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Ab initio molecular dynamic (AIMD) simulations have become an important tool used in the 
construction of equations of state (EOS) tables for warm dense matter. Due to the computational 
costs only a limited number of system states conditions can be simulated, and the remaining EOS 
surface must be interpolated for use in radiation-hydrodynamic simulations of experiments. In 
this work we develop a thermodynamically consistent EOS model that utilizes a physics 
informed machine learning approach to implicitly learn the underlying Helmholtz free-energy 
from AIMD generate energies and pressures. The model, referred to as PIML-EOS, was trained 
and tested on warm dense polystyrene producing a fit within a 1% relative error for both energy 
and pressure and is shown to satisfy both the Maxwell and Gibbs-Duhem relations. In addition, 
we provide a path towards obtaining thermodynamic quantities such as the total entropy and 
chemical potential (containing both ionic and electronic contributions) which are not available 
from current AIMD simulations. 

 

Section I: Introduction 

The development of reliable equations of state (EOS) is fundamental to furthering the 
understanding of material properties. This is particularly true for warm dense matter (WMD) 
systems which have both a solid-state density and a thermal energy comparable to the Fermi 
energy. In this regime, accurate and fully consistent EOS are required for the closure of the fluid 
equations governing hydrodynamic simulations which are utilized to investigate spherical target 
implosions in inertial confinement fusion (ICF) research [1-8] and in some cases used to 
determine the full thermodynamic state of experimentally measured systems [9,10]. Beyond ICF 
research, EOS also play a key role in planetary science: reliable EOS tables are utilized in studies 
of planetary evolution and collisions [11], as well as to provide insights into intraplanetary 
dynamics [12-14].      

A standard approach to constructing EOS is often a semi-empirical one where a first 
principles-based EOS with adjustable free parameters is fit to experimental measurements [15-
21]. However, in the WDM regime experimentally producing target temperatures and densities is 
a challenging task. In most cases the sampling of the EOS surface is often limited to a few points 
primarily confined to the principle Hugoniot [9,10,22-25] leaving portions of a material’s EOS 



2 
 

experimentally unexplored. Furthermore, the underlying form of a first principles-based EOS 
may have limited ability to accurately describe the WDM system. Such is the case in QEOS [26] 
and SESAME [19] where the Thomas-Fermi model [27], known for its inability to bind 
molecules, is often used to describe the electronic contribution to the constructed EOS. When 
these two EOS are compared to results based on state-of-the-art density functional theory (DFT) 
treatment of the electrons, significant differences can be observed in the predicted Hugoniot and 
in the resulting simulated implosions [4-8] 

An alternative approach to constructing EOS tables is to utilize ab initio molecular 
dynamics (AIMD) simulations [4-8,28,29]. Although this approach has been made possible by 
the increase in computing power over the past few decades, on-the-fly calculations of a 
material’s EOS in the WDM regime are still prohibitively costly. Therefore, an EOS is often 
calculated at a few hundred temperature and density conditions, at most [28], to produce a grid of 
EOS values across the domain of temperature and density of interest. The intermediate values of 
the EOS surface are then obtained by applying an interpolation scheme to the calculated points. 
A key factor in the reliability of this approach is ensuring the interpolation scheme provides 
thermodynamically consistent energies and pressures, which is often overlooked.  

One of the earliest interpolation schemes with built in thermodynamic consistency was 
the bi-quintic scheme put forth by Swesty [30] in which the Helmholtz free-energy of a system 
was directly interpolated. The challenge of utilizing such an interpolation scheme for EOS data 
generated by AIMD simulations is the total Helmholtz free-energies are unavailable (this is also 
the case for the total entropies and chemical potentials). This issue was later circumvented by 
Dilts [31] where thermodynamic constraints were directly enforced in a tuned regression 
estimator method that utilized a set of monomials to simultaneously interpolate the available 
energy and pressure data. In recent years, the underpinnings of Swesty and Dilts works have 
lived on in the context of machine learning (ML) based schemes where neural networks [32-38] 
or Gaussian process regressions [39,40] have been trained to learn EOSs. In the work of Gaffney 
et al [39], the use of AIMD training data in the direct modeling of the Helmholtz free-energy 
produced excellent interpolations for the energy and pressure of warm dense B4C. However, not 
all thermodynamic relations were confirmed to hold (e.g. Gibbs Duhem relation), nor was it clear 
if any information is missing from the implicitly learned Helmholtz free-energies. Additionally, 
many of the other current ML based EOS models have been primarily applied to cases where 
synthetic data can be easily obtained and where most, if not all, EOS quantities are available. 
Such models may not be suitable for use with AIMD training data due to the missing 
thermodynamic quantities. 

In the present work, we aim to address the above concern by constructing a physics 
informed ML based EOS, referred to as PIML-EOS, that utilizes only available energy, pressure, 
temperature and density data from AIMD simulations. A thorough check of the level of 
thermodynamic consistency of the model will be provided. Additionally, we will demonstrate a 
potential path towards obtaining thermodynamic quantities that are currently unavailable from 
the direct output of AIMD simulations. The rest of the paper is outlined as follows. Section II 
provides details about the reference data set and data scaling. Section III defines the criteria for 
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thermodynamic consistency. Section IV provides details on the construction of the model. And 
section V contains the results and discussion before the work is concluded in section VI.     

 

Section II: Reference data 

Data set: Having a reliable EOS for warm dense polystyrene (CH) is of importance due to its 
utilization as an ablator material in ICF implosions [7,29]. As polystyrene has been extensively 
studied, EOS data is readily available. Here, the data from Zhang et al [29] for polystyrene with 
equal parts carbon and hydrogen will be used as a test of the proof of principle of the PIML-EOS 
model constructed in Section IV. Shown in Fig. 1a are the temperature and density points 
comprising the reference data set. For simplicity, the original set of conditions has been truncated 
to form a rectangular domain of reference data where the densities vary between 2.1 and 12.6 
g/cm3. The temperature range was not affected by this truncation and the full range from 6.7x103 
to 1.3x108 K is considered. The corresponding target internal energies range from -103 to 1.5x105 
eV/CH and the pressures range from 44 to 9.4x106 GPa. At temperatures below 106 K, the 
reference data was obtained with AIMD simulations driven by Kohn-Sham DFT. Above 106 K 
path integral Monte Carlo (PIMC) based AIMD simulations were utilized. The DFT based 
energies were then shifted to match within 21.8 eV/CH at 106 K (this will be referred to as the 
matching boundary). For additional details about the calculation of the reference data see [29].   

Scaling relations: Before constructing the PIML-EOS model all thermodynamic quantities are 
made dimensionless. To achieve this, a value of 𝐸଴ and 𝜌଴ must be set to scale the energy and 
density respectively. These values can be chosen independently but should be representative of 
the values found in the reference data set. For the polystyrene data set described above, 𝐸଴ and 
𝜌଴ were chosen to be 100 eV and 2.1 g/cm3 respectively. Additionally, with the use of 
Boltzmann’s constant, 𝑘஻, and the mass of a CH pair, 𝑚, all remaining thermodynamic quantities 
can be made dimensionless. Furthermore, all extrinsic variables are transformed to intrinsic 
variable with a scaling by 𝑁଴, the number of CH pairs in the system. Due to the 1:1 ratio of C to 
H, this choice enables the system to be treated as a single component system. For further details 
on the scaling relations see table I. Moving forward, all thermodynamic quantities and equations 
should be assumed to be dimensionless and describe intrinsic quantities unless stated otherwise.      

Table I: Definition and scaling relation for all thermodynamic quantities. 

Quantity  Symbol Scaling 

Density  𝜌 1

𝜌଴
 

Temperature 𝑇 𝑘஻

𝐸଴
 

Energy (internal) 𝐸 1

𝑁଴𝐸଴
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Helmholtz free 
energy 

𝐹 1

𝑁଴𝐸௢
 

Entropy 𝑆 1

𝑁଴𝑘஻
 

Pressure 𝑃 𝑚

𝜌଴𝐸଴
 

Chemical potential 𝜇 1

𝐸଴
 

 

Section III: Thermodynamic consistency 

 For an interpolation scheme to be thermodynamically consistent the predicted energies 
and pressures must be in accordance with the definitions for the associated thermodynamic 
potential [30,31,41]. Additionally, both Maxwell’s relation [30,31,35,39,41] and the Gibbs-
Duhem relation [41] must be satisfied. The latter of which has not been thoroughly explored in 
the context of ML interpolation schemes. The predicted pressures and entropies of the 
interpolation scheme should also be non-negative and in the context of a single phase the 
corresponding stability conditions for the thermodynamic potential must be met [30,31,35,41].  

Definitions: Given that the polystyrene reference data set contains temperatures, 𝑇, and densities, 
𝜌 (two independent variables), the natural thermodynamic potential to work in is that of the 
Helmholtz free-energy, 𝐹(𝑇, 𝜌). From the Helmholtz free-energy, the energy, 𝐸, and pressure, 𝑃, 
are defined as 

𝐸 = 𝐹 + 𝑇𝑆 = 𝐹 − 𝑇
𝜕𝐹

𝜕𝑇
, (1) 

and 

𝑃 = 𝜌ଶ
𝜕𝐹

𝜕𝜌
(2) 

where 𝑆 is the entropy. 

Maxwell’s relation: In terms of the Helmholtz free-energy, Maxwell’s relation is a statement 
about the commutativity of the partial derivatives of temperature and density [30,41], 

𝜕ଶ𝐹

𝜕𝑇𝜕𝜌
=

𝜕ଶ𝐹

𝜕𝜌𝜕𝑇
. (3) 

Using Eqs. (1) and (2), the Maxwell’s relation of Eq. (3) can be rewritten in terms of the energy 
and pressure, 

𝑃 = 𝑇
𝜕𝑃

𝜕𝑇
+ 𝜌ଶ

𝜕𝐸

𝜕𝜌
. (4) 
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Satisfaction of Maxwell’s relation ensures that there is at least one Helmholtz free-energy surface 
capable of providing the given energies and pressures. The work of Ref. [30] showed in the 
context of hydrodynamic simulations, a failure to ensure this level of consistency can lead to an 
effective error accumulation causing a divergence from the expected result with a consistent 
EOS. 

Gibbs-Duhem relation: Due to the homogeneous first order property of the Helmholtz free-
energy, the quantities 𝑃, 𝑇, and chemical potential 𝜇 are not independent of one another [41]. The 
relation between these quantities is referred to as the Gibbs-Duhem relation which states, 

𝑑𝜇 = −𝑆𝑑𝑇 +
1

𝜌
𝑑𝑃. (5) 

Any interpolation scheme capable of providing chemical potentials must do so in a way that the 
gradients of the chemical potential are consistent with the entropy and density.  

Stability conditions: As the temperature-density conditions of polystyrene data set cover only a 
single phase, the extremum principle (maximum entropy and minimum energy) must apply. In 
accordance, the Helmholtz free-energy must then be concave in temperature and convex in 
density [30,31,35,41],  

𝜕ଶ𝐹

𝜕𝑇ଶ
≤ 0,      𝜌ଶ

𝜕

𝜕𝜌
൬𝜌ଶ

𝜕𝐹

𝜕𝜌
൰ ≥ 0. (6) 

In terms of the energy and pressure the stability requirements of Eq. (6) become 

𝜕𝐸

𝜕𝑇
≥ 0   

𝜕𝑃

𝜕𝜌
≥ 0. (7) 

If the energies and pressures provided by an interpolation scheme for a single phase away from 
critical points do not satisfy the conditions of Eq. (7) then they are not physically achievable by 
the system.     

 

Section IV: Model construction 

Transformation of the Helmholtz free-energy: Directly modeling the Helmholtz free-energy and 
utilizing Eqs. (1) and (2) has the advantage of ensuring Maxwell’s relation is satisfied by 
construction. This approach has been shown to be successful in recent ML based EOS models 
[35,36,39] and will be the approach taken here. It is important to note, while the Helmholtz free-
energies are not available in the polystyrene data set, it will be shown that the energies and 
pressures can be used to implicitly learn the Helmholtz free-energy. Furthermore, with the wide 
range of energies, pressures and temperatures encountered in the polystyrene data set it would be 
advantageous to work within a log representation of the Helmholtz free-energy. To accomplish 
this an auxiliary function 𝑓 is introduced which will be related to the Helmholtz free-energy 
through an arcsinh transformation,  
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𝑓 = arcsinh(𝐹) = ln ቀ𝐹 + ඥ𝐹ଶ + 1ቁ . (8) 

The use of arcsinh over a standard natural log eliminates the need for an arbitrary energy shift 
preventing any issues from arising due to a negative Helmholtz free-energy (without explicit 
values of 𝐹 an arbitrary energy shift cannot guarantee positive values of 𝐹 at all conditions).     

For an input quantity 𝑋, the corresponding derivative of the Helmholtz free-energy 
transforms as,    

𝑋
𝜕𝐹

𝜕𝑋
= cosh(𝑓)

𝜕𝑓

𝜕 ln(𝑋)
. (9) 

Utilizing Eq. (9), the equations for the energy and pressure become 

𝐸 = 𝐹 − 𝑇
𝜕𝐹

𝜕𝑇
= sinh(𝑓) − cosh(𝑓)

𝜕𝑓

𝜕𝜏
(10) 

and 

𝑃 = 𝜌ଶ
𝜕𝐹

𝜕𝜌
= 𝜌 cosh(𝑓)

𝜕𝑓

𝜕𝜎
. (11) 

Here, the quantities 𝜏 and 𝜎 are defined as 𝜏 = ln(𝑇) and 𝜎 = ln(𝜌), respectively. They are to be 
considered as the input variables of 𝑓 moving forward. 

Eliminating the common factor of cosh(𝑓) in Eqs. (10) and (11) leads to the following 
partial differential equation (PDE) that describes the auxiliary function 𝑓,  

𝜕𝑓

𝜕𝜏
+ 𝜌

𝐸 − sinh(𝑓)

𝑃

𝜕𝑓

𝜕𝜎
= 0. (12) 

If the energy and pressure are known as a function of temperature and density, Eq. (12) can be 
solved to determine 𝑓 and correspondingly the Helmholtz free-energy of the system (similar 
method of solving PDE for unknown exchange-correlation free-energy by direct fitting of a 
suitable analytical form was used in Ref. [42]). As energy and pressure data are available at 
select temperatures and densities, this data can be used in conjunction with Eq. (12) during the 
training process to produce a physics informed ML model, which is capable of implicitly 
learning the Helmholtz free-energies as will be shown in the next sub-section. 

Introducing ML: To utilize the transformed Helmholtz free-energy, the auxiliary quantity 𝑓 will 
be modeled with an artificial neural network (ANN) [43]. That is, the ANN will take the 
quantities 𝑥்⃗ = (𝜏, 𝜎) as an input and output a single value for the auxiliary function 𝑓. In this 
work a fully connected feedforward ANN with a single hidden layer is utilized. Mathematically, 
𝑓 can be written as  

𝑓஺ேே = 𝑊(ଶ)𝑔൫𝑊(ଵ)𝑥⃗ + 𝛽൯. (13) 
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Here, the matrices 𝑊(ଵ), 𝑊(ଶ) and the bias vector 𝛽 contain free parameters that will be 
optimized during the training process. The function 𝑔 is the activation function which was set to 
tanh throughout this work.  

The parameters of the ANN are optimized by minimizing the following cost function,  

𝐶 =
1

2 ∑ 𝛾௜௜
෍ 𝛾௜

⎩
⎪⎪
⎨

⎪⎪
⎧

൭
𝜕𝑓஺ேே(𝜏, 𝜎)

𝜕𝜏
+ 𝜌௜

௥௘௙ 𝐸௜
௥௘௙

− sinh൫𝑓஺ேே(𝜏, 𝜎)൯

𝑃௜
௥௘௙

𝜕𝑓஺ேே(𝜏, 𝜎)

𝜕𝜎
൱

ଶ

ቮ

ఛ೔,ఙ೔

+𝜆ଵ ൭1 −
𝐸௜

஺ேே

𝐸௜
௥௘௙

൱

ଶ

+  𝜆ଶ ൭1 −
𝑃௜

஺ேே

𝑃௜
௥௘௙

൱

ଶ

⎭
⎪⎪
⎬

⎪⎪
⎫

ேೞ

௜

. (14) 

 

The first term of the cost function is based on the PDE of Eq. (12). Here, the PDE is being 
evaluated at each training point, indexed by 𝑖, with the reference energy, pressure, temperature 
and density replacing the corresponding value. The gradients of the ANN needed in the first term 
of the cost function are calculated analytically, 

𝜕𝑓஺ேே

𝜕𝑥⃗
=

⎝

⎛

𝜕𝑓஺ேே

𝜕𝜏
𝜕𝑓஺ேே

𝜕𝜎 ⎠

⎞ = 𝑊(ଵ)೅
𝑊(ଶ)೅

∘ 𝑔ᇱ൫𝑊(ଵ)𝑥⃗ + 𝛽൯. (15) 

The symbol ∘ denotes a Hadamard product which in our notation is given higher priority than 
standard matrix multiplication in the order of operations. In effect, by minimizing the first term 
of the cost function the model aims to find the solution to Eq. (12). The second and third terms of 
the cost function, which contain the hyperparameters 𝜆ଵ and 𝜆ଶ respectively, are added to ensure 
that when the cost is minimized a trivial solution (𝑓 equal to a constant) of Eq. (12) is not found. 
Furthermore, 𝛾௜ is a stochastic quantity assigned to each member of the training set and can take 
on values of either 0 (probability 10%) or 1 (probability 90%). On each training epoch the value 
of 𝛾௜ for every training sample point is redrawn. This provides a level of stochasticity to the 
gradient descent to enable the model to work its way out of potential local minimum on the cost 
surface.  

 In principle, additional terms can be added to the cost function of Eq. (14) to enforce the 
remaining thermodynamic constraints. In practice however, this may lead to additional 
difficulties training the model. For instance, attempts were made to add a regularization term that 
penalized functions in the hypothesis set (set of functions represented by the architecture of the 
ANN) with negative entropy. This additional regularization often led to stability issues in the 
training process which can be attributed to such a term eliminating potential pathways in the 
domain of free parameters that the ANN can take during training. In effect, for ease of training it 
may be better to allow the ANN to pass through physically unacceptable functions for 𝑓 on its 
way to the final thermodynamically consistent form.  
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Training the model: In total the reference data set is comprised of 198 temperature-density points 
where AIMD simulations were performed. Of these 198 points, 15 were randomly chosen and set 
aside for the test set. An additional 15 points were randomly chosen for the validation set which 
was used to monitor the training process to prevent overfitting. The remaining 168 points were 
then used as the training set. The temperature-density conditions chosen for each data set can be 
seen in Fig. 1a where each of the test, validation and training points are indicated by an x, a + 
and a filled circle respectively. Attempts to utilize a smaller fraction of the reference data 
demonstrated the training size could be cut to 90 data points and provide satisfactory results, see 
[45]. Below only results for the largest training set utilizing a single fold cross validation are 
discussed. Additional results with a 5-fold cross validation are comparable and can also be found 
in [45].   

 The number of nodes in the hidden layer of the ANN was set to 80. A value chosen to 
provide the ANN with reasonable flexibility while not exceeding a 2:1 ratio of free parameters to 
available training data. The free parameters were then optimized by performing a stochastic 
gradient descent [44] on the cost function of Eq. (14). During this procedure the gradients needed 
to update the weights were calculated analytically [45]. The hyperparameters 𝜆ଵ and 𝜆ଶ were 
both determined to be a value of 0.3. Tests of these hyperparameters indicated if the value was 
below 0.1 a trivial solution to Eq (12) was often found. Values above 1.0 would produce a model 
that fits the training data well but may have unphysical oscillations in the energies and pressures 
along the reference isochores. Furthermore, with a learning rate of 0.003 the training run 
consisted of 25 million epochs. Attempts to use a larger learning rate to shorten the training run 
often affected the stability of the stochastic gradient descent. The learning curves along with an 
analysis of the gradients during the backpropagation stage can be found in the supplemental 
material [45].     

 The code for the training of the PIML-EOS model was written from scratch in python 
version 3.6. NumPy [46] was utilized for all matrix operations as well as for its built-in 
hyperbolic trig functions. The mpi4pi library [47-50] was utilized to parallelize the training 
process. The python code for the PIML-EOS can be found at https://github.com/jhinz2/PIML-
EOS. 

Section V: Results and Discussion 

  Training results: The resulting relative errors in the predicted energies and pressures are 
shown in Fig. 1a and 1b respectively. These values have been tabulated and are presented in 
Table II. As can be seen, for both the energy and pressure 75% of the predictions are within 1% 
of the target value across all three data sets. In the case of energy, there were two points in the 
test set and nine points in the training set with a relative error above 5%, no points exceed a 25% 
error. Interestingly, all eleven of these points are clustered around the 106 K boundary where the 
energies of the KS and PIMC AIMD simulations were matched, Fig 1a. As there is both a higher 
uncertainty in the target energies and a likely discontinuity in the slope of the energies at the 
matching boundary, the struggles of the model here can be attributed to an underlying 
thermodynamic inconsistency in the reference data related to thermal exchange-correlation (XC) 
effects taken into account by the PIMC approach and missed by DFT simulations with 
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employment of a ground-state XC functional (see Ref. [51]). In the case of pressure, a similar 
result can be seen, Fig. 1b. While none of the predicted pressures exceeded a 5% error, the 
largest errors again occur at the matching boundary. However, unlike the energies, predicted 
pressures along the boundary of the domain of the reference data set also experience some of the 
larger errors.  

Table II: Distribution of relative errors, in %, for the predicted energies and pressures of the 
PIML-EOS model on the training, validation and test sets. Here, the 25th, 50th and 75th 
percentiles of each distribution, measured from the left tail, are provided. Rows 1 and 2 are the 
model’s predictions compared to the available AIMD data. Rows 3 and 4 are comparisons of the 
model’s predictions to ideal gas (IG) values for temperatures above 3x107 K. For clarity the 
percentiles should be interpreted as the fraction of each distribution which has an error below the 
given value. For example, 75% of the test predictions on AIMD data have an error less than 
0.992%. 

 
 Training   Validation   Test  

 min 25th  50th  75th  max min 25th  50th  75th  max min 25th   50th  75th  max 

Energy 0.001 0.057 0.282 0.834 19.499 0.005 0.025 0.491 0.995 3.036 0.002 0.038  0.168 0.992 25.475 

Pressure 0.001 0.289 0.553 0.910 4.948 0.020 0.402 0.570 0.848 1.744 0.015 0.362 0.587 0.974 3.122 

IG 
energy 

          10-4 0.594 1.042 1.500 1.800 

IG 
pressure 

          10-5 0.188 0.430 0.646 1.178 

 

 To examine the interpolations of the PIML-EOS model the energies and pressures were 
calculated at 900 temperature points (evenly spaced on the log scale) along each reference 
isochore. The results for energy are shown in Fig 2a and those for pressure are shown in Fig. 2b. 
Overall, the predictions of the PIML-EOS model appear smooth with no sharp jumps or 
oscillations. Even near the 106 K matching boundary where the prediction errors are largest the 
model is able to make a smooth transition from the DFT data to the PIMC data (more on this 
below). In the case of the 4.72 g/cm3 isochore only high temperature data was available to the 
model. At lower temperatures the PIML-EOS model produces the remainder of the energies and 
pressures in a way that is consistent with the behavior of the neighboring reference isochores. 

 The smoothness of the interpolations is further confirmed by examining the derivatives of 
the PIML-EOS model. For both energy and pressure, the derivative with respect to temperature 
at each of the 900 points along the reference isochores are calculated analytically [45]. From Fig. 
2c and 2d, it is clear both the derivative of the energy and the derivative of pressure with respect 
to temperature are continuous everywhere and appear to be smooth themselves. Around 106 K 
there does not appear to be any discontinuities or significant jumps associated with inconsistency 
of the slopes of the DFT and PIMC data. However, at present it is not possible with the available 
data to confirm whether the accuracy of predicted quantities such as specific heats in this region 
is significantly affected. Regardless, the smoothing of the discontinuity in the slope of the 
reference data can be advantageous for hydrodynamic simulations as discontinuities in the EOS 
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can cause numerical difficulties [30]. Furthermore, boundary effects at the high and low 
temperature regimes appear to be more prevalent in the model’s derivatives than the predicted 
energies and pressures.  

While the initial results of the model are promising, due to the limited availability of 
reference data it is important to provide further quantification of the generalization error. This 
validation can be carried out in the high temperature regime, T > 3x107 K, as the ground truth 
EOS from the MD simulations converges with that of an ideal gas (IG). To form this second test 
set 120000 IG energies and pressures are generated at temperature between 3x107 and 108 K 
(evenly spaced on a log scale) and across the full range of densities considered. The PIML-EOS 
model trained only on the AIMD data is then applied to make corresponding predictions at each 
of these points. The resulting error distributions are provided in Table II. As can be seen, in the 
case of pressure the predictions are consistently within 1% of the IG values and never exceed an 
error of 1.2%. The errors in energy are slightly worse as the median error is just over 1% and the 
maximum error sits at 1.8%. This higher error observed in the energies can be attributed to small 
oscillations that appear along isotherms in this temperature regime. These oscillations suggest 
that a function that is constant in density, as the ground truth EOS is in this regime, may be just 
outside of the hypothesis set formed by the ANN (analogous to expanding a constant function in 
a finite number of sines and cosines). Overall, based on this result, the results of the original test 
set and the observed behavior of the interpolations, it is expected that the general error of the 
model across the full domain of temperature and densities considered will be around 1% for both 
the energy and pressure.    

 Consistency checks: To evaluate Maxwell’s relation the energy, pressure and the 
corresponding derivatives from the PIML-EOS model were calculated at 90000 temperature and 
density points (evenly space on log scale) across the same domain of temperature and density 
consistent with the reference data set. The residual error, defined as the absolute value of the 
difference between both sides of Eq. (4), was calculated at each point and the resulting 
distribution has been tabulated in Table III. As can be seen, the errors in Maxwell’s relation are at 
or near machine precision confirming Maxwell’s relation holds. 

 To determine if the non-negativity condition on the pressure and the conditions of 
stability are satisfied, the maximum between 0 and the negative of the predicted target quantity 
of interest was evaluated at each of the 90000 points used above in the test of the Maxwell 
relation. The resulting distributions, as shown in Table III, indicate there are no points where the 
pressure becomes negative and that the stability conditions of Eq. (7) hold across the domain of 
temperatures and densities consistent with the reference data set. However, as a note of caution, 
care must be taken when the predictions of the PIML-EOS model are extrapolated beyond the 
domain containing the reference data. As can be seen in Fig. 2c, at temperatures below 5x103 K 
the stability condition for the energy begins to break down.       

Table III: Distributions for various checks on the thermodynamic consistency of the PIML-EOS 
model. Column one indicates the quantity calculated at each of the 90000 points sampled across 
the domain of 𝑇 and 𝜌 consistent with the reference data. For Maxwell’s relation this is the 
absolute value of the difference between the two sides of Eq. (4). Column two gives the 
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minimum of each distribution, Columns three through five indicate the 25th, 50th and 75th 
percentile of the distribution respectively; and column six provides the maximum of the 
distribution. 

Distribution min 25th  50th  75t h  max 

Maxwell relation  0.0 0.0 2.22x10-16 7.11x10-15 2.73x10-12 

max(0, −𝑃)  0.0  0.0  0.0  0.0  0.0 

max ൬0, −
𝜕𝐸

𝜕𝑇
൰ 

0.0 0.0 0.0 0.0 0.0 

max ൬0, −
𝜕𝑃

𝜕𝜌
൰ 

0.0 0.0 0.0 0.0 0.0 

 

  Next, for the evaluation of the Gibbs-Duhem relation the chemical potential from the 
PIML-EOS model was obtained using the following Euler equation,  

𝜇 = 𝐹 +
1

𝜌
𝑃. (16) 

Eq. (16) comes from a manipulation of Eq. (1) where the Euler relation 𝐸 = 𝑆𝑇 + 𝜇 − 𝑃/𝜌 has 
been utilized. As the chemical potential is needed as a function of pressure and not density, Eq. 
(5), a transformation of the input variables is performed. This is done by fitting a tangent plane to 
the chemical potential surface at each of the 90000 temperature-density points. For each fit, both 
the temperature and density were varied by ± 0.05% to generate 25 points around (𝑇଴, 𝜌଴), the 
conditions where the Gibbs-Duhem relation is being evaluated. Using a least squares fit to the 
model predictions at these 25 conditions the coefficients 𝑎ଵ and 𝑎ଶ in the tangent plane  

𝜇 − 𝜇଴ = 𝑎ଵ(𝑇 − 𝑇଴) + 𝑎ଶ(𝑃 − 𝑃଴) (17) 

where optimized. Here, (𝑃଴, 𝜇଴) are the predicted values of the pressure and chemical potential at 
(𝑇଴, 𝜌଴). The coefficients associated with these fits are directly related to the derivatives of the 
chemical potential and can be interpreted as 

𝑎ଵ =
𝜕𝜇

𝜕𝑇
, 𝑎ଶ =

𝜕𝜇

𝜕𝑃
. (18) 

 Comparing Eq. (5) and Eq. (18), the coefficients 𝑎ଵ and 𝑎ଶ should be equal to the 
negative of the entropy and the reciprocal of the density respectively. Here, the entropy is 
calculated from the Helmholtz free-energy and the comparison to the coefficient 𝑎ଵ is made in 
Fig. 3a. Overall, the relative error in 𝑎ଵ is consistently below 1% across most of the domain 
associated with the reference data. Near the matching boundary, 106 K, there are some instances 
where this error can reach 10% or more. In total, these high error points constitute only 300 of 
the 90000 points sampled. Furthermore, the coefficient 𝑎ଶ is compared to the reciprocal of the 
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density in Fig 3b. Again, the error in the coefficient is consistently below 1% for most conditions 
sampled with the exception of a few points near the matching boundary. For both coefficients, 
the high error points seem to be the most sensitive to the window used to fit the tangent plane. 
With a more accurate scheme to calculate the derivatives of the chemical potential these larger 
errors may be reduced. Overall, these results demonstrate the Gibbs-Duhem relation holds for the 
PIML-EOS model but may be susceptible to a breakdown in regions where thermodynamic 
inconsistencies exist in the reference data.     

 The remaining consistency check is to examine the sign of the model’s predicted entropy. 
As with the pressure and stability conditions, the maximum of 0 and the negative of the entropy 
is calculated at each of the 90000 points sampled. The resulting color map of values can be seen 
in Fig. 4a. Below 20000 K for most densities considered the entropy becomes negative which is 
the first observed thermodynamic inconsistency in the PIML-EOS model’s predictions not 
related to an inconsistency in the reference data.   

This inconsistency in the entropy can be explained by the fact that the use of 𝐸(𝑇, 𝜌) and 
𝑃(𝑇, 𝜌) does not provide the same information as 𝐹(𝑇, 𝜌) about a system’s EOS. This means the 
true Helmholtz free-energy of polystyrene differs by some unknown function of temperature and 
density from the Helmholtz free-energy of the model, 

𝐹௦௬௦ = 𝐹஺ேே + ℎ(𝑇, 𝜌). (19)    

The form of the function ℎ can be determined by the fact that both the pressure and energy used 
in the construction of the model are total quantities containing all contributions, both electronic 
and ionic, within the context of the approximations made in the AIMD simulations. As such the 
function ℎ is constrained by 𝑃௦௬௦ = 𝑃஺ேே and 𝐸௦௬௦ = 𝐸஺ேே. 

 Plugging Eq. (19) into Eq. (2) and enforcing the constraint on pressure, it can be seen that 
the function ℎ will be independent of density, ℎ(𝜌, 𝑇) → ℎ(𝑇). In a similar manner, Eq. (19) can 
be inserted into Eq. (1) and the constraint on the energy can be applied. This results in the 
following ordinary differential equation that describes ℎ, 

ℎ(𝑇) − 𝑇
𝑑ℎ(𝑇)

𝑑𝑇
= 0. (20) 

Solving Eq. (20) leads to ℎ being a linear function of temperature. Therefore, during the training 
process the PIML-EOS model picks out one Helmholtz free-energy surface in a family of 
possible surfaces with the resulting true Helmholtz free-energy of the system being 

𝐹௦௬௦ = 𝐹஺ேே − 𝑆଴𝑇. (21) 

The unknown constant 𝑆଴ can be determined with an exact calculation of the system’s entropy at 
a single temperature-density point or in the limit where the Helmholtz free-energy goes to a 
known form. It’s important to note, the presence of this unknown constant does not affect the 
previous consistency checks as the constant will either cancel out or be eliminated by a 
derivative. It is also of note that any model that learns the Helmholtz free-energy from only 
energy and pressure data will be missing this linear contribution of temperature.  
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 To determine the constant 𝑆௢ for the polystyrene data set the convergence to an IG in the 
high temperature regime (see Fig 2) is utilized. Here, 𝐹௦௬௦ in Eq. (21) is replaced with the exact 
expression for an IG, 𝐹ூீ [41], and the difference ∆𝐹 = 𝐹ூீ − 𝐹஺ேே is taken at each of the 
90000 conditions previously sampled. From the distribution of ∆𝐹/𝑇, Fig. 4b, all points with a 
temperature greater than 3x107 K were averaged producing a value of 22.24 for 𝑆଴. The 
corresponding standard deviation associated with this average is 0.04 confirming that ∆𝐹/𝑇 does 
in fact go to a constant at high temperatures. When 𝑆଴ is added to the predicted entropies from 
the PIML-EOS model, the thermodynamic inconsistency is resolved as shown in Fig 4c. With the 
calculation of 𝑆଴ the total Helmholtz free-energy is now completely determined enabling the 
prediction of quantities such as the total entropy and total chemical potential of the system at all 
temperature-density conditions. As these quantities are not directly obtainable from AIMD 
simulations, this makes the PIML-EOS model a valuable tool for the construction of a more 
complete EOS table and may help facilitate a better understanding of material properties.   

 Additional validation: With the consistency checks complete, two additional tests of the 
model are performed. For the first test, the PIML-EOS model was used to calculate the principle 
Hugoniot which describes the locus of possible final states, (𝐸ଶ, 𝑃ଶ, 𝜌ଶ), a system can achieve 
after being shock compressed from an initial state (𝐸ଵ, 𝑃ଵ, 𝜌ଵ). This locus of final states is 
determined by the Rankine-Hugoniot equation, 

𝐸ଶ − 𝐸ଵ +
1

2
(𝑃ଶ + 𝑃ଵ) ൬

1

𝜌ଶ
−

1

𝜌ଵ
൰ = 0. (22) 

For the calculation of the polystyrene Hugoniot the same initial conditions used by Zhang et al 
[29] are used here. In dimensionless quantities these values are 𝐸ଵ = −10.4281, 𝑃ଵ = 0 and 
𝜌ଵ = 0.5. The resulting Hugoniot, Fig 5, is in overall good agreement with that produced by 
Zhang et al with a cubic spline interpolation. The maximum compression of both curves is 
within 0.5% of one another. In the high-pressure regime oscillations in the PIML-EOS predicted 
Hugoniot of ± 2% about the Zhang et al curve can be observed. This can be attributed to the 
Hugoniot’s sensitivity to errors in the fitted EOS and not the presence of apparent shell structure 
as retraining the model often resulted in a differing behavior of the oscillations. The use of an 
ensemble approach has been shown to eliminate such oscillations [38] and was attempted in the 
supplemental material [45]. It was found that the behavior of the Hugoniot, particularly in the 
low-pressure regime, is highly sensitive to errors in the model. Therefore, caution must be taken 
when interpreting the Hugoniot through a physics lens.  

 For the second additional test, a transformation to the energy representation, 𝐸(𝑆, 𝜌), is 
performed. As was done in the test of the Gibbs-Duhem relation, the transformation of the input 
variables is done by fitting a tangent plane at each of the 90000 temperature-density conditions 
previously used in the consistency checks. The coefficients of the fits are then compared to the 
expected values of the derivatives 𝜕𝐸/𝜕𝑆 = 𝑇 and 𝜕𝐸/𝜕𝜌 = −𝑃/𝜌. From Figs. 3c and 3d it can 
be seen that the derivatives are reproduced well within a 1% error. Together with the tests of the 
Gibbs-Duhem relations, this demonstrates the PIML-EOS model can be trained in one 
thermodynamic potential and utilized in another.    
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Section VI: Conclusion  

In summary, a physics informed machine learning EOS model was constructed such that 
energy and pressure data can be utilized to implicitly learn the Helmholtz free-energy up to an 
unknown constant. With the use of a known limit, the unknown constant can be determined 
allowing for previously unobtainable quantities such as the total Helmholtz free-energy, entropy 
and chemical potential to be calculated for AIMD based EOS tables. Trained on reference data 
for warm dense polystyrene, the PIML-EOS model was capable of reproducing the target 
energies and pressures within a 1% error. The model was also shown to be thermodynamically 
consistent, providing thermodynamically stable predictions that satisfied both the Maxwell and 
the Gibbs-Duhem relations. Furthermore, we found that the model appears to be capable of 
identifying inconsistencies in the reference data set. While this is not the intended purpose of the 
model, this sensitivity may be a valuable tool to improve existing discrete EOS tables. Moving 
forward, additional tests are needed to determine how the model will handle more complex 
systems that experience a phase transition in the considered domain of temperature and density. 
At present, it appears such transitions will likely be smoothed out which could be advantageous 
for hydrodynamic simulations; but for other applications where smoothing is undesirable, further 
developments of the model are likely needed. Furthermore, additional validation should be 
performed, when possible, to ensure the level of error on the energies and pressures is maintained 
for quantities such as specific heats.  

 

Supplementary Material 

The supplemental material contains technical details about the implementation of the PIML-EOS 
model. This include details about how gradients of the model are calculated for both the 
backpropagation and analysis of the smoothness of the energies and pressures. Additionally, 
learning curves from the training runs can be found here. 
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Figure 1: PredicƟon errors for the energy a) and pressure b). Filled circles, pluses and x’s represent points in the training, 
validaƟon and test set respecƟvely. The color bar is with respect to the relaƟve error, in %, for each quanƟty. Note, for 
temperature and density the conversion back to dimensional variables has been made.   
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Figure 2: a) interpolated energies and b) interpolated pressures with the PIML-EOS model along the reference isochores. Solid 
lines indicate the model’s predicƟons while circles indicate the reference data points. Note, the energies have been shiŌed for 
ploƫng purposes. The energies of 2.1 g/cm3 isochore have been shiŌed by 1100 eV/CH and each subsequent isochore has been 
shiŌed by an addiƟonal 100 eV/CH. c) and d) provide the derivaƟve of the energy and pressure with respect to temperature, 
respecƟvely, from the model along each of the reference isochores. The doƩed black line indicates the expected value for an 
ideal gas. Note, for temperature, density, energy and pressure the conversion back to dimensional variables has been made. 
DerivaƟves have been intenƟonally leŌ dimensionless to provide insight into the number of degrees of freedom in the system.     
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Figure 3: a) and b) indicate the error in the calculated gradients 𝜕𝜇/𝜕𝑇 and 𝜕𝜇/𝜕𝑃, respecƟvely, needed in the evaluaƟon of the 
Gibbs-Duhem relaƟon. The color bar is based on the log of the relaƟve error in %. The black circles are the reference data. c) and 
d) provide the error on the gradients 𝜕𝐸/𝜕𝑆 and 𝜕𝐸/𝜕𝜌 respecƟvely when the model is transformed to the energy 
representaƟon 𝐸(𝑆, 𝜌). Note, for temperature, density and pressure the conversion back to dimensional variables has been 
made.   
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Figure 4: a) evaluaƟon of the sign of the predicted entropy across the domain of thermodynamic condiƟons consistent with the 
reference data which is indicated by the black circles. b) distribuƟon of ∆𝐹/𝑇 for the comparison with an ideal gas. The red 
doƩed line indicates the values of 𝑆଴ needed to completely determine the total Helmholtz free-energy of the system. c) Corrected 
entropy along each of the reference isochores.  
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Figure 5: Calculated Hugoniot for the PIML-EOS model, green curve. A comparison is made to the result predicted by Zhang et al 
[29], red curve, which was obtained with a cubic spline interpolaƟon of the reference data set.  
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Section I: Overview 

Here additional details about the PIML-EOS model can be found. In section II all 
quantities used throughout this document are defined. From there the gradients needed in the 
backpropagation used during the training process are constructed in section III. Section IV 
provides the analytical derivatives of the model’s energy and pressure used in the analysis of the 
model. Results of stability can be found in section V and a 5-fold cross validation was performed 
in section VI. 

Section II: Defining terms 

  Table I: Quantities, and their definitions/description, used throughout this document. 

Quantity  Description 

 𝐹, 𝐸, 𝑃, 𝑇, 𝜌  Helmholtz free-energy, energy, pressure, 
temperature and density respectively. 

𝑊(ଵ), 𝑊(ଶ), 𝛽  Weight matrices and bias vector associated with the 
neural network 

𝑥⃗ = ቀ
𝜏
𝜎

ቁ = ൬
ln 𝑇
ln 𝜌

൰ 
 

Input vector for the neural network.  

𝐻ሬሬ⃗ (௜) = 𝑊(ଵ)𝑥⃗(௜) + 𝛽 Hidden layer of the neural network for input vector 
indexed by 𝑖. 

𝑓௜
஺ேே = 𝑊(ଶ)𝑔൫𝐻ሬሬ⃗ (௜)൯ Auxiliary function modeled by a neural network 

with activation function 𝑔.  

𝜕𝑓஺ேே

𝜕𝑥⃗
= 𝑊(ଵ)೅

𝑊(ଶ)೅
∘ 𝑔ᇱ൫𝐻ሬሬ⃗ ൯ 

Derivative of the neural network with respect to the 
input vector. 

𝑎⃗ = ቀ
1
0

ቁ , 𝑏ሬ⃗ = ቀ
0
1

ቁ Vectors utilized in the backpropagation. 

𝑣⃗(௜) = 𝑎⃗ + ൭𝜌௜

𝐸௜
௥௘௙

− sinh൫𝑓௜
஺ேே൯

𝑃௜
௥௘௙

൱ 𝑏ሬ⃗  
Vector quantity appearing in the gradients of the 

model. 
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𝑒ଵ,௜ =
−2𝜆ଵ

𝐸௜
௥௘௙

൭1 −
𝐸௜

஺ேே

𝐸௜
௥௘௙

൱ cosh൫𝑓௜
஺ேே൯ 

Scaler quantity appearing in the gradients of the 
model. 

𝑒ଶ,௜ = 𝑒ଵ,௜ + sinh൫𝑓௜
஺ேே൯ 𝑎்⃗

𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

 
Scaler quantity appearing in the gradients of the 

model. 

𝑝ଵ,௜ = 𝑒ଵ,௜(𝐸 → 𝑃, 𝜆ଵ → 𝜆ଶ) Scaler quantity appearing in the gradients of the 
model. The argument denotes swapping out 
variables appearing in the previous quantity. 

𝑝ଶ,௜ = 𝑒ଶ,௜(𝐸 → 𝑃, 𝜆ଵ → 𝜆ଶ) Scaler quantity appearing in the gradients of the 
model. The argument denotes swapping out 
variables appearing in the previous quantity. 

𝑟(௜) = −𝑒ଵ,௜ 𝑎⃗ + 𝑝ଵ,௜𝑏ሬ⃗  Vector quantity appearing in the gradients of the 
model. 

 

 

Figure S1: Form of the arƟficial neural network used in the PIML-EOS model. 

 

Section III: Gradients of the cost function 

 The cost function used to train the PIML-EOS model consists of two pieces. The first 
contribution to the cost is based on the square residual error of the partial differential equation 
governing the auxiliary function 𝑓 evaluated at each of the training points,   

𝐶௣ௗ௘ =
1

2𝑁
෍ 𝛾௜ ൭

𝜕𝑓஺ேே

𝜕𝜏
+ 𝜌௜

௥௘௙ 𝐸௜
௥௘௙

− sinh(𝑓஺ேே)

𝑃௜
௥௘௙

𝜕𝑓஺ேே

𝜕𝜎
൱

ଶ

ቮ

ఛ೔,ఙ೔

ேೞ

௜

. (1) 

Minimization of 𝐶௣ௗ௘ has the potential to produce either a trivial or nontrivial solution to the pde. 
To avoid the trivial solution an additional term based on the fractional error of the predicted 
energies and pressures is constructed, 
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𝐶଴ =
1

2𝑁
෍ 𝛾௜ ቐ𝜆ଵ ൭1 −

𝐸௜
஺ேே

𝐸௜
௥௘௙

൱

ଶ

+  𝜆ଶ ൭1 −
𝑃௜

஺ேே

𝑃௜
௥௘௙

൱

ଶ

ቑ

ேೞ

௜

. (2) 

Here, 𝜆ଵand 𝜆ଶ are hyperparameters of the cost function that must be optimized. Additionally, the 
quantity 𝑁௦ is the total number of training points and 𝑁 = ∑ 𝛾௜ is the number of training points 
used at each epoch with 𝛾௜ ∈ {0,1} determining if a given training point contributes to the cost 
(and gradients). The total cost is then the sum of the two terms above. 

 The optimal weights and biases of the neural network are achieved when the total cost 
has been minimized. To carry out this minimization a stochastic gradient descent was performed. 
Here, the gradients are calculated analytically and are provided below in table II for reference.  

 

  Table II: Analytical form of the gradients of the cost function. 

Gradient Analytical form 
𝜕𝐶௣ௗ௘

𝜕𝑊(ଶ)
 1

𝑁
෍ 𝑐௜𝑣⃗

(௜)் 𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

ேೞ

௜

൝−
𝜌௜

𝑃௜
௥௘௙

cosh൫𝑓௜
஺ேே൯ 𝑏ሬ⃗ ்

𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

𝑔൫𝐻ሬሬ⃗ (௜)൯
்

+ ቀ𝑣⃗(௜)்
𝑊(ଵ)೅

ቁ ∘ 𝑔ᇱ൫ுሬሬ⃗ (೔)൯
೅

ൡ 

𝜕𝐶௣ௗ௘

𝜕𝑊(ଵ)
 1

𝑁
෍ 𝑐௜𝑣⃗

(௜)் 𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

ேೞ

௜

൝−
𝜌௜

𝑃௜
௥௘௙

cosh൫𝑓௜
஺ேே൯ 𝑏ሬ⃗ ்

𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

𝑊(ଶ)೅

∘ 𝑔ᇱ൫𝐻ሬሬ⃗ (௜)൯𝑥⃗(௜)்
+ 𝑊(ଶ)೅

∘ 𝑔ᇱ൫𝐻ሬሬ⃗ (௜)൯𝑣⃗(௜)்
+ 𝑔ᇱᇱ൫𝐻ሬሬ⃗ (௜)൯

∘ 𝑊(ଶ)೅
∘ ൫𝑊(ଵ)𝑣⃗(௜)൯𝑥⃗(௜)்

ൡ 

𝜕𝐶௣ௗ௘

𝜕𝛽
 

 
1

𝑁
෍ 𝑐௜𝑣⃗

(௜)் 𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

ேೞ

௜

൝−
𝜌௜

𝑃௜
௥௘௙

cosh൫𝑓௜
஺ேே൯ 𝑏ሬ⃗ ்

𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

𝑊(ଶ)೅

∘ 𝑔ᇱ൫𝐻ሬሬ⃗ (௜)൯  + 𝑔ᇱᇱ൫𝐻ሬሬ⃗ (௜)൯ ∘ 𝑊(ଶ)೅
∘ ൫𝑊(ଵ)𝑣⃗(௜)൯ൡ 

𝜕𝐶଴

𝜕𝑊(ଶ)
 1

𝑁௦
෍ 𝑐௜ ൜൫𝑒ଶ,௜ + 𝑝ଶ,௜൯𝑔൫𝐻ሬሬ⃗ (௜)൯

்
+ ቀ𝑟(௜)்

𝑊(ଵ)೅
ቁ ∘ 𝑔ᇱ൫ுሬሬ⃗ (೔)൯

೅

ൠ

ேೞ

௜

 

𝜕𝐶଴

𝜕𝑊(ଵ)
 1

𝑁
෍ 𝑐௜ ቄ൫𝑒ଶ,௜ + 𝑝ଶ,௜൯𝑊(ଶ)೅

∘ 𝑔ᇱ൫𝐻ሬሬ⃗ (௜)൯𝑥⃗(௜)்
+ 𝑊(ଶ)೅

∘ 𝑔ᇱ൫𝐻ሬሬ⃗ (௜)൯𝑟(௜)்

ேೞ

௜

+ 𝑔ᇱᇱ൫𝐻ሬሬ⃗ (௜)൯ ∘ 𝑊(ଶ)೅
∘ ൫𝑊(ଵ)𝑟(௜)൯𝑥⃗(௜)்

ቅ 
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𝜕𝐶଴

𝜕𝛽
 1

𝑁
෍ 𝑐௜൛൫𝑒ଶ,௜ + 𝑝ଶ,௜൯𝑊(ଶ)೅

∘ 𝑔ᇱ൫𝐻ሬሬ⃗ (௜)൯ + 𝑔ᇱᇱ൫𝐻ሬሬ⃗ (௜)൯ ∘ 𝑊(ଶ)೅
∘ ൫𝑊(ଵ)𝑟(௜)൯ൟ

ேೞ

௜

 

 

 In the calculation of the gradients, table II, the symbol ∘ represents a Hadamard product 
which is given higher priority than standard matrix multiplication in the order of operations. 
Additionally, the quantity 𝛾௜ is a scalar quantity that takes a value of either 0 or 1. This value is 
determined by randomly sampling a uniform distribution on the range [0,1] and checking 
whether the drawn number is above or below a preset value. In this work the preset value was set 
to 0.9 meaning if the drawn number was less than 0.9 𝛾௜ was set to 1 otherwise it was set to 0. 
The determination of 𝛾௜ was done for each training point on every epoch. 
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 The resulting learning curves are 
shown in Fig. S2. Due to the stochastic 
nature built into the cost function there are 
many sharp peaks that form in both 
components of the cost as the instantaneous 
training set fluctuates. These sharp jumps 
tend to be significantly larger for 𝐶଴ which 
is due to training points at the matching 
boundary, 106 K where thermodynamic 
inconsistencies exist in the reference data, 
moving in and out of the instantaneous 
training set. Reducing the learning rate can 
reduce the magnitude of these spikes but 
results in a significantly longer training run. 
Removing the stochastic parameter 𝛾 and 
using all training data at each epoch would 
remove these spike but given 𝐶௣ௗ௘ works its 
way out of multiple local minimum at the 
onset of the training process, some level of 
stochasticity is beneficial in ensuring the 
model does not get stuck in these local 
minimum. 

 Shown in Fig. S3 is an analysis of 
the gradients of the ANN during the training 
process. Plotted are the max, average and 
minimum value of the distribution of the 
magnitude of the gradient associated with 
each weight matrix and bias vector. The 
gradients also show large spikes which can 
again be attributed to those training points 
at the matching boundary passing in and out 
of the instantaneous training set. The 
smallest gradients observed occur when the 

corresponding free parameter becomes relatively small compared to the rest of the free 
parameters. This analysis demonstrates that there are no issued with dead nodes arising during 
the training process for the case of an ANN with one single hidden layer consisting of 80 nodes.    

   

 

 

 

Figure S2: Learning curves for a) the training set and b) the 
validaƟon set. The red curve is the cost associated with the porƟon 
of the cost based on the parƟal differenƟal equaƟon and the blue 
curve is the cost associated with the fracƟonal error in the 
energies and pressures. C) provides a direct comparison of the 
total cost of the validaƟon set, blue curve, with the total cost of 
the training set, red curve. 
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Section IV: Gradients of energy and pressure 

 In the analysis of the model the gradients of energy and pressure were utilized. These 
gradients were calculated analytically by taking the derivative of the energy and pressure with 

Figure S3: a), b) and c) provide the values of the gradients with respect to 𝑊(ଵ), 𝑊(ଶ), and 𝛽 respecƟvely. The red, green and 
blue curves provide the maximum, average and minimum, respecƟvely, of the absolute value of the elements of the given matrix 
for the gradient of the total cost.  
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respect to the input vector 𝑥⃗. After propagating the derivative through the neural network the 
resulting gradient of the energy is  

 

 

𝜕𝐸஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

= ቆcosh൫𝑓௜
஺ேே൯ − sinh൫𝑓௜

஺ேே൯ 𝑎்⃗
𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

ቇ
𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

− cosh൫𝑓௜
஺ேே൯ 𝑊(ଵ)೅

൫𝑊(ଵ)𝑎⃗൯ ∘ 𝑊(ଶ)೅
∘ 𝑔ᇱᇱ൫𝐻ሬሬ⃗ (௜)൯ (3)

 

and the corresponding gradient of the pressure is 

𝜕𝑃஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

= 𝜌௜
ଶ cosh൫𝑓௜

஺ேே൯ 𝑏ሬ⃗ + 𝜌௜ sinh൫𝑓௜
஺ேே൯ ቆ𝑏ሬ⃗ ்

𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

ቇ
𝜕𝑓஺ேே

𝜕𝑥⃗
ቤ

௫⃗(೔)

+ cosh൫𝑓௜
஺ேே൯ 𝑊(ଵ)೅

൫𝑊(ଵ)𝑏ሬ⃗ ൯ ∘ 𝑊(ଶ)೅
∘ 𝑔ᇱᇱ൫𝐻ሬሬ⃗ (௜)൯. (4)

 

Here, the first and second elements of on the left-hand side of both Eq. (3) and (4) should be 
interpreted as the derivative with respect to the log of the temperature and the derivative with 
respect to the log of density respectively. 

 

Section V: Stability tests 

Table III: Test set performance on pressure as a function of the number of nodes in the hidden 
layer. 

Dist. Number of nodes in the hidden layer 

 20 40  60  80  100 120 

min 0.223 0.058 0.066 0.015 0.063 0.069 

25th  0.294 0.316 0.292 0.362 0.229 0.145 

50th   0.517 1.025 0.530 0.587 0.685 0.298 

75th  1.567 1.327 1.192 0.974 0.984 0.794 

max 3.668 3.605 6.109 3.122 3.138 3.348 

 

Table IV: Test set performance on energy as a function of the number of nodes in the hidden 
layer. 

Dist. Number of nodes in the hidden layer 

 20 40  60  80  100 120 

min 0.003 0.225 0.002 0.002 0.009 0.011 
25th  0.016 0.368 0.084 0.038 0.211 0.129 

50th   0.412 0.5593 0.518 0.168 0.443 0.231 
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75th  1.118 1.276 1.524 0.992 1.488 0.882 

max 25.441 26.632 26.898 25.475 24.311 25.454 

 

To provide further insight into the model’s performance additional test were conducted. 
For the first test the number of nodes in the hidden layer was varied from 20 to 120. For each 
case the PIML-EOS model was trained using the exact same training/validation/test sets 
described in the main text. The resulting errors on the pressure have been provided in Table III 
and the errors for energy are provided in Table IV. As can be seen the resulting error distributions 
are remarkably stable as a function of the number of nodes in the hidden layer. There are a few 
fluctuations in the overall shape of the error distributions, but each model is able to provide an 
accuracy for both energy and pressure on the order of 1 to 2%. The large errors made by each 
model are for the same points that can be found at the matching boundary. The resulting 
interpolations are consistent with one another with slight differences in their behavior at the low 
temperature boundary of the reference data set indicating extrapolation of the resulting EOS 
should be used with caution.   

For the second stability test the training set size was varied. Using the initial 
training/validation/test split of 168/15/15, 42 points were moved from the training set to the test 
set to give a split of 126/15/57. Then starting with the 126/15/57 split an addition 42 points were 
moved from the training set to the test set to give a split of 84/15/99. For each of these 3 splits of 
the reference data a single model was trained where each model utilized 80 nodes in the hidden 
layer. Note that a given model is only trained and then applied to its specific data set split as to 
avoid biased results. The errors on the test set for both energy and pressure are provided in Table 
V and Fig. S4. As can be seen there appears to be a general shift of the error distribution for both 
pressure and energy to higher errors as the training set becomes smaller. However, on average 
the errors are still below 1%. Additionally, the points near the matching boundary are most 
sensitive to the training set size as can be seen in the max errors. Overall, this result supports the 
conclusion that the generalization error of the model with 168 should be on the order of 1%.      

Table V: Test set performance as a function of the size of the training set. 

 Pressure Energy 

Dist. Training set size Training set size 

 168 126  84  168  126 84 

min 0.015 0.014 0.003 0.002 0.004 0.007 

25th  0.362 0.238 0.317 0.038 0.0233 0.227 

50th   0.587 0.643 0.862 0.168 0.628 0.471 

75th  0.974 0.989 1.509 0.992 1.208 1.197 

max 3.122 5.628 5.213 25.475 26.759 25.542 
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Figure S4: Errors and fits from the model trained with a training set size of 84. a) provides the errors in pressure across the 
domain of temperature and density considered. Circles are training points, + are validaƟon points and x’s are the test points. b) 
corresponding fits of the reference data which are indicated by circles. c) errors in the predicted energies. Symbols are the same 
as in a). d) corresponding fits of the energy. 

 

SecƟon VI: Cross-validaƟon 

To provide further validaƟon a 5-fold cross validaƟon is performed. For each fold a random 
sampling of the reference data set is performed to produce a training/validaƟon/test split of 168/15/15.  
An ANN with a single hidden layer consisƟng of 80 nodes is then trained on each fold. The resulƟng 
errors on the test set can be found in Table VI. Across all 5 members of the ensemble the errors are 
consistently below 1% for both pressure and energy. The most noƟceable difference is in the high error 
tail on the error distribuƟons associated with the predicted energies. The points comprising this tail are 
those found near the matching boundary. This suggests the sampling of points around a potenƟal 
thermodynamic inconsistency is important for minimizing the model’s errors at the inconsistency. 

Table VI: Test set performance for the members of the 5-fold cross validation. 

 Pressure Energy 

 Ensemble member Ensemble member 

Dist. 1 2  3 4 5  1  2 3 4 5 

min 0.015 0.170 0.234 0.010 0.013 0.002 0.043 0.091 0.020 0.025 

25th  0.362 0.372 0.354 0.087 0.198 0.038 0.088 0.165 0.100 0.146 
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50th   0.587 0.531 0.772 0.167 0.469 0.168 0.111 0.254 0.315 0.428 

75th  0.974 1.514 1.169 0.891 0.773 0.992 1.163 1.126 0.647 0.704 

max 3.122 3.056 3.243 3.131 3.038 25.475 37.368 38.222 24.368 40.630 

 

 

Figure S5: Hugoniot from each of the models from the 5-fold cross validaƟon. 

Provided in Fig. S5 are the predicted Hugoniot from each of the members of the 5-fold cross validaƟon. 
While the error distribuƟons for energy and pressure are comparable across all 5 of the members of the 
ensemble, the resulƟng Hugoniots appear to be highly sensiƟve on the minor differences. This spread in 
the predicted Hugoniot can be seen as an uncertainty on the model’s predicƟons. When applicable such 
an ensemble approach can be used to esƟmate the uncertainƟes in energy and pressure enabling the 
user to determine thermodynamic condiƟons where addiƟonal reference data may be needed.  


