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Ab initio molecular dynamic (AIMD) simulations have become an important tool used in the
construction of equations of state (EOS) tables for warm dense matter. Due to the computational
costs only a limited number of system states conditions can be simulated, and the remaining EOS
surface must be interpolated for use in radiation-hydrodynamic simulations of experiments. In
this work we develop a thermodynamically consistent EOS model that utilizes a physics
informed machine learning approach to implicitly learn the underlying Helmholtz free-energy
from AIMD generate energies and pressures. The model, referred to as PIML-EOS, was trained
and tested on warm dense polystyrene producing a fit within a 1% relative error for both energy
and pressure and is shown to satisfy both the Maxwell and Gibbs-Duhem relations. In addition,
we provide a path towards obtaining thermodynamic quantities such as the total entropy and
chemical potential (containing both ionic and electronic contributions) which are not available
from current AIMD simulations.

Section I: Introduction

The development of reliable equations of state (EOS) is fundamental to furthering the
understanding of material properties. This is particularly true for warm dense matter (WMD)
systems which have both a solid-state density and a thermal energy comparable to the Fermi
energy. In this regime, accurate and fully consistent EOS are required for the closure of the fluid
equations governing hydrodynamic simulations which are utilized to investigate spherical target
implosions in inertial confinement fusion (ICF) research [1-8] and in some cases used to
determine the full thermodynamic state of experimentally measured systems [9,10]. Beyond ICF
research, EOS also play a key role in planetary science: reliable EOS tables are utilized in studies
of planetary evolution and collisions [11], as well as to provide insights into intraplanetary
dynamics [12-14].

A standard approach to constructing EOS is often a semi-empirical one where a first
principles-based EOS with adjustable free parameters is fit to experimental measurements [15-
21]. However, in the WDM regime experimentally producing target temperatures and densities is
a challenging task. In most cases the sampling of the EOS surface is often limited to a few points
primarily confined to the principle Hugoniot [9,10,22-25] leaving portions of a material’s EOS
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experimentally unexplored. Furthermore, the underlying form of a first principles-based EOS
may have limited ability to accurately describe the WDM system. Such is the case in QEOS [26]
and SESAME [19] where the Thomas-Fermi model [27], known for its inability to bind
molecules, is often used to describe the electronic contribution to the constructed EOS. When
these two EOS are compared to results based on state-of-the-art density functional theory (DFT)
treatment of the electrons, significant differences can be observed in the predicted Hugoniot and
in the resulting simulated implosions [4-8]

An alternative approach to constructing EOS tables is to utilize ab initio molecular
dynamics (AIMD) simulations [4-8,28,29]. Although this approach has been made possible by
the increase in computing power over the past few decades, on-the-fly calculations of a
material’s EOS in the WDM regime are still prohibitively costly. Therefore, an EOS is often
calculated at a few hundred temperature and density conditions, at most [28], to produce a grid of
EOS values across the domain of temperature and density of interest. The intermediate values of
the EOS surface are then obtained by applying an interpolation scheme to the calculated points.
A key factor in the reliability of this approach is ensuring the interpolation scheme provides
thermodynamically consistent energies and pressures, which is often overlooked.

One of the earliest interpolation schemes with built in thermodynamic consistency was
the bi-quintic scheme put forth by Swesty [30] in which the Helmholtz free-energy of a system
was directly interpolated. The challenge of utilizing such an interpolation scheme for EOS data
generated by AIMD simulations is the total Helmholtz free-energies are unavailable (this is also
the case for the total entropies and chemical potentials). This issue was later circumvented by
Dilts [31] where thermodynamic constraints were directly enforced in a tuned regression
estimator method that utilized a set of monomials to simultaneously interpolate the available
energy and pressure data. In recent years, the underpinnings of Swesty and Dilts works have
lived on in the context of machine learning (ML) based schemes where neural networks [32-38]
or Gaussian process regressions [39,40] have been trained to learn EOSs. In the work of Gaffney
et al [39], the use of AIMD training data in the direct modeling of the Helmholtz free-energy
produced excellent interpolations for the energy and pressure of warm dense B4C. However, not
all thermodynamic relations were confirmed to hold (e.g. Gibbs Duhem relation), nor was it clear
if any information is missing from the implicitly learned Helmholtz free-energies. Additionally,
many of the other current ML based EOS models have been primarily applied to cases where
synthetic data can be easily obtained and where most, if not all, EOS quantities are available.
Such models may not be suitable for use with AIMD training data due to the missing
thermodynamic quantities.

In the present work, we aim to address the above concern by constructing a physics
informed ML based EOS, referred to as PIML-EOS, that utilizes only available energy, pressure,
temperature and density data from AIMD simulations. A thorough check of the level of
thermodynamic consistency of the model will be provided. Additionally, we will demonstrate a
potential path towards obtaining thermodynamic quantities that are currently unavailable from
the direct output of AIMD simulations. The rest of the paper is outlined as follows. Section II
provides details about the reference data set and data scaling. Section III defines the criteria for



thermodynamic consistency. Section IV provides details on the construction of the model. And
section V contains the results and discussion before the work is concluded in section VI.

Section II: Reference data

Data set: Having a reliable EOS for warm dense polystyrene (CH) is of importance due to its
utilization as an ablator material in ICF implosions [7,29]. As polystyrene has been extensively
studied, EOS data is readily available. Here, the data from Zhang et a/ [29] for polystyrene with
equal parts carbon and hydrogen will be used as a test of the proof of principle of the PIML-EOS
model constructed in Section IV. Shown in Fig. 1a are the temperature and density points
comprising the reference data set. For simplicity, the original set of conditions has been truncated
to form a rectangular domain of reference data where the densities vary between 2.1 and 12.6
g/cm?. The temperature range was not affected by this truncation and the full range from 6.7x10°
to 1.3x10% K is considered. The corresponding target internal energies range from -10° to 1.5x10°
eV/CH and the pressures range from 44 to 9.4x10% GPa. At temperatures below 10° K, the
reference data was obtained with AIMD simulations driven by Kohn-Sham DFT. Above 10¢ K
path integral Monte Carlo (PIMC) based AIMD simulations were utilized. The DFT based
energies were then shifted to match within 21.8 eV/CH at 10°K (this will be referred to as the
matching boundary). For additional details about the calculation of the reference data see [29].

Scaling relations.: Before constructing the PIML-EOS model all thermodynamic quantities are
made dimensionless. To achieve this, a value of E, and py must be set to scale the energy and
density respectively. These values can be chosen independently but should be representative of
the values found in the reference data set. For the polystyrene data set described above, E, and
po Were chosen to be 100 eV and 2.1 g/cm? respectively. Additionally, with the use of
Boltzmann’s constant, kg, and the mass of a CH pair, m, all remaining thermodynamic quantities
can be made dimensionless. Furthermore, all extrinsic variables are transformed to intrinsic
variable with a scaling by N,, the number of CH pairs in the system. Due to the 1:1 ratio of C to
H, this choice enables the system to be treated as a single component system. For further details
on the scaling relations see table I. Moving forward, all thermodynamic quantities and equations
should be assumed to be dimensionless and describe intrinsic quantities unless stated otherwise.

Table I: Definition and scaling relation for all thermodynamic quantities.

Quantity Symbol Scaling
Density p 1
Po
Temperature T kg
Ep
Energy (internal) E 1
NoEy



Helmbholtz free F 1

energy N,E,
Entropy S 1
Nokp
Pressure P m
poEo
Chemical potential U 1
Ey

Section III: Thermodynamic consistency

For an interpolation scheme to be thermodynamically consistent the predicted energies
and pressures must be in accordance with the definitions for the associated thermodynamic
potential [30,31,41]. Additionally, both Maxwell’s relation [30,31,35,39,41] and the Gibbs-
Duhem relation [41] must be satisfied. The latter of which has not been thoroughly explored in
the context of ML interpolation schemes. The predicted pressures and entropies of the
interpolation scheme should also be non-negative and in the context of a single phase the
corresponding stability conditions for the thermodynamic potential must be met [30,31,35,41].

Definitions: Given that the polystyrene reference data set contains temperatures, T, and densities,
p (two independent variables), the natural thermodynamic potential to work in is that of the
Helmholtz free-energy, F (T, p). From the Helmholtz free-energy, the energy, E, and pressure, P,
are defined as

E=F+TS=F TaF (D
B B oT’
and
oF
— 2

where S is the entropy.

Maxwell’s relation: In terms of the Helmholtz free-energy, Maxwell’s relation is a statement
about the commutativity of the partial derivatives of temperature and density [30,41],

02F _ 9%F
aTdp 0pdT’

(3)

Using Egs. (1) and (2), the Maxwell’s relation of Eq. (3) can be rewritten in terms of the energy
and pressure,
apP

p=rl 2% (4)
—tar TP ap
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Satisfaction of Maxwell’s relation ensures that there is at least one Helmholtz free-energy surface
capable of providing the given energies and pressures. The work of Ref. [30] showed in the
context of hydrodynamic simulations, a failure to ensure this level of consistency can lead to an
effective error accumulation causing a divergence from the expected result with a consistent
EOS.

Gibbs-Duhem relation: Due to the homogeneous first order property of the Helmholtz free-
energy, the quantities P, T, and chemical potential u are not independent of one another [41]. The
relation between these quantities is referred to as the Gibbs-Duhem relation which states,

1
du = —SdT + ;dP. (5)

Any interpolation scheme capable of providing chemical potentials must do so in a way that the
gradients of the chemical potential are consistent with the entropy and density.

Stability conditions: As the temperature-density conditions of polystyrene data set cover only a
single phase, the extremum principle (maximum entropy and minimum energy) must apply. In
accordance, the Helmholtz free-energy must then be concave in temperature and convex in
density [30,31,35,41],

62F<0 26<26F>>0 (6)
arz =" P gp\P 3,) ="

In terms of the energy and pressure the stability requirements of Eq. (6) become

0E
=0

T = 0. (7)

— =
dp

If the energies and pressures provided by an interpolation scheme for a single phase away from
critical points do not satisfy the conditions of Eq. (7) then they are not physically achievable by
the system.

Section I'V: Model construction

Transformation of the Helmholtz free-energy: Directly modeling the Helmholtz free-energy and
utilizing Eqgs. (1) and (2) has the advantage of ensuring Maxwell’s relation is satisfied by
construction. This approach has been shown to be successful in recent ML based EOS models
[35,36,39] and will be the approach taken here. It is important to note, while the Helmholtz free-
energies are not available in the polystyrene data set, it will be shown that the energies and
pressures can be used to implicitly learn the Helmholtz free-energy. Furthermore, with the wide
range of energies, pressures and temperatures encountered in the polystyrene data set it would be
advantageous to work within a log representation of the Helmholtz free-energy. To accomplish
this an auxiliary function f is introduced which will be related to the Helmholtz free-energy
through an arcsinh transformation,



f = arcsinh(F) = In (F +VF2+ 1). (8)

The use of arcsinh over a standard natural log eliminates the need for an arbitrary energy shift
preventing any issues from arising due to a negative Helmholtz free-energy (without explicit
values of F an arbitrary energy shift cannot guarantee positive values of F at all conditions).

For an input quantity X, the corresponding derivative of the Helmholtz free-energy
transforms as,

X2 = cosh(f) =2 ©)
ax ~ oy
Utilizing Eq. (9), the equations for the energy and pressure become
oF _ of
E = F—Tﬁ— smh(f)—cosh(f)a (10)
and
oF of
— 200 e
P=p p p cosh(f) 35 (11)

Here, the quantities T and o are defined as 7 = In(T) and o = In(p), respectively. They are to be
considered as the input variables of f moving forward.

Eliminating the common factor of cosh(f) in Egs. (10) and (11) leads to the following
partial differential equation (PDE) that describes the auxiliary function f,
of E—sinh(f)af_o

7 PP a0 (12)
If the energy and pressure are known as a function of temperature and density, Eq. (12) can be
solved to determine f and correspondingly the Helmholtz free-energy of the system (similar
method of solving PDE for unknown exchange-correlation free-energy by direct fitting of a
suitable analytical form was used in Ref. [42]). As energy and pressure data are available at
select temperatures and densities, this data can be used in conjunction with Eq. (12) during the
training process to produce a physics informed ML model, which is capable of implicitly
learning the Helmholtz free-energies as will be shown in the next sub-section.

Introducing ML: To utilize the transformed Helmholtz free-energy, the auxiliary quantity f will
be modeled with an artificial neural network (ANN) [43]. That is, the ANN will take the
quantities ¥* = (7, 0) as an input and output a single value for the auxiliary function f. In this
work a fully connected feedforward ANN with a single hidden layer is utilized. Mathematically,
f can be written as

FANN = W@ g(WWF + §). (13)



Here, the matrices W™, W3 and the bias vector ﬁ contain free parameters that will be
optimized during the training process. The function g is the activation function which was set to
tanh throughout this work.

The parameters of the ANN are optimized by minimizing the following cost function,

ot L pref do

l
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The first term of the cost function is based on the PDE of Eq. (12). Here, the PDE is being
evaluated at each training point, indexed by i, with the reference energy, pressure, temperature
and density replacing the corresponding value. The gradients of the ANN needed in the first term
of the cost function are calculated analytically,

afANN
afANN / \ . .
0% \afaATNN =wO'w® o g' (W3 + ). (15)
do

The symbol o denotes a Hadamard product which in our notation is given higher priority than
standard matrix multiplication in the order of operations. In effect, by minimizing the first term
of the cost function the model aims to find the solution to Eq. (12). The second and third terms of
the cost function, which contain the hyperparameters 4, and A4, respectively, are added to ensure
that when the cost is minimized a trivial solution (f equal to a constant) of Eq. (12) is not found.
Furthermore, y; is a stochastic quantity assigned to each member of the training set and can take
on values of either 0 (probability 10%) or 1 (probability 90%). On each training epoch the value
of y; for every training sample point is redrawn. This provides a level of stochasticity to the
gradient descent to enable the model to work its way out of potential local minimum on the cost
surface.

In principle, additional terms can be added to the cost function of Eq. (14) to enforce the
remaining thermodynamic constraints. In practice however, this may lead to additional
difficulties training the model. For instance, attempts were made to add a regularization term that
penalized functions in the hypothesis set (set of functions represented by the architecture of the
ANN) with negative entropy. This additional regularization often led to stability issues in the
training process which can be attributed to such a term eliminating potential pathways in the
domain of free parameters that the ANN can take during training. In effect, for ease of training it
may be better to allow the ANN to pass through physically unacceptable functions for f on its
way to the final thermodynamically consistent form.



Training the model: In total the reference data set is comprised of 198 temperature-density points
where AIMD simulations were performed. Of these 198 points, 15 were randomly chosen and set
aside for the test set. An additional 15 points were randomly chosen for the validation set which
was used to monitor the training process to prevent overfitting. The remaining 168 points were
then used as the training set. The temperature-density conditions chosen for each data set can be
seen in Fig. 1a where each of the test, validation and training points are indicated by an x, a +
and a filled circle respectively. Attempts to utilize a smaller fraction of the reference data
demonstrated the training size could be cut to 90 data points and provide satisfactory results, see
[45]. Below only results for the largest training set utilizing a single fold cross validation are
discussed. Additional results with a 5-fold cross validation are comparable and can also be found
in [45].

The number of nodes in the hidden layer of the ANN was set to 80. A value chosen to
provide the ANN with reasonable flexibility while not exceeding a 2:1 ratio of free parameters to
available training data. The free parameters were then optimized by performing a stochastic
gradient descent [44] on the cost function of Eq. (14). During this procedure the gradients needed
to update the weights were calculated analytically [45]. The hyperparameters 4; and 4, were
both determined to be a value of 0.3. Tests of these hyperparameters indicated if the value was
below 0.1 a trivial solution to Eq (12) was often found. Values above 1.0 would produce a model
that fits the training data well but may have unphysical oscillations in the energies and pressures
along the reference isochores. Furthermore, with a learning rate of 0.003 the training run
consisted of 25 million epochs. Attempts to use a larger learning rate to shorten the training run
often affected the stability of the stochastic gradient descent. The learning curves along with an
analysis of the gradients during the backpropagation stage can be found in the supplemental
material [45].

The code for the training of the PIML-EOS model was written from scratch in python
version 3.6. NumPy [46] was utilized for all matrix operations as well as for its built-in
hyperbolic trig functions. The mpidpi library [47-50] was utilized to parallelize the training
process. The python code for the PIML-EOS can be found at https://github.com/jhinz2/PIML-
EOS.

Section V: Results and Discussion

Training results: The resulting relative errors in the predicted energies and pressures are
shown in Fig. 1a and 1b respectively. These values have been tabulated and are presented in
Table II. As can be seen, for both the energy and pressure 75% of the predictions are within 1%
of the target value across all three data sets. In the case of energy, there were two points in the
test set and nine points in the training set with a relative error above 5%, no points exceed a 25%
error. Interestingly, all eleven of these points are clustered around the 10® K boundary where the
energies of the KS and PIMC AIMD simulations were matched, Fig 1a. As there is both a higher
uncertainty in the target energies and a likely discontinuity in the slope of the energies at the
matching boundary, the struggles of the model here can be attributed to an underlying
thermodynamic inconsistency in the reference data related to thermal exchange-correlation (XC)
effects taken into account by the PIMC approach and missed by DFT simulations with
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employment of a ground-state XC functional (see Ref. [51]). In the case of pressure, a similar
result can be seen, Fig. 1b. While none of the predicted pressures exceeded a 5% error, the
largest errors again occur at the matching boundary. However, unlike the energies, predicted
pressures along the boundary of the domain of the reference data set also experience some of the
larger errors.

Table II: Distribution of relative errors, in %, for the predicted energies and pressures of the
PIML-EOS model on the training, validation and test sets. Here, the 25", 50" and 75%
percentiles of each distribution, measured from the left tail, are provided. Rows 1 and 2 are the
model’s predictions compared to the available AIMD data. Rows 3 and 4 are comparisons of the
model’s predictions to ideal gas (IG) values for temperatures above 3x107 K. For clarity the
percentiles should be interpreted as the fraction of each distribution which has an error below the
given value. For example, 75% of the test predictions on AIMD data have an error less than

0.992%.

min

25th

Training

50t

75[]\

max

min
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Validation

50th

75t
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25th

Test

50t

75t
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Energy

Pressure

0.001

0.001

0.057

0.289

0.282

0.553

0.834

0.910

19.499

4.948

0.005

0.020

0.025

0.402

0.491

0.570

0.995

0.848

3.036

1.744

0.002

0.015

0.038

0.362

0.168

0.587

0.992

0.974

25.475

3.122

IG
energy

IG
pressure

10

107

0.594

0.188

1.042

0.430

1.500

0.646

1.800

1.178

To examine the interpolations of the PIML-EOS model the energies and pressures were
calculated at 900 temperature points (evenly spaced on the log scale) along each reference
isochore. The results for energy are shown in Fig 2a and those for pressure are shown in Fig. 2b.
Overall, the predictions of the PIML-EOS model appear smooth with no sharp jumps or
oscillations. Even near the 10° K matching boundary where the prediction errors are largest the
model is able to make a smooth transition from the DFT data to the PIMC data (more on this
below). In the case of the 4.72 g/cm?® isochore only high temperature data was available to the
model. At lower temperatures the PIML-EOS model produces the remainder of the energies and
pressures in a way that is consistent with the behavior of the neighboring reference isochores.

The smoothness of the interpolations is further confirmed by examining the derivatives of
the PIML-EOS model. For both energy and pressure, the derivative with respect to temperature
at each of the 900 points along the reference isochores are calculated analytically [45]. From Fig.
2c and 2d, it is clear both the derivative of the energy and the derivative of pressure with respect
to temperature are continuous everywhere and appear to be smooth themselves. Around 10° K
there does not appear to be any discontinuities or significant jumps associated with inconsistency
of the slopes of the DFT and PIMC data. However, at present it is not possible with the available
data to confirm whether the accuracy of predicted quantities such as specific heats in this region
is significantly affected. Regardless, the smoothing of the discontinuity in the slope of the
reference data can be advantageous for hydrodynamic simulations as discontinuities in the EOS
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can cause numerical difficulties [30]. Furthermore, boundary effects at the high and low
temperature regimes appear to be more prevalent in the model’s derivatives than the predicted
energies and pressures.

While the initial results of the model are promising, due to the limited availability of
reference data it is important to provide further quantification of the generalization error. This
validation can be carried out in the high temperature regime, T > 3x10” K, as the ground truth
EOS from the MD simulations converges with that of an ideal gas (IG). To form this second test
set 120000 IG energies and pressures are generated at temperature between 3x107 and 10% K
(evenly spaced on a log scale) and across the full range of densities considered. The PIML-EOS
model trained only on the AIMD data is then applied to make corresponding predictions at each
of these points. The resulting error distributions are provided in Table II. As can be seen, in the
case of pressure the predictions are consistently within 1% of the IG values and never exceed an
error of 1.2%. The errors in energy are slightly worse as the median error is just over 1% and the
maximum error sits at 1.8%. This higher error observed in the energies can be attributed to small
oscillations that appear along isotherms in this temperature regime. These oscillations suggest
that a function that is constant in density, as the ground truth EOS is in this regime, may be just
outside of the hypothesis set formed by the ANN (analogous to expanding a constant function in
a finite number of sines and cosines). Overall, based on this result, the results of the original test
set and the observed behavior of the interpolations, it is expected that the general error of the
model across the full domain of temperature and densities considered will be around 1% for both
the energy and pressure.

Consistency checks: To evaluate Maxwell’s relation the energy, pressure and the
corresponding derivatives from the PIML-EOS model were calculated at 90000 temperature and
density points (evenly space on log scale) across the same domain of temperature and density
consistent with the reference data set. The residual error, defined as the absolute value of the
difference between both sides of Eq. (4), was calculated at each point and the resulting
distribution has been tabulated in Table III. As can be seen, the errors in Maxwell’s relation are at
or near machine precision confirming Maxwell’s relation holds.

To determine if the non-negativity condition on the pressure and the conditions of
stability are satisfied, the maximum between 0 and the negative of the predicted target quantity
of interest was evaluated at each of the 90000 points used above in the test of the Maxwell
relation. The resulting distributions, as shown in Table III, indicate there are no points where the
pressure becomes negative and that the stability conditions of Eq. (7) hold across the domain of
temperatures and densities consistent with the reference data set. However, as a note of caution,
care must be taken when the predictions of the PIML-EOS model are extrapolated beyond the
domain containing the reference data. As can be seen in Fig. 2c, at temperatures below 5x10° K
the stability condition for the energy begins to break down.

Table III: Distributions for various checks on the thermodynamic consistency of the PIML-EOS
model. Column one indicates the quantity calculated at each of the 90000 points sampled across
the domain of T and p consistent with the reference data. For Maxwell’s relation this is the
absolute value of the difference between the two sides of Eq. (4). Column two gives the
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minimum of each distribution, Columns three through five indicate the 25, 50% and 75%
percentile of the distribution respectively; and column six provides the maximum of the
distribution.

Distribution min 25t 50t 75th max
Maxwell relation 0.0 0.0 2.22x10°'%  7.11x10"°  2.73x107'2
max (0, —P) 0.0 0.0 0.0 0.0 0.0
Inax<0__gg> 0.0 0.0 0.0 0.0 0.0
* T

( mv 0.0 0.0 0.0 0.0 0.0
max|0,——
dp

Next, for the evaluation of the Gibbs-Duhem relation the chemical potential from the
PIML-EOS model was obtained using the following Euler equation,

1
u:F+;R (16)

Eq. (16) comes from a manipulation of Eq. (1) where the Euler relation E = ST + u — P/p has
been utilized. As the chemical potential is needed as a function of pressure and not density, Eq.
(5), a transformation of the input variables is performed. This is done by fitting a tangent plane to
the chemical potential surface at each of the 90000 temperature-density points. For each fit, both
the temperature and density were varied by + 0.05% to generate 25 points around (T, py), the
conditions where the Gibbs-Duhem relation is being evaluated. Using a least squares fit to the
model predictions at these 25 conditions the coefficients a; and a, in the tangent plane

p—po = a; (T —Ty) + az(P — Py) (17)

where optimized. Here, (P, 1y) are the predicted values of the pressure and chemical potential at
(Ty, po)- The coefficients associated with these fits are directly related to the derivatives of the
chemical potential and can be interpreted as

au au

ﬁ' a, :ﬁ' (18)

a; =
Comparing Eq. (5) and Eq. (18), the coefficients a; and a, should be equal to the
negative of the entropy and the reciprocal of the density respectively. Here, the entropy is
calculated from the Helmholtz free-energy and the comparison to the coefficient a; is made in
Fig. 3a. Overall, the relative error in a4 is consistently below 1% across most of the domain
associated with the reference data. Near the matching boundary, 10° K, there are some instances
where this error can reach 10% or more. In total, these high error points constitute only 300 of
the 90000 points sampled. Furthermore, the coefficient a, is compared to the reciprocal of the

11



density in Fig 3b. Again, the error in the coefficient is consistently below 1% for most conditions
sampled with the exception of a few points near the matching boundary. For both coefficients,
the high error points seem to be the most sensitive to the window used to fit the tangent plane.
With a more accurate scheme to calculate the derivatives of the chemical potential these larger
errors may be reduced. Overall, these results demonstrate the Gibbs-Duhem relation holds for the
PIML-EOS model but may be susceptible to a breakdown in regions where thermodynamic
inconsistencies exist in the reference data.

The remaining consistency check is to examine the sign of the model’s predicted entropy.
As with the pressure and stability conditions, the maximum of 0 and the negative of the entropy
is calculated at each of the 90000 points sampled. The resulting color map of values can be seen
in Fig. 4a. Below 20000 K for most densities considered the entropy becomes negative which is
the first observed thermodynamic inconsistency in the PIML-EOS model’s predictions not
related to an inconsistency in the reference data.

This inconsistency in the entropy can be explained by the fact that the use of E (T, p) and
P(T, p) does not provide the same information as F (T, p) about a system’s EOS. This means the
true Helmholtz free-energy of polystyrene differs by some unknown function of temperature and
density from the Helmholtz free-energy of the model,

FsYs = FANN 4 p(T, p). (19)

The form of the function h can be determined by the fact that both the pressure and energy used
in the construction of the model are total quantities containing all contributions, both electronic
and ionic, within the context of the approximations made in the AIMD simulations. As such the
function h is constrained by PSYS = PANN and ESYS = EANN,

Plugging Eq. (19) into Eq. (2) and enforcing the constraint on pressure, it can be seen that
the function h will be independent of density, h(p, T) = h(T). In a similar manner, Eq. (19) can
be inserted into Eq. (1) and the constraint on the energy can be applied. This results in the
following ordinary differential equation that describes h,

dh(T)
h(T) —=T—=—=0. 20
N -T— (20)
Solving Eq. (20) leads to h being a linear function of temperature. Therefore, during the training
process the PIML-EOS model picks out one Helmholtz free-energy surface in a family of
possible surfaces with the resulting true Helmholtz free-energy of the system being

FsyS = FANN _ g T. (21)

The unknown constant S, can be determined with an exact calculation of the system’s entropy at
a single temperature-density point or in the limit where the Helmholtz free-energy goes to a
known form. It’s important to note, the presence of this unknown constant does not affect the
previous consistency checks as the constant will either cancel out or be eliminated by a
derivative. It is also of note that any model that learns the Helmholtz free-energy from only
energy and pressure data will be missing this linear contribution of temperature.
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To determine the constant S,, for the polystyrene data set the convergence to an IG in the
high temperature regime (see Fig 2) is utilized. Here, F5¥® in Eq. (21) is replaced with the exact
expression for an IG, F'¢ [41], and the difference AF = F'¢ — FANN ig taken at each of the
90000 conditions previously sampled. From the distribution of AF /T, Fig. 4b, all points with a
temperature greater than 3x10” K were averaged producing a value of 22.24 for S,. The
corresponding standard deviation associated with this average is 0.04 confirming that AF /T does
in fact go to a constant at high temperatures. When S, is added to the predicted entropies from
the PIML-EOS model, the thermodynamic inconsistency is resolved as shown in Fig 4c. With the
calculation of S the total Helmholtz free-energy is now completely determined enabling the
prediction of quantities such as the total entropy and total chemical potential of the system at all
temperature-density conditions. As these quantities are not directly obtainable from AIMD
simulations, this makes the PIML-EOS model a valuable tool for the construction of a more
complete EOS table and may help facilitate a better understanding of material properties.

Additional validation: With the consistency checks complete, two additional tests of the
model are performed. For the first test, the PIML-EOS model was used to calculate the principle
Hugoniot which describes the locus of possible final states, (E,, P,, p;), a system can achieve
after being shock compressed from an initial state (E;, P, p1). This locus of final states is
determined by the Rankine-Hugoniot equation,

1 1 1
By = By +5 (P + P (pz pl) 0. (22)
For the calculation of the polystyrene Hugoniot the same initial conditions used by Zhang et al
[29] are used here. In dimensionless quantities these values are E; = —10.4281, P, = 0 and

p1 = 0.5. The resulting Hugoniot, Fig 5, is in overall good agreement with that produced by
Zhang et al with a cubic spline interpolation. The maximum compression of both curves is
within 0.5% of one another. In the high-pressure regime oscillations in the PIML-EOS predicted
Hugoniot of + 2% about the Zhang et al curve can be observed. This can be attributed to the
Hugoniot’s sensitivity to errors in the fitted EOS and not the presence of apparent shell structure
as retraining the model often resulted in a differing behavior of the oscillations. The use of an
ensemble approach has been shown to eliminate such oscillations [38] and was attempted in the
supplemental material [45]. It was found that the behavior of the Hugoniot, particularly in the
low-pressure regime, is highly sensitive to errors in the model. Therefore, caution must be taken
when interpreting the Hugoniot through a physics lens.

For the second additional test, a transformation to the energy representation, E (S, p), is
performed. As was done in the test of the Gibbs-Duhem relation, the transformation of the input
variables is done by fitting a tangent plane at each of the 90000 temperature-density conditions
previously used in the consistency checks. The coefficients of the fits are then compared to the
expected values of the derivatives 0E /dS = T and 0E /0p = —P /p. From Figs. 3¢ and 3d it can
be seen that the derivatives are reproduced well within a 1% error. Together with the tests of the
Gibbs-Duhem relations, this demonstrates the PIML-EOS model can be trained in one
thermodynamic potential and utilized in another.
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Section VI: Conclusion

In summary, a physics informed machine learning EOS model was constructed such that
energy and pressure data can be utilized to implicitly learn the Helmholtz free-energy up to an
unknown constant. With the use of a known limit, the unknown constant can be determined
allowing for previously unobtainable quantities such as the total Helmholtz free-energy, entropy
and chemical potential to be calculated for AIMD based EOS tables. Trained on reference data
for warm dense polystyrene, the PIML-EOS model was capable of reproducing the target
energies and pressures within a 1% error. The model was also shown to be thermodynamically
consistent, providing thermodynamically stable predictions that satisfied both the Maxwell and
the Gibbs-Duhem relations. Furthermore, we found that the model appears to be capable of
identifying inconsistencies in the reference data set. While this is not the intended purpose of the
model, this sensitivity may be a valuable tool to improve existing discrete EOS tables. Moving
forward, additional tests are needed to determine how the model will handle more complex
systems that experience a phase transition in the considered domain of temperature and density.
At present, it appears such transitions will likely be smoothed out which could be advantageous
for hydrodynamic simulations; but for other applications where smoothing is undesirable, further
developments of the model are likely needed. Furthermore, additional validation should be
performed, when possible, to ensure the level of error on the energies and pressures is maintained
for quantities such as specific heats.

Supplementary Material

The supplemental material contains technical details about the implementation of the PIML-EOS
model. This include details about how gradients of the model are calculated for both the
backpropagation and analysis of the smoothness of the energies and pressures. Additionally,
learning curves from the training runs can be found here.
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Figure 2: a) interpolated energies and b) interpolated pressures with the PIML-EQS model along the reference isochores. Solid
lines indicate the model’s predictions while circles indicate the reference data points. Note, the energies have been shifted for
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Derivatives have been intentionally left dimensionless to provide insight into the number of degrees of freedom in the system.
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Section I: Overview

Here additional details about the PIML-EOS model can be found. In section II all
quantities used throughout this document are defined. From there the gradients needed in the
backpropagation used during the training process are constructed in section III. Section IV
provides the analytical derivatives of the model’s energy and pressure used in the analysis of the
model. Results of stability can be found in section V and a 5-fold cross validation was performed
in section VI.

Section II: Defining terms

Table I: Quantities, and their definitions/description, used throughout this document.

Quantity Description
F,E,P,T,p Helmbholtz free-energy, energy, pressure,
temperature and density respectively.
wowe, E Weight matrices and bias vector associated with the
neural network
7 = (T ) _ (ln T) Input vector for the neural network.
“\a/  \Inp
HO = w@®z® 4 ﬁ Hidden layer of the neural network for input vector
indexed by i.
fANN = W@ g( H (i)) Auxiliary function modeled by a neural network
with activation function g.
ANN . . .
of AT DT @ g (ﬁ) Derivative of the neillllral network with respect to the
ox put vector.
> _ (1 z_ (0 Vectors utilized in the backpropagation.
“= (0) b= (1)

Lo Eiref — sinh( fANN ) . Vector quantity appearing in the gradients of the
v =a+|p; 5] b model.
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afANN
0x
p1i = e (E = P, A = 1;)

e, = ey; + sinh(fAVN) ar

2@

Scaler quantity appearing in the gradients of the
model.

Scaler quantity appearing in the gradients of the
model.

Scaler quantity appearing in the gradients of the

model. The argument denotes swapping out
variables appearing in the previous quantity.
Scaler quantity appearing in the gradients of the
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Figure S1: Form of the artificial neural network used in the PIML-EOS model.

Section III: Gradients of the cost function

The cost function used to train the PIML-EOS model consists of two pieces. The first
contribution to the cost is based on the square residual error of the partial differential equation
governing the auxiliary function f evaluated at each of the training points,

Ng 2

1 afANN ref Eiref _ Sinh(fANN) afANN

Cpae = ﬁz Vi\ =5 TP pref do ' (1)
i i

T;,0f

Minimization of Cp4, has the potential to produce either a trivial or nontrivial solution to the pde.

To avoid the trivial solution an additional term based on the fractional error of the predicted
energies and pressures is constructed,



1 Ns EANN 2 PANN 2
COZ_Zyi ,11(1— ‘mc) +,12<1— lref>
2N : E] P,

Here, A;and A, are hyperparameters of the cost function that must be optimized. Additionally, the

quantity Nj is the total number of training points and N = ) y; is the number of training points
used at each epoch with y; € {0,1} determining if a given training point contributes to the cost
(and gradients). The total cost is then the sum of the two terms above.

The optimal weights and biases of the neural network are achieved when the total cost

has been minimized. To carry out this minimization a stochastic gradient descent was performed.

Here, the gradients are calculated analytically and are provided below in table II for reference.

Table I1: Analytical form of the gradients of the cost function.
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In the calculation of the gradients, table II, the symbol o represents a Hadamard product
which is given higher priority than standard matrix multiplication in the order of operations.
Additionally, the quantity y; is a scalar quantity that takes a value of either O or 1. This value is
determined by randomly sampling a uniform distribution on the range [0,1] and checking
whether the drawn number is above or below a preset value. In this work the preset value was set
to 0.9 meaning if the drawn number was less than 0.9 y; was set to 1 otherwise it was set to 0.
The determination of y; was done for each training point on every epoch.
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Figure S2: Learning curves for a) the training set and b) the

validation set. The red curve is the cost associated with the portion
of the cost based on the partial differential equation and the blue

curve is the cost associated with the fractional error in the
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energies and pressures. C) provides a direct comparison of the
total cost of the validation set, blue curve, with the total cost of

the training set, red curve.

The resulting learning curves are
shown in Fig. S2. Due to the stochastic
nature built into the cost function there are
many sharp peaks that form in both
components of the cost as the instantaneous
training set fluctuates. These sharp jumps
tend to be significantly larger for C, which
is due to training points at the matching
boundary, 10° K where thermodynamic
inconsistencies exist in the reference data,
moving in and out of the instantaneous
training set. Reducing the learning rate can
reduce the magnitude of these spikes but
results in a significantly longer training run.
Removing the stochastic parameter y and
using all training data at each epoch would
remove these spike but given Cy, 4, works its
way out of multiple local minimum at the
onset of the training process, some level of
stochasticity is beneficial in ensuring the
model does not get stuck in these local
minimum.

Shown in Fig. S3 is an analysis of
the gradients of the ANN during the training
process. Plotted are the max, average and
minimum value of the distribution of the
magnitude of the gradient associated with
each weight matrix and bias vector. The
gradients also show large spikes which can
again be attributed to those training points
at the matching boundary passing in and out
of the instantaneous training set. The
smallest gradients observed occur when the

corresponding free parameter becomes relatively small compared to the rest of the free
parameters. This analysis demonstrates that there are no issued with dead nodes arising during
the training process for the case of an ANN with one single hidden layer consisting of 80 nodes.
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blue curves provide the maximum, average and minimum, respectively, of the absolute value of the elements of the given matrix
for the gradient of the total cost.

Section IV: Gradients of energy and pressure

In the analysis of the model the gradients of energy and pressure were utilized. These
gradients were calculated analytically by taking the derivative of the energy and pressure with
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respect to the input vector X. After propagating the derivative through the neural network the
resulting gradient of the energy is
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and the corresponding gradient of the pressure is
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Here, the first and second elements of on the left-hand side of both Eq. (3) and (4) should be
interpreted as the derivative with respect to the log of the temperature and the derivative with
respect to the log of density respectively.

Section V: Stability tests

Table I1I: Test set performance on pressure as a function of the number of nodes in the hidden
layer.

Dist. Number of nodes in the hidden layer

20 40 60 80 100 120
min 0.223 0.058 0.066 0.015 0.063 0.069
25t 0.294 0.316 0.292 0.362 0.229 0.145
50t 0.517 1.025 0.530 0.587 0.685 0.298
75t 1.567 1.327 1.192 0.974 0.984 0.794
max 3.668 3.605 6.109 3.122 3.138 3.348

Table I'V: Test set performance on energy as a function of the number of nodes in the hidden
layer.

Dist. Number of nodes in the hidden layer

20 40 60 80 100 120
min 0.003 0.225 0.002 0.002 0.009 0.011
25t 0.016 0.368 0.084 0.038 0.211 0.129
50t 0.412 0.5593 0.518 0.168 0.443 0.231




75t 1.118 1.276 1.524 0.992 1.488 0.882
max 25.441 26.632 26.898 25.475 24311 25.454

To provide further insight into the model’s performance additional test were conducted.
For the first test the number of nodes in the hidden layer was varied from 20 to 120. For each
case the PIML-EOS model was trained using the exact same training/validation/test sets
described in the main text. The resulting errors on the pressure have been provided in Table 111
and the errors for energy are provided in Table I'V. As can be seen the resulting error distributions
are remarkably stable as a function of the number of nodes in the hidden layer. There are a few
fluctuations in the overall shape of the error distributions, but each model is able to provide an
accuracy for both energy and pressure on the order of 1 to 2%. The large errors made by each
model are for the same points that can be found at the matching boundary. The resulting
interpolations are consistent with one another with slight differences in their behavior at the low
temperature boundary of the reference data set indicating extrapolation of the resulting EOS
should be used with caution.

For the second stability test the training set size was varied. Using the initial
training/validation/test split of 168/15/15, 42 points were moved from the training set to the test
set to give a split of 126/15/57. Then starting with the 126/15/57 split an addition 42 points were
moved from the training set to the test set to give a split of 84/15/99. For each of these 3 splits of
the reference data a single model was trained where each model utilized 80 nodes in the hidden
layer. Note that a given model is only trained and then applied to its specific data set split as to
avoid biased results. The errors on the test set for both energy and pressure are provided in Table
V and Fig. S4. As can be seen there appears to be a general shift of the error distribution for both
pressure and energy to higher errors as the training set becomes smaller. However, on average
the errors are still below 1%. Additionally, the points near the matching boundary are most
sensitive to the training set size as can be seen in the max errors. Overall, this result supports the
conclusion that the generalization error of the model with 168 should be on the order of 1%.

Table V: Test set performance as a function of the size of the training set.

Pressure Energy
Dist. Training set size Training set size
168 126 84 168 126 84

min 0.015 0.014 0.003 0.002 0.004 0.007
25t 0.362 0.238 0.317 0.038 0.0233 0.227
50t 0.587 0.643 0.862 0.168 0.628 0.471
75t 0.974 0.989 1.509 0.992 1.208 1.197
max 3.122 5.628 5.213 25.475 26.759 25.542
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Figure S4: Errors and fits from the model trained with a training set size of 84. a) provides the errors in pressure across the

domain of temperature and density considered. Circles are training points, + are validation points and x’s are the test points. b)
corresponding fits of the reference data which are indicated by circles. c) errors in the predicted energies. Symbols are the same
as in a). d) corresponding fits of the energy.

Section VI: Cross-validation

To provide further validation a 5-fold cross validation is performed. For each fold a random
sampling of the reference data set is performed to produce a training/validation/test split of 168/15/15.
An ANN with a single hidden layer consisting of 80 nodes is then trained on each fold. The resulting
errors on the test set can be found in Table VI. Across all 5 members of the ensemble the errors are
consistently below 1% for both pressure and energy. The most noticeable difference is in the high error
tail on the error distributions associated with the predicted energies. The points comprising this tail are
those found near the matching boundary. This suggests the sampling of points around a potential
thermodynamic inconsistency is important for minimizing the model’s errors at the inconsistency.

Table VI: Test set performance for the members of the 5-fold cross validation.

Pressure

Ensemble member

Energy

Ensemble member

Dist. 1 2 3 4 5 1 2 3 4 5
min 0.015 0.170  0.234 0.010 0.013 0.002 0.043  0.091 0.020 0.025
25t 0362 0372 0354 0.087 0.198 0.038 0.088  0.165 0.100 0.146




50t 0.587 0.531 0.772 0.167 0.469 0.168 0.111 0.254 0.315 0.428
75M 0974 1514 1.169 0.891 0.773 0.992 1.163 1.126 0.647 0.704
max 3.122  3.056 3.243  3.131 3.038 | 25475 37368 38.222  24.368 40.630
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Figure S5: Hugoniot from each of the models from the 5-fold cross validation.

Provided in Fig. S5 are the predicted Hugoniot from each of the members of the 5-fold cross validation.
While the error distributions for energy and pressure are comparable across all 5 of the members of the
ensemble, the resulting Hugoniots appear to be highly sensitive on the minor differences. This spread in
the predicted Hugoniot can be seen as an uncertainty on the model’s predictions. When applicable such
an ensemble approach can be used to estimate the uncertainties in energy and pressure enabling the
user to determine thermodynamic conditions where additional reference data may be needed.
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