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Abstract. De novo protein sequencing is a valuable task in proteomics,
yet it is not a fully solved problem. Many state-of-the-art approaches
use top-down and bottom-up tandem mass spectrometry (MS/MS) to
sequence proteins. However, these approaches often produce protein scaf-
folds, which are incomplete protein sequences with gaps to fill between
contiguous regions. In this paper, we propose a novel convolutional
denoising autoencoder (CDA) model to perform the task of filling gaps
in protein scaffolds to complete the final step of protein sequencing. We
demonstrate our results both on a real dataset and eleven randomly gen-
erated datasets based on the MabCampath antibody. Our results show
that the proposed CDA outperforms recently published hybrid convolu-
tional neural network and long short-term memory (CNN-LSTM) based
sequence model. We achieve 100% gap filling accuracy and 95.32% full
sequence accuracy on the MabCampth protein scaffold.

Keywords: De Novo Protein Sequencing · Convolutional Layer ·
Denoising Autoencoder · Protein Scaffold Filling

1 Introduction

Protein sequencing plays an important role in many aspects of proteomics,
including identification of structure and functions of proteins, new protein
biomarkers, construction of phylogenetic tree to find evolutionary relationship
and new drug design. De novo protein sequencing refers to the process of deter-
mining the primary structure of proteins directly without inferring the full
sequence by merely matching against an existing protein database. Complete
de novo protein sequencing remains a challenging problem in bioinformatics.
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Every protein can be defined by its unique sequence of amino acids, which is
called its primary structure. Proteins are comprised of 20 different amino acids.
We use the term “peptide” to refer to small multi-amino acid sub-units of pro-
teins. The goal of peptide or protein sequencing is to determine the complete
unique sequence of amino acids in a peptide or protein. In general, peptide or pro-
tein sequencing from mass spectrometry can refer to either de novo sequencing
or database searching. With database searching, once a mass spectrum is gener-
ated, it is compared to databases of known peptides or proteins to retrieve the
sequence with the closest matching mass spectrum. Often, these databases will
include only proteins or peptides generated from genomic data [10]. Many pro-
teins of interest are not included in such databases, especially those that are not
directly inscribed in genomes such as monoclonal antibodies. Even if a protein
sequence is known, it is often still desirable to perform de novo sequencing to dis-
cover novel proteoforms [11]. For instance, proteoforms may be created by post-
translational modifications, which occur when amino acids of proteins undergo
a process of proteolytic cleavage which alters the amino acid in the primary
structure by adding a modifying group [8,9]. De novo protein sequencing has
been used for many purposes, including full sequencing of proteins, to sequence
endogenous peptides [12,13], to characterize mutations in antibodies [14], and to
perform proteomic analysis of novel organisms not found in protein databases.

We organize our paper as follows. In Sect. 2, we discuss the problem statement
and gap challenges that motivate our research, deficiencies in existing approaches.
In Sect. 3, we introduce the methodology that we will use to develop a new convo-
lutional denoising autoencoder (CDA) model as a solution. In Sect. 4, we discuss in
detail our proposed CDA model, including data preprocessing, model architecture
and hyperparameters tuning steps. In Sect. 5, we show our experimental predic-
tion results both on the original real MabCampth scaffold data and simulation
data. Finally, we conclude our paper and discuss the future directions.

2 Preliminaries

The Protein Scaffold Filling (PSF) Problem: Given a complete target
protein sequence S and the scaffold T , fill the missing amino acids in the scaffold
T such that Score(S, T ) is maximized, where function Score is the total number
of one-to-one matches of amino acids between S and T .

The protein scaffold filling problem has been shown to be polynomial solvable
in O(n26) time [4]. In [4], the authors proposed several practical algorithms based
on greedy algorithm, dynamic programming and local search. These algorithms
rely on high quality homologous reference proteins. As reported in [4], these
algorithms run in a reasonable amount of time when gaps are small. Thus, our
goal is to investigate deep learning approaches to the same problem to improve
our accuracy, especially when gaps are large or the homologous reference proteins
are dissimilar to proteins scaffolds produced in a lab.

Most recently in 2022, the authors [7] developed several deep learning mod-
els based on CNN and LSTM models for the PSF problem and achieved high
accuracy when filling the gaps in the MabCampath scaffold dataset. The basic
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idea behind this approach is to iteratively predict each amino acid in sequence
by deploying a model that can predict the next amino acid given the preced-
ing K amino acids. From left to right, when a gap is encountered in the pro-
tein scaffold, the model predicts the next amino acid as a replacement for that
gap. This process is repeated until all gaps are filled. The authors trained a
forward model and reverse model so they can predict gaps at the end of any
protein scaffold. For training data, the authors query for homologous sequences
to their scaffold protein, then generate all kmers of each training instance. Each
kmer represents a single training instance input, and the amino acid after the
kmer in the sequence is the training output. So, for example, from the sequence
DIQMSPIL..., the following input-output pairs would be generated: (DIQMS, P),
(IQMSP, I), (QMSPI, L). The authors trained various CNN-LSTM hybrid mod-
els to compare their accuracy.

Though their reported accuracy is higher than that reported in [4], this app-
roach suffers from a few flaws. First, since the model is a kmer sequence-based
approach, any errors in inference are likely to propagate, leading to subsequent
incorrect inferences. See Fig. 1 for an illustration. If this issue is indeed a signifi-
cant problem for the sequence-based approach, it suggests that such approaches
will tend to do worse when the gaps to fill between contigs of a protein scaffold
are particularly large.

Fig. 1. CNN-LSTM model illustration [7]. Since during inference the model predicts
only the next amino acid, if it makes a poor prediction, it will feed that poor prediction
into the next inference step, causing future inferences to be unreliable

In this paper, our goal is to develop a deep learning model that can accurately
predict the missing amino acids in gaps of the scaffold while improving on the
approach described in [7] by also correcting incorrect amino acids in the existing
scaffold.

3 Methodology

The approach we use is a convolutional denoising autoencoder (CDA) trained on
homologous sequences of our given scaffold. The motivation behind an autoen-
coder in general is that it imputes all the missing amino acids at once, which is
different from the iterative sequence-based approach described in [7]. Not only
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can the CDA predict gaps in the scaffold but it can also correct any incorrect
amino acids in the scaffold. In contrast, the LSTM models designed in [7] can
only predict the missing amino acids in the gaps of the scaffold.

Autoencoders. Autoencoders are neural networks that learn how to reconstruct
its input through the composition of an encoder and a decoder [1]. Typically,
the idea is to encode the original input into a lower dimensional space and then
decode the compressed representation into the original input.

Denoising Autoencoders. Simple autoencoders suffer from the problem that
the autoencoder may simply learn an identity function, which produces trivially
useless results [2]. A common solution to this problem is to intentionally corrupt
the original input in some way by adding some kind of “noise” to the data. The
goal of the autoencoder, then, is to learn how to denoise the corrupted input,
which produces a more robust representation that avoids trivial solutions [3]. A
model trained on corrupted inputs can learn an internal representation that can
correct those defects.

Convolutional Layers. Convolutional layers in a neural network are useful
whenever the input contains hidden features created by the relationships among
neighboring components of the input. In this way, convolutional layers can be
viewed as automatic feature extractors. Since the dataset consists of sequences
of amino acids, it is a reasonable hypothesis that there are meaningful features
to extract among neighboring values of each sequence.

Pooling and Upsampling. Pooling is in general a useful technique to reduce
model complexity to speed up training. In our case, pooling is how the model
achieves the compression characteristic of autoencoders. The model convolves the
original input to extract features, then compresses those feature maps with pool-
ing into a reduced dimensional space. The decoder portion of the autoencoder
performs inverse convolutions and upsampling to produce the final sequence
length of the training data.

4 The Proposed Convolutional Denoising Autoencoder
Model

4.1 Data Collection

The protein scaffold we use to evaluate our proposed model is the light chain of
alemtuzumab (MabCampath). In [5], the authors generated the MabCampath
scaffold data by combining top-down and bottom-up tandem mass spectrometry.
This scaffold includes five contigs and six contiguous gaps of missing amino acids.
The main steps of generating the MabCampth scaffold consists of converting raw
spectra to a prefix residue mass (PRM) spectra, spectral selection and merging,
improving the top-down spectrum using bottom-up spectra, spectra mapping,
gap filling by extension and gap filling by mass matching. More technical details
about generating the MabCampath protein scaffold can be found in [5]. The
scaffold information can be seen in Fig. 2, in which the red colored dash line
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represents gaps in the scaffold and the other red characters are non-gap errors in
the scaffold. We feed the scaffold into NCBI’s Protein Blast Server [6] to retrieve
1000 homologous sequences as our training data.

Fig. 2. Dashes are missing amino acids, i.e., gap errors. The other red-colored char-
acters are non-gap errors in the given Protein Scaffold. Target Sequence is a ground
truth sequence that we will predict. (Color figure online)

As our model depends on padding shorter protein sequences with empty
amino acids, we also prune the collected training data by limiting the lengths of
acceptable training sequences to those where the length is between 95% to 105%
of the length of the target. In this way, we reduce the required amount of padding
in our training data to allow for varied sequence lengths while also minimizing
biases that may occur due to the model learning the noise of the extra padding.
To get a sense for the quality of training data for each test scaffold, we choose the
homologous sequences with the range of 205–224 lengths, the range of 98%-100%
query coverage, and the range of 44%-89% percent identical similarity among
sequences in each training dataset. The query coverage refers to the percentage
of the queried sequence that is covered by the returned sequence, whereas the
percent similarity refers to the percent of one-to-one matches in the sequence
alignments.

4.2 Data Preprocessing

One-Hot Encoding. In general, there are two ways to represent categorical
data. The first method is label-encoding, in which each category is assigned a
numerical value. The second method is one-hot encoding, in which each category
is represented by a binary vector where the position of the 1 in the binary vector
represents the category of the datum.

One-hot encoding is often a preferred method for categorical data and it is the
type of encoding we choose here. Thus, our network must learn a representation
where the full input dataset is a tensor of shape (samples, sequence length,
classes).

Noisification. To add noise to our input data, we add a new class label to
represent emptiness. Thus, in data preprocessing, a percent P of the amino
acids are replaced by the empty class represented by blank.

Padding. Not all sequences in the training data will have the same lengths. To
feed these sequences into a neural network, it is therefore necessary to employ a
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strategy to either pad or truncate training sequences to get a fixed length. We opt
to pad each training sequence with empty amino acids until the lengths reach the
maximum length sequence in the training data. Let S be the maximum length
of the sequence in the training data. It is important that pooling layers in our
model cause a reduction in the size of the feature maps such that upsampling in
the decoding phase produces the same shape as our target inputs. For instance,
suppose S is 211 and the neural network has two pooling layers. In this case, the
encoder will produce a length of 52: ��211/2� /2� = 52. But if a shape of 52 is then
upsampled in the decoder, it produces an output length of 208: 52∗2∗2 = 208. We
want the output of the neural network to have a length of 211 to match the length
of the input. To solve this technical problem, we increment S until S mod L = 0,
where L is the product of the shapes of the pooling layers.

The Model Architecture. The final model architecture is illustrated in Fig. 3.
There are two convolutional layers in the encoder, each followed by max pooling
and dropout layers. Likewise, there are two inverse convolutional layers in the
decoder followed by upsampling and dropout layers. We split our dataset into
training and validation of 85% and 15% respectively. The more details about
the model architecture can be found in Fig. 3. Noise and padding are added to
the model input, then it is one-hot encoded before running through the encoder,
which ultimately compresses the input into a reduced dimensional space. The
decoder portion of the neural network reconstructs the input using upsampling.
Dropout is added to reduce overfitting. The model hyperparameters are listed in
Table 2. Our developed code can be found from https://github.com/astonish24/
QinggeLab ISBRA23 paper.

Fig. 3. The proposed convolutional denoising autoencoder (CDA) model architecture.

4.3 Simulation Data

A protein scaffold produced using MS/MS will contain errors both in its contigs
(what we will call non-gap errors) as well as gaps that need to be filled between
contigs to complete the entire protein (what we will call gap errors). The number

https://github.com/astonish24/QinggeLab_ISBRA23_paper
https://github.com/astonish24/QinggeLab_ISBRA23_paper
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of amino acids to fill between contigs as well as the number of total errors will
vary from protein scaffold to protein scaffold. For this reason, and because we are
interested in comparing our results to the up-to-date sequence-based approach
described in [7], we generate random protein scaffolds from our target protein
sequence. Note that, for validation purpose, we know our target sequence that
we are constructing.

We generate eleven new protein scaffolds using combinations of three values
for errors percentage (20%, 30%, and 40%) and four values (4, 6, 8, 10) for the
number of contiguous gaps size in each scaffold. To maintain realistic artificially
generated protein scaffolds, we split the percent error into a ratio of 60/40 for gap
and non-gap errors respectively, which roughly corresponds to the ratio present
in the protein scaffold produced by [5].

Once the eleven protein scaffolds are generated, we collect training data by
querying the National Center for Biotechnology Information (NCBI) Protein
BLAST server to retrieve the top 1000 most similar reference proteins [6]. Table 1
shows each training dataset and the range of percent identical similarity in the
returned reference proteins. The protein scaffolds with smaller values for refer-
ence similarity are likely to have worse results, since the training data will be
based on less similar reference proteins.

Table 1. Generated Protein Scaffolds and Training Similarity

ID # Contiguous Gaps % Incorrect Reference Similarity

1 6 20% 80.4% - 68.2%

2 8 20% 87.8% - 70.9%

3 10 20% 92.5% - 73.9%

4 4 30% 75.7% - 64.0%

5 6 30% 71.4% - 61.2%

6 8 30% 80.2% - 62.3%

7 10 30% 71.2% - 57.7%

8 4 40% 88.1% - 65.1%

9 6 40% 68.2% - 60.1%

10 8 40% 68.2% - 60.6%

11 10 40% 67.4% - 53.5%

5 Results and Comparison

We compare the performance of our proposed model with the recently developed
hybrid CNN-LSTM [7] in terms of gap filling accuracy and full sequence accu-
racy. The gap filling accuracy is computed by dividing the number of correct
predictions on missing gaps by the number of missing gaps in the scaffold, where
we use the target sequence as a ground truth sequence. The full sequence accu-
racy is the percentage of one-to-one matches between the full prediction and the
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target protein. Note that the CNN-LSTM model only predict the missing amino
acids in the gaps. While our proposed denoinsing autoencoder model not only
predict the missing amino acids in the gaps but also it has an ability to correct
the amino acids in the scaffolds which is obtained from bottom-up and top-down
methods. Also, in the bottom-up and top-down methods, it cannot distinguish
the same weight amino acids I and L. However, our proposed model is able to
correctly identify both I and L in the predicted sequence.

Table 2. The CDA Hyperparameters

learning rate 3.061E-4

dropout percent 0.50

bridge filters 160

conv filters1 46

conv filters2 90

conv filter size1 5

conv filter size2 9

bridge filter size 5

final filter size 7

kmer size 15

noise percent 40%

5.1 Results on the MabCampath Scaffold

We run both our proposed CDA and the CNN-LSTM based model [7] discussed
in Sect. 2 on the original MabCampath scaffold. Both models did not appear to
display any overfitting. Figure 5 shows training and validation accuracy for both
models, and Fig. 6 shows training and validation losses for both models.

We also display the predictions for both the CDA and the CNN-LSTM models
on the original scaffold protein in Fig. 4. In this figure, the green colored amino
acids are correctly predicted amino acids and the red colored amino acids are
incorrectly predicted amino acids from both CDA and CNN-LSTM models. From
our proposed model, we also achieve 100% gap filling accuracy as the CNN-
LSTM model produced in [7]. While for the full sequence accuracy, our model
obtain 95.32% accuracy compared with the target sequence which outperforms
the CNN-LSTM model’s 89.7% accuracy [7].

The non-gap accuracy, which is the percentage of correct predictions on
non-gap region in the protein scaffold with respect to the target sequence. The
non-gap accuracy will always be 0% for the sequence-based approach, since the
sequence-based approach cannot in principle attempt to correct non-gap errors.
On the other hand, since the CDA imputes the full protein sequence, which is
taken as the prediction for all amino acids, the autoencoder may at times incor-
rectly change amino acids that should not have been altered. It is for this reason
that we display the full sequence accuracy.
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Fig. 4. MabCampath Protein Scaffold Predictions from CDA and CNN-LSTM Models

Fig. 5. CDA and CNN-LSTM Training and Validation Accuracies

5.2 Results on Simulation Datasets

To further demonstrate the performance of our proposed CDA and CNN-LSTM
[7] model, we test both models on the generated scaffolds as described in Sect. 4.3.
The CDA outperforms the sequence-based CNN-LSTM approach on 10 out of
the 11 datasets in terms of full sequence accuracy. The chart in Fig. 7 compares
the full-sequence accuracies. Our proposed CDA model has a better prediction
accuracy for full sequence comparison with the target sequence. The main reason
is that CDA is able to predict the missing amino acids in the gaps, also it can fix
the errors in the non-gaps regions of the constructed scaffold. While CNN-LSTM
model does not have such capability. It only focus on predicting the missing
amino acids in the gaps of the scaffold. The CNN-LSTM model approach cannot
in principle correct non-gap errors, so the non-gap accuracy is always 0%. The
CDA model, on the other hand, suffers from the deficiency that since it outputs
a full sequence to be used for its full prediction, it may inadvertently change
amino acids that should not be changed. In fact, on the one generated scaffolds
(scaffold #9), the CNN-LSTM model achieves higher full sequence accuracy. The
reason the lower full sequence accuracy of CDA is merely that the CDA changes
too many amino acids that should have remained the same.
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Fig. 6. CDA and CNN-LSTM Training and Validation Loss

Fig. 7. A Comparison Result Between CDA and CNN-LSTM on Simulation Datasets

6 Conclusion

De novo protein sequencing from mass spectrometry data is still a hard problem
in proteomics. Current state-of-the-art approaches are still unable to completely
sequence proteins accurately. In this paper, we show that we can apply deep
learning methods to aid in a final step in de novo protein sequencing, namely fill-
ing gaps in the protein scaffold. Moreover, we have shown that our CDA model is
able to perform this task more accurately than the sequence-based approach [7],
which also outperforms the existing combinatorial algorithms based on dynamic



528 J. Sturtz et al.

programming, local search and greedy methods described in [4]. The advantage
of this approach is that it is far simpler once the model is built to perform the
inference needed to fill the gaps. This simplicity avoids the potential deficiency
we identified with the sequence-based approach that predicts one amino acid
after another. We conclude that if the constructed scaffold with higher accuracy
and smaller gaps, the deep learning based approaches can produce more higher
accuracy on protein sequencing predictions. For the future work, we will test
our model on the more real protein scaffold dataset and explore other machine
learning models for the protein sequencing problem.
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