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Abstract: Because internal alkenes are more challenging synthetic 
targets than terminal alkenes, metal-catalyzed olefin mono-
transposition (i.e., positional isomerization) approaches have 
emerged to afford valuable E- or Z- internal alkenes from their 
complementary terminal alkene feedstocks. However, the applicability 
of these methods has been hampered by lack of generality, 
commercial availability of precatalysts, and scalability. Here, we report 
a nickel-catalyzed platform for the stereodivergent E/Z-selective 
synthesis of internal alkenes at room temperature. Commercial 
reagents enable this one-carbon transposition of terminal alkenes to 
valuable E- or Z-internal alkenes via a Ni–H-mediated 
insertion/elimination mechanism. Though the mechanistic regime is 
the same in both systems, the underlying pathways that lead each of 
the active catalysts are distinct, with the Z-selective catalyst forming 
from comproportionation of an oxidative addition complex followed by 
oxidative addition with substrate and the E-selective catalyst forming 
from protonation of the metal by the trialkylphosphonium salt additive. 
In each case, ligand sterics and denticity control stereochemistry and 
prevent over-isomerization. 

Introduction 

Alkenes are simple yet reactive functional groups that can engage 
in a myriad of functionalization reactions.[1] Their unique reactivity 
profile makes them important intermediates in multi-step chemical 
syntheses.[2, 3] Beyond their role as synthetic intermediates, 
alkenes are abundant in industrial and fine chemicals, and entire 
fields have been dedicated to their synthesis, such as the areas 
of olefin metathesis and carbonyl olefination (Figure 1A).[4-6] While 
terminal alkenes are often commercial or relatively simple to 
access, internal ones represent a greater synthetic challenge and 
require specialized reagents and/or catalysts. Commodity 
chemical syntheses such as the Shell Higher Olefin Process 

(SHOP) exploit the chemical efficiency of base-catalyzed 
isomerization to form mixtures of internal alkenes that are diverted 
towards different product streams. In contrast, fine chemical 
synthesis tends to involve more controlled, less atom-economical 
ways to introduce internal C=C bonds (Figure 1B).[7, 8a-d]  
Controlling alkene isomerization is a challenge because of the 
similar thermodynamic stabilities of the multiple unsubstituted 
internal alkenes that can arise.[7b, 8e-i] In addition to the existence 
of positional isomers, internal alkenes exist as the E- or Z-isomer. 
Due to the prochiral nature of E- or Z-alkenes, and the reactivity 
differences between the two, it is desirable to form internal 
alkenes in an entirely E- or Z-selective fashion.[8g, 9] Yet, the 
entropy term in Gibbs free energy denotes that thermodynamic 
isomerization reactions will lead to both stereoisomers, and 
therefore, moving beyond thermodynamic control to achieve E/Z 
selectivity remains challenging.[8e] 

Many research groups have attempted to address positional and 
stereochemical isomerism within alkene isomerization (Figure 
1C). Approaches using thermodynamic control allow selective 
formation of conjugated, tri-, or tetra-substituted alkenes via 
alkylmetal chain walking, but these positional isomers are not 
always desired.[10] Our laboratory and others have reported 
strategies that rely on catalysts that chelate to the substrate, 
thereby directing isomerization to a single position.[11] However, 
this approach limits the substrate classes to those that contain 
specific directing groups. The only way to control positional 
isomerization without substrate modification is to achieve kinetic 
selectivity using a catalyst or mediator. In this regime, a single 
transposition of a terminal olefin is more favorably followed by 
dissociation of product and chelation of starting material than 
further C=C transposition. Within base-metal catalysis, kinetic 
alkene transposition to Z- and E-isomers has been reported 
(Figure 1D).[8e, 12-15] A comparison of methods for the 
isomerization of homoallyl arenes, which are informative model
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Figure 1. Relevance, precedents, and synopsis of work. 
 
substrates due to the possibility of competing chain-walking 
isomerization, reveals persistent limitations including the use of 
low temperatures or long reaction times.[16] Exogenous hydride 
additives and uncaged radical mechanisms diminish the 
functional group tolerance and scope of some of the reported 

transformations, while others must be monitored and stopped 
before selectivity erodes. 
Herein, we report a stereodivergent platform for the E- or Z-
selective isomerization of alkenes under kinetic control (Figure 
1E). Commercial reagents enable this one-carbon transposition 
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of terminal alkenes to valuable E- or Z-internal alkenes via a Ni–
H-mediated insertion/elimination mechanism. Though the overall 
mechanistic regime is the same in both systems, the underlying 
pathways that lead each of the active Ni–H catalysts are distinct. 
The Z-selective Ni–H forms from oxidative addition of substrate, 
and the E-selective catalyst forms from protonation of the metal 
by the additive. Further, ligand sterics and denticity control 
stereochemistry. A hindered, bidentate bisphosphine and inner-
sphere halogen derived from comproportionation of an aryl iodide 
are important for high Z-selectivity. In contrast, a moderately-
sized, monophosphine promotes formation of the E-isomer 
without leading to over-isomerization. Important features of this 
work include mild conditions (i.e., room temperature without 
reductants), operational simplicity, and tolerance for many 
classes of functional groups. 

Results and Discussion 

Optimization and Substrate Scope 

The Z-selective alkene mono-transposition reaction was 
discovered during an otherwise unrelated study. Z-Enriched 
internal alkene 1Z formed from 4-phenyl-1-butene (1), and it was 
quickly concluded that the electron-poor aryl iodides played a key 
role in mediating stereoselectivity. 

  
Table 1. Optimization of reaction conditions. Reactions were performed on 
0.10 mmol scale unless otherwise noted. Yields and selectivities were 
determined by 1H NMR using CH2Br2 as internal standard. [a] Reaction 
performed in DMA (0.1 M) with 7.5 mol% dppf on 0.15 mmol scale. [b] 
Reaction performed on 0.15 mmol scale. 

During ligand evaluation, replacement of dppf (1,1′-
bis(diphenylphosphino)ferrocene) with Cy3P•HBF4 
(tricyclohexylphosphonium tetrafluoroborate), a source of 
phosphine ligand and acid to generate a cationic Ni–H (vide infra), 
was found to switch product selectivity from 1Z to 1E in 18:82 Z:E 
ratio. The regiodivergent reaction conditions were then tested with 
a variety of phosphines, either using electron-deficient 4-
CF3C6H4I or collidine•HBF4 as additive (Table 1). Bidentate 
ligands, in combination with aryl iodide, led to the highest Z-
selectivity. Additionally, the loading of Ni(COD)2 
[bis(cyclooctadiene)nickel(0)] could be lowered to 2.5 mol%, with 
alkene 1Z forming in 85% yield and 92:8 Z/E selectivity. A small 
panel of substrates was tested at this catalyst loading (SI Figure 
S1). Monophosphines led to the most E-selective catalyst when 
combined with an acid source but were inactive without it. Half an 
equivalent of water was found to increase the yield of the E-
selective reaction by preventing over-isomerization.[17]  
Following evaluation of the reaction parameters, the performance 
of the two protocols was demonstrated across three substrate 
classes: those in which mono-transposition furnishes an 
unactivated olefin, a conjugated olefin, or an olefin ⍺ to a 
heteroatom.[18] Isolated yields, Z:E selectivities of crude reaction 
mixtures, and relative conversions to mono-transposition versus 
over-isomerized products are reported. Selectivity for kinetic 
isomerization product is high, and cases with moderate to low 
isolated yields are due to substrate volatility or remaining starting 
material. Olefin transposition into unactivated positions led to 
internal alkenyl alcohols, boronic esters, thioethers, alkyl 
chlorides, amides, epoxides, and alkyl fluorides, affording Z- or E-
alkenes in high yields and selectivities (Table 2A, 2–4 and 6–9). 
While substrate 5 demonstrates the compatibility of carboxylic 
acids under the reaction conditions, both protocols selectively led 
to the E-isomerized product in moderate yields, likely due to a 
directivity effect of the carbonyl moiety that overrides ligand 
control.[19, 20] Styrenyl diene 11 was not tolerated using protocol 
E but led to 11Z using protocol Z. While pyridines were well-
tolerated under protocol E and Z, the latter led to the conjugated 
alkene with perfect E-selectivity (10E’). Protocol E led to 
trisubstituted alkene 12P from vinyl cyclohexane, while protocol 
Z did not yield any product from this substrate. Both protocols 
were scaled up with 1 as model substrate (1-g scale), and 
products 1Z and 1E were isolated in high yields and selectivities. 
Reported methods for kinetic alkene transposition can be low 
yielding for products that contain conjugated olefins.[12j] Under 
protocols E and Z, the isomerization was not hampered by such 
substrates, and aryl chlorides, aryl fluorides, cyclic alkenes, and 
phenols were well-tolerated (Table 2B, 13, 15, 17-18). For 
nonpolar substrates 13-15 and 18, use of the more polar aryl 
iodide p-CNC6H4I enabled isolation of pure product by column 
chromatography. An aryl bromide was also tolerated, albeit giving 
lower conversion (14). Although E-selective in both protocols, a 
substrate bearing an aniline moiety (16) was tolerated under the 
reaction conditions. A styrenyl alkyne was not tolerated under 
protocol E, but 19Z formed smoothly. 
Under modified conditions in which dppf is exchanged with dppb 
(1,4-bis(diphenylphosphino)butane), protocol Z can mediate 
olefin isomerization to positions ⍺ to heteroatoms in high yield and 
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Table 2. Substrate scope. Reactions were run on 0.25 mmol scale unless otherwise stated. [a] Isolated yields are calculated adjusted for remaining 
starting material when appropriate (see SI for more details). Selectivities were determined by 1H NMR of the crude reaction. [b] 2.5 mol% Ni(COD)2 and 
0.4 M DMF [c] No water added. [d] Product was not isolated due to volatility. Yield represents 1H NMR yield relative to 1,1,2,2-tetrachloroethane internal 
standard. [e] p-CNC6H4I used instead of p-CF3C6H4I. [f] TBABr (0.5 equiv) added. [g] 55 °C. [h] dppb instead of dppf.
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selectivity of indole 20Z and moderate yield and selectivity of 
boronic ester 21E. These two substrates and allyl silane 22 lead 
to high yields and selectivities of 20E–22E under protocol E.[21] 
To further improve the synthetic utility of the two protocols, 
compatible air-stable Ni(0) precatalysts were identified. Using 20 
mol% of Ni(COD)(TOCF3) (TO = thiophene oxide) from the 
Ni(COD)(EDD) (EDD = electron  deficient diene) precatalyst 
family provided high yield and selectivity of product 1Z, and 10 
mol% of Ni(tBustb)3 from the Ni(stb)3 (stb = stilbene) precatalyst 
family gave good yield and selectivity of 1E (Scheme 1).[22] Both 
protocols lead to slightly lower yield but comparable selectivity to 
Ni(COD)2. A handful of bioactive compounds and their derivatives 
were evaluated using the two protocols.[21] Boldenone 
undecylenate, a veterinary steroid medication, could be 
isomerized to 23Z in high conversion and Z-selectivity. Chiral 
amino acid 24, which is a derivative of a GDC (glutamate 
decarboxylase) inhibitor, could be isomerized in moderate 
conversion and E-selectivity under protocol E. These 
experiments demonstrate that good selectivities and yields can 
be achieved with complex bioactive compounds.

 
Scheme 1. Air-stable precatalysts for E- and Z-selective isomerization 
reactions. [a] Reactions were performed on 0.15 mmol scale. Yields and 
selectivities were determined by 1H NMR with CH2Br2 internal standard. 

Ratios are formatted as Z:E. [b] 20 mol% [Ni] and 15 mol% dppf. [c] 
Reactions were performed on 0.25 mmol scale. Isolated yields are 
calculated adjusted for remaining starting material when appropriate (see 
SI for more details). Selectivities were determined by 1H NMR of the crude 
reaction.  

Mechanistic Studies 

Scheme 2. Potential pathways of olefin isomerization. 
 
Mechanistic studies were undertaken to understand how the 
additives in each reaction lead to the active catalysts that offer 
divergent selectivity. Four general mechanisms for catalytic olefin 
isomerization were considered: caged radical,10e π-allyl,[3, 7b, 8d, 8f, 

8g, 9, 11d, 13f, 23a, 23c] uncaged metal–hydride,[8f, 24b] and hydride 
insertion/elimination (i.e., 1,2-hydrogen atom shift).[3, 7b, 8d, 8f, 8g, 9, 

13g, 23a, 23c, 24] (Scheme 2).[22d] Experiments with radical traps and 
radical clocks indicated that radical-based mechanisms are not 
operative.[25] To distinguish between the two closed-shell 
mechanisms, deuterium-labeling experiments were performed. 
Allylic D2-labeled alkene led to scrambling of the D-label, and 
crossover was observed between labeled and unlabeled 
substrates as well as within the remaining starting material 
(Scheme 3A). Thus, despite the differences in additives between 
the two reactions, a Ni–H-mediated insertion/elimination 
mechanism is operative in both reaction systems. Kinetic isotope 
experiments (KIE) using parallel reactions with labeled and 
unlabeled substrate were performed next (Scheme 3B). A primary, 
inverse KIE of 0.71 was measured for protocol E. This inverse 
KIE is consistent with turnover-limiting migratory insertion of the 
Ni–H into the alkene.[26] However, an alternative scenario of pre-
equilibrium  protonation of the nickel center prior to migratory 
insertion, with H/D identity influencing the observed KIE value, 
cannot be ruled out at this time.[27] A primary normal KIE of 2.4 
was measured for protocol Z, indicating that β–H elimination is 
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turnover-limiting.[12i-12j, 28] Use of PCy3•DBF4 resulted in deuterium 
incorporation in the methyl position of product 1ED, which 
indicates that the trialkylphosphonium salt generates the Ni–H. In 
situ 1H NMR reaction monitoring of protocol E revealed a peak 
at –28.90 (t, J = 72.9), which we assign to the cationic 
bisphosphine species (PCy3)2NiH(BF4), which is a plausible 
catalyst resting state (Scheme 3C).[29] Addition of TBABr 
(tetrabutylammonium bromide) resulted in a new resonance at  
–23.37 (t, J = 73.4), consistent with the previously reported 

bromide complex, (PCy3)2NiHBr, supporting our assignment.[30] 
Protonated phosphine salts were originally designed as air-stable 
phosphine precursors that can be revealed in the presence of 
base, [31] but incorporation of deuterium from PCy3•DBF4 in the 
product indicates that Ni0 is sufficiently basic to deprotonate the 
phosphonium to form the cationic Ni–H, which can then ligate the 
PCy3 (Scheme 3C, left). Though acid must be added in the form 
of an HBF4 salt for isomerization to occur in protocol E, hydride 
appears to form independently in protocol Z. In the Z-selective 

 
Scheme 3. Investigation of the mechanism of Z-selective olefin isomerization. Reactions were performed on 0.15-mmol scale unless otherwise stated. 
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Yields and selectivities were determined by 1H NMR relative to CH2Br2 internal standard. Ratios are formatted as Z:E. [a] Percentage D represent percent 
incorporation at each position(s) and was determined by quantitative 1H NMR. Reactions were performed on 0.10-mmol scale. [b] KIE values represent 
average values of three experiments. Initial rates were determined by in situ 1H NMR monitoring of the reaction mixture with 1,3,5-tri-tert-butylbenzene 
as internal standard. [c] Reactions were performed on 0.050 mmol scale in DMF-d7. [d] Reactions were performed on 0.075 mmol scale in acetone-d6. 
[e] Reaction was performed on 0.25 mmol scale. Deuterium incorporation was determined by 2H NMR relative to CDCl3 internal standard. Incorporation 
of deuterium is 4% in 1ED, which correlates to 36% from PCy3DBF4. 
reaction, the Ni–H was not observed in situ, but literature 
precedent indicates that active Ni–H may arise via an oxidative 
process of the allylic C–H bond by two equivalents of NiI halide 
(Scheme 3D).[32c] The formation of the latter NiI complex is 
discussed in detail (vide infra). 
Though the mechanisms of the reactions share many similarities, 
the origin of divergent selectivity between the two protocols was 
unclear from the above results. Optimization indicated that the 
aryl iodide was essential for Z-selectivity, but more information 
was required to determine if both the aryl and the iodide 

component are present on the active catalyst. Aryl iodides 
undergo oxidative addition upon combination with Ni0 species to 
form oxidative addition complexes. After generation of the 
oxidative addition complex, comproportionation to give biaryl and 
a nickelI halide often proceeds (Scheme 4B).[33b] In fact, NiI halides 
have been shown to catalyze alkene isomerization.[32] To 
ascertain whether comproportionation occurs or the aryl remains 
bound to the active catalyst, the electronics of the aryl iodide were 
modified systematically, and the corresponding selectivity was 
measured (Scheme 4A.1). The resulting natural log of Z/E ratio 

Scheme 4. Investigation of the mechanism of the Z-selective olefin isomerization. [a] Reactions were performed on 0.15 mmol scale. Selectivites were 
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determined by 1H NMR. [b] Reactions were performed on 0.15 mmol scale unless otherwise noted. Yields and selectivities were determined by 1H NMR 
compared to CH2Br2 internal standard. [c] Performed on 0.10 mmol scale. [d]  20 mol% Ni and dppf at 0.1 M. 
was plotted against the Hammett ⍴-value for the substituent on 
the aryl iodide, revealing a positive, linear relationship, with 
electron-poor aryl iodides giving the best selectivity (Scheme 
4A.1). Close analysis of the Hammett plot reveals that the positive 
relationship between aryl iodide electronics and selectivity 
parallels the trend in rates of oxidation addition of aryl iodides to 
Ni0, namely that oxidative addition occurs faster for more electron-
poor aryl iodides.[33b, 34] These results indicate that oxidative 
addition of the aryl iodide might lead to a catalyst that 
outcompetes a less-selective catalyst. Nickel, ligand, and olefin 
substrate were combined in the absence of aryl iodide, and the 
reaction proceeded in high yield but low Z/E ratio, confirming the 
hypothesis that the rate of oxidative addition is important to 
outcompete the less-selective non-oxidized catalyst (Scheme 
4A.2, entry 1). Moreover, 5 mol% addition of I2 recapitulated the 
yield and selectivity of the optimized conditions, indicating that the 
aryl component is not necessary for high selectivity (entry 3). 
Higher loading of I2 suppressed the reaction, potentially due to 
catalyst deactivation via over-oxidation (entry 4). If the role of aryl 
iodide in these experiments is to oxidize the metal center to a NiI–
I species, it would stand to reason that the isolable NiI–I dimer, 
[(dppf)Ni(µ-I)]2, should also give high yield and selectivity, but both 
performance metrics were lower with this NiI precatalyst (entry 6). 
Addition of pCF3C6H4I to the conditions, however, restored the 
high yield and selectivity of product 1Z (entry 7). This suggests 
that the primary dissociation product of the dimer is two 
equivalents of NiI–I monomer but that small amounts of inactive 
NiI2 and the less selective Ni0 also form. The latter decreases 
reaction selectivity unless aryl iodide is present to regenerate NiI. 
A summary of this process is depicted in Scheme 4B.  The less-
selective NiI–H is proposed to form via C(allylic)–H oxidative 
addition followed by comproportionation with remaining Ni(0). 
Viewed in totality, these experiments and previous literature 
reports, indicate that a large, inner-sphere anion and a bulky 
bidentate phosphine support Z-selectivity in protocol Z. In 
contrast, the selectivity in protocol E relies on coordination of a 
single, monodentate phosphine that is sufficiently small to favor 
the E isomer but large enough to disfavor over-isomerization 
through chain walking. Notably, the regio- and stereochemistry of 
the product are defined simultaneously and irreversibly for both 
protocols as stereochemically enriched 1 could not be converted 
to the opposite isomer under either protocol.[35, 36] 
 
Conclusion 

Overall, a nickel-based catalytic platform for the stereodivergent 
E/Z-selective synthesis of internal alkenes is established. The two 
protocols are robust and simple to perform with commercial 
reagents, enabling the selective alkene single-carbon 
transposition of a variety of feedstock terminal alkenes. 
Substrates that contain a diverse array of functional groups, 
including alkyl and aryl halides, boronic esters, free acids, and 
heterocycles, can undergo the transformation. Despite their 
stereodivergence, both protocols were found to operate through 
a common Ni–H mediated insertion/elimination mechanism. For 

the Z-selective reaction, an electron-poor aryl iodide ensures 
oxidation of the nickel to a hindered, Z-selective NiII catalyst. In 
the E-selective protocol, the addition of a Brønsted acid facilitates 
the formation of a cationic (trialkylphosphino)Ni–H, with the 
monophosphine ligand being small enough to favor the E-isomer 
while preventing over-isomerization. 
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