{188}\text{Os}$ from Ko'olau (oldest) to Kīlauea
 659 (youngest). **(C)** $\text{CaO}/\text{Al}_2\text{O}_3$ and **(D)** Na/Ti of Hawaiian whole-rocks have robust correlations (i.e., Pearson's
 660 correlation coefficient has a p value <0.1) with $f\text{O}_2$.
 661

662 4.3. Influence from ancient and/or core-equilibrated mantle domains?

663 Helium and tungsten isotopes in plume-derived lavas have been used to identify
 664 contributions from one or more ancient, well-preserved and/or core equilibrated reservoir(s) in the
 665 lower mantle (Hart et al., 1992; Class and Goldstein, 2005; Rizo et al., 2016; Mundl et al., 2017).
 666 Lavas with elevated $^3\text{He}/^4\text{He}$ compared to typical MORB ($^3\text{He}/^4\text{He} = 6\text{--}10$ Ra; where Ra denotes
 667 the sample's measured $^3\text{He}/^4\text{He}$ relative to Earth's atmospheric $^3\text{He}/^4\text{He}$) sample an ancient
 668 reservoir that has been partially or wholly preserved through geologic time (Kurz et al., 1982).

669 Discovery of $\mu^{182}\text{W}$ anomalies in plume-derived lavas (Mundl et al., 2017), as well as a correlation
670 between $\mu^{182}\text{W}$ and ${}^3\text{He}/{}^4\text{He}$ in deep-rooted plumes (Mundl et al., 2017; Mundl-Petermeier et al.,
671 2020), provide evidence for preservation of Earth reservoirs created in the early Hadean while
672 ${}^{182}\text{Hf}$ was extant (i.e., within \sim 60 My of Solar System formation). OIB with the highest ${}^3\text{He}/{}^4\text{He}$
673 and greatest magnitude $\mu^{182}\text{W}$ anomalies also appear to the least modified by addition of recycled
674 materials (Jackson et al., 2020). If the $f\text{O}_2$ of ancient/core-equilibrated plume reservoirs are distinct
675 from the modern convecting mantle, then $f\text{O}_2$ may be coupled with high ${}^3\text{He}/{}^4\text{He}$, anomalous
676 $\mu^{182}\text{W}$, and a low $D^{\text{Sr-Nd-Pb}}$ (a parameter that generally increases with the amount of recycled
677 material entrained in a plume; Jackson et al., 2020). Given that $f\text{O}_2$ generally does not correlate
678 with radiogenic isotope indicators of recycled material, it is plausible that plumes have
679 heterogeneous and elevated $f\text{O}_2$ due to interaction with an ancient and/or core-equilibrated
680 reservoir.

681 For all lavas with published He and/or W isotopes in this study, there is no statistically
682 significant correlation with $f\text{O}_2$ (**Figure 8**); however, high ${}^3\text{He}/{}^4\text{He}$ lavas are limited in this dataset,
683 and only ten lavas have ${}^3\text{He}/{}^4\text{He}$ above 10 Ra. In previous studies of noble gas systematics in OIB,
684 all studied OIB had higher $f\text{O}_2$ than MORB, regardless of ${}^3\text{He}/{}^4\text{He}$ (Day et al., 2022). Typically,
685 OIB with a higher proportion of recycled material (i.e., a greater $D^{\text{Sr-Nd-Pb}}$), fall along mixing lines
686 between MORB and various recycled end members with higher $\text{Fe}^{3+}/\sum\text{Fe}$ (Bounce et al., 2020).
687 This indicates that OIB with less recycled material do not have inherently higher $f\text{O}_2$ than other
688 OIB and MORB. Given the limited number of samples with paired $f\text{O}_2$ and elevated ${}^3\text{He}/{}^4\text{He}$
689 measurements or anomalous $\mu^{182}\text{W}$, a critical evaluation of the $f\text{O}_2$ of OIB with those signatures
690 may still be warranted in future studies. It is not apparent that ancient and/or core-equilibrated
691 mantle, sampled by some OIB, has distinct $f\text{O}_2$ from the ambient mantle or that the $f\text{O}_2$ of the deep
692 mantle source would be preserved once entrained in a mantle plume. This demonstrates that the
693 offset to higher $f\text{O}_2$ observed in OIB is not likely related to the mechanism(s) that produce and
694 preserve high ${}^3\text{He}/{}^4\text{He}$ and anomalous $\mu^{182}\text{W}$.

695

696 **Fig 8. Ancient geochemical signals, such as high ${}^3\text{He}/{}^4\text{He}$ (A) and anomalous $\mu^{182}\text{W}$ (B), do not correlate with**
 697 $f\text{O}_2$. Vertical error bars are 2SD (internal) for helium isotopes and 2SE (internal) for tungsten isotopes. (C) Increasing
 698 $D^{\text{Sr-Nd-Pb}}$ reflects a larger proportion of recycled material in the source (Jackson et al., 2020). Lavas with the lowest
 699 $D^{\text{Sr-Nd-Pb}}$ should represent mantle sources least affected by lithospheric recycling.

700 **5 Conclusions**

701 We provide $f\text{O}_2$ constraints for lavas derived from key mantle components (EM1, EM2, HIMU,
 702 geochemically depleted OIB) in a global framework to characterize global OIB using the same
 703 analytical techniques across our dataset. We also provide a database of previously published
 704 MORB and OIB $f\text{O}_2$ from a variety of techniques and $f\text{O}_2$ proxies for cross-comparison. We find
 705 that $D_V^{\text{ol/melt}}$ results in higher $f\text{O}_2$ than $\text{Fe}^{3+}/\text{Fe}^{\text{T}}$ and other oxybarometers, perhaps due to
 706 degassing-related phenomena during progressive melt differentiation. Though few robust
 707 correlations exist between radiogenic isotope compositions and $f\text{O}_2$, lithospheric recycling
 708 remains a viable mechanism for the oxidation of plume source regions in the mantle. Despite
 709 overlap among HIMU, EM2, EM1, and depleted OIB, ANOVA tests reveal that HIMU- and
 710 EM2-type OIB are distinctly oxidized compared to depleted OIB. Given that these lavas contain
 711 isotopic and petrologic evidence for carbonate-related crustal recycling. Even geochemically
 712 depleted OIB with limited evidence of lithospheric recycling, such as Hawaiian lavas, show
 713 evidence for a geochemically-enriched, oxidized component in their plume source. So far, there
 714 is limited evidence that primitive geochemical signals like elevated ${}^3\text{He}/{}^4\text{He}$ or negative $\mu^{182}\text{W}$

715 are associated with distinct fO_2 . These findings support the link between lithospheric recycling
716 tectonics and variable and elevated fO_2 in Earth's interior.

717

718

719 Acknowledgments

720 We would like to acknowledge funding from the NASA ROSES Program Grant#
721 80NSSC19K0768 and NSF EAR Grant #1944552. The authors would like to thank Frank Spera,
722 Richard Ash, and James Dottin III for helpful discussion. Thank you to Maddy Raith, who
723 helped make scans of the epoxy-mounted samples and helped with compilation of global MORB
724 fO_2 data. Reviewers of this version and a previous version of this manuscript helped improve this
725 work, including Maryjo Bounce and anonymous reviewers.

726

727 Open Research

728 The new fO_2 data and all compiled data used for investigating the fO_2 , petrologic, and isotopic
729 compositions of global ocean island basalts in the study are available in the EarthChem Library
730 at <https://doi.org/10.26022/IEDA/113038>.

731

732 References

- 733 Andrault D., Muñoz M., Pesce G., Cerantola V., Chumakov A., Kantor I., Pasquarelli S., Rüffer R. and
734 Hennet L. (2018) Large oxygen excess in the primitive mantle could be the source of the Great
735 Oxygenation Event. *Geochem. Persp. Let.*, 5–10.
- 736 Aulbach S., Woodland A. B., Stern R. A., Vasilyev P., Heaman L. M. and Viljoen K. S. (2019) Evidence for a
737 dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity
738 of deeply subducted oceanic crust. *Sci Rep* **9**, 20190.
- 739 Bao X., Lithgow-Bertelloni C. R., Jackson M. G. and Romanowicz B. (2022) On the relative temperatures
740 of Earth's volcanic hotspots and mid-ocean ridges. *Science* **375**, 57–61.
- 741 Borisov A. A., Kadik A. A., Zharkova Y. V. and Kalinichenko N. V. (1987) Effects of oxygen fugacity on the
742 ratio between valency forms of vanadium in magmas. *Geochemistry International* **24**, 15–20.
- 743 Bounce M., Cottrell E. and Kelley K. A. (2019) The redox budget of the Mariana subduction zone. *Earth*
744 and *Planetary Science Letters* **528**, 115859.
- 745 Bounce M., Stolper E. and Eiler J. (2017) Redox variations in Mauna Kea lavas, the oxygen fugacity of
746 the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. *PNAS* **114**, 8997–9002.
- 747 Bounce M., Stolper E. and Eiler J. (2022) The mantle source of basalts from Reunion Island is not more
748 oxidized than the MORB source mantle. *Contrib Mineral Petrol* **177**, 7.
- 749 Canil D. (1997) Vanadium partitioning and the oxidation state of Archaean komatiite magmas. *Nature*
750 **389**, 842–845.

- 751 Canil D. (1999) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox
752 states of mantle source regions for primary magmas. *Geochimica et Cosmochimica Acta* **63**, 557–
753 572.
- 754 Canil D. and Fedortchouk Y. (2001) Olivine–Liquid Partitioning of Vanadium and Other Trace Elements,
755 with Applications to Modern and Ancient Picrites. *The Canadian Mineralogist* **39**, 319–330.
- 756 Canil D., O'Neill H. St. C., Pearson D. G., Rudnick R. L., McDonough W. F. and Carswell D. A. (1994) Ferric
757 iron in peridotites and mantle oxidation states. *Earth and Planetary Science Letters* **123**, 205–220.
- 758 Class C. and Goldstein S. L. (2005) Evolution of helium isotopes in the Earth's mantle. *Nature* **436**, 1107.
- 759 Cockell C. s., Bush T., Bryce C., Direito S., Fox-Powell M., Harrison J. p., Lammer H., Landenmark H.,
760 Martin-Torres J., Nicholson N., Noack L., O'Malley-James J., Payler S. j., Rushby A., Samuels T.,
761 Schwendner P., Wadsworth J. and Zorzano M. p. (2016) Habitability: A Review. *Astrobiology* **16**,
762 89–117.
- 763 Condie K. C. (1976) *Plate Tectonics & Crustal Evolution.*, Pergamon Press.
- 764 Cottrell E. and Kelley K. A. (2013) Redox Heterogeneity in Mid-Ocean Ridge Basalts as a Function of
765 Mantle Source. *Science* **340**, 1314–1317.
- 766 Danyushevsky L. V. and Plechov P. (2011) Petrolog3: Integrated software for modeling crystallization
767 processes. *Geochemistry, Geophysics, Geosystems* **12**.
- 768 Dasgupta R., Hirschmann M. M. and Smith N. D. (2007) Partial Melting Experiments of Peridotite + CO₂
769 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. *Journal of Petrology* **48**, 2093–2124.
- 770 Day J. M. D., Jones T. D. and Nicklas R. W. (2022) Mantle sources of ocean islands basalts revealed from
771 noble gas isotope systematics. *Chemical Geology* **587**, 120626.
- 772 Day J. M. D., Pearson D. G., Macpherson C. G., Lowry D. and Carracedo J.-C. (2009) Pyroxenite-rich
773 mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary
774 Island lavas. *Geology* **37**, 555–558.
- 775 Evans K. A. (2012) The redox budget of subduction zones. *Earth-Science Reviews* **113**, 11–32.
- 776 Farley K. A., Natland J. H. and Craig H. (1992) Binary mixing of enriched and undegassed (primitive?)
777 mantle components (He, Sr, Nd, Pb) in Samoan lavas. *Earth and Planetary Science Letters* **111**,
778 183–199.
- 779 Foley S. F. (2011) A Reappraisal of Redox Melting in the Earth's Mantle as a Function of Tectonic Setting
780 and Time. *Journal of Petrology* **52**, 1363–1391.
- 781 French B. M. (1966) Some geological implications of equilibrium between graphite and a C-H-O gas
782 phase at high temperatures and pressures. *Reviews of Geophysics* **4**, 223–253.
- 783 Gaetani G. A. (2016) The behavior of Fe³⁺/ Σ Fe during partial melting of spinel lherzolite. *Geochimica et
784 Cosmochimica Acta* **185**, 64–77.

- 785 Gaetani G. A. and Grove T. L. (1997) Partitioning of moderately siderophile elements among olivine,
786 silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. *Geochimica et*
787 *Cosmochimica Acta* **61**, 1829–1846.
- 788 Garapić G., Jackson M. G., Hauri E. H., Hart S. R., Farley K. A., Blusztajn J. S. and Woodhead J. D. (2015) A
789 radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the
790 origin of EM-1 (enriched mantle 1). *Lithos* **228–229**, 1–11.
- 791 Gast P. W. (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types.
792 *Geochimica et Cosmochimica Acta* **32**, 1057–1086.
- 793 Hammouda T. and Laporte D. (2000) Ultrafast mantle impregnation by carbonatite melts. *Geology* **28**,
794 283–285.
- 795 Hart S. R., Hauri E. H., Oschmann L. A. and Whitehead J. A. (1992) Mantle Plumes and Entrainment:
796 Isotopic Evidence. *Science* **256**, 517–520.
- 797 Hartley M. E., Shorttle O., MacLennan J., Moussallam Y. and Edmonds M. (2017) Olivine-hosted melt
798 inclusions as an archive of redox heterogeneity in magmatic systems. *Earth and Planetary Science*
799 *Letters* **479**, 192–205.
- 800 Hauri E. H. (1996) Major-element variability in the Hawaiian mantle plume. *Nature* **382**, 415–419.
- 801 Hauri E. H., Shimizu N., Dieu J. J. and Hart S. R. (1993) Evidence for hotspot-related carbonatite
802 metasomatism in the oceanic upper mantle. *Nature* **365**, 221–227.
- 803 Helz R. T., Cottrell E., Brounce M. N. and Kelley K. A. (2017) Olivine-melt relationships and syneruptive
804 redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES. *Journal of*
805 *Volcanology and Geothermal Research* **333–334**, 1–14.
- 806 Hirschmann M. M. (2012) Magma ocean influence on early atmosphere mass and composition. *Earth*
807 *and Planetary Science Letters* **341–344**, 48–57.
- 808 Hofmann A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. *Nature* **385**, 219–
809 229.
- 810 Hofmann A. W., Farnetani C. G., Spiegelman M. and Class C. (2011) Displaced helium and carbon in the
811 Hawaiian plume. *Earth and Planetary Science Letters* **312**, 226–236.
- 812 Hofmann A. W. and White W. M. (1982) Mantle plumes from ancient oceanic crust. *Earth and Planetary*
813 *Science Letters* **57**, 421–436.
- 814 Humphreys J., Brounce M. and Walowski K. (2022) Diffusive equilibration of H₂O and oxygen fugacity in
815 natural olivine-hosted melt inclusions. *Earth and Planetary Science Letters* **584**, 117409.
- 816 Jackson M. G., Becker T. W. and Konter J. G. (2018) Evidence for a deep mantle source for EM and HIMU
817 domains from integrated geochemical and geophysical constraints. *Earth and Planetary Science*
818 *Letters* **484**, 154–167.

- 819 Jackson M. G., Blichert-Toft J., Halldórsson S. A., Mundl-Petermeier A., Bizimis M., Kurz M. D., Price A. A.,
820 Harðardóttir S., Willhite L. N., Breddam K., Becker T. W. and Fischer R. A. (2020) Ancient helium
821 and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling.
822 *PNAS* **117**, 30993–31001.
- 823 Jackson M. G. and Dasgupta R. (2008) Compositions of HIMU, EM1, and EM2 from global trends
824 between radiogenic isotopes and major elements in ocean island basalts. *Earth and Planetary
825 Science Letters* **276**, 175–186.
- 826 Jackson M. G., Hart S. R., Koppers A. A. P., Staudigel H., Konter J., Blusztajn J., Kurz M. and Russell J. A.
827 (2007) The return of subducted continental crust in Samoan lavas. *Nature* **448**, 684–687.
- 828 Kadoya S., Catling D. C., Nicklas R. W., Puchtel I. S. and Anbar A. D. (2020) Mantle data imply a decline of
829 oxidizable volcanic gases could have triggered the Great Oxidation. *Nat Commun* **11**, 2774.
- 830 Kasting J. F., Eggler D. H. and Raeburn S. P. (1993) Mantle Redox Evolution and the Oxidation State of the
831 Archean Atmosphere. *The Journal of Geology* **101**, 245–257.
- 832 Kump L. R., Kasting J. F. and Barley M. E. (2001) Rise of atmospheric oxygen and the “upside-down”
833 Archean mantle. *Geochemistry, Geophysics, Geosystems* **2**.
- 834 Kurz M. D., Jenkins W. J. and Hart S. R. (1982) Helium isotopic systematics of oceanic islands and mantle
835 heterogeneity. *Nature* **297**, 43–47.
- 836 Lassiter J. C. and Hauri E. H. (1998) Osmium-isotope variations in Hawaiian lavas: evidence for recycled
837 oceanic lithosphere in the Hawaiian plume. *Earth and Planetary Science Letters* **164**, 483–496.
- 838 Lécuyer C. and Ricard Y. (1999) Long-term fluxes and budget of ferric iron: implication for the redox
839 states of the Earth’s mantle and atmosphere. *Earth and Planetary Science Letters* **165**, 197–211.
- 840 Locmelis M., Arevalo R. D., Puchtel I. S., Fiorentini M. L. and Nisbet E. G. (2019) Transition metals in
841 komatiitic olivine: Proxies for mantle composition, redox conditions, and sulfide mineralization
842 potential. *American Mineralogist* **104**, 1143–1155.
- 843 Mallmann G. and O’Neill H. St. C. (2013) Calibration of an Empirical Thermometer and Oxybarometer
844 based on the Partitioning of Sc, Y and V between Olivine and Silicate Melt. *Journal of Petrology* **54**,
845 933–949.
- 846 Mallmann G. and O’Neill H. St. C. (2009) The Crystal/Melt Partitioning of V during Mantle Melting as a
847 Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr
848 and Nb). *Journal of Petrology* **50**, 1765–1794.
- 849 McKenzie D. and O’Nions R. K. (1983) Mantle reservoirs and ocean island basalts. *Nature* **301**, 229–231.
- 850 Moreira M. and Kurz M. D. (2001) Subducted oceanic lithosphere and the origin of the ‘high μ ’ basalt
851 helium isotopic signature. *Earth and Planetary Science Letters* **189**, 49–57.
- 852 Morgan W. J. (1971) Convection Plumes in the Lower Mantle. *Nature* **230**, 42–43.

- 853 Moussallam Y., Edmonds M., Scaillet B., Peters N., Gennaro E., Sides I. and Oppenheimer C. (2016) The
854 impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano.
855 *Earth and Planetary Science Letters* **450**, 317–325.
- 856 Moussallam Y., Longpré M.-A., McCammon C., Gomez-Ulla A., Rose-Koga E. F., Scaillet B., Peters N.,
857 Gennaro E., Paris R. and Oppenheimer C. (2019) Mantle plumes are oxidised. *Earth and Planetary*
858 *Science Letters* **527**, 115798.
- 859 Moussallam Y., Oppenheimer C., Scaillet B., Gaillard F., Kyle P., Peters N., Hartley M., Berlo K. and
860 Donovan A. (2014) Tracking the changing oxidation state of Erebus magmas, from mantle to
861 surface, driven by magma ascent and degassing. *Earth and Planetary Science Letters* **393**, 200–209.
- 862 Mundl A., Touboul M., Jackson M. G., Day J. M. D., Kurz M. D., Lekic V., Helz R. T. and Walker R. J. (2017)
863 Tungsten-182 heterogeneity in modern ocean island basalts. *Science* **356**, 66–69.
- 864 Mundl-Petermeier A., Walker R. J., Fischer R. A., Lekic V., Jackson M. G. and Kurz M. D. (2020)
865 Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth's core? *Geochimica*
866 *et Cosmochimica Acta* **271**, 194–211.
- 867 Nicklas R. W., Hahn R. K. M. and Day J. M. D. (2022a) Oxidation of La Réunion lavas with MORB-like fO₂
868 by assimilation. *Geochemical Perspectives Letters*.
- 869 Nicklas R. W., Hahn R. K. M., Willhite L. N., Jackson M. G., Zanon V., Arevalo R. and Day J. M. D. (2022b)
870 Oxidized mantle sources of HIMU- and EM-type Ocean Island Basalts. *Chemical Geology* **602**,
871 120901.
- 872 Nicklas R. W., Puchtel I. S., Ash R. D., Piccoli P. M., Hanski E., Nisbet E. G., Waterton P., Pearson D. G. and
873 Anbar A. D. (2019) Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence
874 from V partitioning in komatiites and picrites. *Geochimica et Cosmochimica Acta* **250**, 49–75.
- 875 Novella D., MacLennan J., Shortle O., Prytulak J. and Murton B. J. (2020) A multi-proxy investigation of
876 mantle oxygen fugacity along the Reykjanes Ridge. *Earth and Planetary Science Letters* **531**,
877 115973.
- 878 O'Neill C. and Aulbach S. (2022) Destabilization of deep oxidized mantle drove the Great Oxidation
879 Event. *Science Advances* **8**, eabg1626.
- 880 Ortenzi G., Noack L., Sohl F., Guimond C. M., Grenfell J. L., Dorn C., Schmidt J. M., Vulpius S., Katyal N.,
881 Kitzmann D. and Rauer H. (2020) Mantle redox state drives outgassing chemistry and atmospheric
882 composition of rocky planets. *Sci Rep* **10**, 10907.
- 883 Rielli A., Tomkins A. G., Nebel O., Brugger J., Etschmann B., Zhong R., Yaxley G. M. and Paterson D.
884 (2017) Evidence of sub-arc mantle oxidation by sulphur and carbon. *Geochem. Persp. Let.*, 124–
885 132.
- 886 Righter K. and Drake M. J. (1996) Core Formation in Earth's Moon, Mars, and Vesta. *Icarus* **124**, 513–
887 529.

- 888 Righter K., Leeman W. P. and Hervig R. L. (2006a) Partitioning of Ni, Co and V between spinel-structured
889 oxides and silicate melts: Importance of spinel composition. *Chemical Geology* **227**, 1–25.
- 890 Righter K., Sutton S. R., Newville M., Le L., Schwandt C. S., Uchida H., Lavina B. and Downs R. T. (2006b)
891 An experimental study of the oxidation state of vanadium in spinel and basaltic melt with
892 implications for the origin of planetary basalt. *American Mineralogist* **91**, 1643–1656.
- 893 Rizo H., Walker R. J., Carlson R. W., Horan M. F., Mukhopadhyay S., Manthos V., Francis D. and Jackson
894 M. G. (2016) Preservation of Earth-forming events in the tungsten isotopic composition of modern
895 flood basalts. *Science* **352**, 809–812.
- 896 Roeder P. L. and Emslie R. F. (1970) Olivine-liquid equilibrium. *Contr. Mineral. and Petrol.* **29**, 275–289.
- 897 Saunders A. D., Fitton J. G., Kerr A. C., Norry M. J. and Kent R. W. (2013) The North Atlantic Igneous
898 Province. In *Geophysical Monograph Series* (eds. J. J. Mahoney and M. F. Coffin). American
899 Geophysical Union, Washington, D. C. pp. 45–93.
- 900 Shorttle O., Moussallam Y., Hartley M. E., MacLennan J., Edmonds M. and Murton B. J. (2015) Fe-XANES
901 analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen
902 cycle. *Earth and Planetary Science Letters* **427**, 272–285.
- 903 Starkey N. A., Stuart F. M., Ellam R. M., Fitton J. G., Basu S. and Larsen L. M. (2009) Helium isotopes in
904 early Iceland plume picrites: Constraints on the composition of high 3He/4He mantle. *Earth and*
905 *Planetary Science Letters* **277**, 91–100.
- 906 Stracke A., Hofmann A. W. and Hart S. R. (2005) FOZO, HIMU, and the rest of the mantle zoo.
907 *Geochemistry, Geophysics, Geosystems* **6**.
- 908 Suzuki T. and Akaogi M. (1995) Element partitioning between olivine and silicate melt under high
909 pressure. *Phys Chem Minerals* **22**.
- 910 Taracsák Z., Longpré M.-A., Tartèse R., Burgess R., Edmonds M. and Hartley M. E. (2022) Highly Oxidising
911 Conditions in Volatile-Rich El Hierro Magmas: Implications for Ocean Island Magmatism. *Journal of*
912 *Petrology* **63**, egac011.
- 913 Valbracht P. J., Staudigel H., Honda M., McDougall I. and Davies G. R. (1996) Isotopic tracing of volcanic
914 source regions from Hawaii: decoupling of gaseous from lithophile magma components. *Earth and*
915 *Planetary Science Letters* **144**, 185–198.
- 916 Wang J., Xiong X., Takahashi E., Zhang L., Li L. and Liu X. (2019) Oxidation State of Arc Mantle Revealed
917 by Partitioning of V, Sc, and Ti Between Mantle Minerals and Basaltic Melts. *Journal of Geophysical*
918 *Research: Solid Earth* **124**, 4617–4638.
- 919 Weaver B. L. (1991) The origin of ocean island basalt end-member compositions: trace element and
920 isotopic constraints. *Earth and Planetary Science Letters* **104**, 381–397.
- 921 Weiss Y., Class C., Goldstein S. L. and Hanyu T. (2016) Key new pieces of the HIMU puzzle from olivines
922 and diamond inclusions. *Nature* **537**, 666–670.

- 923 Willhite L. N., Jackson M. G., Blichert-Toft J., Bindeman I., Kurz M. D., Halldórsson S. A., Harðardóttir S.,
924 Gazel E., Price A. A. and Byerly B. L. (2019) Hot and Heterogenous High- 3He /4He Components:
925 New Constraints From Proto-Iceland Plume Lavas From Baffin Island. *Geochemistry, Geophysics,
926 Geosystems* **20**, 5939–5967.
- 927 Workman R. K., Hart S. R., Jackson M., Regelous M., Farley K. A., Blusztajn J., Kurz M. and Staudigel H.
928 (2004) Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-
929 member: Evidence from the Samoan Volcanic Chain. *Geochemistry, Geophysics, Geosystems* **5**.
- 930 Yaxley G. M. and Green D. H. (1994) Experimental demonstration of refractory carbonate-bearing
931 eclogite and siliceous melt in the subduction regime. *Earth and Planetary Science Letters* **128**, 313–
932 325.
- 933 Zhang X.-Y., Chen L.-H., Wang X.-J., Hanyu T., Hofmann A. W., Komiya T., Nakamura K., Kato Y., Zeng G.,
934 Gou W.-X. and Li W.-Q. (2022) Zinc isotopic evidence for recycled carbonate in the deep mantle.
935 *Nat Commun* **13**, 6085.
- 936 Zindler A. and Hart S. (1986) Chemical Geodynamics. *Annual Review of Earth and Planetary Sciences* **14**,
937 493–571.
- 938
- 939
- 940