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A signal processing perspective

eep learning (DL) has been wildly successful in practice,

and most of the state-of-the-art machine learning meth-

ods are based on neural networks (NNs). Lacking, how-

ever, is a rigorous mathematical theory that adequately
explains the amazing performance of deep NNs (DNNs). In this
article, we present a relatively new mathematical framework
that provides the beginning of a deeper understanding of DL.
This framework precisely characterizes the functional proper-
ties of NNs that are trained to fit to data. The key mathemati-
cal tools that support this framework include transform-domain
sparse regularization, the Radon transform of computed to-
mography, and approximation theory, which are all techniques
deeply rooted in signal processing. This framework explains
the effect of weight decay regularization in NN training, use
of skip connections and low-rank weight matrices in network
architectures, role of sparsity in NNs, and explains why NNs
can perform well in high-dimensional problems.

Introduction

DL has revolutionized engineering and the sciences in the
modern data age. The typical goal of DL is to predict an out-
put yeY (e.g., a label or response) from an input x € X
(e.g., a feature or example). An NN is “trained” to fit to a
set of data consisting of the pairs {(x., y2)}_, by finding
a set of NN parameters € so that the NN mapping closely
matches the data. The trained NN is a function, denoted by
fo: X — Y, that can be used to predict the output y € Y of a
new input x € X. This paradigm is referred to as supervised
learning, which is the focus of this article. The success of
DL has spawned a burgeoning industry that is continually
developing new applications, NN architectures, and training
algorithms. This article reviews recent developments in the
mathematics of DL, focused on the characterization of the
kinds of functions learned by NN fit to data. There are cur-
rently many competing theories that explain the success of
DL. These developments are part of a wider body of theoreti-
cal work that can be crudely organized into three broad cat-
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egories: 1) approximation theory with NNs, 2) the design and
analysis of optimization (“training”) algorithms for NNs, and
3) characterizations of the properties of trained NNs.

This article belongs to the latter category of research and
investigates the functional properties (i.e., the regularity) of
solutions to NN training problems with explicit, Tikhonov-
type regularization. Although much of the success of DL in
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practice comes from networks with highly structured archi-
tectures, it is hard to establish a rigorous and unified theory
for such NNs used in practice. Therefore, we primarily focus
on fully connected, feedforward NNs with the popular rec-
tified linear unit (ReLU) activation function. This article
introduces a mathematical framework that unifies a line of
work from several authors over the last few years that sheds
light on the nature and behavior of NN functions that are
trained to a global minimizer with explicit regularization.
The presented results are just one piece of the puzzle toward
developing a mathematical theory of DL. The purpose of this
article is, in particular, to provide a gentle introduction to this
new mathematical framework, accessible to readers with a
mathematical background in signals and systems and applied
linear algebra. The framework is based on mathematical
tools familiar to the signal processing community, including
transform-domain sparse regularization, the Radon trans-
form of computed tomography, and approximation theory. It
is also related to well-known signal processing ideas such as
wavelets, splines, and compressed sensing. This framework
provides a new take on the following fundamental questions:
® What is the effect of regularization in DL?

m What kinds of functions do NNs learn?

m What is the role of NN activation functions?

® Why do NNs seemingly break the curse of dimensionality?

NNs and learning from data

The task of DL corresponds to learning the input—output map-
ping from a dataset in a hierarchical or multilayer manner.
DNNs are complicated function mappings built from many
smaller, simpler building blocks. The simplest building block of
a DNN is an (artificial) neuron, inspired by the biological neu-
rons of the brain [24]. A neuron is a function mapping RY - R
of the form z — o(wTz — b), where w € R? corresponds to the
weights of the neuron and b € R corresponds to the bias of the
neuron. The function o : R — R is referred to as the activation
function of the neuron and controls the nonlinear response of
the neuron. A neuron “activates” when the weighted combina-
tion of its input x exceeds a certain threshold, i.e., wTx > b.
Therefore, typical activation functions such as the sigmoid, unit
step function, or ReLU activate when their input exceeds zero,
as seen in Figure 1.

A neuron is composed of a linear mapping followed by a
nonlinearity. A popular form (or “architecture”) of a DNN
is a fully connected feedforward DNN, which is a cascade
of alternating linear mappings and componentwise nonlin-

(@) (b) ()

FIGURE 1. The typical activation functions found in NNs. (a) Sigmoid.
(b) unit step. (c) ReLU.

earities. A feedforward DNN fo (parameterized by 6) can
be represented as the function composition

fo)=AP A" Ve AV (x) 0]

where for each ¢ =1, ..., L, the function A (z) = WPz — p©®
is an affine linear mapping with weight matrix W and bias
vector b”. The functions o that appear in the composition
apply the activation function o:R — R componentwise to
the vector A¥(z). Although the activation function could
change from neuron to neuron, in this article, we assume that
the same activation function is used in the entire network.
The parameters of this DNN are the weights and biases, i.e.,
9:{(W(g>,b(ﬂ))}§=,. Each mapping A® corresponds to a
layer of the DNN, and the number of mappings L is the depth
of the DNN. The dimensions of the weight matrices W'® cor-
respond to the number of neurons in each layer (i.e., the width
of the layer). Alternative DNN architectures can be built with
other simple building blocks, e.g., with convolutions and
pooling/downsampling operations, which would correspond
to deep convolutional NNs. DNN architectures are often de-
picted with diagrams, as in Figure 2.

Given a DNN fp parameterized by 6 € © (of any archi-
tecture), the task of learning from the data {(x., y,)})_, is
formulated as the optimization problem

N
Ienellél Z L(yn, fO (xn)) (2)
n=1

where £(-,-) is a loss function (squared error, logistic, hinge
loss, and so on). For example, the squared error loss is given
by L(y,z)=(y— 2)>. ADNN is trained by solving this opti-
mization problem, usually via some form of gradient descent.
In typical scenarios, this optimization problem is ill-posed, so
the problem is regularized either explicitly through the addi-
tion of a regularization term and/or implicitly by constraints
on the network architecture or the behavior of gradient de-
scent procedures [34]. A surprising phenomenon of gradi-
ent descent training algorithms for overparameterized NNs
is that, among the many solutions that overfit the data, these
algorithms select one that often generalizes well on new data,
even without explicit regularization. This has led to research-
ers trying to understand the role of overparameterization and
the effect of random initialization of NN parameters on the
implicit bias of gradient-based training algorithms [8].

On the other hand, explicit regularization corresponds to
solving an optimization problem of the form

min 3 £(yn fo(x:)) + AC(6) 3
n=1

where C(6)>0 for all € 0. C(0) is a regularizer, which
measures the “size” (or “capacity”) of the DNN parameterized
by 6 €0, and A > 0 is an adjustable hyperparameter, which
controls the tradeoff between the data-fitting term and the
regularizer. DNNs are often trained using gradient descent
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algorithms with weight decay, which corresponds to solving
the optimization problem

N
min D L(yn, fo(xn))+ ACwa(0) @)
n=1

where the weight decay regularizer Cywa(6) is the squared
Euclidean-norm of all the network weights. Sometimes, the
weight decay objective regularizes all the parameters, includ-
ing biases, while sometimes it only regularizes the weights
(so that the biases are unregularized). This article focuses on
the variant of weight decay with unregularized biases.

What is the effect of regularization in DL?

Weight decay is a common form of regularization for DNNG.
On the surface, it appears to simply be the familiar Tikhonov
or “ridge” regularization. In standard linear models, it is well
known that this sort of regularization tends to reduce the size
of the weights but does not produce sparse weights. However,
when this regularization is used in conjunction with NN,
the results are strikingly different. Regularizing the sum of
squared weights turns out to be equivalent to regularization
with a type of 0'-norm regularization on the network weights,
leading to sparse solutions in which the weights of many neu-
rons are zero [47]. This is due to the key property that the
most commonly used activation functions in DNNs are ho-
mogeneous. A function o(#) is said to be homogeneous (of
degree 1) if o(yf) =yo(¢) for any y > 0. The most common
NN activation function, the ReLU, is homogeneous as well
as the leaky ReLU, linear activation, and pooling/downsam-

pling units. This homogeneity leads to the following theorem,
referred to as the neural balance theorem (NBT) [(47), Th.1]
(see “Neural Balance Theorem”).

The proof of this theorem boils down to the simple obser-
vation that for any homogeneous unit with input weights
w and output weights v, we can scale the input weight by
y>0 and the output weight by 1/y without changing the
function mapping. For example, consider the single neuron
z2—vo(w'z— b) with homogeneous activation function o, as
depicted in Figure 2(b). In the case of a DNN, as in (1), w cor-
responds to a row of a weight matrix in the affine mapping of
a layer, v corresponds to a column of the weight matrix in the
subsequent layer, and b corresponds to an entry in the bias vec-
tor. It is immediate that (v/y) o ((yw)Tz—yb) = vo(wTz—b).
By noting that the biases are unregularized, the theorem fol-
lows by noticing that miny>o| yw |3+ v/y |5 occurs when

Neural Balance Theorem

Let fo be a deep neural network (DNN) of any archi-
tecture parameterized by 6 €0, which solves the DNN
training problem with weight decay in (4). Then, the
weights satisfy the following balance constraint: if w
and v denote the input and output weights of any
homogeneous unit in the DNN, respectively, then

lTw il =11 .-

74 o—— W4
Previous-Layer Outputs {Z2 o— W2

g o— Wy

—b

Vo —— Z5 t Next-Layer Inputs

Vp — Zp

(b)

FIGURE 2. An example depiction of a DNN and its components. (a) A feedforward DNN architecture where the nodes represent the neurons and the edges
represent the weights. (b) A single neuron from the DNN in (a) mapping an input z € R” to an output ZeR” via Z=vo(w'z—b).
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y=4|vIl,/|wl,, which implies that the The halancing effect of group LASSO regularizer. In particu-

minimum squared Euclidean-norm solu- the NBT has a striking lar, this regularizer can be viewed as a

tion must satisfy the property that the input effect on solutions to the mixed ¢*'-norm on the weight matrices.

and output weights, w and v, respectively, _ I Moreover, increasing the regularization
weight decay objective,

are balanced.

particularly a sparsity-
promoting effect akin to
least ahsolute shrinkage
and selection operator
regularization.

The secret sparsity of weight decay

The balancing effect of the NBT has a strik-
ing effect on solutions to the weight decay
objective, particularly a sparsity-promoting
effect akin to least absolute shrinkage and
selection operator (LASSO) regularization
[41]. As an illustrative example, consider a shallow (L =2),
feedforward NN mapping R? -~ R? with a homogeneous
activation function (e.g., the ReLU) and K neurons. In this
case, the NN is given by

for)= Y vio(wlx — by). )
k=1

Here, the weight decay regularizer is of the form
(1/2)Zf-1 | vk | + | w3, where wi and vi are the input and
output weights of the kth neuron, respectively. By the NBT,
this is equivalent to using the regularizer Zf_i | vill, | wk|),.
Due to homogeneity of the activation function, we can
assume, without loss of generality, that | wy |, = 1 by “absorb-
ing” the magnitude of the input weight wy into the output
weight vi. Therefore, by constraining the input weights to
be unit norm, the training problem can then be reformulat-
ed using the regularizer Xf_;|v|, [47]. Remarkably, this
is exactly the well-known group LASSO regularizer [48],
which favors solutions with few active neuron connections
(i.e., solutions typically have many v« exactly equal to zero),
although the overall training objective remains nonconvex.
We also note that there is a line of work that has reformulated
the nonconvex training problem as a convex group LASSO
problem [32].

More generally, consider the feedforward DNN archi-
tecture in (1) with a homogeneous activation function, and
consider training the DNN with weight decay only on the
network weights. An application of the NBT shows that the
weight decay problem is equivalent to the regularized DNN
training problem with the regularizer

(0)

18 e 15 o S 0.0
C(9)—7Z‘|Wk ”2"‘72”"1( HﬁZZIIwk ol v I,
k=1 k=1

0=1k=1
©)

where K® denotes the number of neurons in layer ¢, wg)

denotes the input weights to the kth neuron in layer ¢, and
v denotes the output weights to the kth neuron in layer
0 (see [47, eq. (2)]). The solutions based on this regular-
izer will also be sparse due to the two norms that ap-
pear in the last term in (6) being not squared, akin to the

parameter A, will increase the number
of weights that are zero in the solution.
Therefore, training the DNN with weight
decay favors sparse solutions, where
sparsity is quantified via the number of
active neuron connections. An early ver-
sion of this result appeared in 1998 [16],
although it did not become well known
until it was rediscovered in 2015 [25].

What kinds of functions do NNs learn?

The sparsity-promoting effect of weight decay arising from
the NBT in network architectures with homogeneous ac-
tivation functions has several consequences on the proper-
ties of trained NNs. In this section, we focus on the popular
ReLU activation function p(f)=max{0,7}. The imposed
sparsity not only promotes sparsity in the sense of the num-
ber of active neuron connections but also promotes a kind
of transform-domain sparsity. This transform-domain spar-
sity suggests the inclusion of skip connections and low-rank
weight matrices in network architectures.

Shallow NNs

In the univariate case, a shallow feedforward ReLU NN with
K neurons is realized by the mapping

K
Jo(x)= D vip(wix — by). (7

k=1

Training this NN with weight decay corresponds to the solv-
ing the optimization problem

N K
min 3> L(vw fo(x))+5 X [P +{wf. @®)
0€0, 5 k=1

From the “The Secret Sparsity of Weight Decay” section, we
saw that the NBT implies that this problem is equivalent to

N K
gleigzL(yn,fe(xn))Jfﬁz|Vk|\Wk|- )
n=1 k=1

As illustrated in “Rectified Linear Unit Sparsity in the
Second Derivative Domain,” we see that (9) is actually reg-
ularizing the integral of the second derivative of the NN,
which can be viewed as a measure of sparsity in the second
derivative domain. The integral in (S6) must be understood
in the distributional sense because the Dirac impulse is not a
function, but a generalized function or distribution. To make
this precise, let ge(x) = e/ 2/ «/% denote the Gaussian
density with variance € > 0. As is well known in signal pro-
cessing, ge converges to the Dirac impulse as € — 0. Using
this idea, given a distribution f, define the norm
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£y i=sup £+ gell = sup [ =] [ f)ge(y = x)dx]dy.
e>0 e>0Y > o (10)

This definition provides an explicit construction, via the
convolution with a Gaussian, of a sequence of smooth func-
tions that converge to f, where the supremum acts as the
limit. For example, if f(x)=g(x)+ TR v (x — tr), where
g is an absolutely integrable function, then | f |, =llg|.
+Zitlvel=lgly + vl with [v ], =Zi [ vel. Itis in
this sense that (S6) holds, i.e., | D? fo |5 = Zt=1| vi|| wk|. In
particular, the M-norm is precisely the continuous-domain

analog of the sparsity-promoting discrete ¢'-norm. There-
fore, we see that training an NN with weight decay, as in (8),
prefers solutions with sparse second derivatives.

It turns out that the connection between sparsity in the
second derivative domain and NNs is even tighter. Let
BV?(R) denote the space of functions mapping R — R
such that | szHM is finite. This is the space of functions
of second-order bounded variation and the quantity
|D? f 1 is the second-order total variation (TV) of f. Note

that the classical notion of TV, often used in signal denois-
ing problems [35], is TV(f):=||D f |»;» and so the second-
order TV of f can be viewed as the TV of the derivative of
£:ID? £y =TV(D /).

It is well known from spline theory [14], [23], [44] that
functions that fit data and have minimal second-order TV are
continuous piecewise linear (CPwL) functions. As the ReLU
is a CPwL function, ReLU NNs are CPwL functions [3]. In
fact, under mild assumptions on the loss function, the solu-
tion set to the optimization problem

N
min > L(yn, fGn) + A D? £ lpe )

feBVI(R) ;=)

is completely characterized by NNs of the form

K
fo(x)= D vip(wix — bi) + c1x + co 12)
k=1

where the number of neurons is strictly less than the number
of data (K < N) in the sense that the solution set to (11) is

Rectified Linear Unit Sparsity in the Second Derivative Domain

Given a rectified linear unit neuron r(x)=pwx—b), its
first derivative, D r(x), is

D r(x)=D p(wx—b)
=wu(wx—b) (S1)
where u is the unit step function [Figure 1(b)]. Therefore,

its second derivative, D*r(x), is

D’r(x)=D wu(wx — b)
=w’8(wx—b). (S2)

By the scaling property of the Dirac impulse [S1, Problem
1.38(a)]

we have .
D’r(x)= |W7|5<x—%)

=wls(x—2). (S4)

The second derivative of the neural network (7) is then

Do) = 3w w35 —22 ). (55)
Therefore,

10wl =3 il (s6)
Reference

[S1] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and

S(yx)= 1 S (x) (S3) Systems (Prentice-Hall Signal Processing Series). Englewood Cliffs, NJ,
| Y | USA: Prentice-Hall, 1997.
To(x) D f(x) D? fp(x)
valwsl vg|ws|
vyl
YT ]
Wi Wp wg Wy Wg Weg Vgl
volwol o
Valwy

(a)

(c)

FIGURE $1. An illustration of the sparsity in the second derivative domain of a univariate, shallow feedforward neural network with six neurons.
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a closed convex set whose extreme points take the form of
(12) with K < N [9], [28], [37]. In NN parlance, the c1x + co
term is a skip connection [17]. This term is an affine function
that naturally arises because the second-order TV of an af-
fine function is zero, and so the regularizer places no penalty
for the inclusion of this term.

The intuition behind this result is due to the fact that
the second derivative of a CPwL function is an impulse
train and therefore exhibits extreme sparsity in the second
derivative domain, as illustrated in Figure S1. Therefore,
the optimization problem (11) will favor sparse CPwL func-
tions that always admit a representation, as in (12). In sig-
nal processing parlance, “signals” that are sparse in some
transform domain are said to have a finite rate of innovation
[45]. Here, the involved transform is the
second derivative operator, and the inno-
vation is the impulse train that arises after
applying the second derivative operator to
a CPwL function.

Consider the optimization over the
NN parameter space Ok of networks,
as in (12), with fixed-width K= N.
From the derivation in “Rectified Linear
Unit Sparsity in the Second Derivative Domain,” we have
{fo:6 €Ok} CBV*(R). Furthermore, from the earlier dis-
cussion, we know that there always exists an optimal solu-
tion to (11) that takes the form of (12) with K < N, i.c., there
always exists a solution to (11) in {fo:60 € Ok}. Therefore,
from the equivalence of (8) and (9), we see that training a
sufficiently wide (K= N) NN with a skip connection (12)
and weight decay (8) results in a solution to the optimiza-
tion problem (11) over the function space BV*(R). Although
this result may seem obvious in hindsight, it is remarkable
because it says that the kinds of functions that NNs trained
with weight decay (to a global minimizer) are exactly optimal
functions in BV2(R). Moreover, this result sheds light on the

The Radon Transform and Fourier Slice Theorem

It is well known from
spline theory that
functions that fit data and
have minimal second-
order TV are continuous
piecewise linear functions.

role of overparameterization as this correspondence hinges
on the network being critically parameterized or overpa-
rameterized (because K = N).

In the multivariate case, a shallow feedforward NN has
the form

K
fo(x)= > vip(wix—by). (13)

k=1

The key property that connects the univariate case and
BVZ(R) is that ReLU neurons are sparsified by the second
derivative operator, as in (S4). A similar analysis can be car-
ried out in the multivariate case by finding an operator that is
the sparsifying transform of the multivariate ReLU neuron
r(x)=pw' x—>b). The sparsifying trans-
form was proposed in 2020 in the seminal
work of Ongie et al. [26] and hinges on the
Radon transform that arises in tomographic
imaging. Connections between the Radon
transform and neural networks have been
known since at least the 1990s, gaining
popularity due to the proposal of ridge-
lets [6], and early versions of the sparsi-
fying transform for neurons were studied as early as 1997
[19]. A summary of the Radon transform appears in “The
Radon Transform and Fourier Slice Theorem.” The sparsify-
ing transform for multivariate ReLU neurons is based on a
result regarding the (filtered) Radon transform, which appears
in “Filtered Radon Transform of a Neuron With Unit-Norm
Input Weights.”

The filter K in (S13) is exactly the backprojection filter that
arises in the filtered backprojection algorithm in tomograph-
ic image reconstruction and acts as a high-pass filter (or ramp
filter) to correct the attenuation of high frequencies from the
Radon transform. The intuition behind this is that the Radon
transform integrates a function along hyperplanes. In the

The Radon transform, first studied by Radon in 1917 [S2],
of a function mapping R?—R is specified by the integral
transform

RAf} (0, 1)= fy f@) 8@ x —ndx (S7)

d-1 —

where § is the univariate Dirac impulse, a€S
{ueR’: |u|,=1} is a unit vector, and t€R is a scalar.
The Radon transform of f at (o.1) is the integral of f
along the hyperplane {xeR’: a'x=1}.

The Radon transform is tightly linked with the Fourier
transform, specified by

J@)= [ flx)e ax (s8)

where j*=—1. Indeed,

Z{f} (o, )

= [ ([ r@s@ x—ndx)e ar

= _/P,f(x)(jkja(ﬂﬂx—t)efjw,dt>dx

= [ fwe e ae=flaw. (59)

This result is known as the Fourier slice theorem. It states
that the univariate Fourier transform in the Radon domain
corresponds to a slice of the Fourier transform in the spa-
tial domain.

Reference

[S2] J. Radon, “Uber die bestimmung von funktionen durch ihre integralw-
erte ldngs gewisser mannigfaltigkeiten,” Berichte Verhandlungen
Séichsische Akademie Wissenschaften, vol. 69, pp. 262-277, 1917.

Alﬁﬁorized licensed use limited to: University of Wisconsin.I%%&ﬁmggg%¥M®Aaﬁ%4| a§%€ﬂ'ée.h20¥ﬁrd from IEEE Xplore. Restrictions apply.



univariate case, the magnitude of the frequency response of
an integrator behaves as 1/ || and therefore attenuates high
frequencies. The magnitude of the frequency response of
integration along a hyperplane therefore behaves as 1/ || 4~
as hyperplanes are of dimension (d — 1). Note that the even
projector that appears in (S17) is due to the fact that the
Radon-domain variables (e,f) and (—o, —t) parameterize
the same hyperplane.

From the derivation in “Filtered Radon Transform of a
Neuron With Unit-Norm Input Weights,” we immediately
see that the sparsifying transform of the multivariate ReLU
neuron r(x)=pw'x—5b) with (w,b) € S ' xR is the
D?K .7 operator, where D? =2%/3¢* denotes the second-
order partial derivative with respect to . We have

DIK .22 {r}(e,)) =8 ((a1) = (w,b)) (14)

where 8.72(z — 20) = Peven {6 (2 — 20)} = (8 (z — 20) + 8 (z + 20))/
2 is the even symmetrization of the Dirac impulse that arises
due to the even symmetry of the Radon domain. From the ho-
mogeneity of the ReLU activation, applying this sparsifying
transform to the (unconstrained) neuron r(x)= p(w'x — b)
with (w,b) € R? X R yields

DK .2 {r}(e.t) =] w]|,8.2((o, 1) = (,D)) (15)

where W = w/||w||, and b = b/|w |,. This is analogous to how
D? is the sparsifying transform for univariate neurons, as in
(S4). The sparsifying operator is simply the second deriva-
tive in the filtered Radon domain. The key idea is that the
(filtered) Radon transform allows us to extract the (univari-
ate) activation function from the multivariate neuron and ap-
ply the univariate sparsifying transform in the ¢ variable.
Figure 3 is a cartoon diagram that depicts the sparsifying
transform of a ReLU neuron.

The story is now analogous to the univariate case. Indeed,
by the NBT, training the NN in (13) with weight decay is
equivalent to solving the optimization problem

N K
min 2, LOnfolin) +2 2, [vellwls. (16)

From (15), we see that | DK .%fo |y = 81| ve || wi
so training the NN (13) with weight decay prefers solutions
with sparse second derivatives in the filtered Radon domain.
This measure of sparsity can be viewed as the second-order
TV in the (filtered) Radon domain. Let .22BV*(R?) denote
the space of functions on R of second-order bounded varia-
tion in the (filtered) Radon domain (i.e., the second-order TV

Filtered Radon Transform of a Neuron With Unit-Norm Input Weights

First, consider the neuron r(x)=cw'x) with w=e, =
(1,0,...,0) (the first canonical unit vector). In this case,
r(x)=0 (x1). By noticing that this function can be written
as a fensor product, the Fourier transform is given by the
following product:

W)= 6(@.)ﬁ 2718 (wy). (S10)
By the Fourier slice theorem
Z (T (o.0) = 6 (@a)] | 2708 (@ar). (S11)

By the scaling property of the Dirac impulse (S3), the
quantity in (S11) equals

zd(wa,)%&az,...,ad). (S12)
If we define the filter via the frequency response
Kf (@) :%}%a)) (513)
we find
m(a,w)zwaaz,...,ad). (S14)

Taking the inverse Fourier transform,

K.2{r} (o)

= ﬁg(ail)é(az, ...,ad)

5 1_1 aF — 6 1+l
_ SOS@=D+ICd@ D g,

s Olg)

_ 060 —e)to(-nd(a+e)
- 2

=Pua{0(0)d(0t—e)} (S15)

where P.., is the projector, which exiracts the even part
of its input [in terms of the variables (ot,#)]. The second
line holds by the dilation property of the Fourier trans-
form [S1, eq. (4.34]].

ﬁﬂ%) Z Jyw).

As oS, the third line holds by observing that when

a=t1,a,...,0.=0, the second line is o (£f)/2 multi-

plied by an impulse, and when . # *1, the second line

is zero, which is exactly the third line. By the rotation prop-

erties of the Fourier transform, we have the following result
for the neuron r(x)=oc(w'x):

(S16)

K .2 {r}(0,1)= P {O (S (00— W)} (S17)

d—1

where weS
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in the (filtered) Radon domain is finite). A key result regard-
ing .22BV*(R?) is the following representer theorem for
NN, first proven in [29]. Under mild assumptions on the loss
function, the solution set to the optimization problem

min f} Ly f(xn) + A| DK .22f

17
feZBV R, 2 ‘M {17

is completely characterized by NNs of the form

K
fo@)= D vipwix—b)+c'x+co 18)
k=1

where the number of neurons is strictly less than the number
of data (K < N) in the sense that the solution set to (17) is
a closed convex set whose extreme points take the form of
(18) with K <N (see [5], [27], and [43] for further refine-
ments of this result). Common loss functions such as the
squared-error satisfy the mild assumptions. The skip con-
nection ¢ 'x + co arises because the null space of the sparsi-
fying transform is the space of affine functions. Therefore,
by the same argument presented in the univariate case, suf-
ficiently wide (K = N) NN [as in (18)] trained with weight
decay to global minimizers are exactly optimal functions in
2BV (RY).

DNNs

The machinery is straightforward to extend to the case of
DNNs. The key idea is to consider fitting data using compo-
sitions of .22BV? functions. It is shown in [30] and [39] that
under mild assumptions on the loss function, a solution to the
optimization problem

N L do
i, 2000 <o [+ A3 S IDIK A
VAT 0=1i=1 (19)

has the form of a DNN, as in (1), where d; are the intermedi-
ary dimensions in the function compositions, which satisfy
the following properties:

® The number of layers is L + 1.

K %{r} (@x=w,1)

(a) (b)

m The solution is sparse in the sense of having few active
neuron connections (the widths of the layers are bounded
by N?).

m The solution has skip connections in all layers.

m The architecture has linear bottlenecks, which force the
weight matrices to be low rank.

Such an architecture is illustrated in Figure 4. The result
shows that ReLU DNNs with skip connections and lin-
ear bottlenecks trained with a variant of weight decay [30,
Remark 4.7] are optimal solutions to fitting data using com-
positions of .22BV? functions. Linear bottlenecks may be
written as factorized (low-rank) weight matrices of the form
WO =0V These bottleneck layers correspond to layers
with linear activation functions (o () =t). They arise natu-
rally due to the compositions of functions that arise in (19).
The number of neurons in each bottleneck layers is bounded
by d¢. The incorporation of linear bottlenecks of this form in
DNNSs have been shown to speed up learning [1] and increase
the accuracy [15], robustness [36], and computational effi-
ciency [46] of DNNS.

What is the role of NN activation functions?
The primary focus of the article so far has been the ReLU
activation function p(f) = max {0,7} . Many of the previously
discussed ideas can be extended to a broad class of activa-
tion functions. The property of the ReLU exploited so far has
been that it is sparsified by the second derivative operator in
the sense that D? p = 4&. Indeed, we can define a broad class of
neural function spaces akin to .22BV?(R?) by defining spac-
es characterized by different sparsifying transforms matched
to an activation function. This entails replacing D7 in (14)
with a generic sparsifying transform H. Table 1 (adapted
from [42]) provides examples of common activation functions
that fall into this framework, where each sparsifying trans-
form H is defined by its frequency response H(w). For the
ReLU, we have H = D?, and so H(w) = (ja))2 =— >
Therefore, many of the previously discussed results can
thus be directly extended to a broad class of activation func-
tions, including the classical sigmoid and arctan activation

.

(c) (d)

K %{r} (ax#w,1)

FIGURE 3. A cartoon diagram illustrating the sparsifying transform of the ReLU neuron r(x)=p(w™x —b) with (w,b)€S*"' x R. The heatmap is a
top-down view of the ReLU neuron depicted in (a). (2) The surface plot of r(x). (b) The filtered Radon transform when oc =w. (c) The filtered Radon

transform when o #w. (d) Sparsifying transform DK .22 {r}.
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functions. We remark that the sparsity-
promoting effect of weight decay hing-
es on the homogeneity of the activation
function in the DNN. Although the
ReLU and truncated power activation
functions in Table 1 are homogeneous,
the other activation functions are
not. This provides evidence that one
should prefer homogeneous activa-
tion functions like the ReLU to exploit
the tight connections between weight
decay and sparsity. Although the spar-
sity-promoting effect of weight decay
does not apply to the nonhomoge-
neous activation functions, statements
akin to (14) do hold by considering
neurons with input weights constrained to be unit-norm.

Therefore, these sparsifying transforms uncover the inno-
vations of finite-width NNs with unit-norm input weights.
Therefore, by only considering neurons with unit-norm input
weights, the key results that characterize the solution sets to
the optimization problems akin to (17) and (19) hold, pro-
viding insight into the kinds of functions favored by DNNs
using these activation functions.

Why do NNs seemingly break the

curse of dimensionality?

In 1993, Barron published his seminal paper [4] on the abil-
ity of NNs with sigmoid activation functions to approximate
a wide variety of multivariate functions. Remarkably, he
showed that NNs can approximate functions that satisfy cer-
tain decay conditions on their Fourier transforms at a rate
that is completely independent of the input dimension of the
functions. This property has led to many people heralding
his work as “breaking the curse of dimensionality.” Today,
the function spaces he studied are often referred to as the
spectral Barron spaces. It turns out that this remarkable ap-
proximation property of NNs is due to sparsity.

To explain this phenomenon, we first recall a problem
that “suffers the curse of dimensionality.” A classical prob-
lem in signal processing is reconstructing a signal from its
samples. Shannon’s sampling theorem asserts that sampling
a band-limited signal on a regular grid at a rate faster than
the Nyquist rate guarantees that the sinc interpolator per-
fectly reconstructs the signal. As the sinc function and its
shifts form an orthobasis for the space of band-limited sig-
nals, the energy of the signal (squared L*-norm) corresponds
to the squared (discrete) ¢*-norm of its samples. Multivari-
ate versions of the sampling theorem are similar and assert
that sampling multivariate, band-limited signals on a suf-
ficiently fine regular grid guarantees perfect reconstruction
with (multivariate) sinc interpolation. It is easy to see that
the grid size (and therefore the number of samples) grows
exponentially with the dimension of the signal. This shows
that the sampling and reconstruction of band-limited signals
suffers the curse of dimensionality. The fundamental reason

FIGURE 4. A feedforward DNN architecture with linear bottlenecks. The blue nodes represent ReLU neu-
rons, gray nodes represent linear neurons, and white nodes depict the DNN inputs. As the linear layers
are narrower than the ReLU ones, this architecture is referred to as a DNN with linear bottlenecks.

for this is that the energy or “size” of a band-limited signal
corresponds to the ¢*-norm of the signal’s expansion coef-
ficients in the sinc basis.

It turns out that there is a stark difference if we instead
measure the “size” of a function by the more restrictive
¢'-norm instead of the ¢*-norm, an idea popularized by
wavelets and compressed sensing. Let D = {w} yep be a dic-
tionary of atoms (e.g., sinc functions, wavelets, neurons, and
so on). Consider the problem of approximating a multivari-
ate function mapping R’ — R that admits a decomposition
fx) =Z¥= 1vry(x), where wi € D and the expansion coef-
ficients satisfy Xi=i|vi|=|v |o <oo. It turns out that there
exists an approximant constructed with K terms from the dic-
tionary D whose L*-approximation error | f— fx [,> decays at
a rate completely independent of the input dimension d.

Here, we illustrate the argument when D ={w}t=:
is an orthonormal basis (e.g., multivariate Haar wavelets).
Given a function f:R?— R that admits a decomposition
f(x) = Zi= 1 viwi(x) such that | v, <oo, we can construct
an approximant fx by a simple thresholding procedure that
keeps the K largest coefficients of f and sets all other coef-
ficients to zero. If we let |v()|=|v@)|=-- denote the coef-
ficients of f sorted in nonincreasing magnitude, then the
squared approximation error is bounded as

C = vwP (20)

2 k>K

Z Vo ¥ @

k>K

2 —
2=

I f=fx

Table 1. Common activation functions.

Activation Frequency Response of
Function o) Sparsifying Transform: H (w)
RelU max {0,7} —-w*
Truncated max {0,7} (jo)™!
power k! keN
Sigmoid 1 1 i .
9 T+e7 2 % sinh(7w)
arctan arctan (f) el
T Je
Exponential %"‘ 1+
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where the last equality follows by exploiting the orthonor-
mality of the {y}%=1. Finally, as the original sequence of
coefficients v = (v1,v2,...) is absolutely summable, |v|
must decay strictly faster than 1/k for k > K (because the
tail of the harmonic series >k 1 diverges). Putting this to-
gether with (20), the L*-approximation error || f — fi [,> must
decay as K™%, completely independent of the input dimen-
sion d. For a more precise treatment of this argument, we
refer the reader to [22, Th. 9.10]. These kinds of thresholding
procedures, particularly with wavelet bases [12], revolution-
ized signal and image processing and were the foundations of
compressed sensing [7], [11].

By a more sophisticated argument, a similar phenom-
enon occurs when the orthonormal basis is replaced with an
essentially arbitrary dictionary of atoms.
The result for general atoms is based on a

The Maurey-Jones—Barron

(w,b) €S? ' xR and o are matched to H. This implies that
the space of functions f : R? — R suchthat | H K.22f |y, < co
can be viewed as a variation space, where the dictionary cor-
responds to the neurons {o(W'x —b)}wnes'xz. There-
fore, given f:R?— R such that |HK.%f | < oo, there
exists a K-term approximant fx that takes the form of a
shallow NN with K neurons such that the L*-approximation
error decays as K~ 2. These techniques have been studied
and extended in great detail [40] and have been extended to
the setting of DNNs [13] by considering compositional func-
tion spaces akin to the compositional space introduced in the
“DNNSs” section.

Combining these dimension-free approximation rates
with the sparsity-promoting effect of weight decay regular-
ization for ReLU NN has a striking effect
on the learning problem. Suppose that

Probabilistic technique presentefl by Pisier lemma can he applied we train a shallow ReLU NN with weight
in 1,981 at the Functlional Anaiysm Seminar to any function space decay on data_ generated fro_m the noisy
at Ecole Polytechnique, Palaiseau, France, N samples y,= f(x,) +ex,n=1,...,N, of
crediting the idea to Maurey [33]. An im- Wwhere the functions f €.2BV*(RY), where x, are indepen-
plication of Maurey’s technique is that, are (' combinations of dent identically distributed (i.i.d.) uni-
given a function that is an ¢' combination hounded atoms. form random variables on some bounded

of bounded atoms from a dictionary, there

exists a K-term approximant that admits a dimension-free
approximation rate that decays as K~ "% Motivated by dis-
cussions with Jones [18] on his work on greedy approxima-
tion, which provides a deterministic algorithm to find the
approximant that admits the dimension-free rate, Barron
used the technique of Maurey to prove his dimension-free
approximation rates with sigmoidal NNs. This abstract
approximation result is now referred to as the Maurey—
Jones—Barron lemma.

In particular, the Maurey—Jones—Barron lemma can be
applied to any function space where the functions are ¢'
combinations of bounded atoms. Such spaces are sometimes
called variation spaces [2], [20]. Recall from the “What
Kinds of Functions Do NNs Learn?” and “What Is the
Role of NN Activation Functions” sections that the H K .22
operator sparsifies neurons of the form o(w'x — b), where

(b)

(©)

FIGURE 5. Examples of functions exhibiting different kinds of variation.
(a) Weak variation in multiple directions. (b) Strong variation in one
direction. (c) Strong variation in multiple directions.

domain Q c RY, and &, are i.i.d. Gaussian
random variables. Let fy denote this trained NN. Then, it
has been shown [31] that the mean integrated squared error
(MISE) E| f—fu 2., decays at a rate of N™", independent
of the input dimension d. Moreover, this result also shows that
the generalization error of the trained NN on a new example
x generated uniformly at random on () is also immune to the
curse of dimensionality. Furthermore, these ideas have been
studied in the context of DNNs [38], proving dimension-free
MISE rates for estimating Holder functions (that exhibit low-
dimensional structure) with ReLU DNNs.

Mixed variation and low-dimensional structure

The national meeting of the American Mathematical Soci-
ety in 2000 was held to discuss the mathematical challenges
of the 21st century. Here, Donoho [10] gave a lecture titled
“High-Dimensional Data Analysis: The Curses and Blessings
of Dimensionality.” In this lecture, he coined the term mixed
variation to refer to the kinds of functions that lie in variation
spaces, citing the spectral Barron spaces as an example. Vari-
ation spaces are different from classical multivariate function
spaces in that they favor functions that have weak variation in
multiple directions (very smooth functions) as well as func-
tions that have very strong variation in one or a few directions
(very rough functions). These spaces also disfavor functions
with strong variation in multiple directions. It is this fact that
makes them quite “small” compared to classical multivariate
function spaces, giving rise to their dimension-free approxi-
mation and MISE rates. Examples of functions with different
kinds of variation are illustrated in Figure 5. The prototypical
examples of functions that lie in mixed variation spaces can
be thought of as superpositions of few neurons with different
directions or superpositions of many neurons (even continu-
ously many) in only a few directions.
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To interpret the idea of mixed variation in the context of
modern data analysis and DL, we turn our attention to Fig-
ure 5(b). In this figure, the function has strong variation, but
only in a single direction. In other words, this function has a
low-dimensional structure. It has been observed by a number
of authors that DNNs are able to automati-
cally adapt to the low-dimensional struc-
ture that often arises in natural data. This
is possible because the input weights can
be trained to adjust orientation of each neu-
ron. The dimension-independent approxi-
mation rate quantifies the power of this
tunability. This explains why DNNs are
good at learning functions with a low-dimensional structure.
In particular, the function in Figure 5(c) has strong variation
in all directions, so no method can overcome the curse of
dimensionality in this sort of situation. On the other hand, in
Figure 5(a), the function has weak variation in all directions,
and Figure 5(b) has strong variation in only one direction, so
these are functions for which NNs will overcome the curse.
For Figure 5(b), the sparsity-promoting effect of weight decay
promotes DNN solutions with neurons oriented in the direc-
tion of variation (i.e., it automatically learns the low-dimen-
sional structure).

Takeaway messages and future research directions

In this article, we presented a mathematical framework to
understand DNNs from first principles, through the lens of
sparsity and sparse regularization. Using familiar mathemat-
ical tools from signal processing, we provided an explanation
for the sparsity-promoting effect of the common regulariza-
tion scheme of weight decay in NN training, the use of skip
connections and low-rank weight matrices in network archi-
tectures, and why NNs seemingly break the curse of dimen-
sionality. This framework provides the mathematical setting
for many future research directions.

The framework suggests the possibility of new neu-
ral training algorithms. The equivalence of solutions using
weight decay regularization and the regularization in (6)
leads to the use of proximal gradient methods akin to itera-
tive soft-thresholding algorithms to train DNNs. This avenue
has already begun to be explored. The preliminary results in
[47] have shown that proximal gradient training algorithms
for DNNs perform as well as and often better (particularly
when labels are corrupted) than standard gradient-based
training with weight decay, while simultaneously producing
sparser networks.

The large body of work dating back to 1989 [21] on NN
pruning has shown empirically that large NNs can be com-
pressed or sparsified to a fraction of their size while still
maintaining their predictive performance. The connection
between weight decay and sparsity-promoting regularizers,
like in (6), suggests new approaches to pruning. For exam-
ple, one could apply proximal gradient algorithms to derive
sparse approximations to large pretrained NNs [39]. There
are many open questions in this direction, both experimen-

A hetter understanding of
compositional function
spaces could provide new
insights into the henefits
of depth in NNs.

tal and theoretical, including applying these algorithms to
other DNN architectures and deriving convergence results
for these algorithms.

The framework in this article also shows that trained
ReLU DNNs are compositions of .22BV? functions. As we
have seen in this article, at this point in
time, we have a clear and nearly complete
understanding of .22BV*(R%). In par-
ticular, the .22BV? space favors functions
that are smooth in most or all directions,
which explains why NNs seemingly break
the curse of dimensionality. Less is clear
and understood about the compositions
of .#2BV? functions (which characterize DNNs). A better
understanding of compositional function spaces could pro-
vide new insights into the benefits of depth in NNs. This in
turn could lead to new guidelines for designing NN architec-
tures and training algorithms.

Acknowledgment

The authors would like to thank Rich Baraniuk, Misha Belkin,
Cagratay Candan, Ron DeVore, Kangwook Lee, Greg Ongie,
Dimitris Papailiopoulos, Tomaso Poggio, Lorenzo Rosasco,
Joe Shenouda, Jonathan Siegel, Ryan Tibshirani, Michael Un-
ser, Becca Willett, Stephen Wright, Liu Yang, and Jifan Zhang
for many insightful discussions on the topics presented in
this article.

Rahul Parhi was supported in part by the National
Science Foundation (NSF) Graduate Research Fellow-
ship Program under Grant DGE-1747503 and the Euro-
pean Research Council’s Project FunLearn under Grant
101020573. Robert Nowak was supported in part by NSF
Grants DMS-2134140 and DMS-2023239, U.S. Office of
Naval Research MURI Grant NO0014-20-1-2787, Air Force
Office of Scientific Research/Air Force Research Labora-
tory Grant FA9550-18-1-0166, and the Keith and Jane Nos-
busch Professorship.

Authors

Rahul Parhi (rahul.parhi@epfl.ch) received his B.S. degree
in mathematics and his B.S. degree in computer science
from the University of Minnesota, Twin Cities in 2018, and
his M.S. and Ph.D. degrees in electrical engineering from the
University of Wisconsin—-Madison in 2019 and 2022, respec-
tively. During his Ph.D. studies, he was supported by a
National Science Foundation Graduate Research Fellowship.
Currently, he is a postdoctoral researcher with the
Biomedical Imaging Group, Ecole Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland. His research
interests include applications of functional and harmonic
analysis to problems in signal processing and data science.
He is a Member of IEEE.

Robert D. Nowak (rdnowak @wisc.edu) received his Ph.D.
degree in electrical engineering from the University of
Wisconsin—-Madison, Madison, WI 53706 USA, where he is
the Grace Wahba Professor of Data Science and Keith and

Authorized licensed use limited to: University of Wisconsin.lﬁmggggﬁmmﬂ%éll a§%@h‘?ﬂog}r& from IEEE Xplore. Restrictions apply. 3



Jane Morgan Nosbusch Professor of Electrical and Computer
Engineering. He serves as a section editor of SIAM Journal
on Mathematics of Data Science and a senior editor of IEEE
Journal on Selected Areas in Information Theory. With
research focusing on signal processing, machine learning,
optimization, and statistics, his work on sparse signal recovery
and compressed sensing has won several awards. He is a
Fellow of IEEE.

References
[1]1 L. J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Proc. 27th

Int. Conf. Neural Inf. Process. Syst., 2014, vol. 2, pp. 2654-2662.

[2] F. Bach, “Breaking the curse of dimensionality with convex neural networks,” J.
Mach. Learn. Res., vol. 18, no. 1, pp. 629-681, Jan. 2017.

[3] R. Balestriero and R. G. Baraniuk, “Mad max: Affine spline insights into deep
learning,” Proc. IEEE, vol. 109, no. 5, pp. 704-727, May 2021, doi: 10.1109/
JPROC.2020.3042100.

[4] A. R. Barron, “Universal approximation bounds for superpositions of a sigmoi-
dal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930-945, May 1993, doi:
10.1109/18.256500.

[5] E. Bartolucci, E. De Vito, L. Rosasco, and S. Vigogna, “Understanding neural
networks with reproducing kernel Banach spaces,” Appl. Comput. Harmon. Anal.,
vol. 62, pp. 194-236, Jan. 2023, doi: 10.1016/j.acha.2022.08.006.

[6] E. J. Candes, “Ridgelets: Theory and applications,” Ph.D. dissertation, Stanford
Univ., Stanford, CA, USA, 1998.

[7] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact sig-
nal reconstruction from highly incomplete frequency information,” IEEE Trans.
Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006, doi: 10.1109/TIT.2005.
862083.

[8] L. Chizat and F. Bach, “Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss,” in Proc. 33rd Conf. Learn. Theory
(PMLR), 2020, pp. 1305-1338.

[9] T. Debarre, Q. Denoyelle, M. Unser, and J. Fageot, “Sparsest piecewise-linear
regression of one-dimensional data,” J. Comput. Appl. Math., vol. 406, May 2022,
Art. no. 114044, doi: 10.1016/j.cam.2021.114044.

[10] D. L. Donoho, “High-dimensional data analysis: The curses and blessings of
dimensionality,” AMS Math Challenges Lectures, vol. 1, p. 32, Aug. 2000.

[11] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4,
pp. 1289-1306, Apr. 2006, doi: 10.1109/TIT.2006.871582.

[12] D. L. Donoho and I. M. Johnstone, “Minimax estimation via wavelet shrink-
age,” Ann. Statist., vol. 26, no. 3, pp. 879-921, Jun. 1998, doi: 10.1214/
20s/1024691081.

[13] E. Weinan and S. Wojtowytsch, “On the Banach spaces associated with multi-
layer ReLU networks: Function representation, approximation theory and gradient
descent dynamics,” CSIAM Trans. Appl. Math., vol. 1, no. 3, pp. 387-440, 2020,
doi: 10.4208/csiam-am.20-211.

[14] S. D. Fisher and J. W. Jerome, “Spline solutions to L' extremal problems in one
and several variables,” J. Approximation Theory, vol. 13, no. 1, pp. 73-83, Jan.
1975, doi: 10.1016/0021-9045(75)90016-7.

[15] A. Golubeva, B. Neyshabur, and G. Gur-Ari, “Are wider nets better given the
same number of parameters?” in Proc. Int. Conf. Learn. Representations, 2021.

[16] Y. Grandvalet, “Least absolute shrinkage is equivalent to quadratic penaliza-
tion,” in Proc. Int. Conf. Artif. Neural Netw., London, U.K.: Springer-Verlag, 1998,
pp. 201206, doi: 10.1007/978-1-4471-1599-1_27.

[17]1 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), 2016, pp.
770-778.

[18] L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network training,”
Ann. Statist., vol. 20, no. 1, pp. 608—613, Mar. 1992, doi: 10.1214/a0s/1176348546.

[19] V. Kirkov4, P. C. Kainen, and V. Kreinovich, “Estimates of the number of hid-
den units and variation with respect to half-spaces,” Neural Netw., vol. 10, no. 6, pp.
1061-1068, Aug. 1997, doi: 10.1016/S0893-6080(97)00028-2.

[20] V. Kirkovd and M. Sanguineti, “Bounds on rates of variable-basis and neural-
network approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2659-2665,
Sep. 2001, doi: 10.1109/18.945285.

[21] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Proc. 2nd Int.
Conf. Neural Inf. Process. Syst. (NIPS), 1989, pp. 598-605.

[22] S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed. Amsterdam, The
Netherlands: Elsevier/Academic Press, 2009.

[23] E. Mammen and S. van de Geer, “Locally adaptive regression splines,” Ann.
Statist., vol. 25, no. 1, pp. 387-413, Feb. 1997, doi: 10.1214/a0s/1034276635.

[24] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115-133, Dec. 1943, doi:
10.1007/BF02478259.

[25] B. Neyshabur, R. Tomioka, and N. Srebro, “In search of the real inductive bias:
On the role of implicit regularization in deep learning,” in Proc. Int. Conf. Learn.
Representations (Workshop), 2015.

[26] G. Ongie, R. Willett, D. Soudry, and N. Srebro, “A function space view of
bounded norm infinite width ReLU nets: The multivariate case,” in Proc. Int. Conf.
Learn. Representations, 2020.

[27] R. Parhi, “On ridge splines, neural networks, and variational problems in
Radon-domain BV spaces,” Ph.D. dissertation, The Univ. of Wisconsin—Madison,
Madison, WI, USA, 2022.

[28] R. Parhi and R. D. Nowak, “The role of neural network activation functions,”
IEEE Signal Process. Lett., vol. 27, pp. 1779-1783, Sep. 2020, doi: 10.1109/
LSP.2020.3027517.

[29] R. Parhi and R. D. Nowak, “Banach space representer theorems for neural networks
and ridge splines,” J. Mach. Learn. Res., vol. 22, no. 1, pp. 19601999, Jan. 2021.

[30] R. Parhi and R. D. Nowak, “What kinds of functions do deep neural networks
learn? Insights from variational spline theory,” SIAM J. Math. Data Sci., vol. 4,
no. 2, pp. 464-489, 2022, doi: 10.1137/21M1418642.

[31] R. Parhi and R. D. Nowak, “Near-minimax optimal estimation with shallow
ReLU neural networks,” IEEE Trans. Inf. Theory, vol. 69, no. 2, pp. 1125-1140,
Feb. 2023, doi: 10.1109/TIT.2022.3208653.

[32] M. Pilanci and T. Ergen, “Neural networks are convex regularizers: Exact
polynomial-time convex optimization formulations for two-layer networks,” in
Proc. 37th Int. Conf. Mach. Learn. (PMLR), 2020, pp. 7695-7705.

[33] G. Pisier, “Remarques sur un résultat non publié de B. Maurey,” in Proc.
Séminaire d’Anal. Fonctionnelle (dit “Maurey-Schwartz”), Apr. 1981, pp. 1-12.

[34] T. Poggio, A. Banburski, and Q. Liao, “Theoretical issues in deep networks,”
Proc. Nat. Acad. Sci. USA, vol. 117, no. 48, pp. 30,039-30,045, Dec. 2020, doi:
10.1073/pnas.1907369117.

[35] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60, nos. 1-4, pp. 259—
268, Nov. 1992, doi: 10.1016/0167-2789(92)90242-F.

[36] A. Sanyal, P. H. Torr, and P. K. Dokania, “Stable rank normalization for
improved generalization in neural networks and GANs,” in Proc. Int. Conf. Learn.
Representations, 2019.

[37] P. Savarese, I. Evron, D. Soudry, and N. Srebro, “How do infinite width
bounded norm networks look in function space?” in Proc. 32nd Conf. Learn.
Theory (PMLR), 2019, pp. 2667-2690.

[38] J. Schmidt-Hieber, “Nonparametric regression using deep neural networks with
ReLU activation function,” Ann. Statist., vol. 48, no. 4, pp. 1875-1897, Aug. 2020,
doi: 10.1214/19-A0S1875.

[39] J. Shenouda, R. Parhi, K. Lee, and R. D. Nowak, “Vector-valued variation
spaces and width bounds for DNNs: Insights on weight decay regularization,” 2023,
arXiv:2305.16534.

[40] J. W. Siegel and J. Xu, “Sharp bounds on the approximation rates, metric entro-
py, and n-widths of shallow neural networks,” Found. Comput. Math., early access,
2022, doi: 10.1007/s10208-022-09595-3.

[41] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Statist. Soc., Ser. B (Methodological), vol. 58, no. 1, pp. 267-288, Jan. 1996, doi:
10.1111/.2517-6161.1996.tb02080.x.

[42] M. Unser, “From kernel methods to neural networks: A unifying variational for-
mulation,” 2022, arXiv:2206.14625.

[43] M. Unser, “Ridges, neural networks, and the Radon transform,” J. Mach.
Learn. Res., vol. 24, no. 37, pp. 1-33, 2023.

[44] M. Unser, J. Fageot, and J. P. Ward, “Splines are universal solutions of linear
inverse problems with generalized TV regularization,” SIAM Rev., vol. 59, no. 4,
pp- 769-793, 2017, doi: 10.1137/16M1061199.

[45] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of
innovation,” JEEE Trans. Signal Process., vol. 50, no. 6, pp. 1417-1428, Jun. 2002,
doi: 10.1109/TSP.2002.1003065.

[46] H. Wang, S. Agarwal, and D. Papailiopoulos, “Pufferfish: Communication-
efficient models at no extra cost,” in Proc. 3rd Mach. Learn. Syst., 2021, pp. 365-386.

[47] L. Yang, J. Zhang, J. Shenouda, D. Papailiopoulos, K. Lee, and R. D. Nowak,
“A better way to decay: Proximal gradient training algorithms for neural nets,” in
Proc. 14th Annu. Workshop Optim. Mach. Learn. (OPT), 2022.

[48] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Roy. Statist. Soc., Ser. B (Statist. Methodology), vol. 68,
no. 1, pp. 49-67, Feb. 2006, doi: 10.1111/5.1467-9868.2005.00532.x. m

Alﬁﬁorized licensed use limited to: University of Wisconsin.I%%&ﬁmggg%¥M%A§M%4l a?%ﬂi‘é%m?ﬁrd from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/JPROC.2020.3042100
http://dx.doi.org/10.1109/JPROC.2020.3042100
http://dx.doi.org/10.1109/18.256500
http://dx.doi.org/10.1016/j.acha.2022.08.006
http://dx.doi.org/10.1016/j.cam.2021.114044
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1214/aos/1024691081
http://dx.doi.org/10.1214/aos/1024691081
http://dx.doi.org/10.4208/csiam-am.20-211
http://dx.doi.org/10.1016/0021-9045(75)90016-7
http://dx.doi.org/10.1214/aos/1176348546
http://dx.doi.org/10.1016/S0893-6080(97)00028-2
http://dx.doi.org/10.1109/18.945285
http://dx.doi.org/10.1214/aos/1034276635
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1109/LSP.2020.3027517
http://dx.doi.org/10.1109/LSP.2020.3027517
http://dx.doi.org/10.1137/21M1418642
http://dx.doi.org/10.1109/TIT.2022.3208653
http://dx.doi.org/10.1073/pnas.1907369117
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1214/19-AOS1875
http://dx.doi.org/10.1007/s10208-022-09595-3
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1137/16M1061199
http://dx.doi.org/10.1109/TSP.2002.1003065
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x

	063_40msp06-parhi-3286988

