

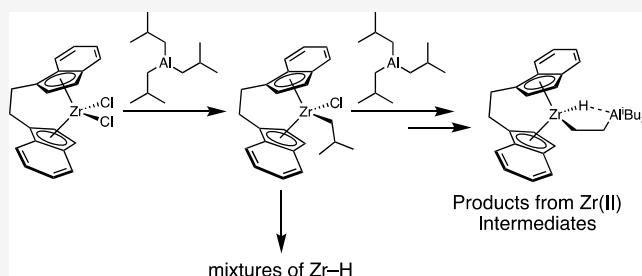
Reactions of Triisobutylaluminum with Unbridged or Bridged Group IV Metallocene Dichlorides

Damien B. Culver, Jamesjohn Corieri, Graham Lief,* and Matthew P. Conley*

Cite This: *Organometallics* 2022, 41, 892–899

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Reactions between zirconocene or hafnocene dichlorides and alkylaluminum activators are involved in several catalytic reactions. This study describes the products formed in reactions between unbridged metallocenes with varying steric profiles (Cp_2ZrCl_2 (1), Cp_2HfCl_2 (2), $\text{Cp}^*\text{CpZrCl}_2$ (3), $\text{Cp}_2^*\text{ZrCl}_2$ (4), $\text{Cp}_2^*\text{HfCl}_2$ (5)) or *ansa*-zirconocenes (*rac*-(2-methyl-SBI)- ZrCl_2 (6), and *rac*-(EBI) ZrCl_2 (7); 2-methyl-SBI = *rac*- $\text{Me}_2\text{Si}(2\text{-methyl-indenyl})_2$; *rac*-EBI = *rac*- $\text{C}_2\text{H}_4(\text{indenyl})_2$) with 12 equiv of triisobutylaluminum (TIBA). A 12:1 Al/Zr ratio was chosen because previous results (*ACS Cent Sci.* 2021, 7, 1225–1231)

showed that an unbridged metallocene reacted with 12 equiv of TIBA to form mixtures of bridging metal hydrides in solution. This study shows that sterically open, unbridged metallocenes generate similar reaction products, but sterically crowded metallocenes do not react with TIBA. *Rac*-(EBI) ZrCl_2 reacts with 12 equiv of TIBA to form a mixture of *rac*-(EBI) $\text{Zr}(\text{CH}_2\text{CH}(\text{CH}_3)_2)\text{Cl}$ (7a, major, ~95%) and *rac*-(EBI) $\text{Zr}(\mu\text{-Cl})(\mu\text{-CH}_2\text{CH}_2)\text{Al}^i\text{Bu}_2$ (7b, minor, ~5%) after ~10 min at room temperature. This mixture evolves over the course of ~2 days to form *rac*-(EBI) $\text{Zr}(\mu\text{-H})(\mu\text{-CH}_2\text{CH}_2)\text{Al}^i\text{Bu}_2$ (7c), *rac*-(EBI) $\text{ZrH}(\mu\text{-H})_2\text{Al}^i\text{Bu}_2$ (7d), *rac*-(EBI) $\text{ZrH}(\mu\text{-H})_2[\mu\text{-H}(\text{Al}^i\text{Bu}_2)]$ (7e), and *rac*-(EBI) $\text{ZrH}(\mu\text{-H})_2[\mu\text{-Cl}(\text{Al}^i\text{Bu}_2)]$ (7f). However, 6 reacts with TIBA to form *rac*-(2-methyl-SBI) $\text{Zr}(\text{CH}_2\text{CH}(\text{CH}_3)_2)\text{Cl}$ (6a) as the only product.

INTRODUCTION

The chemical steps involved in catalyst activation determine reactivity and selectivity patterns. Group IV metallocenes are excellent representative examples showing how subtle changes in catalyst activation result in divergent reactivity; representative examples are summarized in Figure 1. Alkylation of Cp_2ZrCl_2 (Cp = cyclopentadienyl) with *n*-BuLi transiently forms $\text{Cp}_2\text{Zr}(n\text{-Bu})_2$ that eliminates butane to form $\text{Cp}_2\text{Zr}(1\text{-butene})$;¹ this compound behaves like Cp_2Zr and has numerous applications in organic synthesis.² AlMe_3 reacts with Cp_2ZrCl_2 to form $\text{Cp}_2\text{ZrCl}(\mu\text{-Me})(\mu\text{-Cl})\text{AlMe}_2$.³ The reactivity of $\text{Cp}_2\text{ZrCl}(\mu\text{-Me})(\mu\text{-Cl})\text{AlMe}_2$ in carboalumination reactions is probably related to the formation of $[\text{Cp}_2\text{ZrMe}][\text{Cl}_2\text{AlMe}_2]$;⁴ related intermediates were originally proposed by Breslow as active species in ethylene polymerization reactions mediated by Cp_2TiCl_2 and ClAlEt_3 .⁵ However, AlEt_3 results in entirely different reaction products. Kaminsky showed that AlEt_3 reacts with Cp_2ZrCl_2 to form $\text{Cp}_2\text{Zr}(\mu\text{-Cl})(\mu\text{-CH}_2\text{CH}(\text{AlEt}_2)_2)$.⁶ Similar species were isolated in solvolysis reactions of Cp_2ZrMe_2 and AlMe_3 containing small amounts of EtAlMe_2 .⁷

Partial hydrolysis of AlMe_3 yields methylaluminoxane (MAO),⁸ which reacts with Cp_2ZrCl_2 to form $[\text{Cp}_2\text{ZrMe}][\text{MeMAO}]$ ion pairs.⁹ Free AlMe_3 coordinates to the metallocenium ion to generate bridging $[\text{Cp}_2\text{Zr}(\mu\text{-Me})_2\text{AlMe}_2]^+$.¹⁰ The reaction sequence to generate these species involves transmetalation between Zr and Al, followed

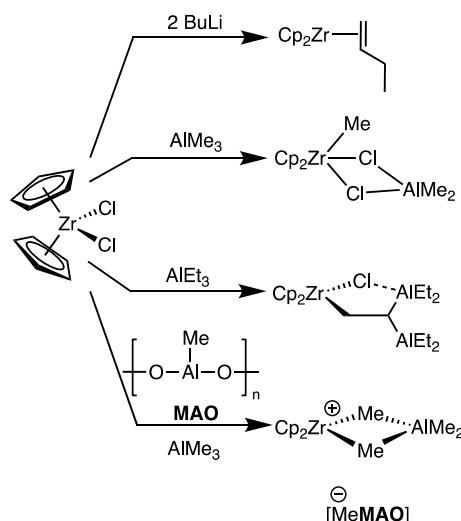
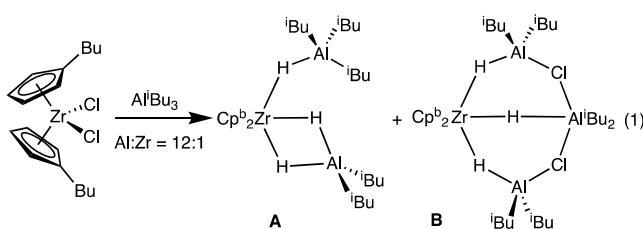



Figure 1. Representative reactions of Cp_2ZrCl_2 with alkylaluminum reagents.


Received: February 4, 2022

Published: April 1, 2022

by abstraction of Zr–Me groups by Lewis acidic Al sites present on the amorphous MAO surface. Related species form as discrete ion pairs in reactions of Cp_2ZrMe_2 , $[\text{CPh}_3][\text{B}-(\text{C}_5\text{F}_5)_4]$, and AlMe_3 to form $[\text{Cp}_2\text{Zr}(\mu\text{-Me})_2\text{AlMe}_2][\text{B}-(\text{C}_5\text{F}_5)_4]$.¹¹ Derivatives of these metallocenium ion pairs are catalysts in carboalumination reactions¹² and are very active olefin polymerization catalysts.¹³

Triisobutylaluminum (TIBA) promotes interesting reactivity trends in catalytic mixtures containing zirconocenes, suggesting different reaction pathways than those shown in Figure 1. Addition of TIBA to zirconocene/MAO mixtures increases the polymer molecular weight compared to AlMe_3 or AlEt_3 additives.¹⁴ The origin of this behavior is not clear but may be related to slow $\text{Zr}-\text{R}^+/\text{Al}-\text{iBu}$ chain transfer kinetics or incorporation of $\text{Al}-\text{iBu}$ groups into the MAO framework.¹⁵ However, TIBA also facilitates the formation of $\text{Zr}-\text{H}^+$ species under polymerization conditions.¹⁶ Formation of group IV hydrides in the presence of TIBA appears to be somewhat general. Organozirconium species supported on silica-alumina formally activate C–C bonds in the presence of TIBA by forming hydrides,¹⁷ and $\text{Cp}_2^b\text{ZrCl}_2$ ($\text{Cp}^b = 1\text{-butylcyclopentadienyl}$) reacts with Al^iBu_3 ($\text{Al}/\text{Zr} = 12$) to form mixtures of $\text{Cp}_2^b\text{Zr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)_2\text{Al}^i\text{Bu}_3$ (A) and $\text{Cp}_2^b\text{Zr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)_3(\mu\text{-Cl})_2$ (B), eq 1.¹⁸ Clean generation of A is

possible using the chloride-free synthesis from $[\text{Cp}_2^b\text{ZrH}_2]_2$ in the presence of stoichiometric TIBA and HAl^iBu_2 . B forms as the sole product in reactions of $\text{Cp}_2^b\text{ZrCl}_2$ with HAl^iBu_2 .¹⁹ However, $\text{Ph}_2\text{C}(\text{CpFlu})\text{ZrCl}_2$ reacts with excess TIBA to form $\text{Ph}_2\text{C}(\text{CpFlu})\text{Zr}(\text{iBu})\text{Cl}$, independent of the Al/Zr ratio.²⁰ The reaction between Cp_2ZrCl_2 and excess Al^iBu_3 was proposed to form $[\text{Cp}_2\text{ZrH}_2]_2^*(\text{Al}^i\text{Bu}_3)_2$,^{20,21} but the available ^1H NMR data appear consistent with the formation of species similar to B.¹⁹

This paper describes the reaction of metallocenes shown in Figure 2 with excess TIBA. The metallocenes include sterically

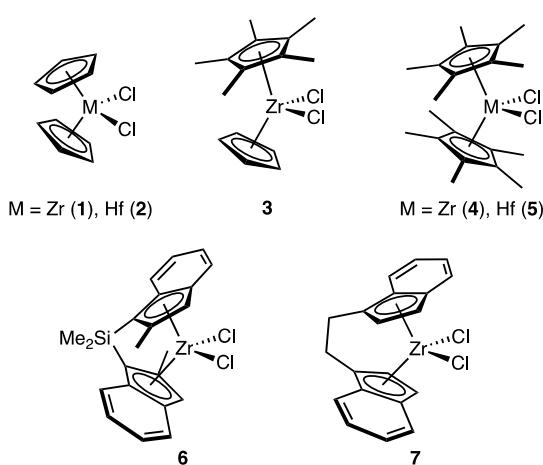


Figure 2. Metallocenes studied in the presence of excess TIBA.

open unbridged metallocenes such as Cp_2ZrCl_2 (1) and Cp_2HfCl_2 (2) and more sterically congested $\text{Cp}^*\text{CpZrCl}_2$ (3), Cp^*ZrCl_2 (4), and Cp^*HfCl_2 (5) to probe the efficiency of this reaction as the steric environment is modified. Precatalysts 6 and 7 are common *ansa*-metallocenes used in polymerization reactions.

RESULTS AND DISCUSSION

Unbridged Metallocenes. 1 reacts with excess TIBA ($\text{Al}/\text{Zr} = 12:1$) to form a mixture of $\text{Cp}_2\text{Zr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)\text{Al}^i\text{Bu}_3$ (1a), $\text{Cp}_2\text{Zr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)_3(\mu\text{-Cl})_2$ (1b), and isobutene. 2 and 3 also generate similar mixtures of 2a/b and 3a/b. Relevant ^1H NMR data of the hydrides formed in solution for these species are given in Table 1. The variable temperature ^1H NMR data

Table 1. Selected ^1H NMR Signals for Reactions of Unbridged Metallocenes with TIBA ($\text{Al}/\text{Zr} = 12:1$)^a


	Zr–H	ligand
$\text{Cp}_2\text{Zr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)\text{Al}^i\text{Bu}_3$ (1a)	–1.22 (d, 1H, $J_{\text{HH}} = 8.2$ Hz) –1.90 (d, 1H, $J_{\text{HH}} = 8.0$ Hz) –2.53 (br, 1H)	5.48 (s, 10 H)
$\text{Cp}_2\text{Zr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)_3(\mu\text{-Cl})_2$ (1b)	–1.16 (t, 1H, $J_{\text{HH}} = 7.4$ Hz) –2.55 (d, 2H, $J_{\text{HH}} = 7.3$ Hz)	5.47 (s, 10 H)
$\text{Cp}_2\text{Hf}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)\text{Al}^i\text{Bu}_3$ (2a)	–0.49 (d, 1H, $J_{\text{HH}} = 9.1$ Hz) –0.55 (d, 1H, $J_{\text{HH}} = 9.5$ Hz) –1.73 (br, 1H)	5.48 (s, 10 H)
$\text{Cp}_2\text{Hf}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)_3(\mu\text{-Cl})_2$ (2b)	–0.45 (t, 1H, $J_{\text{HH}} = 6.1$ Hz) –1.65 (br, 1H)	5.47 (s, 10 H)
$\text{Cp}^*\text{CpZr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)\text{Al}^i\text{Bu}_3$ (3a) ^b	–0.24 (d, 1H, $J_{\text{HH}} = 9.0$ Hz) –0.73 (d, 1H, $J_{\text{HH}} = 9.2$ Hz) –1.58 (br, 1H)	5.59 (s, 5H) 1.71 (s, 15H)
$\text{Cp}^*\text{CpZr}(\mu\text{-H})_3(\text{Al}^i\text{Bu}_2)_3(\mu\text{-Cl})_2$ (3b) ^b	–0.18 (t, 1H, $J_{\text{HH}} = 6.7$ Hz) –1.52 (d, 1H, $J_{\text{HH}} = 5.7$ Hz)	5.55 (s, 5H) 1.63 (s, 15H)
$\text{Cp}^*\text{HfCl}^*\text{TIBA}$ ^c	13.17 (s, 1H)	1.89 (s, 30H)

^a Recorded at -40 $^\circ\text{C}$ in C_7D_8 . ^b Recorded at -35 $^\circ\text{C}$ in C_7D_8 .

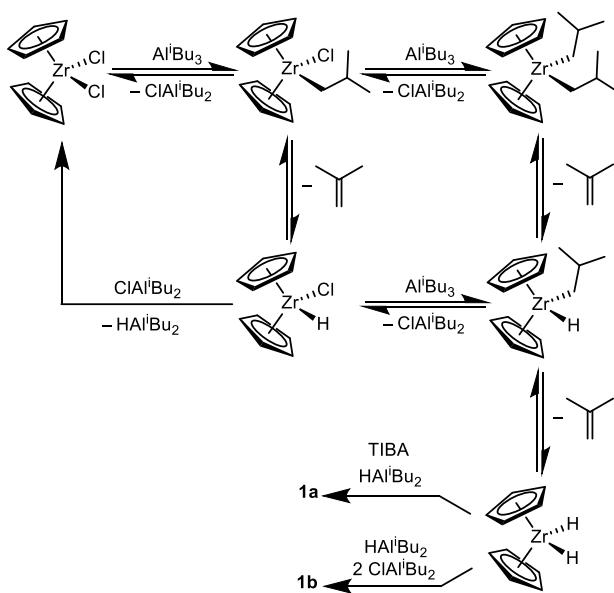
^c Recorded at room temperature in C_6D_6 .

for the mixture formed from the reaction of 3 and TIBA is shown in Figure 3. Solution NMR data for reaction products from 1 and 2 are given in the Supporting Information. In all cases, the room temperature ^1H NMR signals for the bridging hydrides are broad and cooling to ~-20 $^\circ\text{C}$ results in sharp signal characteristics of two $\text{Zr}-\text{H}-\text{Al}$ species in solution. These data are consistent with the formation of 1a–3a as the major products in these reactions, while 1b–3b appear at low temperatures.

Unlike 1–3, $\text{Cp}_2^*\text{ZrCl}_2$ ($\text{Cp}^* =$ pentamethylcyclopentadienyl, 4) does not react with TIBA to form $\text{Zr}-\text{H}-\text{Al}$ species. The ^1H NMR spectrum of 4/TIBA ($\text{Al}/\text{Zr} = 12:1$) contains signals at 1.77 ppm assigned to unreacted starting materials and 1.82 ppm assigned to an adduct of $\text{Cp}_2^*\text{ZrCl}_2$ with TIBA. Signals for $\text{Cp}_2^*\text{Zr}(\text{iBu})\text{Cl}$, $\text{Cp}_2^*\text{Zr}(\text{iBu})_2$, $\text{Cp}_2^*\text{Zr}(\text{iBu})\text{H}$, or $\text{Cp}_2^*\text{ZrH}_2$ are not present in this mixture. In contrast, $\text{Cp}_2^*\text{HfCl}_2$ reacts with

Figure 3. Variable temperature ^1H NMR spectra of the hydride region for the reaction of 3 with TIBA ($\text{Al/Zr} = 12:1$) in C_7D_8 .

TIBA ($\text{Al/Zr} = 12:1$) to form $\text{Cp}_2^*\text{HfHCl}$ in $\sim 15\%$ yield determined by ^1H NMR integration. This mixture is stable for days at room temperature and does not progress to form greater amounts of $\text{Cp}_2^*\text{HfHCl}$. The signal for $\text{Hf}-\text{H}$ appears at 13.17 ppm. This signal is shifted 0.49 ppm higher in frequency relative to that of $\text{Cp}_2^*\text{HfHCl}$,²² suggesting that TIBA forms an adduct, but not a bridging hydride, with $\text{Cp}_2^*\text{HfHCl}$ in this mixture.


A plausible reaction cascade to form **1a** and **1b** is shown in Figure 4. $\text{Zr}-\text{Cl}/\text{Al}-^i\text{Bu}$ exchange forms the unobserved

Cp_2ZrHCl or Cp_2ZrH_2 with ClAl^iBu_2 could also result in formation of HAl^iBu_2 , suggesting that the presence or absence of HAl^iBu_2 in the TIBA feed would have minimal impact on reactions shown in Figure 4.

The reactions shown in Figure 4 are expected based on the reactivity of AlR_3 with metallocene dichlorides. The $\text{Zr}-^i\text{Bu}$ fragment is known to undergo reversible β -H elimination/re-insertion reactions under mild conditions.²³ In the presence of excess TIBA and HAl^iBu_2 , the insertion of isobutene into a $\text{Zr}-\text{H}$ is suppressed and formation of either **1-3a** or **1-3b** is favored.


Ansa-Metallocenes. *Rac*-(2-Methyl-SBI) ZrCl_2 (**6**) and *rac*-(EBI) ZrCl_2 (**7**) react with TIBA to form organometallics, and, in some cases, hydrides derived from $\text{Zr}-^i\text{Bu}$. Relevant ^1H and ^{13}C NMR data for the products formed in these reactions are summarized in Table 2.

A C_6D_6 slurry of *rac*-(2-methyl-SBI) ZrCl_2 (**6**) reacts with 12 equiv of TIBA to immediately dissolve suspended **6** to form an orange solution containing C_s symmetric *rac*-(2-methyl-SBI)- $\text{Zr}(\text{CH}_2\text{CH}(\text{CH}_3)_2)\text{Cl}$ (**6a**) as the only identifiable product, eq 2. Several minor species also form in this reaction, and over the

Figure 4. Reactions involved in the formation of **1a** and **1b**.

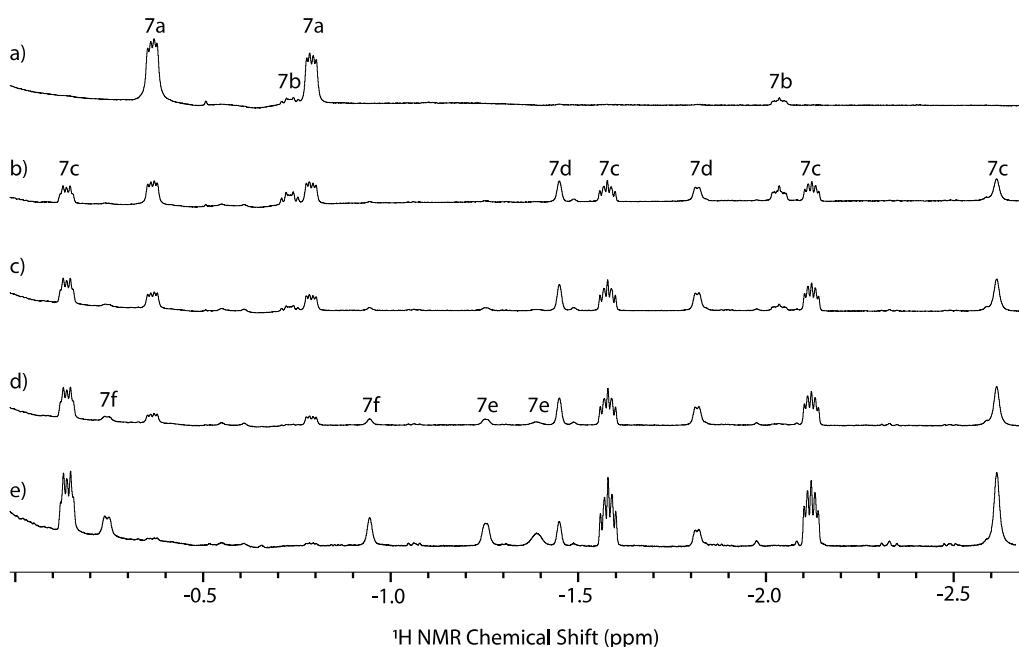
$\text{Cp}_2\text{Zr}(^i\text{Bu})\text{Cl}$ that undergoes β -hydride elimination to form Cp_2ZrHCl and isobutene. Repetition of this sequence ultimately generates Cp_2ZrH_2 , which may be trapped by HAl^iBu_2 and TIBA to form **1a** or by HAl^iBu_2 and ClAl^iBu_2 to form **1b**. Alternatively, $\text{Cp}_2\text{Zr}(^i\text{Bu})\text{Cl}$ could react with additional TIBA to form $\text{Cp}_2\text{Zr}(^i\text{Bu})_2$, which would similarly undergo β -hydride elimination to form Cp_2ZrH_2 . Though HAl^iBu_2 is often present in commercial TIBA, reactions of

course of ~ 24 h, at 25°C , a greenish brown solution evolves. However, only **6a** is observed by NMR in solution, and no other $\text{Zr}-\text{R}$ or $\text{Zr}-\text{H}$ species evolve in this mixture. The ^1H NMR spectrum of **6a** at 25°C contains two doublets of doublets at -0.89 ($J_{\text{HH}} = 13.5, 4.8$ Hz) and -0.37 ($J_{\text{HH}} = 13.5, 8.0$ Hz) ppm assigned to $\text{Zr}-\text{CH}_2$. The connectivity of the $\text{Zr}-^i\text{Bu}$ fragment was confirmed by ^1H - ^1H gCOSY NMR experiments (Figure S28). ^1H - ^{13}C HSQC experiments, Figure S29, show that these ^1H signals assigned to $\text{Zr}-\text{CH}_2$ correlate with a ^{13}C signal at 81.5 ppm, which is at a similar chemical shift as other $\text{Zr}-^i\text{Bu}$ -containing organometallics.

Table 2. Relevant ^1H and ^{13}C NMR Data for Products Formed in Reactions of 6–7 with 12 equiv TIBA^a

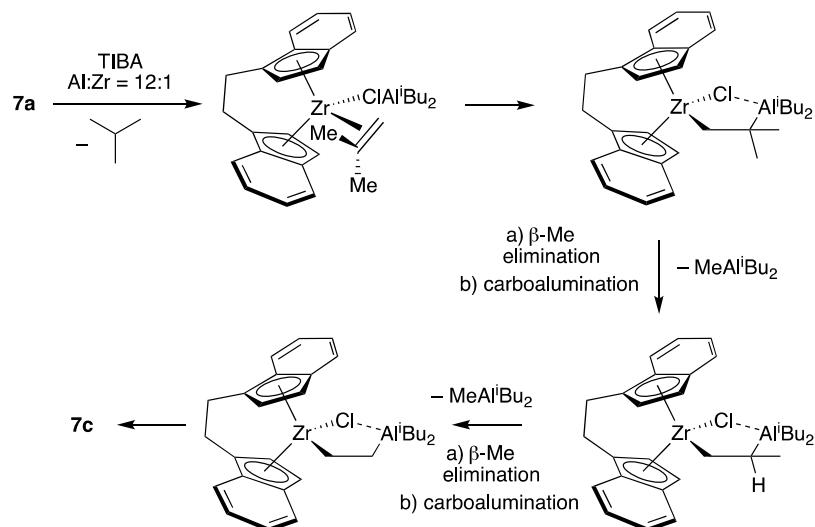
	Zr–R (R = ^iBu or H)	CpH ^b
<i>rac</i> -(2-methyl-SBI)Zr(CH ₂ CH(CH ₃) ₂)Cl (6a)	–0.89 (dd, 1H, $J_{\text{HH}} = 13.5, 4.8$ Hz) –0.37 (dd, 1H, $J_{\text{HH}} = 13.5, 8.0$ Hz) 0.86 (d, 6H, $^2J_{\text{HH}} = 7.1$ Hz) 1.82 (m, 1H)	6.81 (s, 1H) 6.92 (s, 1H)
<i>rac</i> -(EBI)Zr(CH ₂ CH(CH ₃) ₂)Cl (7a)	–0.80 (dd, 1H, $J_{\text{HH}} = 12.6, 5.8$ Hz) –0.37 (dd, 1H, $J_{\text{HH}} = 12.9, 8.0$ Hz) 0.74 (d, 3H, $J_{\text{HH}} = 5.8$ Hz) 0.73 (d, 3H, $J_{\text{HH}} = 5.6$ Hz) 1.92 (from COSY, 1H) ^{13}C (HSQC): 85.4 (Zr–CH ₂)	5.48 (d, 1H, $J_{\text{HH}} = 3.4$ Hz) 5.84 (d, 1H, $J_{\text{HH}} = 3.3$ Hz) 6.52 (d, 1H, $J_{\text{HH}} = 2.7$ Hz) 6.57 (d, 1H, $J_{\text{HH}} = 3.4$ Hz)
<i>rac</i> -(EBI)Zr(μ-Cl)(μ-CH ₂ CH ₂)Al $^i\text{Bu}_2$ (7b)	–2.03 (ddd, 1H, $J_{\text{HH}} = 12.7, 8.5, 3.8$ Hz) –0.73 (ddd, 1H, $J_{\text{HH}} = 12.7, 8.5, 8.5$ Hz) 0.45 (from COSY, 1H) 1.23 (from COSY, 1H) ^{13}C (HSQC): 55.5 (Zr–CH ₂) 5.5 (Al–CH ₂)	4.95 (d, 1H, $J_{\text{HH}} = 3.2$ Hz) 5.59 (d, 1H, $J_{\text{HH}} = 3.2$ Hz) 5.54 (d, 1H, $J_{\text{HH}} = 3.3$ Hz) 5.89 (d, 1H, $J_{\text{HH}} = 3.3$ Hz)
<i>rac</i> -(EBI)Zr(μ-H)(μ-CH ₂ CH ₂)Al $^i\text{Bu}_2$ (7c)	–2.62 (br s, 1H, Zr–H–Al) –2.12 (m, 1H) –1.58 (m, 1H) 0.14 (m, 1H) 1.17 (from COSY, 1H) ^{13}C (HSQC): 53.4 (Zr–CH ₂) 4.7 (Al–CH ₂)	4.41, 5.25, 5.76, 6.03 ^c
<i>rac</i> -(EBI)ZrH(μ-H) ₂ Al $^i\text{Bu}_2$ (7d)	–1.77 (d, 1H, $J_{\text{HH}} = 6.3$ Hz) –1.44 (br s, 1H) –0.22 (from COSY, 1H) –0.93 (br s) –0.24 (d, 1H, $J_{\text{HH}} = 9.2$ Hz) –0.07 (from COSY, 1H) –1.39 (br s, 1H) –1.26 (d, 1H, $J_{\text{HH}} = 9.2$ Hz) 0.86 (from COSY, 1H)	5.11, 5.45, 6.51, 6.52 ^c
<i>rac</i> -(EBI)ZrH(μ-H) ₂ [μ-H(Al $^i\text{Bu}_2$) ₂] (7e)		^d 5.21, 5.37, 5.74, 5.81, 5.87, 5.91, 5.96, 6.00
<i>rac</i> -(EBI)ZrH(μ-H) ₂ [μ-Cl(Al $^i\text{Bu}_2$) ₂] (7f)		

^aRecorded at 25 °C in C₆D₆. ^bOther ligand resonances, when assignable, are given in the Supporting Information. ^cAppear as broad doublets, not possible to resolve J -couplings from these data. ^dA total of eight signals is attributed to **7e** and **7f**.


The chemistry *rac*-(EBI)ZrCl₂ (**7**) with 12 equiv TIBA is significantly more complicated. The alkyl/hydride region of the ^1H NMR spectra of this mixture over 40 h is shown in Figure 5a–e, and a reaction scheme showing the products evolved in this reaction with relevant NMR data is shown in Figure 5f. Monitoring this mixture over 10 days at room temperature does not contain signals in addition to those shown in Figure 5e.

Similar to the reaction of **6** and TIBA, undissolved **7** reacts rapidly with TIBA to form an orange solution. After \sim 10 min at 25 °C, the ^1H NMR spectrum contains the C_s symmetric *rac*-(EBI)Zr(CH₂CH(CH₃)₂)Cl (**7a**, major, 95%) and *rac*-(EBI)Zr(μ-Cl)(μ-CH₂CH₂)Al $^i\text{Bu}_2$ (**7b**, minor, 5%). **7b** contains a characteristic coupling pattern for the $\mu\text{-CH}_2\text{CH}_2$ signals at –2.03 (ddd, $J_{\text{HH}} = 12.7, 8.5$, and 3.8 Hz) and –0.73 ppm (ddd, $J_{\text{HH}} = 12.7, 8.5$, and 8.5 Hz). The other two signals in the $\mu\text{-CH}_2\text{CH}_2$ fragment are obscured by signals from excess TIBA but are observable with ^1H – ^1H COSY experiments at 0.45 and 1.23 ppm. These sets of protons correlate with ^{13}C NMR signals at 5.5 (Al–CH₂) and 55.5 ppm (Zr–CH₂) in ^1H – ^{13}C HSQC experiments.

Over the course of 3 h, the signals for **7a** and **7b** decay and signals for *rac*-(EBI)Zr(μ-H)(μ-CH₂CH₂)Al $^i\text{Bu}_2$ (**7c**) and *rac*-(EBI)ZrH(μ-H)₂Al $^i\text{Bu}_2$ (**7d**) appear. Signals assigned to *rac*-(EBI)ZrH(μ-H)₂[μ-H(Al $^i\text{Bu}_2$)₂] (**7e**) and *rac*-(EBI)ZrH(μ-


H)₂[μ-Cl(Al $^i\text{Bu}_2$)₂] (**7f**) appear in the ^1H NMR spectra of this mixture after aging 16 h.²⁴ As this reaction progresses toward the sets of ^1H NMR signals shown in Figure 5e, a signal for isobutane (0.86 ppm, d, $J_{\text{HH}} = 7.1$ Hz) increases in intensity. In addition, a signal in the ^{13}C NMR spectrum at 9.7 ppm assigned to (MeAl $^i\text{Bu}_2$)_n appears.²⁵ **7** does not react to form products that result from a metal-to-benzo-ring hydride transfer.²⁶

Formation of **7b** and **7c** can be rationalized by the reaction steps shown in Scheme 1, which also accounts for the formation of isobutane and (MeAl $^i\text{Bu}_2$)_n present in solution. Alkylation of **7a** with TIBA forms *rac*-(EBI)Zr(^iBu)₂, and β -abstraction generates the key unobserved Zr(II) intermediate *rac*-(EBI)Zr(isobutene)(ClAl $^i\text{Bu}_2$) and isobutane.²⁷ Carboalumination of *rac*-(EBI)Zr(isobutene)(ClAl $^i\text{Bu}_2$) forms the substituted *rac*-(EBI)Zr(μ-Cl)(μ-CH₂C(CH₃)₂)Al $^i\text{Bu}_2$. Subsequent β -methyl elimination,²⁸ Al–R/Zr–Me alkyl exchange, and hydrozirconation steps ultimately form **7b**. Al–H/Zr–Cl exchange with HAl $^i\text{Bu}_2$ present in solution likely forms **7c**. These steps are apparently quite fast; intermediates or possible products expected from dissociation of aluminumalkyl intermediates with free TIBA or HAl $^i\text{Bu}_2$ are not observed in solution. These steps may also be accelerated by Lewis acidic chloroalkylaluminum species in solution that may form transient ion pairs.²⁹

Figure 5. Excerpt of the ^1H NMR spectra of the reaction of 7 with TIBA ($\text{Al/Zr} = 12:1$) in C_6D_6 at $25\text{ }^\circ\text{C}$; ~ 10 min after mixing (a); 3 h after mixing (b); 9 h after mixing (c); 16 h after mixing (d); and 40 h after mixing (e). Evolution of products formed in this mixture (f).

Scheme 1. Plausible Reaction Steps Resulting in the Formation of 7b and 7c

To the best of our knowledge, this reactivity has not been observed with $\text{Al}^{\text{I}}\text{Bu}_3$ and 7. However, there is precedent for formation of Zr(II) and similar reaction products in carboalumination reactions. For example, computational studies of $\text{Cp}_2\text{Zr}(\text{ethylene})$ and ClAlEt_2 show that formation of $\text{Cp}_2\text{Zr}(\mu\text{-Cl})(\mu\text{-CH}_2\text{CH}_2)\text{AlEt}_2$ is barrierless and exothermic ($\Delta G_{298} = -13.6 \text{ kcal mol}^{-1}$), though formation of $\text{Cp}_2\text{Zr}(\mu\text{-H})(\mu\text{-CH}_2\text{CH}_2)\text{AlEt}_2$ is more favorable thermodynamically ($\Delta G_{298} = -27.6 \text{ kcal mol}^{-1}$).³⁰ Additionally, reactions of $\text{CpCp}'\text{ZrCl}_2$ ($\text{Cp}' = 1\text{-neomenthyl-4,5,6,7-tetrahydroindenyl}$) and AlEt_3 form similar $\text{CpCp}'\text{Zr}(\mu\text{-H})(\mu\text{-CH}_2\text{CH}_2)\text{AlEt}_2$ products and were proposed to form through Zr(II) intermediates.³¹ The formation of 7b and 7c as major products in the reaction of 7 and TIBA may account for the poor reactivity of this mixture in carboalumination of 1-octene.²⁴

The formation of 7d, 7e, and 7f is more straightforward and related to the results obtained for unbridged metallocenes. Exhaustive $\text{Al}^{\text{I}}\text{Bu}/\text{Zr-Cl}$ and β -hydride elimination from 7a ultimately form these products. Though 7b and, subsequently, 7c, form rapidly in this mixture, there is an appreciable amount of these Zr-H species that evolve over the course of several hours. This result suggests that β -hydride elimination from 7a is on a similar, but slower, timescale than formation of the Zr(II) intermediate shown in Scheme 1.

CONCLUSIONS

Sterically open unbridged metallocenes react with TIBA to form mixtures of bridging hydrides. From the compounds studied here, there were no obvious trends relating sterics of the metallocene to formation of 1-3a or 1-3b. The most apparent similarity in reactions of TIBA with *ansa*-metallocenes or unbridged metallocenes is intermediacy of Zr-*i*Bu species, which are not observable in unbridged metallocenes but are observable in reactions of 6 or 7 with TIBA. In the former case, rapid β -hydride elimination to form hydrides dominates the reaction chemistry to form 1-3a and 1-3b. Of the two *ansa*-metallocenes studied here, only 7 shows this reactivity pattern, though the formation of hydrides in this mixture is somewhat slower than reaction steps involving Zr(II) to form 7b.

This study adds to the complex and promiscuous reaction chemistry encountered in mixtures of metallocenes and alkylaluminum reagents. As mentioned above, the addition of TIBA to mixtures of metallocenes and MAO can have advantages in polymerization reaction. The formation of hydrides in reactions of TIBA and metallocenes is undoubtedly related to this behavior, but this study shows that these reactions can be significantly more complex, particularly in the absence of activators that form cationic species.

EXPERIMENTAL METHODS

General Comments. All manipulations were performed under an inert atmosphere of dinitrogen or argon using standard Schlenk or glovebox techniques. Benzene-*d*₆ and toluene-*d*₈ were purchased from Cambridge Isotope Laboratories, dried over sodium/benzophenone, degassed by three freeze-pump-thaw cycles, distilled under vacuum, and stored in an inert atmosphere glovebox. Triisobutylaluminum was purchased from Sigma-Aldrich. All other commercially available reagents were used as received without any purification. $\text{Cp}^*\text{CpZrCl}_2$ was synthesized using published procedures.³² *Ansa*-metallocenes shown in Figure 3 were provided by Chevron Phillips Chemical.

General Procedure for TIBA Activation of Metallocenes. A Teflon valved NMR tube was loaded with metallocene dichloride

(0.03 mmol) and 0.4 mL of C_6D_6 in an inert atmosphere glovebox. TIBA (0.09 mL, 0.36 mmol, 12 equiv) was added using a syringe to the NMR tube, and the valve was sealed. Solution NMR experiments were recorded at ambient temperature. Species requiring low temperature NMR measurements were prepared using an identical procedure but using toluene-*d*₈ as solvent. Many of the *ansa*-metallocenes shown in Figure 3 are sparingly soluble in C_6D_6 at room temperature, but TIBA results in clear orange solutions after brief (~ 1 min) agitation of the NMR tube.

Solution NMR spectra were acquired on a Bruker Avance 7.05 T ($^1\text{H} = 300 \text{ MHz}$), Bruker Avance 14.1 T ($^1\text{H} = 600 \text{ MHz}$), or Bruker Avance III 16.5 T ($^1\text{H} = 700 \text{ MHz}$) NMR spectrometer. ^1H NMR spectra were referenced to the residual natural abundance ^1H NMR signal from the NMR solvent. Assignments to the species formed in solution are listed below. In cases where accurate integration of the ^1H NMR spectrum is not possible due to overlapping signals, assignments were made from ^1H - ^1H COSY and/or ^1H - ^1H NOESY experiments. ^{13}C NMR assignments were made using ^1H - ^{13}C HSQC experiments when assignment of ^1H NMR signals was possible.

NMR Data for 1a. ^1H NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): -2.53 (br, 1H), -1.90 (d, 1H, $J_{\text{HH}} = 8.0 \text{ Hz}$), -1.22 (d, 1H, $J_{\text{HH}} = 8.2 \text{ Hz}$), 0.34 (from NOESY(Cp)/COSY; Al-CH₂), 1.28 (from COSY; Al-CH₂CH(CH₃)₂), 2.10 (from COSY; Al-CH₂CH(CH₃)₂), 5.48 (s, 10H). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): 24.82, 26.07, 27.04, 27.96, 28.59, 29.18, 103.95.

NMR Data for 1b. ^1H NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): -2.55 (d, 2H, $J_{\text{HH}} = 7.3 \text{ Hz}$), -1.16 (t, 1H, $J_{\text{HH}} = 7.4 \text{ Hz}$), 5.46 (s, 10H). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): 104.91 (Cp). Clear assignments of the TIBA resonances were not possible from the solution NMR data, for the preparation of 1b from $\text{HAL}^{\text{I}}\text{Bu}_2$ and 1 see ref 19.

NMR Data for 2a. ^1H NMR (600 MHz, C_7D_8 , $-30 \text{ }^\circ\text{C}$): -1.73 (br, 1H), -0.55 (d, 1H, $J_{\text{HH}} = 9.5 \text{ Hz}$), -0.49 (d, 1H, $J_{\text{HH}} = 9.1 \text{ Hz}$), 0.32 (from NOESY(Cp)/COSY; Al-CH₂), 0.54 (from NOESY(Cp)/COSY; Al-CH₂), 1.10 (from COSY; Al-CH₂CH(CH₃)₂), 1.12 (from COSY), 2.04 (from COSY; Al-CH₂CH(CH₃)₂), 5.48 (s, 10H). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_7D_8 , $-30 \text{ }^\circ\text{C}$): 12.56 (CpMe), 102.1 (Cp), 24.83, 26.72, 28.34, 28.60, 102.1 (Cp).

NMR Data for 2b. ^1H NMR (600 MHz, C_7D_8 , $-30 \text{ }^\circ\text{C}$): -1.65 (br, 1H), -0.45 (t, 1H, $J_{\text{HH}} = 6.1 \text{ Hz}$), 5.47 (s, 10H). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_7D_8 , $-30 \text{ }^\circ\text{C}$): 102.9 (Cp). Clear assignments of the TIBA resonances were not possible from the solution NMR data, for the preparation of 2b from $\text{HAL}^{\text{I}}\text{Bu}_2$ and 2 see ref 19. TIBA resonances were not resolvable from the solution NMR data.

NMR Data for 3a. ^1H NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): -1.58 (br, 1H), -0.73 (d, 1H, $J_{\text{HH}} = 9.2 \text{ Hz}$), -0.24 (d, 1H, $J_{\text{HH}} = 9.0 \text{ Hz}$), 0.38 (from NOESY(Cp)/COSY; Al-CH₂), 1.47 (from COSY; Al-CH₂CH(CH₃)₂), 1.95 (from COSY; Al-CH₂CH(CH₃)₂), 1.71 (s, 15H), 2.11 (m, 3H), 2.23 (m, 2H), 5.59 (s, 5H). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): 12.56 (CpMe). TIBA resonances were not resolvable from the solution NMR data.

NMR Data for 3b. ^1H NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): -1.52 (d, 1H, $J_{\text{HH}} = 5.7 \text{ Hz}$), -0.18 (t, 1H, $J_{\text{HH}} = 6.7 \text{ Hz}$), 0.53 (from NOESY(Cp)/COSY; Al-CH₂), 1.18 (from COSY; Al-CH₂CH(CH₃)₂), 2.14 (from COSY; Al-CH₂CH(CH₃)₂), 5.55 (s, 5H). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_7D_8 , $-40 \text{ }^\circ\text{C}$): 12.56 (CpMe), 118.18 (Cp). TIBA resonances were not resolvable from the solution NMR data.

NMR Data for 6a. ^1H NMR (600 MHz, C_6D_6 , $25 \text{ }^\circ\text{C}$): -0.89 (dd, 1H, $J_{\text{HH}} = 13.5, 4.8 \text{ Hz}$), -0.37 (dd, 1H, $J_{\text{HH}} = 13.5, 8.0 \text{ Hz}$), 0.64 (s, 3H, SiMe), 0.69 (s, 3H, SiMe), 0.86 (d, 6H, $J_{\text{HH}} = 7.1 \text{ Hz}$), 1.69 (s, 3H, CH₃), 1.82 (m, 1H), 1.97 (s, 3H, CH₃), 6.66 (m, 1H), 6.73 (m, 1H), 6.81 (s, 1H), 6.92 (s, 1H), 7.17 (d, 1H, $J_{\text{HH}} = 9.4 \text{ Hz}$), 7.26 (d, 1H, $J_{\text{HH}} = 8.6 \text{ Hz}$), 7.31 (d, 1H, $J_{\text{HH}} = 8.1 \text{ Hz}$), 7.46 (d, 1H, $J_{\text{HH}} = 8.1 \text{ Hz}$). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_6D_6 , $25 \text{ }^\circ\text{C}$): 1.77 (SiMe), 1.83 (SiMe), 17.5 (CH₃), 17.9 (CH₃), 24.6 (ZrCH₂CH(CH₃)₂), 33.1 (ZrCH₂CH(CH₃)₂), 81.5 (ZrCH₂CH(CH₃)₂), 110.6, 116.9, 117.4, 124.6, 124.7, 125.0, 125.4, 125.7, 126.2, 125.8, 126.9.

As shown in Figure 5 of the manuscript, mixtures of 7 and TIBA result in several organozirconium species. Due to this complexity, only

the Zr–R, hydride and CpH signals are assigned for **7b** and **7c**. The NMR data for **7d**, **7e**, and **7f** are given in Table 2 of the manuscript.

NMR Data for 7a. ^1H NMR (600 MHz, C_6D_6 , 25 °C): –0.80 (dd, 1H, $J_{\text{HH}} = 12.6$, 5.8 Hz), –0.37 (dd, 1H, $J_{\text{HH}} = 12.9$, 8.0 Hz), 0.74 (d, 3H, $J_{\text{HH}} = 5.8$ Hz), 0.73 (d, 3H, $J_{\text{HH}} = 5.6$ Hz), 1.92 (from COSY, CH), 5.48 (d, 1H, $J_{\text{HH}} = 3.4$ Hz), 5.84 (d, 1H, $J_{\text{HH}} = 3.3$ Hz), 6.52 (br d, 1H, $J_{\text{HH}} = 2.7$ Hz), 6.57 (d, 1H, $J_{\text{HH}} = 3.4$ Hz), 6.85 (m, 1H), 6.92 (m, 1H), 7.04 (m, 1H), 7.07 (m, 1H), 7.32 (d, 1H, $J_{\text{HH}} = 8.4$ Hz), 7.35 (d, 1H, $J_{\text{HH}} = 9.0$ Hz), 7.39 (d, 1H, $J_{\text{HH}} = 8.4$ Hz), 7.43 (d, 1H, $J_{\text{HH}} = 8.8$ Hz). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_6D_6 , 25 °C): 26.7 (ZrCH₂CH(CH₃)₂), 28.1 (ZrCH₂CH(CH₃)₂), 26.5 (ZrCH₂CH(CH₃)₂), 85.4 (ZrCH₂CH(CH₃)₂), 105.2 (Cp), 107.5 (Cp), 112.7 (Cp), 114.6 (Cp), 123.9, 125.9, 126.5, 126.0, 126.6, 126.7.

NMR Data for 7b. ^1H NMR (600 MHz, C_6D_6 , 25 °C): –2.03 (ddd, 1H, $J_{\text{HH}} = 12.7$, 8.5, 3.8 Hz), –0.73 (ddd, 1H, $J_{\text{HH}} = 12.7$, 8.5, 8.5 Hz), 0.45 (from COSY, 1H), 1.23 (from COSY, 1H), 4.95 (d, 1H, $J_{\text{HH}} = 3.2$ Hz), 5.59 (br d, 1H, $J_{\text{HH}} = 3.2$ Hz), 5.54 (d, 1H, $J_{\text{HH}} = 3.3$ Hz), 5.89 (d, 1H, $J_{\text{HH}} = 3.3$ Hz). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_6D_6 , 25 °C): 6.4 (Zr(m-CH₂CH₂)Al^tBu₂), 55.6 (Zr(m-CH₂CH₂)Al^tBu₂), 95.1, 100.1, 110.2, 114.3.

NMR Data for 7c. ^1H NMR (600 MHz, C_6D_6 , 25 °C): –2.62 (br s, 1H, Zr–H–Al), –2.12 (m, 1H), –1.58 (m, 1H), 0.14 (m, 1H), 1.17 (from COSY, 1H), 4.41 (br, 1H), 5.25 (br, 1H), 5.76 (br, 1H), 6.03 (br, 1H). $^{13}\text{C}\{^1\text{H}\}$ NMR (600 MHz, C_6D_6 , 25 °C): 4.55 (Zr(m-CH₂CH₂)Al^tBu₂), 53.3 (Zr(m-CH₂CH₂)Al^tBu₂), 90.6, 91.4, 108.6, 112.4.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.organomet.2c00067>.

Experimental methods, solid-state NMR spectra, and solution NMR spectra of polymers (PDF)

AUTHOR INFORMATION

Corresponding Authors

Graham Lief – Bartlesville Research and Technology Center, Chevron Phillips Chemical, Bartlesville, Oklahoma 74003, United States; Email: liefgr@cpchem.com

Matthew P. Conley – Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States; orcid.org/0000-0001-8593-5814; Email: matthew.conley@ucr.edu

Authors

Damien B. Culver – Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States

Jamesjohn Corieri – Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States

Complete contact information is available at: <https://pubs.acs.org/doi/10.1021/acs.organomet.2c00067>

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

M.P.C. is a member of the UCR Center for Catalysis. This work was supported by Chevron Phillips Chemical. Portions of NMR spectroscopy described in this manuscript were

supported by the National Science Foundation (CHE-2101582).

REFERENCES

- Dioumaev, V. K.; Harrod, J. F. Nature of the Species Present in the Zirconocene Dichloride–Butyllithium Reaction Mixture. *Organometallics* **1997**, *16*, 1452–1464.
- (a) Negishi, E.-I.; Takahashi, T. Patterns of Stoichiometric and Catalytic Reactions of Organozirconium and Related Complexes of Synthetic Interest. *Acc. Chem. Res.* **1994**, *27*, 124–130. (b) Buchwald, S. L.; Nielsen, R. B. Group 4 metal complexes of benzenes, cycloalkynes, acyclic alkynes, and alkenes. *Chem. Rev.* **1988**, *88*, 1047–1058. (c) Beaumier, E. P.; Pearce, A. J.; See, X. Y.; Tonks, I. A. Modern applications of low-valent early transition metals in synthesis and catalysis. *Nat. Rev. Chem.* **2019**, *3*, 15–34.
- Negishi, E.; Van Horn, D. E.; Yoshida, T. Controlled carbometalation. 20. Carbometalation reaction of alkynes with organoalene-zirconocene derivatives as a route to stereo- and regiodefined trisubstituted alkenes. *J. Am. Chem. Soc.* **1985**, *107*, 6639–6647.
- Xu, S.; Negishi, E.-i. Zirconium-Catalyzed Asymmetric Carboalumination of Unactivated Terminal Alkenes. *Acc. Chem. Res.* **2016**, *49*, 2158–2168.
- Long, W. P.; Breslow, D. S. Polymerization of Ethylene with Bis(cyclopentadienyl)-titanium Dichloride and Diethylaluminum Chloride. *J. Am. Chem. Soc.* **1960**, *82*, 1953–1957.
- (a) Kaminsky, W.; Vollmer, H.-J. Kernresonanzspektroskopische Untersuchungen an den Systemen Dicyclopentadienylzirkon(IV) und Organoaluminium. *Just. Lieb. Ann. Chem.* **1975**, *1975*, 438–448. (b) Kaminsky, W.; Kopf, J.; Thirase, G. Notiz über die Röntgenstrukturanalyse von Al₂Zr- μ -Chloro-1-[bis(cyclopentadienyl)-zirkonio(IV)]-2,2-bis(diäthylaluminio)-äthan. *Just. Lieb. Ann. Chem.* **1974**, *1974*, 1531–1533. (c) Kaminsky, W.; Kopf, J. r.; Sinn, H. r.; Vollmer, H.-J. r. Extreme Bond Angle Distortion in Organozirconium Compounds Active Toward Ethylene. *Angew. Chem., Int. Ed.* **1976**, *15*, 629–630.
- Siedle, A. R.; Newmark, R. A.; Schroepfer, J. N.; Lyon, P. A. Solvolysis of dimethylzirconocene by trialkylaluminum compounds. *Organometallics* **1991**, *10*, 400–404.
- Kaminsky, W. The discovery of metallocene catalysts and their present state of the art. *J. Polym. Sci., Part A: Gen. Pap.* **2004**, *42*, 3911–3921.
- (a) Sishta, C.; Hathorn, R. M.; Marks, T. J. Group 4 metallocene-alumoxane olefin polymerization catalysts. CPMAS-NMR spectroscopic observation of cation-like zirconocene alkyls. *J. Am. Chem. Soc.* **1992**, *114*, 1112–1114. (b) Bochmann, M. The Chemistry of Catalyst Activation: The Case of Group 4 Polymerization Catalysts. *Organometallics* **2010**, *29*, 4711–4740.
- (a) Ehm, C.; Cipullo, R.; Budzelaar, P. H. M.; Busico, V. Role(s) of TMA in polymerization. *Dalton Trans.* **2016**, *45*, 6847. (b) Ghiotto, F.; Pateraki, C.; Severn, J. R.; Friederichs, N.; Bochmann, M. Rapid evaluation of catalysts and MAO activators by kinetics: what controls polymer molecular weight and activity in metallocene/MAO catalysts? *Dalton Trans.* **2013**, *42*, 9040–9048. (c) Babushkin, D. E.; Semikolenova, N. V.; Zakharov, V. A.; Talsi, E. P. Mechanism of dimethylzirconocene activation with methylaluminoxane: NMR monitoring of intermediates at high Al/Zr ratios. *Macromol. Chem. Phys.* **2000**, *201*, 558–567. (d) Petros, R. A.; Norton, J. R. Effectiveness in Catalyzing Carboalumination Can Be Inferred from the Rate of Dissociation of M/Al Dimers. *Organometallics* **2004**, *23*, 5105–5107.
- Bochmann, M.; Lancaster, S. J. Monomer–Dimer Equilibria in Homo- and Heterodinuclear Cationic Alkylzirconium Complexes and Their Role in Polymerization Catalysis. *Angew. Chem. Int. Ed.* **1994**, *33*, 1634–1637.
- Camara, J. M.; Petros, R. A.; Norton, J. R. Zirconium-Catalyzed Carboalumination of α -Olefins and Chain Growth of Aluminum Alkyls: Kinetics and Mechanism. *J. Am. Chem. Soc.* **2011**, *133*, 5263–5273.

(13) (a) Chen, E. Y.-X.; Marks, T. J. Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure Activity Relationships. *Chem. Rev.* **2000**, *100*, 1391–1434. (b) Coates, G. W.; Hustad, P. D.; Reinartz, S. Catalysts for the Living Insertion Polymerization of Alkenes: Access to New Polyolefin Architectures Using Ziegler–Natta Chemistry. *Angew. Chem., Int. Ed.* **2002**, *41*, 2236–2257.

(14) Brintzinger, H.-H.; Ruchatz, D.; Fink, G. Polymery Exchange between ansa-Zirconocene Catalysts for Norbornene–Ethene Copolymerization and Aluminum or Zinc Alkyls. *Macromolecules* **2005**, *38*, 2056–2063.

(15) Bryliakov, K. P.; Semikolenova, N. V.; Panchenko, V. N.; Zakharov, V. A.; Brintzinger, H. H.; Talsi, E. P. Activation of rac-Me₂Si(ind)ZrCl₂ by Methylalumoxane Modified by Aluminum Alkyls: An EPR Spin-Probe, ¹H NMR, and Polymerization Study. *Macromol. Chem. Phys.* **2006**, *207*, 327–335.

(16) (a) Babushkin, D. E.; Brintzinger, H. H. Modification of Methylaluminoxane-Activated ansa-Zirconocene Catalysts with Triisobutylaluminum—Transformations of Reactive Cations Studied by NMR Spectroscopy. *Chem.—Eur. J.* **2007**, *13*, 5294–5299. (b) Babushkin, D. E.; Panchenko, V. N.; Timofeeva, M. N.; Zakharov, V. A.; Brintzinger, H. H. Novel Zirconocene Hydride Complexes in Homogeneous and in SiO₂-Supported Olefin-Polymerization Catalysts Modified with Diisobutylaluminum Hydride or Triisobutylaluminum. *Macromol. Chem. Phys.* **2008**, *209*, 1210–1219.

(17) Kanbur, U.; Zang, G.; Paterson, A. L.; Chatterjee, P.; Hackler, R. A.; Delferro, M.; Slowing, I. I.; Perras, F. A.; Sun, P.; Sadow, A. D. Catalytic carbon–carbon bond cleavage and carbon–element bond formation give new life for polyolefins as biodegradable surfactants. *Chem* **2021**, *7*, 1347–1362.

(18) Culver, D. B.; Dorn, R. W.; Venkatesh, A.; Meeprasert, J.; Rossini, A. J.; Pidko, E. A.; Lipton, A. S.; Lief, G. R.; Conley, M. P. Active Sites in a Heterogeneous Organometallic Catalyst for the Polymerization of Ethylene. *ACS Cent. Sci.* **2021**, *7*, 1225–1231.

(19) Baldwin, S. M.; Bercaw, J. E.; Brintzinger, H. H. Alkylaluminum-Complexed Zirconocene Hydrides: Identification of Hydride-Bridged Species by NMR Spectroscopy. *J. Am. Chem. Soc.* **2008**, *130*, 17423–17433.

(20) (a) Götz, C.; Rau, A.; Luft, G. Ternary metallocene catalyst systems based on metallocene dichlorides and AlBu₃i/[PhNMe₂H]-[B(C₆F₅)₄]: NMR investigations of the influence of Al/Zr ratios on alkylation and on formation of the precursor of the active metallocene species. *J. Mol. Catal. A: Chem.* **2002**, *184*, 95–110. (b) Parfenova, L. V.; Pechatkina, S. V.; Khalilov, L. M.; Dzhemilev, U. M. Mechanism of Cp₂ZrCl₂-catalyzed olefin hydroalumination by alkylalanes. *Russ. Chem. Bull.* **2005**, *54*, 316–327.

(21) González-Hernández, R.; Chai, J.; Charles, R.; Pérez-Camacho, O.; Krajanski, S.; Collins, S. Catalytic System for Homogeneous Ethylene Polymerization Based on Aluminohydride–Zirconocene Complexes. *Organometallics* **2006**, *25*, 5366–5373.

(22) Roddick, D. M.; Fryzuk, M. D.; Seidler, P. F.; Hillhouse, G. L.; Bercaw, J. E. Halide, hydride, alkyl, and dinitrogen complexes of bis(pentamethylcyclopentadienyl)hafnium. *Organometallics* **1985**, *4*, 97–104.

(23) (a) Guo, Z.; Swenson, D. C.; Jordan, R. F. Cationic Zirconium and Hafnium Isobutyl Complexes as Models for Intermediates in Metallocene-Catalyzed Propylene Polymerizations. Detection of an α -Agostic Interaction in (CSMe₅)₂Hf(CH₂CHMe₂)(PM₃)⁺. *Organometallics* **1994**, *13*, 1424–1432. (b) Pool, J. A.; Bradley, C. A.; Chirik, P. J. A Convenient Method for the Synthesis of Zirconocene Hydrido Chloride, Isobutyl Hydride, and Dihydride Complexes Using tert-Butyl Lithium. *Organometallics* **2002**, *21*, 1271–1277.

(24) Parfenova, L. V.; Kovayzin, P. V.; Nifant'ev, I. E.; Khalilov, L. M.; Dzhemilev, U. M. Role of Zr,Al Hydride Intermediate Structure and Dynamics in Alkene Hydroalumination with XAlBu₂ (X = H, Cl, Bui), Catalyzed by Zr η 5 Complexes. *Organometallics* **2015**, *34*, 3559–3570.

(25) Hoffmann, E. G. Alkyl group exchange in aluminium trialkyls detected by proton magnetic resonance. *Trans. Faraday Soc.* **1962**, *58*, 642–649.

(26) Babinet, P.; Tilley, T. D. Octa- and Nonamethylfluorenyl Complexes of Zirconium(IV): Reactive Hydride Derivatives and Reversible Hydrogen Migration between the Metal and the Fluorenyl Ligand. *Organometallics* **2009**, *28*, 2285–2293.

(27) Alkylaluminum reagents are known to reduce Ti(IV) to paramagnetic Ti(II) species, see: Soshnikov, I. E.; Semikolenova, N. V.; Ma, J.; Zhao, K.-Q.; Zakharov, V. A.; Bryliakov, K. P.; Redshaw, C.; Talsi, E. P. Selective Ethylene Trimerization by Titanium Complexes Bearing Phenoxy-Imine Ligands: NMR and EPR Spectroscopic Studies of the Reaction Intermediates. *Organometallics* **2014**, *33*, 1431–1439. Paramagnetic signals from Zr(II) were not present in this mixture.

(28) O'Reilly, M. E.; Dutta, S.; Veige, A. S. β -Alkyl Elimination: Fundamental Principles and Some Applications. *Chem. Rev.* **2016**, *116*, 8105–8145.

(29) Rac-(SBI)ZrCl₂ reacts with AlBu₃/[CPh₃][B(C₆F₅)₄] to form bridging allyl hydride species in solution, see: Bryliakov, K. P.; Talsi, E. P.; Semikolenova, N. V.; Zakharov, V. A.; Brand, J.; Alonso-Moreno, C.; Bochmann, M. Formation and structures of cationic zirconium complexes in ternary systems rac-(SBI)ZrX₂/AlBu₃i/[CPh₃][B(C₆F₅)₄] (X = Cl, Me). *J. Organomet. Chem.* **2007**, *692*, 859–868.

(30) Tyumkina, T. V.; Islamov, D. N.; Parfenova, L. V.; Karchevsky, S. G.; Khalilov, L. M.; Dzhemilev, U. M. Mechanism of Cp₂ZrCl₂-Catalyzed Olefin Cycloalumination with AlEt₃: Quantum Chemical Approach. *Organometallics* **2018**, *37*, 2406–2418.

(31) Parfenova, L. V.; Berestova, T. V.; Molchankina, I. V.; Khalilov, L. M.; Whitby, R. J.; Dzhemilev, U. M.; Dzhemilev, U. M. Stereocontrolled monoalkylation of mixed-ring complex CpCp'ZrCl₂ (Cp' = 1-neomethyl-4,5,6,7-tetrahydroindenyl) by lithium, magnesium and aluminum alkyls. Stereocontrolled monoalkylation of mixed-ring complex CpCp'ZrCl₂ (Cp' = 1-neomethyl-4,5,6,7-tetrahydroindenyl) by lithium, magnesium and aluminum alkyls. *J. Organomet. Chem.* **2013**, *726*, 37–45.

(32) Wolczanski, P. T.; Bercaw, J. E. Alkyl and hydride derivatives of (pentamethylcyclopentadienyl)zirconium(IV). *Organometallics* **1982**, *1*, 793–799.