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Deep learning (DL) has been wildly successful in practice, 
and most of the state-of-the-art machine learning meth-
ods are based on neural networks (NNs). Lacking, how-
ever, is a rigorous mathematical theory that adequately 

explains the amazing performance of deep NNs (DNNs). In this 
article, we present a relatively new mathematical framework 
that provides the beginning of a deeper understanding of DL. 
This framework precisely characterizes the functional proper-
ties of NNs that are trained to fit to data. The key mathemati-
cal tools that support this framework include transform-domain 
sparse regularization, the Radon transform of computed to-
mography, and approximation theory, which are all techniques 
deeply rooted in signal processing. This framework explains 
the effect of weight decay regularization in NN training, use 
of skip connections and low-rank weight matrices in network 
architectures, role of sparsity in NNs, and explains why NNs 
can perform well in high-dimensional problems.

Introduction
DL has revolutionized engineering and the sciences in the 
modern data age. The typical goal of DL is to predict an out-
put y Y!  (e.g., a label or response) from an input x X!  
(e.g., a feature or example). An NN is “trained” to fit to a 
set of data consisting of the pairs ( , )x yn n n

N
1=" ,  by finding 

a set of NN parameters i  so that the NN mapping closely 
matches the data. The trained NN is a function, denoted by 

: ,f X Y"i  that can be used to predict the output y Y!  of a 
new input .x X!  This paradigm is referred to as supervised 
learning, which is the focus of this article. The success of 
DL has spawned a burgeoning industry that is continually 
developing new applications, NN architectures, and training 
algorithms. This article reviews recent developments in the 
mathematics of DL, focused on the characterization of the 
kinds of functions learned by NNs fit to data. There are cur-
rently many competing theories that explain the success of 
DL. These developments are part of a wider body of theoreti-
cal work that can be crudely organized into three broad cat-

egories: 1) approximation theory with NNs, 2) the design and 
analysis of optimization (“training”) algorithms for NNs, and 
3) characterizations of the properties of trained NNs.

This article belongs to the latter category of research and 
investigates the functional properties (i.e., the regularity) of 
solutions to NN training problems with explicit, Tikhonov-
type regularization. Although much of the success of DL in 
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practice comes from networks with highly structured archi-
tectures, it is hard to establish a rigorous and unified theory 
for such NNs used in practice. Therefore, we primarily focus 
on fully connected, feedforward NNs with the popular rec-
tified linear unit (ReLU) activation function. This article 
introduces a mathematical framework that unifies a line of 
work from several authors over the last few years that sheds 
light on the nature and behavior of NN functions that are 
trained to a global minimizer with explicit regularization. 
The presented results are just one piece of the puzzle toward 
developing a mathematical theory of DL. The purpose of this 
article is, in particular, to provide a gentle introduction to this 
new mathematical framework, accessible to readers with a 
mathematical background in signals and systems and applied 
linear algebra. The framework is based on mathematical 
tools familiar to the signal processing community, including 
transform-domain sparse regularization, the Radon trans-
form of computed tomography, and approximation theory. It 
is also related to well-known signal processing ideas such as 
wavelets, splines, and compressed sensing. This framework 
provides a new take on the following fundamental questions:

 ■ What is the effect of regularization in DL?
 ■ What kinds of functions do NNs learn?
 ■ What is the role of NN activation functions?
 ■ Why do NNs seemingly break the curse of dimensionality?

NNs and learning from data
The task of DL corresponds to learning the input–output map-
ping from a dataset in a hierarchical or multilayer manner. 
DNNs are complicated function mappings built from many 
smaller, simpler building blocks. The simplest building block of 
a DNN is an (artificial) neuron, inspired by the biological neu-
rons of the brain [24]. A neuron is a function mapping R Rd "  
of the form ( ),z w z b7 v -R  where w Rd!  corresponds to the 
weights of the neuron and b R!  corresponds to the bias of the 
neuron. The function : R R"v  is referred to as the activation 
function of the neuron and controls the nonlinear response of 
the neuron. A neuron “activates” when the weighted combina-
tion of its input x exceeds a certain threshold, i.e., .w x b2R  
Therefore, typical activation functions such as the sigmoid, unit 
step function, or ReLU activate when their input exceeds zero, 
as seen in Figure 1.

A neuron is composed of a linear mapping followed by a 
nonlinearity. A popular form (or “architecture”) of a DNN 
is a fully connected feedforward DNN, which is a cascade 
of alternating linear mappings and componentwise nonlin-

earities. A feedforward DNN fi  (parameterized by )i  can 
be represented as the function composition

 ( ) ( )x A A A xf ( ) ( ) ( )L L 1 1% % % %gv v=i
-  (1)

where for each , , ,L1 f, =  the function ( )A z z bW( ) ( ) ( )= -, , ,  
is an affine linear mapping with weight matrix W( ),  and bias 
vector .b( ),  The functions v  that appear in the composition 
apply the activation function : R R"v  componentwise to 
the vector ( ) .A z( ),  Although the activation function could 
change from neuron to neuron, in this article, we assume that 
the same activation function is used in the entire network. 
The parameters of this DNN are the weights and biases, i.e., 

( , ) .bW( ) ( ) L
1i = , ,

,=" ,  Each mapping A( ),  corresponds to a 
layer of the DNN, and the number of mappings L is the depth 
of the DNN. The dimensions of the weight matrices W( ),  cor-
respond to the number of neurons in each layer (i.e., the width 
of the layer). Alternative DNN architectures can be built with 
other simple building blocks, e.g., with convolutions and 
pooling/downsampling operations, which would correspond 
to deep convolutional NNs. DNN architectures are often de-
picted with diagrams, as in Figure 2.

Given a DNN fi  parameterized by !i H  (of any archi-
tecture), the task of learning from the data ( , )x yn n n

N
1=" ,  is 

formulated as the optimization problem

 , ( )min xy fL n n
n

N

1!i
i

H =

^ h/  (2)

where ,L $ $^ h is a loss function (squared error, logistic, hinge 
loss, and so on). For example, the squared error loss is given 
by ( , ) ( ) .y z y zL 2= -  A DNN is trained by solving this opti-
mization problem, usually via some form of gradient descent. 
In typical scenarios, this optimization problem is ill-posed, so 
the problem is regularized either explicitly through the addi-
tion of a regularization term and/or implicitly by constraints 
on the network architecture or the behavior of gradient de-
scent procedures [34]. A surprising phenomenon of gradi-
ent descent training algorithms for overparameterized NNs 
is that, among the many solutions that overfit the data, these 
algorithms select one that often generalizes well on new data, 
even without explicit regularization. This has led to research-
ers trying to understand the role of overparameterization and 
the effect of random initialization of NN parameters on the 
implicit bias of gradient-based training algorithms [8].

On the other hand, explicit regularization corresponds to 
solving an optimization problem of the form

 ,min xy f CL n n
n

N

1
im+

!i
i

H =

^ ^ ^hh h/  (3)

where C 0$i^ h  for all .!i H  C i^ h is a regularizer, which 
measures the “size” (or “capacity”) of the DNN parameterized  
by ,!i H  and 02m  is an adjustable hyperparameter, which 
controls the tradeoff between the data-fitting term and the 
regularizer. DNNs are often trained using gradient descent  

(a) (b) (c)

FIGURE 1. The typical activation functions found in NNs. (a) Sigmoid.  
(b) unit step. (c) ReLU.
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algorithms with weight decay, which corresponds to solving 
the optimization problem

 ,min xy f CL n n
n

N

1
wd im+

!i
i

H =

^ ^ ^hh h/  (4)

where the weight decay regularizer Cwd i^ h is the squared 
Euclidean-norm of all the network weights. Sometimes, the 
weight decay objective regularizes all the parameters, includ-
ing biases, while sometimes it only regularizes the weights 
(so that the biases are unregularized). This article focuses on 
the variant of weight decay with unregularized biases.

What is the effect of regularization in DL?
Weight decay is a common form of regularization for DNNs. 
On the surface, it appears to simply be the familiar Tikhonov 
or “ridge” regularization. In standard linear models, it is well 
known that this sort of regularization tends to reduce the size 
of the weights but does not produce sparse weights. However, 
when this regularization is used in conjunction with NNs, 
the results are strikingly different. Regularizing the sum of 
squared weights turns out to be equivalent to regularization 
with a type of -1, norm regularization on the network weights, 
leading to sparse solutions in which the weights of many neu-
rons are zero [47]. This is due to the key property that the 
most commonly used activation functions in DNNs are ho-
mogeneous. A function ( )tv  is said to be homogeneous (of 
degree 1) if ( ) ( )t tv c cv=  for any .02c  The most common 
NN activation function, the ReLU, is homogeneous as well 
as the leaky ReLU, linear activation, and pooling/downsam-

pling units. This homogeneity leads to the following theorem, 
referred to as the neural balance theorem (NBT) [(47), Th.1] 
(see “Neural Balance Theorem”). 

The proof of this theorem boils down to the simple obser-
vation that for any homogeneous unit with input weights 
w and output weights v, we can scale the input weight by 

02c  and the output weight by /1 c  without changing the 
function mapping. For example, consider the single neuron 

( )z v w z b7 v -<  with homogeneous activation function ,v  as 
depicted in Figure 2(b). In the case of a DNN, as in (1), w cor-
responds to a row of a weight matrix in the affine mapping of 
a layer, v corresponds to a column of the weight matrix in the 
subsequent layer, and b corresponds to an entry in the bias vec-
tor. It is immediate that /( ) (( ) ) ( ) .v w z v w zb bc v c c v- = -RR  
By noting that the biases are unregularized, the theorem fol-
lows by noticing that /min w v0 2

2
2
2

c c+2c  occurs when 

Let fi  be a deep neural network (DNN) of any archi-
tecture parameterized by ,!i H  which solves the DNN 
training problem with weight decay in (4). Then, the 
weights satisfy the following balance constraint: if w  
and v  denote the input and output weights of any 
homogeneous unit in the DNN, respectively, then 

.w v2 2=  

Neural Balance Theorem

FIGURE 2. An example depiction of a DNN and its components. (a) A feedforward DNN architecture where the nodes represent the neurons and the edges 
represent the weights. (b) A single neuron from the DNN in (a) mapping an input z Rd!  to an output Z RD!  via ( ) .Z v w z bv= -<

z2 w2 Σ σ v2 Z2

z1 w1

zd wd

v1

vD

Z1

ZD

–b

...
...

Previous-Layer Outputs Next-Layer Inputs

(a)

(b)
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/ ,v w2 2c =  which implies that the 
minimum squared Euclidean-norm solu-
tion must satisfy the property that the input 
and output weights, w and v, respectively, 
are balanced.

The secret sparsity of weight decay
The balancing effect of the NBT has a strik-
ing effect on solutions to the weight decay 
objective, particularly a sparsity-promoting 
effect akin to least absolute shrinkage and 
selection operator (LASSO) regularization 
[41]. As an illustrative example, consider a shallow ( ),L 2=  
feedforward NN mapping R Rd D"  with a homogeneous 
activation function (e.g., the ReLU) and K neurons. In this 
case, the NN is given by

 ( ) .x v w xf bk k k
k

K

1
v= -R

i

=

^ h/  (5)

Here, the weight decay regularizer is of the form 
/ ,v w1 2 k kk

K
2
2

2
2

1R +=^ h  where wk  and vk  are the input and 
output weights of the kth neuron, respectively. By the NBT, 
this is equivalent to using the regularizer .v wk

K
k k1 2 2R =  

Due to homogeneity of the activation function, we can 
assume, without loss of generality, that w 1k 2 =  by “absorb-
ing” the magnitude of the input weight wk  into the output 
weight .vk  Therefore, by constraining the input weights to 
be unit norm, the training problem can then be reformulat-
ed using the regularizer vk

K
k1 2R =  [47]. Remarkably, this 

is exactly the well-known group LASSO regularizer [48], 
which favors solutions with few active neuron connections 
(i.e., solutions typically have many vk  exactly equal to zero), 
although the overall training objective remains nonconvex. 
We also note that there is a line of work that has reformulated 
the nonconvex training problem as a convex group LASSO 
problem [32].

More generally, consider the feedforward DNN archi-
tecture in (1) with a homogeneous activation function, and 
consider training the DNN with weight decay only on the 
network weights. An application of the NBT shows that the 
weight decay problem is equivalent to the regularized DNN 
training problem with the regularizer

 w v w vC 2
1

2
1

k

K
L

k

K

k

KL

2
2

1
2
2

1
2 2

11

(1) ( ) ( ) ( )
k k k k

( ) ( ) ( )L1

i = + + , ,

,= = ==

,^ h / / //
 (6)

where K ( ),  denotes the number of neurons in layer ,,  w( )
k
,  

denotes the input weights to the kth neuron in layer ,,  and 
v( )

k
,  denotes the output weights to the kth neuron in layer 
,  (see [47, eq. (2)]). The solutions based on this regular-
izer will also be sparse due to the two norms that ap-
pear in the last term in (6) being not squared, akin to the 

group LASSO regularizer. In particu-
lar, this regularizer can be viewed as a 
mixed -,2 1, norm on the weight matrices. 
Moreover, increasing the regularization 
parameter ,m  will increase the number 
of weights that are zero in the solution. 
Therefore, training the DNN with weight 
decay favors sparse solutions, where 
sparsity is quantified via the number of 
active neuron connections. An early ver-
sion of this result appeared in 1998 [16], 
although it did not become well known 

until it was rediscovered in 2015 [25].

What kinds of functions do NNs learn?
The sparsity-promoting effect of weight decay arising from 
the NBT in network architectures with homogeneous ac-
tivation functions has several consequences on the proper-
ties of trained NNs. In this section, we focus on the popular 
ReLU activation function ( ) , .maxt t0t = " ,  The imposed 
sparsity not only promotes sparsity in the sense of the num-
ber of active neuron connections but also promotes a kind 
of transform-domain sparsity. This transform-domain spar-
sity suggests the inclusion of skip connections and low-rank 
weight matrices in network architectures.

Shallow NNs
In the univariate case, a shallow feedforward ReLU NN with 
K neurons is realized by the mapping

 ( ) ( ) .f x v w x bk
k

K

k k
1
t= -i

=

/  (7)

Training this NN with weight decay corresponds to the solv-
ing the optimization problem

 , ( ) .min y f x v w2L n n
n

N

k k
k

K

1

2 2

1

m+ +
!i

i
H = =

^ h/ /  (8)

From the “The Secret Sparsity of Weight Decay” section, we 
saw that the NBT implies that this problem is equivalent to

 , ( ) .min y f x v wL n n k
k

K

k
n

N

11
m+

!i
i

H ==

^ h //  (9)

As illustrated in “Rectified Linear Unit Sparsity in the 
Second Derivative Domain,” we see that (9) is actually reg-
ularizing the integral of the second derivative of the NN, 
which can be viewed as a measure of sparsity in the second 
derivative domain. The integral in (S6) must be understood 
in the distributional sense because the Dirac impulse is not a 
function, but a generalized function or distribution. To make 
this precise, let /( )g x e 2/x 22

rf=f
f-  denote the Gaussian 

density with variance .02f  As is well known in signal pro-
cessing, gf  converges to the Dirac impulse as .0"f  Using 
this idea, given a distribution f, define the norm

The balancing effect of 
the NBT has a striking 
effect on solutions to the 
weight decay objective, 
particularly a sparsity-
promoting effect akin to 
least absolute shrinkage 
and selection operator 
regularization. 
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( ) .sup supf f g f x g y x x yd dL
0 0

M 1| )= = -
3

3

3

3

2 2f
f

f
f

--
^ h##

 (10)

This definition provides an explicit construction, via the 
convolution with a Gaussian, of a sequence of smooth func-
tions that converge to f, where the supremum acts as the 
limit. For example, if ( ) ( ) ( ),f x g x v x tk kk

K
1 dR= + -=  where 

g is an absolutely integrable function, then f g LM 1=
,vv gk

K
k L1 11R+ = +=  with .v vk

K
k1 1R= =  It is in 

this sense that (S6) holds, i.e., .f v wD k
K

k k
2

1M R=i =  In 
particular, the -M norm is precisely the continuous-domain 
analog of the sparsity-promoting discrete -1, norm. There-
fore, we see that training an NN with weight decay, as in (8), 
prefers solutions with sparse second derivatives.

It turns out that the connection between sparsity in the 
second derivative domain and NNs is even tighter. Let 
BV R2 ^ h denote the space of functions mapping R R"  
such that fD2

M  is finite. This is the space of functions 
of second-order bounded variation and the quantity 

fD2
M  is the second-order total variation (TV) of f. Note 

that the classical notion of TV, often used in signal denois-
ing problems [35], is ,f fTV D M|=^ h  and so the second-
order TV of f can be viewed as the TV of the derivative of 

: .f f fD TV D2
M = ^ h  

It is well known from spline theory [14], [23], [44] that 
functions that fit data and have minimal second-order TV are 
continuous piecewise linear (CPwL) functions. As the ReLU 
is a CPwL function, ReLU NNs are CPwL functions [3]. In 
fact, under mild assumptions on the loss function, the solu-
tion set to the optimization problem

 , ( )min y f x fDL
f n

N

n n
1

2

BV R
M2

m+
! =

^^ hh/  (11)

is completely characterized by NNs of the form

 ( ) ( )f x v w x b c x ck k k
k

K

1 0
1
t= - + +i

=

/  (12)

where the number of neurons is strictly less than the number 
of data ( )K N1  in the sense that the solution set to (11) is 

Given a rectified linear unit neuron ( ) ( ),r x wx bt= -  its 
first derivative,  ( ),xrD  is

 
 ( )  ( )

( )

r x wx b

wu wx b

D D t= -

= -  (S1)

where u  is the unit step function [Figure 1(b)]. Therefore, 
its second derivative, D ( ),r x2  is

 
( )  ( )

( ) .

r x wu wx b

w wx b

D D2

2d

= -

= -  (S2)

By the scaling property of the Dirac impulse [S1, Problem 
1.38(a)]

 ( ) ( )x x1d c
c
d=  (S3)

we have

 
( )

.

r x w
w x w

b

w x w
b

D2
2

d

d

= -

= -a
a

k
k

 
(S4)

The second derivative of the neural network (7) is then

 ( ) .f x v w x w
bD k

k

K

k
k

k2

1

d= -i
=

b l|  (S5)

Therefore,

 ( ) .f x x v wD d k
k

K

k
2

1

=
3

3

i
- =

|#  (S6)

Reference
[S1] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and 
Systems (Prentice-Hall Signal Processing Series). Englewood Cliffs, NJ, 
USA: Prentice-Hall, 1997.

Rectified Linear Unit Sparsity in the Second Derivative Domain

FIGURE S1. An illustration of the sparsity in the second derivative domain of a univariate, shallow feedforward neural network with six neurons.
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a closed convex set whose extreme points take the form of 
(12) with K N1  [9], [28], [37]. In NN parlance, the c x c1 0+  
term is a skip connection [17]. This term is an affine function 
that naturally arises because the second-order TV of an af-
fine function is zero, and so the regularizer places no penalty 
for the inclusion of this term.

The intuition behind this result is due to the fact that 
the second derivative of a CPwL function is an impulse 
train and therefore exhibits extreme sparsity in the second 
derivative domain, as illustrated in Figure S1. Therefore, 
the optimization problem (11) will favor sparse CPwL func-
tions that always admit a representation, as in (12). In sig-
nal processing parlance, “signals” that are sparse in some 
transform domain are said to have a finite rate of innovation 
[45]. Here, the involved transform is the 
second derivative operator, and the inno-
vation is the impulse train that arises after 
applying the second derivative operator to 
a CPwL function.

Consider the optimization over the 
NN parameter space KH  of networks, 
as in (12), with f ixed-width .K N$  
From the derivation in “Rectified Linear 
Unit Sparsity in the Second Derivative Domain,” we have 

: .f BV RK
2! 1i Hi ^ h" ,  Furthermore, from the earlier dis-

cussion, we know that there always exists an optimal solu-
tion to (11) that takes the form of (12) with ,K N1  i.e., there 
always exists a solution to (11) in : .f K!i Hi" ,  Therefore, 
from the equivalence of (8) and (9), we see that training a 
sufficiently wide K N$^ h NN with a skip connection (12) 
and weight decay (8) results in a solution to the optimiza-
tion problem (11) over the function space .BV R2 ^ h  Although 
this result may seem obvious in hindsight, it is remarkable 
because it says that the kinds of functions that NNs trained 
with weight decay (to a global minimizer) are exactly optimal 
functions in .BV R2 ^ h  Moreover, this result sheds light on the 

role of overparameterization as this correspondence hinges 
on the network being critically parameterized or overpa-
rameterized (because ) .K N$

In the multivariate case, a shallow feedforward NN has  
the form

 ( ) .x w xf v bk k k
k

K

1
t= -R

i

=

^ h/  (13)

The key property that connects the univariate case and  
BV R2 ^ h is that ReLU neurons are sparsified by the second 
derivative operator, as in (S4). A similar analysis can be car-
ried out in the multivariate case by finding an operator that is 
the sparsifying transform of the multivariate ReLU neuron 

( ) ( ) .x w xr bt= -<  The sparsifying trans-
form was proposed in 2020 in the seminal 
work of Ongie et al. [26] and hinges on the 
Radon transform that arises in tomographic 
imaging. Connections between the Radon 
transform and neural networks have been 
known since at least the 1990s, gaining 
popularity due to the proposal of ridge-
lets [6], and early versions of the sparsi-

fying transform for neurons were studied as early as 1997 
[19]. A summary of the Radon transform appears in “The 
Radon Transform and Fourier Slice Theorem.” The sparsify-
ing transform for multivariate ReLU neurons is based on a 
result regarding the (filtered) Radon transform, which appears 
in “Filtered Radon Transform of a Neuron With Unit-Norm 
Input Weights.”

The filter K  in (S13) is exactly the backprojection filter that 
arises in the filtered backprojection algorithm in tomograph-
ic image reconstruction and acts as a high-pass filter (or ramp 
filter) to correct the attenuation of high frequencies from the 
Radon transform. The intuition behind this is that the Radon 
transform integrates a function along hyperplanes. In the 

The Radon transform, first studied by Radon in 1917 [S2], 
of a function mapping R Rd "  is specified by the integral 
transform
 R{ }( , ) ( ) ( )x x xf t f t d

Rd
a ad= -<#  (S7)

where d is the univariate Dirac impulse, Sd 1!a =-   
{  :  }u u 1Rd

2! =  is a unit vector, and t R!  is a scalar. 
The Radon transform of f  at ( , )ta  is the integral of f  
along the hyperplane {  :  } .x x tRd! a =<

The Radon transform is tightly linked with the Fourier 
transform, specified by

 ( ) x xf f e dxj

Rd
~ = ~- <t ^ h#  (S8)

where  .1j2 =-  Indeed,

 

R{ }( , )

( ) ( )

( ) ( )

( ) ( ) .

x x x

x x x

x x

f

f t e t

f t e t

f e f

d d

d d

d

 

 

 ( ) x

t

t

j

j

j

RR

R R

R

d

d

d

a

a

a

a

~

d

d

~

= -

= -

= =

<

<

a

~

~

~

-

-

- < t

b
b

l
l

\
##
# #
#

 

(S9)

This result is known as the Fourier slice theorem. It states 
that the univariate Fourier transform in the Radon domain 
corresponds to a slice of the Fourier transform in the spa-
tial domain.

Reference
[S2] J. Radon, “Über die bestimmung von funktionen durch ihre integralw-
erte längs gewisser mannigfaltigkeiten,” Berichte Verhandlungen 
Sächsische Akademie Wissenschaften, vol. 69, pp. 262–277, 1917. 

The Radon Transform and Fourier Slice Theorem

It is well known from 
spline theory that 
functions that fit data and 
have minimal second-
order TV are continuous 
piecewise linear functions.
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univariate case, the magnitude of the frequency response of 
an integrator behaves as /1 ; ;~  and therefore attenuates high 
frequencies. The magnitude of the frequency response of 
integration along a hyperplane therefore behaves as /1 d 1; ;~ -  
as hyperplanes are of dimension ( ) .d 1-  Note that the even 
projector that appears in (S17) is due to the fact that the  
Radon-domain variables ( , )ta  and ( , )ta- -  parameterize 
the same hyperplane.

From the derivation in “Filtered Radon Transform of a 
Neuron With Unit-Norm Input Weights,” we immediately 
see that the sparsifying transform of the multivariate ReLU 
neuron ( ) ( )x w xr bt= -<  with ( , )w b S Rd 1 #! -  is the 

R D Kt
2  operator, where / tDt

2 2 22 2=  denotes the second-
order partial derivative with respect to t. We have

 R { }( , ) (( , ) ( , ))wr t t bD K Rt
2 a ad= -  (14)

where ( ) : { ( )} ( ( ) ( ))z z z z z z z zPR 0 0 0 0evend d d d- = - = - + + / 
2 is the even symmetrization of the Dirac impulse that arises 
due to the even symmetry of the Radon domain. From the ho-
mogeneity of the ReLU activation, applying this sparsifying 
transform to the (unconstrained) neuron ( ) ( )x w xr bt= -<  
with ( , )w b R Rd #!  yields

 R { }( , ) (( , ) ( , ))w wr t t bD K Rt
2

2a ad= - u u  (15)

where /w w w 2=u  and / .wb b 2=u  This is analogous to how 
D2  is the sparsifying transform for univariate neurons, as in 
(S4). The sparsifying operator is simply the second deriva-
tive in the filtered Radon domain. The key idea is that the 
(filtered) Radon transform allows us to extract the (univari-
ate) activation function from the multivariate neuron and ap-
ply the univariate sparsifying transform in the t variable. 
Figure 3 is a cartoon diagram that depicts the sparsifying 
transform of a ReLU neuron.

The story is now analogous to the univariate case. Indeed, 
by the NBT, training the NN in (13) with weight decay is 
equivalent to solving the optimization problem

 ( , ( )) .min wy f x vL
n

N

n n k
k

K

k
1 1

2m+
!i

i
H = =

/ /  (16)

From (15), we see that R ,wf vD K k
K

t k k
2

1 2M R=i =  
so training the NN (13) with weight decay prefers solutions 
with sparse second derivatives in the filtered Radon domain. 
This measure of sparsity can be viewed as the second-order 
TV in the (filtered) Radon domain. Let R ( )BV Rd2  denote 
the space of functions on Rd  of second-order bounded varia-
tion in the (filtered) Radon domain (i.e., the second-order TV 

First, consider the neuron ( ) ( )x w xr v= <  with w e1= =
( , , , )1 0 0f  (the first canonical unit vector). In this case, 
( ) ( ) .xr x1v=  By noticing that this function can be written 

as a tensor product, the Fourier transform is given by the 
following product:

 ( ) ( ) ( ) .r 2
k

d

k1
2

~ v ~ rd ~=
=

tU %  (S10)

By the Fourier slice theorem

 R{ }( , ) ( ) ( ) .r 2
k

d

k1
2

a ~ v ~a rd ~a=
=

t\ %  (S11)

By the scaling property of the Dirac impulse (S3), the 
quantity in (S11) equals

 ( )
( )

( , , ) .
2

d

d

d1 1

1

2 fv ~a
~
r

d a a= -

-

t  (S12)

If we define the filter via the frequency response

  ( ) ( ) ( )f f2 2K d

d

1

1

~ r
~

~= -

-

t\  (S13)

we find

 R { }( , )
( )

( , , ) .r 2K d
1

2 fa ~
v ~a

d a a=
t\  (S14)

Taking the inverse Fourier transform,

 

R{ }( , )

( , , )

( ) ( ) ( ) ( )
( , , )

( ) ( ) ( ) ( )
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t t
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2
1

2
1 1

2
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d

d

1 1
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1 1
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1 1
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f
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a

a
v a d a a

v d a v d a
d a a

v d v v d

v d

=

=
- + - +

=
- + - +

= -

a k
 

(S15)

where Peven  is the projector, which extracts the even part 
of its input [in terms of the variables ( , )] .ta  The second 
line holds by the dilation property of the Fourier trans-
form [S1, eq. (4.34)].

 ( ) .f t f1 F
*

c c c~tb l  (S16)

As ,Sd 1!a -  the third line holds by observing that when 
, , , ,1 0d1 2! fa a a= =  the second line is ( )t 2!v  multi-

plied by an impulse, and when ,11 !!a  the second line 
is zero, which is exactly the third line. By the rotation prop-
erties of the Fourier transform, we have the following result 
for the neuron ( ) ( ):x w xr v= <

 R { }( , ) { ( ) ( )}wr t tK Pevena av d= -  (S17)

where .w Sd 1! -

Filtered Radon Transform of a Neuron With Unit-Norm Input Weights
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in the (filtered) Radon domain is finite). A key result regard-
ing R ( )BV Rd2  is the following representer theorem for 
NNs, first proven in [29]. Under mild assumptions on the loss 
function, the solution set to the optimization problem

 R( , ( ))  min xy f fD KL
R ( )f n

N

n n t
1

2

BV R
Md2

m+
! =

/  (17)

is completely characterized by NNs of the form

 ( ) ( )w x c xf x v b ck
k

K

k k
1

0t= - + +<<
i

=

/  (18)

where the number of neurons is strictly less than the number 
of data ( )K N1  in the sense that the solution set to (17) is 
a closed convex set whose extreme points take the form of 
(18) with K N1  (see [5], [27], and [43] for further refine-
ments of this result). Common loss functions such as the 
squared-error satisfy the mild assumptions. The skip con-
nection c x c0+<  arises because the null space of the sparsi-
fying transform is the space of affine functions. Therefore, 
by the same argument presented in the univariate case, suf-
ficiently wide K N$^ h NNs [as in (18)] trained with weight 
decay to global minimizers are exactly optimal functions in 
R ( ) .BV Rd2

DNNs
The machinery is straightforward to extend to the case of 
DNNs. The key idea is to consider fitting data using compo-
sitions of RBV2  functions. It is shown in [30] and [39] that 
under mild assumptions on the loss function, a solution to the 
optimization problem

( , ( ))y xf f m+L R min fD K
, ,

( ) ( ) ( )

f f n

N

n
L

n t i
i

dL

1

1 2

11
M( ) ( )L1

% %g
f

,

,= ==

,

/ //  
(19)

has the form of a DNN, as in (1), where d,  are the intermedi-
ary dimensions in the function compositions, which satisfy 
the following properties:

 ■ The number of layers is .L 1+

 ■ The solution is sparse in the sense of having few active 
neuron connections (the widths of the layers are bounded 
by ) .N 2

 ■ The solution has skip connections in all layers.
 ■ The architecture has linear bottlenecks, which force the 

weight matrices to be low rank.
Such an architecture is illustrated in Figure 4. The result 

shows that ReLU DNNs with skip connections and lin-
ear bottlenecks trained with a variant of weight decay [30, 
Remark 4.7] are optimal solutions to fitting data using com-
positions of RBV2  functions. Linear bottlenecks may be 
written as factorized (low-rank) weight matrices of the form 

.W U V( ) ( ) ( )=, , ,  These bottleneck layers correspond to layers 
with linear activation functions ( ) .t tv =^ h  They arise natu-
rally due to the compositions of functions that arise in (19). 
The number of neurons in each bottleneck layers is bounded 
by .d,  The incorporation of linear bottlenecks of this form in 
DNNs have been shown to speed up learning [1] and increase 
the accuracy [15], robustness [36], and computational effi-
ciency [46] of DNNs.

What is the role of NN activation functions?
The primary focus of the article so far has been the ReLU 
activation function ( ) { , } .maxt t0t =  Many of the previously 
discussed ideas can be extended to a broad class of activa-
tion functions. The property of the ReLU exploited so far has 
been that it is sparsified by the second derivative operator in 
the sense that .Dt

2t d=  Indeed, we can define a broad class of 
neural function spaces akin to R ( )BV Rd2  by defining spac-
es characterized by different sparsifying transforms matched 
to an activation function. This entails replacing Dt

2  in (14) 
with a generic sparsifying transform .H  Table 1 (adapted 
from [42]) provides examples of common activation functions 
that fall into this framework, where each sparsifying trans-
form  H is defined by its frequency response ( ) .H ~t  For the 
ReLU, we have  ,H Dt

2=  and so ( ) ( j ) .H 2 2~ ~ ~= =-t

Therefore, many of the previously discussed results can 
thus be directly extended to a broad class of activation func-
tions, including the classical sigmoid and arctan activation 

t

K {r} (α = w, t)

(a) (b)

t

tt

K {r} (α = w, t)

(c) (d)

FIGURE 3. A cartoon diagram illustrating the sparsifying transform of the ReLU neuron ( ) ( )x w xr bt= -<  with ( , ) .w b S Rd 1 #! -  The heatmap is a 
top-down view of the ReLU neuron depicted in (a). (a) The surface plot of ( ) .xr  (b) The filtered Radon transform when .wa =  (c) The filtered Radon 
transform when .w!a  (d) Sparsifying transform RD  { }.rKt

2
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Table 1. Common activation functions.

Activation 
Function ( )tv

Frequency Response of 
Sparsifying Transform: ( )H ~t

ReLU { , }max t0 2~-
Truncated 
power !

{ , }
,

max
k

t
k

0
N

k

!
( )j k 1~ +  

Sigmoid
e1

1
2
1

t+ --  
( )sinh

j
r r~  

arctan ( )arctan t
r  ej~ ~  

Exponential e
2

t-

1 2~+  

functions. We remark that the sparsity-
promoting effect of weight decay hing-
es on the homogeneity of the activation 
function in the DNN. Although the 
ReLU and truncated power activation 
functions in Table 1 are homogeneous, 
the other activation functions are 
not. This provides evidence that one 
should prefer homogeneous activa-
tion functions like the ReLU to exploit 
the tight connections between weight 
decay and sparsity. Although the spar-
sity-promoting effect of weight decay 
does not apply to the nonhomoge-
neous activation functions, statements 
akin to (14) do hold by considering 
neurons with input weights constrained to be unit-norm. 
Therefore, these sparsifying transforms uncover the inno-
vations of finite-width NNs with unit-norm input weights. 
Therefore, by only considering neurons with unit-norm input 
weights, the key results that characterize the solution sets to 
the optimization problems akin to (17) and (19) hold, pro-
viding insight into the kinds of functions favored by DNNs 
using these activation functions.

Why do NNs seemingly break the  
curse of dimensionality?
In 1993, Barron published his seminal paper [4] on the abil-
ity of NNs with sigmoid activation functions to approximate 
a wide variety of multivariate functions. Remarkably, he 
showed that NNs can approximate functions that satisfy cer-
tain decay conditions on their Fourier transforms at a rate 
that is completely independent of the input dimension of the 
functions. This property has led to many people heralding 
his work as “breaking the curse of dimensionality.” Today, 
the function spaces he studied are often referred to as the 
spectral Barron spaces. It turns out that this remarkable ap-
proximation property of NNs is due to sparsity.

To explain this phenomenon, we first recall a problem 
that “suffers the curse of dimensionality.” A classical prob-
lem in signal processing is reconstructing a signal from its 
samples. Shannon’s sampling theorem asserts that sampling 
a band-limited signal on a regular grid at a rate faster than 
the Nyquist rate guarantees that the sinc interpolator per-
fectly reconstructs the signal. As the sinc function and its 
shifts form an orthobasis for the space of band-limited sig-
nals, the energy of the signal (squared L2-norm) corresponds 
to the squared (discrete) 2, -norm of its samples. Multivari-
ate versions of the sampling theorem are similar and assert 
that sampling multivariate, band-limited signals on a suf-
ficiently fine regular grid guarantees perfect reconstruction 
with (multivariate) sinc interpolation. It is easy to see that 
the grid size (and therefore the number of samples) grows 
exponentially with the dimension of the signal. This shows 
that the sampling and reconstruction of band-limited signals 
suffers the curse of dimensionality. The fundamental reason 

for this is that the energy or “size” of a band-limited signal 
corresponds to the 2, -norm of the signal’s expansion coef-
ficients in the sinc basis.

It turns out that there is a stark difference if we instead 
measure the “size” of a function by the more restrictive  

1, -norm instead of the 2, -norm, an idea popularized by 
wavelets and compressed sensing. Let D { } D}= !}  be a dic-
tionary of atoms (e.g., sinc functions, wavelets, neurons, and 
so on). Consider the problem of approximating a multivari-
ate function mapping R Rd "  that admits a decomposition 

( ) ( ),x xf vk kk 1 }R= 3
=  where Dk !}  and the expansion coef-

ficients satisfy .vvk k1 1 31R =3
,=  It turns out that there 

exists an approximant constructed with K terms from the dic-
tionary D  whose L2-approximation error f fK L2-  decays at 
a rate completely independent of the input dimension d.

Here, we illustrate the argument when D { }k k 1}= 3
=  

is an orthonormal basis (e.g., multivariate Haar wavelets). 
Given a function :f R Rd "  that admits a decomposition 

( ) ( )x xf vk kk 1 }R= 3
=  such that ,v 1 31,  we can construct 

an approximant fK  by a simple thresholding procedure that 
keeps the K largest coefficients of f and sets all other coef-
ficients to zero. If we let v v( ) ( )1 2 g$ $  denote the coef-
ficients of f sorted in nonincreasing magnitude, then the 
squared approximation error is bounded as

 f f v v( ) ( ) ( )K L k
k K

k

L

k
k K

2 2 2
2

2

}- = =
2 2
/ /  (20)

FIGURE 4. A feedforward DNN architecture with linear bottlenecks. The blue nodes represent ReLU neu-
rons, gray nodes represent linear neurons, and white nodes depict the DNN inputs. As the linear layers 
are narrower than the ReLU ones, this architecture is referred to as a DNN with linear bottlenecks.
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where the last equality follows by exploiting the orthonor-
mality of the { } .k k 1} 3

=  Finally, as the original sequence of 
coefficients ( , , )v v v1 2 f=  is absolutely summable, v( )k  
must decay strictly faster than /k1  for k > K (because the 
tail of the harmonic series k K k

1
>R  diverges). Putting this to-

gether with (20), the L2-approximation error f fK L2-  must 
decay as ,K /1 2-  completely independent of the input dimen-
sion d. For a more precise treatment of this argument, we 
refer the reader to [22, Th. 9.10]. These kinds of thresholding 
procedures, particularly with wavelet bases [12], revolution-
ized signal and image processing and were the foundations of 
compressed sensing [7], [11].

By a more sophisticated argument, a similar phenom-
enon occurs when the orthonormal basis is replaced with an 
essentially arbitrary dictionary of atoms. 
The result for general atoms is based on a 
probabilistic technique presented by Pisier 
in 1981 at the Functional Analysis Seminar 
at École Polytechnique, Palaiseau, France, 
crediting the idea to Maurey [33]. An im -
plication of Maurey’s technique is that, 
given a function that is an 1,  combination 
of bounded atoms from a dictionary, there 
exists a K-term approximant that admits a dimension-free 
approximation rate that decays as .K /1 2-  Motivated by dis-
cussions with Jones [18] on his work on greedy approxima-
tion, which provides a deterministic algorithm to find the 
approximant that admits the dimension-free rate, Barron 
used the technique of Maurey to prove his dimension-free 
approximation rates with sigmoidal NNs. This abstract 
approximation result is now referred to as the Maurey–
Jones–Barron lemma.

In particular, the Maurey–Jones–Barron lemma can be 
applied to any function space where the functions are 1,  
combinations of bounded atoms. Such spaces are sometimes 
called variation spaces [2], [20]. Recall from the “What 
Kinds of Functions Do NNs Learn?” and “What Is the 
Role of NN Activation Functions” sections that the R H K  
operator sparsifies neurons of the form ( ),w x bv -<  where 

( , )w b S Rd 1 #! -  and v  are matched to .H  This implies that 
the space of functions :f R Rd "  such that R fH K M 31  
can be viewed as a variation space, where the dictionary cor-
responds to the neurons { ( )} .w x b ( , )w b S Rd 1v - #

<
! -  There-

fore, given :f R Rd "  such that R ,fH K M 31  there 
exists a K-term approximant fK  that takes the form of a 
shallow NN with K neurons such that the L2-approximation 
error decays as .K /1 2-  These techniques have been studied 
and extended in great detail [40] and have been extended to 
the setting of DNNs [13] by considering compositional func-
tion spaces akin to the compositional space introduced in the 
“DNNs” section.

Combining these dimension-free approximation rates 
with the sparsity-promoting effect of weight decay regular-

ization for ReLU NNs has a striking effect 
on the learning problem. Suppose that 
we train a shallow ReLU NN with weight 
decay on data generated from the noisy 
sa mples  ( ) , , , ,xy f n N1n n n ff= + =  of 

R ( ),f BV Rd2!  where xn  are indepen-
dent identically distributed (i.i.d.) uni-
form random variables on some bounded 
domain ,Rd1X  and nf  are i.i.d. Gaussian 

random variables. Let fN  denote this trained NN. Then, it 
has been shown [31] that the mean integrated squared error 
(MISE) f fE ( )N L

2
2- X  decays at a rate of ,N /1 2-  independent 

of the input dimension d. Moreover, this result also shows that 
the generalization error of the trained NN on a new example 
x generated uniformly at random on Ω is also immune to the 
curse of dimensionality. Furthermore, these ideas have been 
studied in the context of DNNs [38], proving dimension-free 
MISE rates for estimating Hölder functions (that exhibit low-
dimensional structure) with ReLU DNNs.

Mixed variation and low-dimensional structure
The national meeting of the American Mathematical Soci-
ety in 2000 was held to discuss the mathematical challenges 
of the 21st century. Here, Donoho [10] gave a lecture titled 
“High-Dimensional Data Analysis: The Curses and Blessings 
of Dimensionality.” In this lecture, he coined the term mixed 
variation to refer to the kinds of functions that lie in variation 
spaces, citing the spectral Barron spaces as an example. Vari-
ation spaces are different from classical multivariate function 
spaces in that they favor functions that have weak variation in 
multiple directions (very smooth functions) as well as func-
tions that have very strong variation in one or a few directions 
(very rough functions). These spaces also disfavor functions 
with strong variation in multiple directions. It is this fact that 
makes them quite “small” compared to classical multivariate 
function spaces, giving rise to their dimension-free approxi-
mation and MISE rates. Examples of functions with different 
kinds of variation are illustrated in Figure 5. The prototypical 
examples of functions that lie in mixed variation spaces can 
be thought of as superpositions of few neurons with different 
directions or superpositions of many neurons (even continu-
ously many) in only a few directions.

The Maurey–Jones–Barron 
lemma can be applied  
to any function space 
where the functions  
are ,1 combinations of 
bounded atoms.

(a) (b)

(c)

FIGURE 5. Examples of functions exhibiting different kinds of variation.  
(a) Weak variation in multiple directions. (b) Strong variation in one  
direction. (c) Strong variation in multiple directions.
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To interpret the idea of mixed variation in the context of 
modern data analysis and DL, we turn our attention to Fig-
ure 5(b). In this figure, the function has strong variation, but 
only in a single direction. In other words, this function has a 
low-dimensional structure. It has been observed by a number 
of authors that DNNs are able to automati-
cally adapt to the low-dimensional struc-
ture that often arises in natural data. This 
is possible because the input weights can 
be trained to adjust orientation of each neu-
ron. The dimension-independent approxi-
mation rate quantifies the power of this 
tunability. This explains why DNNs are 
good at learning functions with a low-dimensional structure. 
In particular, the function in Figure 5(c) has strong variation 
in all directions, so no method can overcome the curse of 
dimensionality in this sort of situation. On the other hand, in 
Figure 5(a), the function has weak variation in all directions, 
and Figure 5(b) has strong variation in only one direction, so 
these are functions for which NNs will overcome the curse. 
For Figure 5(b), the sparsity-promoting effect of weight decay 
promotes DNN solutions with neurons oriented in the direc-
tion of variation (i.e., it automatically learns the low-dimen-
sional structure).

Takeaway messages and future research directions
In this article, we presented a mathematical framework to 
understand DNNs from first principles, through the lens of 
sparsity and sparse regularization. Using familiar mathemat-
ical tools from signal processing, we provided an explanation 
for the sparsity-promoting effect of the common regulariza-
tion scheme of weight decay in NN training, the use of skip 
connections and low-rank weight matrices in network archi-
tectures, and why NNs seemingly break the curse of dimen-
sionality. This framework provides the mathematical setting 
for many future research directions.

The framework suggests the possibility of new neu-
ral training algorithms. The equivalence of solutions using 
weight decay regularization and the regularization in (6) 
leads to the use of proximal gradient methods akin to itera-
tive soft-thresholding algorithms to train DNNs. This avenue 
has already begun to be explored. The preliminary results in 
[47] have shown that proximal gradient training algorithms 
for DNNs perform as well as and often better (particularly 
when labels are corrupted) than standard gradient-based 
training with weight decay, while simultaneously producing 
sparser networks.

The large body of work dating back to 1989 [21] on NN 
pruning has shown empirically that large NNs can be com-
pressed or sparsified to a fraction of their size while still 
maintaining their predictive performance. The connection 
between weight decay and sparsity-promoting regularizers, 
like in (6), suggests new approaches to pruning. For exam-
ple, one could apply proximal gradient algorithms to derive 
sparse approximations to large pretrained NNs [39]. There 
are many open questions in this direction, both experimen-

tal and theoretical, including applying these algorithms to 
other DNN architectures and deriving convergence results 
for these algorithms.

The framework in this article also shows that trained 
ReLU DNNs are compositions of RBV2  functions. As we 

have seen in this article, at this point in 
time, we have a clear and nearly complete 
understanding of R ( ) .BV Rd2  In par-
ticular, the RBV2  space favors functions 
that are smooth in most or all directions, 
which explains why NNs seemingly break 
the curse of dimensionality. Less is clear 
and understood about the compositions 

of RBV2  functions (which characterize DNNs). A better 
understanding of compositional function spaces could pro-
vide new insights into the benefits of depth in NNs. This in 
turn could lead to new guidelines for designing NN architec-
tures and training algorithms.
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