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the process of transitioning to a different smart-contract enabled blockchain, or to a newly

',ffg:vkiﬁ'n launched blockchain. We formalize, instantiate, and analyze in a composable manner a
Tokens system that we call Etherless Ethereum Tokens (in short, EETs), which allows the token
Universal composition users to transact in a closed-economy manner, i.e., having only tokens on their wallet and
Ledger paying any transaction fees in tokens rather than Ether/Gas. In the process, we devise a

methodology for capturing Ethereum token-contracts in the Universal Composability (UC)

framework, which can be of independent interest.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As applications of smart contracts, e.g., Decentralized Finance (DeFi) and Non-Fungible Tokens (NFTs), become main-
stream, there is a need to make them as independent from the Ethereum chain as possible. This is particularly relevant for
Ethereum tokens (e.g., ERC-20 tokens [1]). Indeed, for a token-holder to exchange or transfer such tokens, they need to also
hold Ether for fuelling the Ethereum transaction. This is counter-intuitive and counter-productive: on the one hand, token
creators need to provide a wallet which supports both their token and Ethereum, making it more challenging to transition
to their own blockchain or switch token platforms while offering a smooth user experience. On the other hand, users need
to make sure that they hold not only the token but also Ether, which makes it more challenging to expand this technology
to less tech-savvy audiences, thereby hindering wider societal adoption.

The easiest way to conceptualize the relevant bottleneck is through considering the life cycle of an ETH-based initial
coin offering (ICO): in a first stage, the token creator solicits investment (typically in different cryptocurrencies), under
the promise of a certain (prearranged) amount of tokens once the token launches.! In a second phase, the token creator
initializes the promised new token by launching a token smart contract (e.g. an ERC 20 token) on the Ethereum chain. The
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and there are technological advances that allow us to circumvent them; these topics are outside the scope of this paper.
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token creator then would have the investors create and provide an Ethereum address where the promised tokens can be
transferred. This can be done by means of a wallet that offers generic support for Ethereum tokens.

Often, however, ICO-funded applications launch tokens which have the ultimate goal of eventually being disconnected
from the main Ethereum blockchain, and/or which aim to create an ecosystem independent of Ethereum. In such cases, the
token creator would typically also offer its users a token-specific wallet application. However, in order for anyone to use this
application to transfer his tokens, the token-specific wallet needs to also support Ether as a currency. This leads to confusion
for less tech-savvy investors, and makes the user experience of migrating the token to a different smart contract platform
— e.g. a different smart-contract-enabled blockchain or a blockchain developed by the token creator — less intuitive. We
note that such migration is becoming more relevant as more smart-contract-enabled blockchains are released, and as the
gas price for Ethereum smart contracts rises to a point where its use makes the corresponding tokens less attractive.

In this work, we start by proposing a design methodology and formal treatment of Ethereum tokens which allow their
creator to provide the option to its users of making transfers without the need to hold Ether in their wallet, a mechanism
which we term Etherless Ethereum Tokens (in short, EETs). The high-level idea is simple: allow the token creator to take
on the cost (i.e., gas) for the token transaction, and have the token contract perform an on-the-fly exchange of token-
to-ether at a pre-agreed rate, giving the user the experience of a native token. As one might expect, properly specifying,
implementing, and proving such a protocol secure is a challenging task; in particular, it requires a model for token-enabled
ledgers, which we provide and believe it will be helpful for all the future systems that might rely on token contracts
in a composable manner. We remark that, as a concept, etherless transactions have been frequently discussed within the
Ethereum community for several years, often under the term meta transactions [2-5]. However, to our knowledge, our work
is the first to provide a formal treatment and security analysis of the concept.

The need for arguing the security of blockchain systems formally and in a composable manner is motivated by the fact
that a blockchain does not live in isolation, and that many applications might run on top of it. Hence, it is fundamental
to argue the security of new blockchain applications in a setting where multiple protocols are running in concurrency.
Indeed, many recent works have focused specifically on this task, proposing formal security models and proving that existing
protocols (like Bitcoin [6,7]) satisfy some important and well-formalized security properties. On the same spirit, many
other works have used the same rigorous approach to argue and define the security of other blockchain systems and
applications. Just a few other examples are proof-of-stake blockchains, private blockchains, private smart contracts and the
lighting network [8-11].

At a less technical level, we believe that in addition to offering a more intuitive, closed-economy user experience, EET
also provides assurance to the original ICO investors that the token creator indeed expects value on the token, as he is
willing to make marginal exchanges. Indeed, in the system we design anyone (in particular the token creator) could pay the
fee (in Ether) on the behalf on another party. Throughout we will generically refer to such an entity as intermediary. We
note in passing that despite being explicitly implemented on the Ethereum blockchain, our design is generic and can be
ported to any smart-contract-enabled blockchain platform, and thus can enable transferring the tokens from one blockchain
to another.

We have implemented our EET design, and we demonstrate how it outperforms existing generic systems that enable
etherless transactions, such as the Gas Station Network (GSN) [4], both in terms of simplicity of deployment and in terms
of gas usage. We also compare such a deployment with how a native token could perform on Ethereum and demonstrate
that the overhead makes the flexibility offered by black-box usage of smart-contract-based tokens a reasonable compromise
for the moderate increase in the required gas it incurs over what a native token would require.

2. Our contributions and related work

Our contribution is threefold: 1) A universally composable (UC) [12] treatment of ledgers supporting a broad class of
smart contracts, which includes token contracts (e.g. ERC 20). 2) A design and UC security analysis of EETs. 3) An imple-
mentation of our EET, benchmarks, and comparison with alternative approaches. In the following, we expand on the key
components of the above contributions, and put our results in perspective with existing literature and systems.

2.1. Smart-contract-enabled transaction ledgers

The first analyses of blockchain protocols showed that they satisfy certain desirable properties, such as common-prefix
(also referred to as safety or consistency), chain-growth (also referred to as liveness), chain quality, etc. [6,8,7,13-16].
Badertscher et al. [6] put forth the first universally composable treatment of the Bitcoin backbone (i.e. consensus layer)
by introducing a UC functionality, called Figpcer (Fig. D.11), which captures the interface that Bitcoin offers to external
applications, rather than the way in which this interface is implemented. At a very high level, Fizpcer takes as input trans-
actions which are validated by means of a validation predicate Validate. All valid transactions are then stored into a data
structure denoted as state. The adversary has full control over the order in which transactions appear in state, and can
define (in a limited way) the portion of the state that each party can access. However, once something is added to the state,
it cannot be removed (not even by the adversary). We note that the advantage of proving security in UC is that it enables
use of the ledger as an ideal primitive, and ensures that replacing this ideal ledger primitive by its implementation—the
corresponding blockchain—does not compromise the security of primitives that make ideal calls to the ledger; nor does it
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Fig. 1. The Smart-Contract-Enabled Transaction Ledger Functionality Frsc-Lepcer-

affect the security of systems and protocols that run alongside the ledger. This property is often referred to as universal
composability, and it allows for a constructive approach to cryptographic/security protocols, analogous to how programming
uses libraries with fixed APIs without worrying about their implementation. Following that work, a number of papers on
the design and analysis of blockchains have adopted UC as the model to prove their security and have devised systems
implementing variants of the above ledger [8,17]. UC [6] has also been leveraged to describe how Figpcer may be used
together with a digital signature scheme to derive a transaction ledger, abstracting the cryptocurrency aspects of Bitcoin in
addition to its backbone guarantees.?

This was done by relying on digital signatures where, to ensure composability, the ideal adversary is allowed to choose
the signing and verification keys.

2.1.1. The transaction ledger

In this paper we consider a simpler, more UC-friendly approach that abstracts away the public-key infrastructure (PKI),
analogous to how the UC signatures functionality [18] would. In a nutshell, instead of having Validate rely on a specific
signature scheme, we define a new transaction ledger Fr-iepcer that internally runs Figpcer and also emulates existentially
unforgeable signatures, similar to [18]. Fr.Lepcer accepts transactions with the format tx := (v, addr;, addr;, fee) where v
represents the number of coins involved in the transaction, fee is the fee that the issuer of the transaction is willing
to pay, and addr; and addr; represent the wallet addresses of the sender and the receiver respectively. Upon receiving a
transaction, Fr.iepcer Checks the state of Fippcer to ensure that the wallet address addr; has at least v + fee coins and
that the fee is sufficient, i.e. that fee > f(tx), where f is function specified in the description of Fr_[gpcer that determines
the fee that needs to be payed for the input transaction. We note that it is straightforward to adapt the analysis of the
transaction ledger [6]—using a specific existentially-unforgeable signatures scheme—to prove security of our ledger for a
standard Bitcoin-style blockchain protocol, such as Bitcoin or the proof-of-work-based version of Ethereum. Nonetheless, as
we shall see, this makes it more intuitive to add cryptocurrency-relevant features to the ledger-such as etherless tokens.

2.1.2. Adding smart contracts

The functionality Fr-epcer iS sufficient to capture the base functionality of cryptocurrencies, but it does not support
smart contracts. To achieve that, in this work we define an augmented functionality, which we denote Fysc.igpcer- This
represents our first contribution. Fysc.rgpcer internally manages Fr.gpcer and a functionality Fsc that abstracts a smart
contract: Fsc maintains its own state cstate—corresponding to the state of a (virtual) machine VM?—and is parametrized
by a function fcree, that takes as input the query to the contract (which contains also the fee that the caller is willing to
pay to run the contract), and checks whether or not the fee is enough for the VM to process the input and update its state.

The construction of Frsc.iepcer from its components is illustrated in Fig. 1. Fysc.Lepcer accepts either standard transac-
tions in the native currency E (that are forwarded to Fr-repcer) O inputs/transactions that are intended as queries to the
contract Fsc. Upon receiving such a query for the smart contract, Frsc.Lgpcer forwards the query to Fsc, which checks if
the fee specified in the query is sufficient to update its state, and if so it updates cstate by running the VM on input
the given transaction and the state of Fr.igpcer (Which is handed to Fsc by Frsciencer),® and returns the updated state
(including the received input) to JFrsc-Lepcer- FTSC-Lepcer then pushes the query and the updated state cstate to the state
of Fr.iepcer (by submitting it as a transaction). Consistently with the Ethereum smart contract mechanism, Fsc charges
the contract caller only for the fee that is required to update its state, even if the contract’s caller specified a higher fee.
Moreover, if a contract caller did not specify a fee high enough to conclude an update on the contract’s state, the fee will
be deducted from the caller account, and the input used to query the contract will appear in the state of Fr_gpcer, though
no change to the contract’s state will be committed.

2 Unlike transaction ledgers, the bare Figpcer captures the consensus layer, and does not interpret its contents as transactions which need to be verified
with respect to whether or not they are spending some already spent coin.

3 We do not specify a model of computation for describing the VM; one can use any such model, e.g. Turing machines, RAMs, etc.

4 Note that Frsc.iepcer also keeps track of the history of the state of Fr_gpceg.
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2.1.3. Tokens as smart contracts

Given the above smart-contract-enabled ledger, it is straightforward to capture a smart contract for creating a standard
(e.g. ERC 20 [1]) Ethereum token by instantiating Frsc-1gpcer With contract functionality that stores and updates the state
(balances for different addresses) of such a token. Note that this results in a token-enabled transaction ledger 7% which
allows parties both to issue transactions in the native coin E, and to exchange tokens T.

In more detail, F%k" instantiates Frsc-Lepcer With a token-contract ]-'STC which works as follows: .7-"STC collects all token
transactions, and upon receiving a read-request returns only the valid token transactions. Similarly to the way the ledger
FrLepcer deals with native transactions, a token transaction consists of the components (v, addriT, addr]T.), where v is the
number of tokens involved in the transaction, and addr; and addr; represent the token wallet addresses of the sender and
the receiver respectively. Furthermore, ]-'STC internally emulates an existentially-unforgeable signature scheme related to the
token which is independent of the one that is used in Frrgpcex.”

We observe that there is no fee appearing in the description of the token transaction. The reason is that the fee will be
part of the query to the contract, and it is expressed in the native currency E. Indeed, the issuer of the token transaction,
in order to query the contract ]-'STC, needs to possess coins of type E.

2.14. The EET functionality

As discussed in the introduction, the above contract implementation of tokens—which has become a standard for
Ethereum—has the undesirable property that a party who wants to send tokens requires coins of type E to do so, coins
which they might not have. In this work, we introduce EETs to allow the token creator to offer, as a service, to take on
the cost of the token transaction, in exchange for tokens at a pre-agreed E-to-T rate. This is captured by tweaking the
token-enabled ledger 7%h. toward an EET-enabled ledger, denoted as FEET ., which supports an additional input called
SUBMIT-DELEGATION. Upon receiveing SUBMIT-DELEGATION, }'LEE'IE)TGER allows the user to issue a token transaction which pays a
fee, in T, to a special party, called intermediary (that we denote with M), in exchange for the intermediary submitting the
token transaction to ]-'STC and paying the E needed for the token contract to process the transaction. In our system anyone
can be an intermediary. More precisely, there might be multiple intermediaries that are willing to pay the Ether fee for
a transaction, but each of them will do that at a potentially different exchange rate. This means that any user that wants
to delegate the payment of the fee can look at what rates are available and decide accordingly with what intermediary to
interact with. The agreement on the rate is made completely off-chain, and for sake of simplicity in the paper we assume

that there is only one intermediary and that the rate has been already pre-agreed between the parties.
2.2. EET construction and analysis

To realize }"EE'IE)TGER we rely only on Fr_gpcer and signatures. In particular, any party that wants to issue a token transaction
and has enough coins of type E to cover for the fee can issue a transaction tx = (0, addr;, 0%, (aux, o), fee), where aux =
(v, addr], addr]T) and o is a signature of aux that verifies under addr.®

In a nutshell, tx is a standard transaction for Frgpcer that contains in its payload the information related to the token
transaction properly signed by the sender. By definition, if the fee fee is high enough, then tx will become part of Fr_epcer’S
state. Let addrf; be the token wallet address of M. To delegate a transaction, the sender P; creates a special token transaction

aux = ([v, del-fee], addr], [addr}, addry]) (where del-fee is a fee expressed in T that parametrizes FEET 2) and signs it to

obtain o. aux is the atomic representation of two token transactions: the first moves v tokens from addriT to addr]T., and
the second moves del-fee from addr,.T to addry;. M, upon receiving (aux, o) submits a transaction to Fr-epger that contains
(aux, o) in its payload. If a party wants to obtain only the valid token transaction, they need to filter out the payload of the
transactions stored in Fr.1gpcer’S State, and output only the valid transactions. Similarly to what we have described above, a
token transaction (v, addriT, addr]T.) is valid if the sum of tokens with receiver address addr,.T minus the sum of tokens in the
state with sender address addr; (including the fees) is greater than or equal to v.

2.3. Implementation, benchmarks, and comparisons

The Gas Station Network (GSN) is a relatively recent development in the Ethereum community that shares some of our
goals, but a broader scope. In particular, the GSN aims to create a decentralized, trustless network of relay servers which can
pick up the transaction fees for any GSN-enabled contract. The GSN is built around a RelayHub smart contract that:

1. Records available relay servers and their service fees,
2. Keeps ether deposits from GSN-enabled contracts for repayment of relay servers,
3. Facilitates the interaction between relays and GSN-enabled contracts, and punishes any detected bad actors.

5 Note that we cannot generically use the same signature emulator procedure of Fr_gpcer, as a token address is typically overloaded to also be an
Ethereum address.
6 In the protocol, the addresses become verification keys for a signature scheme.
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This is in contrast to our mechanism, in which there is no separate smart contract to manage the delegation of transactions.
Additionally, each GSN-enabled contract must interact with a separate paymaster contract, which is responsible for perform-
ing any action needed to extract or verify payment from users. Paymaster contracts may be written generically and shared
between multiple contracts, or purpose-written for particular contracts.

The outward functionality of the GSN is similar to our mechanism: a gasless user submits a transaction to an interme-
diary relay server instead of directly to the blockchain, and the relay submits the transaction on the user’s behalf, receiving
an ether repayment from the target contract. The target contract, in turn, is allowed to extract any payment it wishes from
the user, e.g. tokens. The primary difference is in the complexity of implementation and development; where the GSN aims
to be fully generic and decentralized, and admits a great deal of complexity in service of that aim, we have endeavored to
keep our efforts very self-contained in order to ease implementation, simplify formal analysis, and keep operational costs
manageable.

As is common in designs that aim for maximally generic functionality, the GSN pays for its genericity with increased
complexity. This complexity manifests both in development effort — anecdotally, we found setting up a testing environment
for a GSN-enabled contract to be significantly more cumbersome than for other contracts — and in gas consumption. Our
experiments indicate a 4-5x overhead in gas consumption when using the GSN as opposed to using our EET contract. (Note
that gas is pretty much the only relevant measurable unit of comparison. Other metrics — e.g. running time, settlement
time, etc. — are either very difficult to test in a controlled way, are irrelevant for a contract which aims only to facilitate
token exchange, or are negligible compared to other confounding factors.) We note in passing that, to our knowledge, there
is no formal security analysis of the GSN, making our work the first rigorous treatment of the etherless token paradigm.

2.3.1. Contract-based vs native tokens

Recently, the blockchain/cryptocurrency community has been entertaining the idea of making tokens native to the cryp-
tocurrency chain. In parallel and independent work [19] the authors propose a solution that allows users posting a token
transaction along with a token-to-native exchange rate he is willing to pay; at the same time anyone could issue transac-
tions aimed at covering the fee of such token transactions in exchange of tokens coins. Then any miner/minter that can
match such transactions (if any valid match exists) can create a block that contains both transactions, in which the fee
for the token transaction has been payed by a third party. A similar solution has been proposed in [20]. Such approach
yields an advantage in terms of fees needed for the transaction, but it does come at a cost: (1) The block miner are in
an advantageous position and can always front-run other users proposing their own transactions to cover for the fees of
token transaction; (2) The token functionality is limited to what is hardwired on the token chain, and is therefore far less
flexible than a smart-contract-based solution. For example, it is unclear if or how such a solution would allow the use of
amortization/batching to save on bulk transactions. (3) If one adopts the natural “pay-per-use” principle for fees — i.e. you
pay more for a more complex transaction — as Ethereum does, then adding this functionality would increase the cost of all
transactions, including those that only involve the native cryptocurrency. Although this increase is expected to be minimal,
it is unclear how the implicit auction for the submitted token transaction created by such a mechanism would affect fees.

In Appendix A, we have included an attempt to estimate the overhead this might incur in a hypothetical implementa-
tion on Ethereum, and compare it with using a smart contract. We note that in the absence of a (platform or blockchain
supporting an) actual implementation of native tokens, the relevant experiments are somewhat artificial and speculative.
Thus, we do not consider these experiments an important part of our contributions (and we defer them to the appendix).
Nonetheless, we do believe they give an interesting perspective to the discussion on native tokens, and a pointer for ex-
periments once such a functionality is implemented on a mainstream blockchain. Finally, we stress that our solution works
on all blockchains that support token contracts (i.e., no need for turing completeness) like Cardano, Dfinity and Ethereum,
whereas the solution proposed in [19] would require to fork an existing blockchain to accommodate for a new validation
rule.

3. Preliminaries and model

We use “=" to denote equality of two different elements (i.e. a =b then...) and “<«" as the assignment operator (e.g. to

assign to a the value of b we write a < b). A randomized assignment is denoted with a i A, where A is a randomized
algorithm and the randomness used by A is not explicit. We call a function v : N — R™ negligible if for every positive
polynomial p(k), there exists a kg € N such that for all ¥ > kg : V(k) < 1/p(k).

3.1. Signatures

Definition 1 (Signature scheme [18]). A triple of ppT algorithms (Kgen, Sign, Ver) is called a signature scheme if it satisfies
the following properties.

Completeness: For every pair (s, v) <i Kgen(1*), and every m € {0, 1}*, we have that Pr[Ver(v, m, Sign(s, m)) = 0] < v(}).
Consistency (non-repudiation): For any m, the probability that Kgen(1*) generates (s, v) and Ver(v,m, o) generates two
different outputs in two independent invocations is smaller than v(}).
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Unforgeability: For every PpT A, there exists a negligible function v, such that for all auxiliary input z € {0, 1}* it holds
that:

Pri(s, v) < Kgen(1h); (m, o) < ASI9E) (2 y)A
Ver(v,m,o)=1Am¢ Q] <v(i)

where Q denotes the set of messages whose signatures were requested by A from the oracle Sign(s, -).
3.2. The model

Following the recent line of works proving composable security of blockchain ledgers [6,8], we provide our protocols and
security proofs in Canetti’s universal composition (UC) framework [12]. In this section we discuss the main components of
our real-world model (including the associated hybrids).

We assume that the reader is familiar with simulation-based security and has basic knowledge of the UC framework. We
review all the aspects of the execution model that are needed for our protocols and proof, but omit some of the low-level
details and refer the interested reader to relevant works wherever appropriate.

We now recall the mechanics of activations in UC. In a UC protocol execution, an honest party (ITI) gets activated either
by receiving an input from the environment, or by receiving a message from one of its hybrid functionalities (or from
the adversary). Any activation results in the activated ITI performing some computation on its view of the protocol and
its local state, and ends with either the party sending a message to some of its hybrid functionalities, sending an output
to the environment, or not sending any message at all. In any of these cases, the party loses the activation.” We denote
the identities of parties by P;, i.e. P; = (pid;, sid;), and call P; a party for short. The index i is used to distinguish two
identifiers, i.e., P; # Pj, and otherwise carries no meaning. We will assume a central adversary A who gets to corrupt
miners and might use them to attempt to break the protocol’s security. As is common in (G)UC, the resources available to
the parties are described as hybrid functionalities. Our protocols are synchronous (G)UC protocols [6,21]: parties have access
to a (global) clock setup, denoted by Fciock, and can communicate over a network of authenticated multicast channels. We
adopt the dynamic availability model implicit in [6] which was fleshed out in [8]. We next sketch its main components:
All functionalities, protocols, and setups have a dynamic party set. Le., they all include special instructions allowing parties
to register and deregister, and allow the adversary to learn the current set of registered parties. Additionally, global setups
allow any other setup (or functionality) to register and deregister with them, and also allow other setups to learn their
set of registered parties (we refer to Appendix B for the formal treatment). We conclude this section by elaborating on
the main hybrid functionality used in our paper. For self-containment we have included formal descriptions of the ideal
functionalities we consider in Appendix C and Appendix D.

3.2.1. The functionality Figpcer

The main functionality (in fact, a global setup) we rely on is a cryptographic distributed transaction ledger. We use
the (backbone) ledgers proposed in the recent literature [6,8] in order to describe a transaction ledger and its properties.
As proved in [6,8], such a ledger is implemented by known permissionless blockchains based on either proof-of-work
(PoW), e.g. Bitcoin, or poof-of-stake (PoS), e.g. Ouroboros Genesis. The ledger stores an immutable sequence of blocks called
state—each block containing several messages typically referred to as transactions and denoted by tx—which is accessible
from the parties under some restrictions discussed below. It enforces the following basic properties that are inspired by [7,
13]:

o Ledger growth. The size of the ledger’s state should grow—new blocks should be added—as the rounds advance.
e Chain quality. It is guaranteed that a percentage of honest blocks are created in a sufficiently long sequence of blocks.
e Transaction liveness. Old enough (valid) transactions are included in the next block added to the ledger state.

We next give a brief overview of the ledger functionality F gpcer proposed in [6,8], focusing on the properties of Figpcer
that are relevant for the understanding our results. Along the way we also introduce some useful notation and terminology.
We refer the reader interested in the low-level details of the ledger functionality and its UC implementation to Appendix D
and [6,8]. We note that with minor differences related to the nature of the resource used to implement the ledger, PoW vs
PoS, the ledgers proposed in these works are identical.

The functionality JFigpcer i parametrized by three main functions Validate, ExtendPolicy and Blockify. At a high level,
anyone (honest miner or the adversary) may submit a transaction to JFigpcer. The transaction is validated by means of a
filtering predicate Validate, and if it is found to be valid it is added to a buffer that we denote buf fer. Taking a peak at the
actual implementation of the ledger, this buffer contains transactions that, although validated, are either not yet inserted
into a valid block, or are in a block which is not yet deep enough in the blockchain to be considered immutable for an
adversary. The adversary A is informed that the transaction was received and is given its contents. Periodically, Figpcer

7 In the latter case the activation goes to the environment by default.
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does the following: 1) fetches some of the transactions in the buffer under the influence of the adversary (more on this
will follow), 2) modifies them by means of a procedure Blockify, 3) creates a block including the output of Blockify, and 4)
adds this block to its permanent state, denoted as state. state is a data structure that includes the sequences of blocks
that the adversary can no longer change. (In [7,13] this corresponds to the common prefix.) Any miner or the adversary is
allowed to request a read of the contents of the state and, every honest miner will eventually receive state as its output.®
To enforce transaction liveness and chain-quality, Figpcer relies on the function ExtendPolicy. At a high level, ExtendPolicy
makes sure that the adversary cannot create too many blocks with arbitrary (but valid) contents (chain quality) and that
if a transaction is old enough, and still valid with respect to the actual state, then it is included into the state. In more
detail, ExtendPolicy takes the current contents of the buffer, along with the adversary’s recommendation NxtBC, and the
block-insertion times vector Tsiate. The latter is a vector listing the times when each block was inserted into the state. The
output of ExtendPolicy is a vector including the blocks to be appended to the state during the next state-extend time-slot.
Each of these blocks is then given as input to Blockify. We conclude the discussion by providing a high-level description of
the main input command of Figpcer Used in our protocols/definitions, and refer to Appendix D for a formal description of
the functionality.

e The input (READ, sid) is used to request the content of the ledger's state. Concretely, upon receiving (READ, sid) from
some party (or the adversary on behalf of a corrupted party), the ledger returns (a prefix of) state to the caller.

e The input (suBMIT, sid, tx) is used to request that a transaction tx be added to the buffer. That is, upon receiving a
(suBMIT, sid, tx) message from any party (or the adversary), the ledger adds the transaction tx to the buffer buffer.
If the validation predicate Validate, on input state, buffer, tx outputs 1, then tx will be included in state.® The
time required for the transaction to be part of state and visible to all honest parties who query Figpcer depends on
the transaction liveness parameter defined in ExtendPolicy.

4. The cryptocurrency-ledger functionality Fr.repcer

The ledger Fiepcer does not itself realize a cryptocurrency (unless if couple with a signature scheme as described in [6]).
To this direction we define and instantiate a cryptocurrency (transaction) ledger Fr.repcer hosting a coin denoted by E. As
discussed in the introduction, in contrast to the transaction ledger from [6] our construction does not assume an external
signature functionality. This makes it more useful for defining smart contracts (see Section 5).

The validation predicate of Figpcer, in this case, is defined to always output 1, and it is Fr-gpcer’S responsibility to make
sure that only valid transactions are submitted to Figpcer. F1-Lepcer alSO generates and manages the wallets of the parties.
A transaction supported by Fr.iepcer consists of five main components (v, addr;, addr;, aux, fee), where v represents the
amount of coins of type E, addr; is the sender’s wallet address, addr; is the receiver’s wallet address, aux is a payload, and
fee represents the fee. At a high level, a transaction is valid if the fee fee is high enough and if the amount of coins stored
in the wallet with address addr; is at least v + fee. How high the fee should be in order for the transaction to be considered
is specified by a function f that is part of the description of Fr.gpcer. f takes as input the transaction tx and computes
the required fee. In the case where the output of f is greater than fee, the transaction is immediately discarded. Otherwise,
Fr-Lencer Teplaces fee with the output of the function and submits it. This captures the fact that Fr.gpcer Charges the issuer
of the transaction only for the cost of processing the transaction, even if the transaction specifies a higher fee. In more
detail, each party has an associated wallet address, and different parties have different wallet addresses. F1.jgpcgr Manages
a table 7 that, for each party P;, stores P;’s wallet address addr;. We initialize Fr_gpcer With a party Po which initially
holds all the coins (e.g., V coins) of type E.!° To do so, Fr-iepcer generates an address addrg and sends (SUBMIT, sid, tx) to
the wrapped Figpcer With tx := (V, 0%, addrg, L, 0), where V is the initial amount of coins held by P; and 0* is a special
address used only for the initialization. Upon receiving a registration request from a party Pj, Fr.Lepcer Creates a new wallet
address addr; and adds (addr;, P;) to the table 7. Fr_Lepcer, UPON receiving (SUBMIT, sid, tx) from a party P;, performs the
following steps.

e Parse tx as (v, addr;, addrj, aux, fee) and continue if and only if (P;,addr;) € 7 and fee > f(tx).

o Get state and buffer of Figpcer and check that the balance of transactions to/from the wallet address addr; is at
least v/ > v + f(tx) coins. That is, the sum of coins with receiver address addr; minus the sum of coins in the state
with sender address addr; (including the fees) is greater than or equal to v + f(tx). If this is not the case, deem the
transaction invalid; otherwise, submit tx to Figpcer With the fee f(tx).

Fr-Lener 1S also parametrized with the identifier of an ideal functionality Fiap. Whenever Fr.igpcer Teceives the com-
mand (SUBMIT-TRAPDOOR, sid, tx, P;) from Fyyp, it forwards the transaction tx on behalf of P; to Figpcer Without checking

8 As observed in [6], it is not possible to guarantee with existing constructions that at any given point in time all honest parties see exactly the same
state (blockchain) length, so each party may have a different view of the state which is defined by the adversary. However, the adversary can restrict the
view of the honest parties only by a bounded number of blocks. The parameter that defines such a bound is called windowSize.

9 We have the guarantee that any transaction (either generated by a malicious or honest party) that manages to go in buffer will eventually be
included in state.

10 1t is easy to intialize the functionlity with an arbitrary number of parties that hold an initial amount of coin. To simplify the description on the
functionality, we decided to use only one party in this phase.
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Initialization

e Parameters: the trapdoor functionality Fiap and the fee function fee.

e Send (REGISTER, Pg) to A.

o Upon receiving addrg from A, if addrg = 0*, then ignore the command and stop, else add (P, addrg) to 7.

e Initialize the functionality Figpcer With a registered party Po.

Registration

e Upon receiving (REGISTER) from a party P;, send (REGISTER, P;) to .A. Upon receiving addr; from A, if there is already an entry (P;,addr;) € T
for some P; € P, then ignore the command, else add (P;, addr;) to 7)), register P; to Fiepcer, and send (addr;) to P;.

Transactions

e Upon receiving (SUBMIT, sid, tx) from a party P;, parse tx as (v, addr;, addr;, aux, fee). If there exists an entry (P;, addr;) in 7 and fee > f(tx),
then continue with the following steps, else ignore the command.

- Get state and buffer from Figpcer, initialize balance <— 0 and for each tx* in buffer and in state.
- If tx* = (v*, addr;, addr, aux*, fee*), then compute balance < balance — v* — fee*.
- If tx* = (v*, addr*, addr;, aux*, fee*), then compute balance <« balance + v*.
- If balance > v + f(fee), then send (SuBMIT, sid, (v, addr;, addr;, aux, f(fee))) to Figpger ON behalf of P;.

Trapdoor input Upon receiving (SUBMIT-TRAPDOOR, sid, tx, P;) from Firp, send (SUBMIT, sid, tx) to Figpcer ON behalf of P;.
Getting state and other commands

e Upon receiving (READ, sid) from P;, send (READ, sid) to Figpcer- Upon receiving (READ, sid, state), forward (READ, sid, state) to P;

e Upon receiving any other input from an honest party P; € P (resp. from .A), forward it to Figpger On behalf of P; (resp. .A). Upon receiving a
reply to a command sent on behalf of a party P; (resp. from .A), forward it to P; (resp. .A).

Fig. 2. This ledger allows exchanging coins of type E between parties.

anything about tx in terms of balances and fees. This simple mechanism allows Fr.jgpcer to interact with other ideal func-
tionalities when required. This becomes particularly helpful when we want to enhance the behavior of Fr_gpger With smart
contracts, and in the next section we show how to do that. For all the other input commands, Fr_gpcer just acts as a proxy
between Figpcer and its external interface. To conclude the description of Fr.1gpcer, We need to specify how Blockify works.
Blockify is a simple procedure that takes as input the next block to be added to the state, and outputs a concatenation
of the transactions contained in the block. This means that the state of Figpcer (Which will correspond also to the state
of Frepcer) 1S represented by just list of transactions. We do not specify how ExtendPolicy works, as any realization of
ExtendPolicy can be used in our formalization. We provide a more detailed description of Fr-igpcer in Fig. 2. We note that
Friepcer does not specify who gets the fee, but this would not be difficult to do since Figpcer keeps track of the party
that generated each block. Hence, it would be easy to modify Fr-1gpcer to keep track of which party gets the fees of the
transactions that constitute a block. Another simplification we make is to consider fixed relation between the cost required
to execute a transaction (or call a contract as we will see) and the complexity of the transaction (or the contract call). In
system like Ethereum this is not the case, as the fee that a party pays depends on the complexity of the transaction (which
determines the amount of gas) and on the gas price. This means that how fast and if a transaction will be executed depends
on the product of gas price and amount of required gas. We could modify Fr.1gpcer (and the other functionalities we will
consider) to accommodate for an additional mechanism that allows the adversary communicating to the functionality the
average gas price, in such a say that we can use this gas cost to decide whether to accept or reject a transaction. However,
since these aspects are not relevant for our results, to simplify the description of our already involved ideal functionalities,
we have decided to not include such mechanisms in our model.

5. The smart-contract-enabled transaction ledger

In this section we define the functionality Fysc.iepcer that, in addition to Frigpcer, captures a ledger that enables a
large class of smart contracts. Frsc-Lepcer internally runs Frpgpcer and a smart contract (formally defined by means of an
additional ideal functionality). The contract has a state that can be updated by any party that can afford to pay a fee (that
depends on the contract and on the input). After any valid update, the new contract state is pushed onto the Fr.gpcer’S
state. As we have alluded, in order for the contract to freely interact with Frepeer, the parameter Fiap 0f Fr-Lepeer 1S set
to be equal to the identity of Frsc.iepcer, Which will act as a bridge between the contract functionality and Fr_igpcer. TO
simplify the description of the functionality, we describe the case where only one smart contract is running; however, it is
easy to extend the functionality to the case where multiple smart contracts are running at the same time. A smart contract
Fsc is a small functionality managed by JFrsc.iepger that maintains its own state cstate. The behavior of Fgsc is fully
determined by three procedures: fcree, fiiter aNd firans.

e fcree (the contract fee function) takes as input the contract state cstate, the ledger state of Fr_gpcer, @ transaction,
(which represents the input received by the contract’s caller) and the fee specified in the input transaction. If the fee
indicated is sufficient to update the contract state, then fcree returns the actual fee required to run the contract (which
could be less than the fee indicated by the contract’s caller). If the submitted fee is not sufficient, then the function
returns L.

o firans (the state transition function) takes as input the payload of the input transaction, Fr.gpcer’S State, and the contract
state cstate, and returns a new contract state updated according to its inputs.
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Parameters. Minimum fee Fee for contract calls.
Initialization. Initialize the contract functionality Fsc with identifier Fsc.id, and Fr.igpcer With Firap = Frsc-Lencer-id-
Registration
e Upon receiving (REGISTER) from a party P; register P; to Fr-Lgpcer thus obtaining addrl?E and send addrx?E to P;.
Transactions
e (Standard transaction). Upon receiving (SUBMIT, sid, tx) from a party P;, parse it as (v,addrl.E, addr']?:, aux, fee, type) and define tx’ :=
(v, addrf, addrjE, aux, fee).
If type = E, then send (v, addr’, addr;?, 1, fee) to Frrepcer ON behalf of P;.
If type = SC and fee > Fee, then:
- Get the state and the buffer of Fr_gpcer and check if P; has at least fee coins. If this is not the case then reject the command. Otherwise,
continue as follows.
- Send (suBMIT, sid, P;, tx/, state) to Fsc.
- Upon receiving (Flage, cstate, actualfee) from Fsc, define tx® := (0,addr?, 0%, (Flagc, aux, cstate, Fsc.id), actualfee) and send
(SUBMIT-TRAPDOOR, sid, tx®, P;) to Fr.Lepcer-
Getting states
e Upon receiving (READ, sid, type) from P; forward the command (READ, sid) to Frrgpcer ON behalf of Pj.
e Upon receiving state from Fr-igpcer, if type = E then:
- Initialize an empty list stateF.
- For each tx € state such that tx = (v, addr?, addr?, 1, fee), add tx to statef.
- Return state®.
If type = SC, then send (FILTER, sid, state) to Fsc, and send to P; what Fsc returns.

Fsc abstraction
e Fsc is initialized with the fee function fcree, the state-transition function fians, the filtering function fiier, and an initial contract state cstate.
e Upon receiving (SUBMIT, sid, P;, tx, state):

- Parse tx’ as (v,addrf,addr’f,aux, fee).

- Check if (fee — Fee) is sufficient to run the contract, computing feeSC « fcree(cstate, state, aux, fee — Fee) (i.e. feeSC represents the
actual fee required to run the contract or L if fee is not sufficient to update the contract’s state).
- If feeSC = L, then return (ko, cstate, fee).
- Otherwise, compute cstate <« fyans(aux, state, cstate) and return (ok, cstate, feeSC 4+ Fee)
e Upon receiving (FILTER, sid, state), return frr(state, cstate).

Fig. 3. This ledger tolerates any type of contract abstracted by Fsc.

o fiiter (the filtering function) takes as input 1) the view that the contract’s caller has of Frgpcer’s State state; and 2)
the contract state, and returns an arbitrary sub-set of the information contained in state;.

The functionality Frsc.iepcer i also parametrized by Fee, which represents the minimum fee that a party should pay
in order to query a contract (to update the contract the fee might be higher). In more detail, Frsc.rgpcer accepts transac-
tions with the following format: tx := (v, addr?, addr]E-, aux, fee, type), where type € {E, SC} denotes whether the transaction
should be treated as a normal transaction or as a call to the contract. In particular, Frsc-tepcer Checks whether type = E
or type = SC. In the former case, Frsc.Lepcer Temoves the field type from the transaction and forwards it to JFr-[epces-
In the latter, Frsc-iepcer Checks that fee > Fee and that the issuer of the transaction has at least fee coins of type
E in its wallet.'’ If this check is successful, then Fysc.izpcer forwards the transaction and the current ledger state to
Fsc, which does the following: It uses fcree to check whether the fee specified in tx minus the fee required to query
the contract (denoted with Fee) would be sufficient to update the contract state using the input aux. If fcree returns
1, then the contract returns (ko, cstate,fee). Else, if fcree returns feeSC, Fsc computes the updated contract state
cstate by running fyans on input the payload of tx (denoted with aux), the ledger state, and the contract state, and
returns (ok, cstate, feeSC + Fee). Frsc-Lepcer UpON receiving (Flage, cstate, actualfee) from Fsc, constructs and sends to
Fr-Lepcer the transaction tx® := (0, addr?, 0*, (Flagc, aux, cstate, Fsc.id), actualfee) using the command SUBMIT-TRAPDOOR,
where we recall that aux is the payload of tx, Flagc € {ok, ko}, and Fsc.id is the identifier of SC. We note that the trans-
action tx® is a standard Fr.gpcer transaction that contains in its payload the updated state of the contract (or the old state
if the fee was not sufficient), the input used to eventually update the contract’s state, and the fee actualfee such that:

e if Flagc = ko (i.e. the fee specified by the contract’s caller was not sufficient to update the contract state) then actualfee =
fee
e if Flagc = ok (i.e. fee was sufficient to update the contract’s state) then actualfee < fee.

Note that it might be that actualfee < fee in the case where the fee required to update the contract state is less that fee.
That is, Frsc-Lepcer ONly charges the contract caller exactly for the fee required to run the contract. When fee is insufficient
to complete execution of the contract, the issuer of the transaction pays the full amount of fee even though no change
to the contract state is committed. (This is consistent with Ethereum and other blockchains that support Turing-complete
smart contracts.) We refer to Fig. 3 for a more detailed description of Frsc.repcer and for the abstraction of Fsc.

" Frscuepcer can do this check since it has full access to Fr.gpeer’s state and buffer.
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Initialization. The contract is parametrized by the functions fg,. firans, and f., described below. cstate consists of the following components:
e Constants: y,addrj, Fee, identifier 7g.id.
e Empy set token-set.
Functions and helper procedures
fuans(aux®, state, cstate)
Add , aux® to token-set and return cstate.
fcree(cstate, state, tx, fee)
Define and initialize tfee < 0.
Parse tx:= (0, addr?, 0*, aux®, fee).
Parse tx" as (v,addr], addrs, id) and compute tfee < tfee + Fee|v|.
If tfee > fee, then return L; otherwise, return tfee.
fiter(cstate, state)
o Initialize the empty list state” and set temp-buffer < token-set.
e For each tx® = (0%, addr?, 0*, aux®, fee®) in state where aux® = (ok, (v*, addr}, addrs*, id}), cstate*, Fo..id):
- Define aux:= (v*, addry, addrs*, idf).
- If verify(aux, state”) =1 and aux € temp-buffer, then add aux to state” and remove aux from temp-buffer.
e Return (READ, sid, state).
verify(aux®, stateT)
o Parse aux® as (vT, addr], addrs, id])
o If addrj = addr], then initialize balance < y; otherwise, balance < 0.
e For each tx* = (v*, addr}, addrs*, id}) in state™:
- If addr* = addriT, then compute balance «— — 3", v*[k]
- For each k such that addrs*[k] = addr,.T, compute balance < +v*[k].
o If 3", vT[k] > balance then return 1 else return 0.

Fig. 4. Smart contract for the creation of a new token. The fee required to run the contract is computed by multiplying the number of token transactions
encoded in the payload of the input tx and Fee.

6. The EET ledger

We can now define the functionality FEET . FEET ~internally runs Frsc.iepcer, Parametrized by a contract Fe. For
maintains a token T, and allows parties to issue transactions with respect to such a token. Any party that has some tokens
can sent it to another party by querying the contract .F;TC. However, invoking the contract requires payment of a fee in the
native currency E, even if the transaction involves only tokens. To mitigate this problem, our functionality allows a sender
P; to send tokens to another party P;, even if P; does not have native coins. In particular, the sender will pay a fee of
at least del-fee tokens T to a special party M, called the intermediary, and M will pay the fee in E on the behalf of the
sender (del-fee is a fixed amount of tokens that parametrizes our functionality). The functionality guarantees that either
the transaction by P; becomes part of the ledger state and M gets a fixed amount of tokens del-fee, or nothing happens.
We propose a more detailed description of ]-'LEE%EER and ]-'gc to Figs. 5 and 4, and provide a more high-level description

of those functionalities below. The functionality fLEEE)TGER, interacts with a set of parties, with the adversary, and with a
special party that we denote with M (the intermediary), and manages the token wallet addresses of the registered parties.
We assume that a party Pg initially holds all of the available tokens.!> We denote the token wallet addresses of Py and
M with addrg and addry; respectively. Any time .FLEEE)TGER receives a registration command from a party P;, it registers P; to
the ledger Frsc.Lepcer, thus obtaining addrf. It then generates a token wallet address addr] and returns (addrf, addr?) to P;.
(addr?, addr?) represents respectively the wallet addresses for the native currency E and for the token T. }'LEE%TGER tolerates
two types of transactions: standard and delegated transactions. Any registered party P; can issue a standard transaction

txT := (v, addrf, addr], addr}",fee), where v denotes the amount of tokens, (addr?, addr]) are the addresses of the sender,

addr]? is the token wallet address of the receiver, and fee is the fee expressed in coins of type E. .FLEEE)TGER takes txT and

creates a transaction tx® for the ledger Frsc.iepcer that 1) has as a sender address addr;E, 2) has a fee fee, and 3) calls the

contract Fg. and includes in its payload what we call a token transaction tx’ := (v, addr], addr}f).13 FEET . then forwards

tx® to the ledger Frsc-Lepcer ON behalf of P;. The contract f;fc maintains a set token-set as part of its state, and if the fee
specified in tx® is sufficient, it updates its state by adding tx’ to token-set and returns (ok, cstate, actualfee). Note
that this means that the tx’ is part of the contract state and appears in the Frsc_iepcer’S State by definition. To complete
this first part of the description of F]EEIIE)EER’ it remains to specify the function ffer (and fcree, Which we describe later in
this section) of }'STC. fiiter Teceives as input the contract state and the state of Frsc.iepcer (Which we denote state) and, for
each transaction tx in state such that tx® := (0%, addr?, 0*, aux®, fee®) (where aux® = (ok, tx/, cstate*, Fo..id)), adds
tx’ to state” if and only if:

12 As before, we could have multiple addresses having different amounts of tokens, but for simplicity, we assume that only one party initially holds tokens.
13 The payload also includes an identifier chosen by the adversary, which we omit in this informal description.
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Initialization
o Initialize an empy set 7.
e Send (REGISTER, Pg) to A.
e Upon receiving aoIdrgr from A, add (Po, addrg) to 7T, run the initialization procedure of J—';FC, and initialize the wrapped functionality Frsc-Lepcer
with the contract Fg, using identifier ]-'STC.id
e Send (REGISTER, M) to A.
o Upon receiving addry, from A, add (M, addry) to 77.
Registration
e Upon receiving (REGISTER) from a party P;, send (REGISTER, P;) to A.
e Upon receiving addriT from A, if there is already an entry (Pj,addriT) e TT for some P; € P, then ignore the command; otherwise, add
(Pi,addr]) to 7T and register P; to Frsc-Lepcer, thus obtaining addrf, and send (addr?, addr]) to P;.
Transactions
e (Standard transaction). Upon receiving (SUBMIT, sid, tx") from a party P;, parse txT as (v, addrf, addr], addr?,addr}r,fee, Coin).
If Coin =T, and there exists an entry (P;,addr) in 77, and fee > 2Fee, then send (REQ-TRX, P;, tx") to A and, upon receiving id;, define
aux := (v, addrf, aderT-, idj) and tx = (0, addrF, 0%, aux, fee, SC).
If Coin = E and fee > Fee, then define tx:= (v, addrf, addr?, L, fee, )
e Send (SUBMIT, sid, tx) to Frsc-Lepcer ON the behalf of P;.
o (Delegatable transaction). Upon receiving (SUBMIT-DELEGATION, sid, txT) from a party P;, parse tx® as (v,addr}",addr},feeT). If there exists an
entry (P;, addr?) in 7T and fee™ > del-fee, then do the following, ignoring the command otherwise:
- Send (REQ-TRX-DEL, P;, tx") to A and, upon receiving id;, define aux := ([v, fee™], addr], [aderT-,addr'hF,l], id;).
- If M is honest, then define tx := (0, addry, 0*, aux, 3Fee, SC) and send tx to Frsc.Lepcer 0N behalf of M. If M is corrupted, do the following:
- Send (DELEGATE, aux, P;) to M.
- If M replies with (REJECT, P;), then send REJECT to P;. If M replies with (ACCEPT, P;, fee), then define tx := (0, addry, 0*, aux, fee)
and send tx to Frsc-Lepcer ON behalf of M.

Getting states
e Upon receiving (READ, sid, Coin) from P;, forward the command to Frsc-iepcer ON behalf of Pj.
e Upon receiving (READ, sid, state), forward it to P;.
Forwarding queries to Frsc.Ledger-
e Upon receiving (INNER-INPUT, sid, m, P;) from A, if P; is an honest party, then ignore the command. Otherwise, if P; is corrupted, send m to
Frsc-Lepcer ON behalf of P;.
e Upon receiving any other input from an honest party P; € P (resp. from .A), forward it to Frsc-repcer ON behalf of Pj.
e Upon receiving a reply to a command sent on behalf of a party P; € P (resp. from .A), forward it to P; (resp. .A).

Fig. 5. This ledger allows parties with no coins of type E to post transactions using tokens of type T (we call this transaction a delegated transaction).
the case where M is honest and has enough coins of type E to pay the fee, the delegated transactions are always included in the ledger state.

n

1. tx’ appears in token-set (which is part of the token state).
2. tx' = (v, addr?, addr]T) and the sum of tokens in the token transactions stored so far in stateT with receiver address

addr;f, minus the sum of coins in the state with sender address addr?, is greater than or equal to v.

]-'LEE%TGER captures the main characteristics of a token, relying on the smart contract to filter out invalid transactions.
Unfortunately, the mechanism that we have discussed so far has a major drawback: if a party wants to issue a token
transaction, they must have the required amount of coins of type E to query the contract. To get rid of this requirement,
FhEr .« admits what we call delegated transactions. A party that wants to issue a delegated transaction submits tx” :=
(v,addriT,addr]T,feeT) to 'FIEE%-E.ER‘ which in turns asks the special party denoted M to pay the fee in E in exchange of (at
least) del-fee tokens T, which will be taken from P;’s account. If M is honest and fee® > del-fee, (where we recall that
del-fee is the minimum fee required for the delegation to be considered,) then ]-"EE']E)EER submits a call to the contract }—sTc on
behalf of M with the input (the payload of the transaction) aux := (([v, fee™], addr;, [addr]T., addry;])). If M has enough coins
of type E to afford the call to ]-'STC, then aux will become part of the contract state. To accommodate for this special input,
we modify the filtering function fijer of }—sTc in such a way that the value aux can also be understood as two atomic token

transactions: the first moves v tokens from the wallet address addr;F to the wallet address addr]T., and the second moves fee”
from the wallet address addriT to the wallet address addry,. It remains to specify how the contract computes the fee. The
function fcree charges Fee coins of type E for each token transaction encoded in aux (the input that is used to update the
contract state). Hence, for a non-delegated token transaction, fcree Would return Fee, and for a delegated token transaction,
it would return 2Fee. In addition to this fee, we need to consider the fee required simply to query the contract. Hence, the
total cost of a non-delegated transaction would be of 2FeeE, and the total cost of a delegated transaction would be 3FeeE.
We stress that this is a simplified method of computing the fee, and that a more fine-grained calculation could be used to
capture what actually happens in the real world.

7. Our protocol: how to realize Ff5T

Our protocol is described in the Fr.repcer-hybrid world, where Frigpcer is parametrized by Fiap = L, and the fee
function f which, upon receiving an input transaction tx®, does the following: 1) Parse tx as (v, addr;, addr;, aux, fee);
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e The issuer Pg register to Fr.repcer, thus obtaining addrg, and computes (skg, addrg) i Kgen(1*).
e The intermediary M registers to Fp_iepcer, thus obtaining addry, and computes (ski;, addr;\fﬁ) i Kgen(1*).

. . . - s
e Upon receiving (REGISTER, sid), the party P; sends (REGISTER, sid) to Fr-igpcer, thus obtaining addr;, and computes (skiT, addr,.T) < Kgen(1%).
e P;, upon receiving (SUBMIT-DELEGATION, sid, tx7T), parses tx” as (v, addr?,addr}",feeT) and does the following:

1. If feeT < del-fee, then ignore the command. Otherwise, continue.
2. Sample id & {0, 1}* and define m := (([v, fee], addr], [addr?, addry]), id).

3. Compute o & Sign(sk?,m) and send (delegate, m, o;7) to M.
e M, upon receiving (delegate, m,o,-T) from P;, does the following:

. Parse m as (([v. fee™], addr], [addr7, addry 1), id).

. If Ver(addrf,m,0;") =0 or fee™ < del-fee, then ignore the message. Otherwise, continue.
. Define txy = (0, addmy, 0*, (m, o7, 3Fee).

. Send (ACCEPT, P;) to P; and (SUBMIT, sid, txy) t0 FT_Lepcer-

AW N -

e Pj, upon receiving (SUBMIT, sid, txT), parses tx" as (v, addr;, addr], addr;, addr}", fee, Coin) and does the following:
- If Coin=T and fee > 2Fee then:
* Sample id & {0, 1}*, define m := (v, addr}, addrj?), id) and compute o7 < Sign(sk,m).
* Define tx = (0, addr;, 0*, (m, o), fee).
- If Coin=E and fee > Fee then define tx := (v, addr;, addr;, L, fee).
- Send I = (SUBMIT, sid, tx) t0 FT-Lepcer-
e Upon receiving (READ, sid, type), P forwards the command (READ, sid) t0 Fr-iepcer-
e Upon receiving state from Frgpeer, if type = E, then P does the following:
- Initialize an empty list state®.
- For each tx € state such that tx = (v, addr?, addr;?, 1,fee), add tx to stateF.
- Return (READ, sid, state®).
Otherwise, P does the following:
- Initialize the list state™ with (y,0* addro,0) and, for each tx® = (0,addrf, 0% aux® fee) in state where aux® =
(VT addr], addrs, id™, o;), do the following:
- If checkvalidity(aux®, state™) =1, then add (v', addr], addrs, id”) to stateT.
- Return (READ, sid, stateT).

Fig. 6. Our protocol.

2) if aux = L, then return Fee; 3) Otherwise, return Fee + |aux|/kFee. In a nutshell, the fee required for a transaction to
settle in the Fr.rgpcer’s State is Fee, plus and additional Fee for each k bits contained in the payload, where Fee and k are
part of the description of f. We provide the formal description of our protocol in Fig. 6. At a very high level, the protocol
works as follows: Each party registers with Fr.izpcer and runs Kgen(1*) to obtain (sk}r, addriT), where addriT represents the
token wallet address. A party P; that wants to send vT to P; and has at least 2Fee coins of type E can do so by issuing a
transaction for Fr-rgpcer that contains in its payload aux := (v, addr], addr]T, id, o;7), where id is a random value, and o;" is
a signature of (v, addriT, addr’f, id) that verifies under the verification key addr;f. We require P; to pay a fee of at least 2Fee
because we assume that, in this case, |aux| = k. When an honest party P; receives the command (READ, sid, T), they shall
retrieve Fr.repcer’S State, filter out the payload of each transaction (thus obtaining only the information related to token
transactions), and output only the valid token transactions. A token transaction (v, addr?, aderT, id, aiT) is valid if addriT has
received at least v tokens, aiT is a signature of (v, addr,.T, addr'f, id) that verifies under the verification key addr,.T. and there
does not exist any other token transaction with the same sender address and identifier id. Our protocol allows any party
P; that does not have coins of type E to delegate the payment of the fee to M, paying M with at least del-fee tokens T.
To do so, P; creates m := ([v, del-fee], addr], [addr'f,addr{,,], id) and signs it, thus obtaining o;". P; then sends (m, o) to
M. The honest M then creates a transaction for Fr_gpger that includes (m,a,.T) in its payload and has a fee of at least
3Fee, and submits it. We require M to pay a fee of at least 3FeeE because we assume that, in this case, the payload of
the transaction is 2k bits (as, indeed, the payload of this type of transaction contains more information). The honest M
would immediately create and submit such a transaction, whereas the corrupted M might decide when (and if) to create
the transaction. We require each token transaction to contain a random identifier in order to avoid replay attacks; without
such an identifier, the adversary could take the payload of any transaction from Fr-igpcer’s State, (for instance, the payload
of a transaction that moves v tokens from the address addr;F of an honest party to some potentially adversarial address),
copy this payload, and use it to generate a new transaction for Fr_gpger. In this way, the adversary could empty the token
wallet of the honest party without their knowledge. The other advantage of using identifiers is that an honest party that
has delegated a transaction to a malicious intermediary can at any point decide to withdraw the delegation. Indeed, if M is
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—| checkvalidity l

checkvalidity(aux®, stateT)
e Parse aux® as (v7, addr!, addrs, id], 0;7) and define m := (v, addr, addrs, id7).
If Ver(addr], m, o) =0, then return 0. Otherwise, continue.
Initialize balance < 0.
For each tx* = (v*, addr}, addrs*, id}) in state™:
- If addr* = addr] and id} =id, then return 0.
- If addr* = addr], then compute balance < — Y, v*[k].
- For each k such that addrs*[k] = addriT, compute balance < +v*[k].

o If Y vT[k] > balance, then return 1. Otherwise, return 0.

Fig. 7. The predicate checkvalidity.

not responding to a party that has delegated the transaction m := ([v, del-fee], addriT, [addr]T., addry], id) for a long time, and
m does not appear in the payload of any transaction that appears in the ledger’s state, then P; can withdraw the delegation
by submitting (or delegating) a token transaction with the same identifier; then, at most one of these transactions will be
valid and accepted by the functionality. We refer to Fig. 6 for the formal description of IT™e", (See Fig. 7.)

Constructions and experimental evaluation We have already highlighted how our construction works in Section 2.2. We com-
pared our system with GSN and with users that make only self-funded transactions (i.e., user that do not want to interact
with the intermediary and have his own Ether to afford for the token transaction). Our experiments indicate a 4-5x over-
head in gas consumption when using the GSN as opposed to using our EET contract. This is the cost of the complexity of
the GSN, a cost that is very unattractive for projects that do not require the genericity of the GSN. We also show that our
contract consumes less than twice the gas of a standard self-funded token transaction, which we believe is a reasonable
compromise for the added user experience. We refer the reader to the next section for more details.

8. Implementation, benchmarks, and comparisons

We implemented our EET via an Ethereum smart contract, measured its gas consumption, and compared it with other
approaches. Our EET conforms to the ERC-20 standard. In its testing mode, our contract has the added functionality of
allowing unlimited minting of new tokens by any account. This features is embedded for ease of testing rather than for
actual use, and should be disabled when the EET is in use. We wrote our contracts in Solidity 0.6.10, and tested them using
Hardhat 2.0.8, a Javascript and TypeScript framework for Ethereum smart contract development and testing. We tested
only on a locally-running test network, not on any live public network; however, since the Hardhat test node is a faithful
implementation of the Ethereum protocol and virtual machine, this should not affect the amount of gas used on any given
contract invocation.

To compare the gas usage of our EET with that of the Gas Station Network (GSN), we deployed the GSN infrastructure
contracts (most notably the ‘RelayHub’ contract) to our local test network and ran a local relay server. The OpenGSN project
provides a testing infrastructure that automatically deploys the required contracts and runs a local relay server; our tests
used version 2.1.0 of the OpenGSN repository. The experiment code itself is written in TypeScript, using the Ethers 5.0.26
library for blockchain and contract interaction.

For each of our evaluation and comparison experiments below, we first select sender, receiver, and other relevant ad-
dresses randomly (without replacement) from a pool of 20 addresses. After executing the relevant transaction, we record
the amount of gas consumed by the transaction. For validation purposes, we also record the Ether and token balances of
each address before and after the transaction, to ensure that the correct amounts are transferred. Each experiment was run
1000 times, selecting a new set of addresses for each run.

8.1. EET vs. GSN vs. standard ERC-20 token
For our first comparison, we ran the following three experiments:

o Self-funded token transactions: These experiments test the gas usage of typical, non-delegated use of our EET contract,
i.e. by a user that does not want to interact with the delegation server (which is denoted with M in our formalization)
and has his own sufficiently funded Ethereum address. The sending address transfers some amount of tokens to the
receiving address, submitting the transaction themselves and using their own Ether to pay the transaction fee. In this
case, the relevant addresses are the sender and the receiver.

o Delegated token transactions: These experiments test the gas usage of our EET delegation mechanism. The sending
address transfers some amount of tokens to the receiving address, but a third delegate address submits the transaction
and pays the ether fee, automatically (by contract conversion and execution) receiving an equivalent amount of tokens
from the sending address in the process. In this case, the relevant addresses are the sender, the receiver, and the delegate.
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Fig. 8. EETs vs GSNs.

e GSN token transactions These experiments test the gas usage of delegation through the GSN. The sending address trans-
fers some amount of tokens to the receiving address, but delegates to the locally-running relay server, which submits the
transaction and pays the ether fee, receiving a repayment of ether from the token contract (indirectly, from the token
contract’s deposit with the ‘RelayHub’ contract). The ‘EETPaymaster’ contract then extracts an equivalent token fee from
the sender. In this case, the relevant addresses are the sender, the receiver, and the relay server address. However, we
only have control over the sender and receiver addresses; the relay server’s address is determined by the GSN testing
infrastructure and cannot be easily changed.

The results of our experiments are summarized in Fig. 8. As one can observe, using the ethereless functionality (delega-
tion mechanism) of our contract consumes less than twice the gas of a standard self-funded token transaction, which we
believe is a reasonable compromise for the added user experience. In contrast, using the GSN incurs a 4-5X increase in gas
usage as compared to a self-funded transaction. This is the cost of the complexity of the GSN, a cost that is very unattractive
for projects that do not require the extreme decentralization and genericity of the GSN.
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Appendix A. Native vs. contract-based tokens
The experiments discussed below, use the same software and infrastructure setup as the first set (but different contracts).

o Overhead of Native Tokens: Adding native support for tokens on a cryptocurrency blockchain following the PPU principle
means that every (even non-token) transaction processing will be slightly more (gas-)expensive than a transaction that
does not support tokens. The reason is that miners/minters will at the very least need to check whether a transaction is
native cryptocurrency (in which case it is added to a block as is) or a token transaction (in which case they will need to
calculate if they are willing to fund its fees and compute the modified transaction to send to the network. As discussed,
estimating this overhead in currently infeasible in lack of a relevant platform. Instead, here we attempt a lower-bound of
this overhear, if it would be implemented in Ethereum. To this direction we implemented a simple contract If£Noop wich
performs a conditional branch on the value of an input byte—corresponding to the check of whether it is a token or native
cryptocurrency transaction—and then exits in either case of the branch. This approximates the overhead of a single ‘if’
statement, followed by native execution of either an ether or token transfer. We also implemented an equivalent contract,
IfNoopYul, in Yul, which omits the overhead of setting up the Solidity runtime and performing method dispatch, and
is therefore potentially a closer approximation of the true overhead.

e Overhead of Smart-Contract Tokens: Our second experiment considers a contract TfFull which performs a conditional
branch on the value of an input byte, and in one case of the branch transfers the ether value of the calling transaction
to an address specified in the remainder of the input data. This approximates the overhead of a contract implementing a
rough equivalent of native tokens, i.e. handling both ether and token transfers. (The case of transferring tokens is already
simulated by the self-funded transaction experiments above; the leading ‘if’ statement can be assumed to be simulated
by the Solidity method dispatch at the beginning of the contract execution.) As above, to get a closer estimate we also
implemented a contract ITfFullYul in the lower level EVM language Yul with the same functionality as TfFull.

For each of the above contracts, we submitted identical input (a 1 byte, indicating an ether transfer for the contracts that
perform it, and a fixed address to transfer to) 100 times over, measuring the gas usage for each. Unsurprisingly, since the
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Fig. A.9. Native vs Smart-Contract-Simulated Tokens.

contracts are deterministic and do not store or modify any state, each has a constant gas usage. Our experiments summa-
rized, in Fig. A.9, demonstrate that even when only charging for the if-branch in a native implementation—which is clearly
a favorable lower-bound on the overhead of every transaction on a native-tokens-enabled blockchain—the gas overhead of
emulating tokens via a smart contract is ~ 33%. We believe that this overhead is acceptable given the functionality and
adaptability offered by smart contracts as opposed to natively-hardwired validation.

Appendix B. Functionalities with dynamic party sets

UC provides support for functionalities in which the set of parties that might interact with the functionality is dynamic.
We make this explicit by means of the following mechanism, (which we describe almost verbatim from [6]): All the func-
tionalities considered here include the following instructions that allow honest parties to join or leave the set P of players
that the functionality interacts with, and inform the adversary about the current set of registered parties:

- Upon receiving (REGISTER, sid) from some party P; (or from .4 on behalf of a corrupted P;), set P :=P U {p;}. Return
(REGISTER, sid, p;) to the caller.

- Upon receiving (DE-REGISTER, sid) from some party P; € P, the functionality updates P := P \ {P;} and returns
(DE-REGISTER, sid, P;) to P;.

- Upon receiving (1S-REGISTERED, sid) from some party P;, return (REGISTER, sid, b) to the caller, where the bit b is 1 if and
only if P; € P.

- Upon receiving (GET-REGISTERED, sid) from .4, the functionality returns the response (GET-REGISTERED, sid, P) to A.

In addition to the above registration instructions, global setups (i.e. shared functionalities that are available both in the
real and in the ideal world and allow parties connected to them to share state [22]) allow UC functionalities to register
with them. Concretely, global setups include, in addition to the above party registration instructions, two registration/de-
registration instructions for functionalities:

- Upon receiving (REGISTER, sid¢) from a functionality F with session-id sid, update F := F U {(F, sid)}.
- Upon receiving (DE-REGISTER, sid¢) from a functionality F with session-id sid, update F := F{(F, sid)}.
- Upon receiving (GET-REGISTEREDF, sidg) from A, return

(GET-REGISTEREDF, Sidg, F) to A.

We use the expression sid¢g to refer to the encoding of the session identifier of global setups. By default (and if not
otherwise stated), the above four (or, in the case of global setups, seven) instructions will be part of the code of all ideal
functionalities considered in this work. However, to keep the description simple, we will omit these instructions from the
formal descriptions unless deviations are defined.

Appendix C. Modeling time and clock-dependent protocol execution

Katz et al. [21] proposed a methodology for casting synchronous protocols in UC by assuming they have access to an
ideal functionality Fciock, the clock, that allows parties to ensure that they proceed in synchronized rounds. Informally, the
idea is that the clock keeps track of a round variable whose value the parties can request by sending (CLOCK-READ, sid¢) to
Ferock- This value is updated only once all honest parties send the clock a (CLOCK-UPDATE, sid¢) command. We lift this idea
to a shared setup: the global clock functionality Feiock iS @ shared clock that may interact with more than one protocol
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_[ Functionality Fjocx ]

The functionality manages the set P of registered identities, i.e. parties P = (pid, sid). It also manages the set F of functionalities (together with
their session identifiers). Initially, 7 :=¢ and F := .

For each session sid, the clock maintains a variable 7sg. For each identity P := (pid, sid) € P, it maintains a variable dp. For each pair (F,sid) € F, it
maintains a variable d(r sig). All integer variables are initially 0.

Synchronization:
e Upon receiving (CLOCK-UPDATE, sid¢) from some party P € P, set dp := 1, execute Round-Update, and forward (CLOCK-UPDATE, sid¢, P) to A.
e Upon receiving (CLOCK-UPDATE, sidc) from some functionality F in a session sid such that (F,sid) € F, set d(r sig) := 1, execute Round-Update,
and return (CLOCK-UPDATE, sid¢, F) to the sending instance of F.
e Upon receiving (CLOCK-READ, sid¢) from any participant (including the environment on behalf of a party, the adversary, or any ideal — shared or
local — functionality), return (CLOCK-READ, sidc, Tsig) to the requestor, where sid is the sid of the calling instance.
Procedure Round-Update: For each session sid do: If d(r sig) := 1 for all 7 € F and dp =1 for all honest parties P = (-, sid) € P, then set Tsg := Tsig+ 1,
and reset d(r siq) := 0 and dp := 0 for all parties P = (-, sid) € P.

Fig. C.10. The shared/global clock functionality. We assume lazy creation of variables, i.e. a variable is only created once it is needed.

session. The global clock provides a means for parties to synchronize each of their sessions.’® The clock can also be used
as a local (not shared) hybrid functionality, in which case the number of sessions it will synchronize is simply one. The
description is given in Fig. C.10.

Given a clock, the authors of [21] describe how synchronous protocols can maintain their necessary round structure in
UC: for every round p, each party first executes all of its round-p instructions, and then sends the clock a CLOCK-UPDATE
command. Subsequently, whenever activated, it sends the clock a cLock-READ command and does not advance to round p+1
until it sees that the clock’s variable has been updated. This ensures that no honest party will start round p + 1 before every
honest party has completed round p. In [23], this idea was transfered to the (G)UC setting by assuming that the clock is a
global setup. This allows for different protocols to use the same clock, and this is the model we will also use here.

As argued in [21], in order for an eventual-delivery (aka guaranteed termination) functionality to be UC-implementable
by a synchronous protocol, it needs to keep track of the number of activations that an honest party gets, so that it knows
when to generate output for honest parties. This requires that the protocol itself, when described as a UC interactive Turing-
machine instance (ITI), has a predictable behavior when it comes to the pattern of activations that it needs before it sends
the clock an update command. We capture this property in a generic manner in Definition 2 (the content of this section
and of Appendix D are taken almost verbatim from [6]).

To follow the definition, recall the mechanics of activations in UC. In a UC protocol execution, an honest party (ITI) gets
activated either by receiving an input from the environment, or by receiving a message from one of its hybrid-functionalities
(or from the adversary). Any activation results in the activated ITI performing some computation on its view of the protocol
and its local state, and ends with the party either sending a message to some of its hybrid functionalities, sending an output
to the environment, or sending no message at all. In any of these cases, the party loses the activation.'®

For any given protocol execution, we define the honest-input sequence Zy to consist of all inputs that the environment
gives to honest parties in the given execution, in the order in which they were given, along with the identity of the
party who received the input. For an execution in which the environment has given m inputs to the honest parties in
session sid in total, Zy is a vector of the form ((x1,idy),..., (Xm,idm)), where x; is the i-th input that was given in this
execution, and id; is the corresponding identity (i.e. id; = (pid;, sid) for some bitstring pid) of the party that received this
input in this session. We further define the timed honest-input sequence, denoted as f,g, to be the honest-input sequence
augmented with the respective clock time at which each input was given. If the timed honest-input sequence of an execution
is IIE = ((x1,1d1,71), ..., Xm, idm, Tm)), this means that ((x1, idy), ..., (Xm, idy)) is the honest-input sequence corresponding
to this execution, and for each i € [n], t; is the time of the global clock when input x; was handed to id;.

Definition 2. A F¢ occ-hybrid protocol IT has a predictable synchronization pattern iff there exists an algorithm predict-timer; (-)
such that, for any possible execution of IT in a session sid (i.e. for any adversary and environment and any choice of random
coins), the following holds: if IZ, = ((x1,id1,71), ..., (Xm, idm, Tyy)) is the corresponding timed honest-input sequence for
this session, then for any i € [m — 1]:

predict-timer; ((x1, id1, T1), .. ., (i, idi, T)) = Ti41,

where 7;41 is the clock time for this session (cf. Fig. C.10).

As we argue, all synchronous protocols described in this work are designed to have a predictable synchronization pattern.

14 The functionality presented here is different from shared clock functionalities used in prior work. We believe that the version here is closer to the spirit
of the GUC/EUC version of UC.
15 In the latter case the activation goes to the environment by default.
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Ledger Element

Description

P,H,Pps The party sets and categories: Registered, honest, and honest-but-desynchronized, respectively.

i}_} The timed honest-input sequence.

predict-time The function to predict the real-world time advancement.

state The ledger state, i.e. a sequence of blocks containing the content.

buffer The buffer of submitted input values.

pt;, state; The pointer of party P; into state state. This prefix is denoted state; for brevity.

Tstate A vector containing for each state block the time when the block added to the ledger state.

7L The current time as reported by the clock.

NxtBC Stores the current adversarial suggestion for extending the ledger state.

Validate Decides on the validity of a transaction with respect to the current state. Used to clean the buffer of transactions.

ExtendPolicy

The function that specifies the ledger’s guarantees in extending the ledger state (e.g., speed, content etc.).

Blockify The function to format the ledger state output.
windowSize The window size (number of blocks) of the sliding window.
Delay A general delay parameter for the time it takes for a newly joining (after the onset of the computation) miner to become

synchronized.

Fig. D.11. Overview of main ledger elements such as parameters and state variables.

_[ Functionality Fiedger }

Upon receiving any input | from any party or from the adversary, send (CLOCK-READ,sidc) to Feock and, upon receiving response

(CLOCK-READ, sidc, T), set 7, := T and do the following:

1. Let P C Pps denote the set of desynchronized honest parties that have been registered (continuously, with both ledger and clock) since
time 7/ < 1, — Delay. Set Pps := Pps \ P. On the other hand, for any synchronized party P € H \ Pps, if P is not registered to the
clock, then Pps U {P}.

2. If I was received from an honest party P; € P:

(a) Set I} :=Z} I, Pi, 7p).
(b) Compute
state||Blockify(N1)|| ... ||Blockify(N¢) and Tscace i= Tstatel|T), where Tf =71|..., ||71.
(c) For each BTX e buffer: if Validate(BTX, state, buffer) =0, then delete BTX from buffer.
(d) If there exists Pj € H \ Pps such that |state| —pt; > windowSize or pt; < |statej|, then set pt; :=|state] for all P, €
H\ Pps.
3. Depending on the input I and the ID of the sender, execute the respective code:
- Submitting a transaction:
If I = (suBMIT, sid, tx) and I was received from a party P; € P or from .A (on behalf of a corrupted party P;), do the following:
Choose a unique transaction ID txid and set BTX := (tx, txid, 71, P;).
If Validate(BTX, state, buffer) =1, then buffer :=buffer U {BTX}.
(c) Send (suBMIT, BTX) to .A.
- Reading the state:
If I = (ReAD, sid) is received from a fully registered party P; € P, then set state; := state|minfpt; |statey and return

(READ, sid, state;) to the requestor. If the requestor is A, then send (state,buffer, I[I) to A.
- Maintaining the ledger state: . =
If | = (MAINTAIN-LEDGER, sid, minerID) is received by an honest party P; € P and (after updating Il, as above) predict-time(IL) =
T > 11, then send (CLOCK-UPDATE, sidc) to Feiock. Otherwise, send I to A.
- The adversary proposing the next block:
If I = (NEXT-BLOCK, hFlag, (txidy, ..
(a) Set listOfTxid <« €.
(b) For i =1,...,¢, if there exists BTX := (x, txid, minerID, t;, P;) € buffer with ID txid = txid;, then set listOfTxid :=
listOfTxid||txid;.
(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (NEXT-BLOCK, ok) to .A.
- The adversary setting state-slackness:
If I = (SET-SLACK, (P;,, §E,-l), ce (P,-f,P:E,-Z)), with {P;,,..., P} gj—t \ Pps is received from the igversary A do the following:
(a) If for all j € [¢]: |state| — pty; = windowSize and pty; = Istatej;|, set pt; :=pt; for every j € [€] and return
(SET-SLACK, 0k) to .A.
(b) Otherwise, set pt;; :=|state| for all j e [€].
- The adversary setting the state for desychronized parties:
If I = (DESYNC-STATE, (P;,, stategl), . (P, stategz)), with {P;,,...,P;,} € Pps is received from the adversary .A, set
state;; == state;j for each j € [¢] and return (DESYNC-STATE, ok) to A.

(a
(b

N = (1?11,..‘,1?1[) = ExtendPoIicy(i{,,state,NxtBC,buffer,fstate) and, if N # g, set state :=

., txid,)) is sent from the adversary, update NxtBC as follows:

Fig. D.12. The ledger functionality. We write [n] to denote the set {1,...,n}.

Appendix D. The basic transaction-ledger functionality
The functionality of Fig. D.12 is parametrized by four algorithms Validate, ExtendPolicy, Blockify, and predict-time, along
with two parameters windowSize,Delay € N. The functionality manages the variables state, NxtBC, buffer, 7,

and Tseate, as described above. Initially, state := Tgrare :=NxtBC:=¢, buffer =0, t; =0. For each party P; € P the
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functionality maintains a pointer pt; (initially set to 1) and a current-state view state; := ¢ (initially set to empty). The
functionality keeps track of the timed honest-input sequence f[, (initially f[, := ¢). The functionality maintains the set of
registered parties P, the (sub-)set of honest parties H C P, and the (sub-set) of de-synchronized honest parties Pps C ‘H
(following the definition in the previous paragraph). The sets P, 7, Pps are all initially set to @. If a new honest party is
already registered with the clock at the time it is registered with the ledger, it is added to the party sets # and P, and
the time of registration is recorded. If the current time is 7; > 0, the new party is also added to Pps. Similarly, when a
party is deregistered, it is removed from P, and therefore also from Pps and H. The ledger maintains the invariant that
it is registered (as a functionality) with the clock whenever H # (. A party is considered fully registered if it is registered

with both the ledger and the clock. (Fig. C.10.)
We refer to Fig. D.12 to the formal description on how the ledger functionality deals with all the inputs it receives.
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