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A B S T R A C T

This paper is devoted to numerically solving a class of optimal stopping problems for stochastic
hybrid systems involving both continuous states and discrete events. The motivation for solving
this class of problems stems from quickest event detection problems of stochastic hybrid
systems in broad application domains. We solve the optimal stopping problems numerically by
constructing feasible algorithms using Markov chain approximation techniques. The key tasks
we undertake include designing and constructing discrete-time Markov chains that are locally
consistent with switching diffusions, proving the convergence of suitably scaled sequences, and
obtaining convergence for the cost and value functions. Finally, numerical results are provided
to demonstrate the performance of the algorithms.

1. Introduction

Optimal stopping problems are motivated by a wide range of applications in which sudden changes in system structures and
arameters must be detected and managed. These sudden changes can be triggered by variables passing certain thresholds and
oundaries in financial and engineering systems, cyber attacks on infrastructures, and disruptive changes in biological systems. In
odern emerging technologies such as modern power systems, autonomous systems, etc., prompt detection of events is especially
mportant for fault and contingency diagnosis to achieve reliability enhancement and risk mitigation. For example, in modern power
ystems, when a contingency (such as a line fault, a load jump, or a cyber attack) occurs, it is important to detect its occurrence as
uickly and accurately as possible so that the system’s stability and operation can be maintained [1–3].
Timely detection or ‘‘quickest detection’’ of abrupt changes is vitally important for risk management of systems. The theory

of optimal stopping is often employed to solve such quickest detection problems. The framework of optimal stopping consists of
a decision maker observing an underlying stochastic process and who, at each stopping time 𝜏, must make one of two decisions:
(i) stop observing the process and collect the ‘‘reward’’ at 𝜏 or (ii) continue observing the process. For a review of the theory of
sequential detection/optimal stopping for discrete-time processes, the reader is referred to [4,5]. For continuous-time processes, the
reader is referred to the seminal books of Peskir and Shiryaev [6,7].
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Quickest detection problems are usually reformulated as optimal stopping problems by introducing an appropriate cost function.
his allows one to formulate an optimization problem whose solution is given by the stopping time 𝜏∗ at which the infimum of the
cost function is realized. Solving an optimal stopping problem may also be viewed as solving an optimal stochastic control problem
where the control is the stopping time 𝜏. The solution to an optimal stochastic control problem typically requires deriving a partial
differential equation (PDE) and verifying that the solution to the PDE is indeed the value function (the optimum). To solve this
PDE, one also needs to identify the auxiliary conditions (boundary conditions). In contrast, an optimal stopping problem is usually
worked out by solving a free-boundary problem standing in a one-to-one correspondence with the optimal stopping problem.

Perhaps the most classical quickest detection problem is that in which one observes a trajectory of the Wiener process with
a drift changing from 0 to 𝜇 ≠ 0 at some random time 𝜃. The task then becomes to find the stopping time 𝜏∗ that is as ‘‘close as
possible’’ to the unknown time 𝜃 [6,8]. In lieu of the standard one-dimensional diffusions, the diffusions that we shall consider in the
resent paper are multi-dimensional hybrid switching diffusions in which continuous states and discrete events coexist. The discrete
vents, which are formulated as continuous-time Markov chains, are utilized to represent the switching dynamic feature. Indeed,
inding both analytic and numerical solutions to optimal stopping problems for hybrid switching diffusions becomes substantially
ore difficult due to the presence of regime switching.
The present paper is in part motivated by the recent work of Ernst and Mei [9], which considered a multi-dimensional switching

iffusion system given by the following dynamics

𝑑𝑋(𝑡) = 𝐹 (𝛼(𝑡))𝑋(𝑡)𝑑𝑡 +
𝑛
∑

𝑎=1
𝐺𝑎(𝛼(𝑡))𝑋(𝑡)𝑑𝐵𝑎(𝑡), 𝑋(0) = 𝑥, 𝛼(0) = 𝜄, (1.1)

here 𝛼(⋅) is a continuous-time Markov chain with a finite state space. For each 𝑎 = 1,… , 𝑛, 𝐵𝑎 is a real-valued standard Brownian
otion, and for each 𝑖 ∈ , 𝐹 (𝑖) and 𝐺𝑎(𝑖) are 𝑑 × 𝑑 matrix-valued coefficients. Under suitable conditions, Eq. (1.1) has a unique
ositive solution and the pair (𝑋(⋅), 𝛼(⋅)) is a strong Markov process; see Yin and Zhu [10, Chapter 2] as well as the recent work of
guyen et al. [11,12]. We denote by 𝜏 a stopping time for the stochastic system and define a cost function

𝐽 (𝑥, 𝜄, 𝜏) ∶= E𝑥,𝜄 ∫

𝜏

0
exp

(

−∫

𝑡

0
𝜆(𝛼(𝑠))𝑑𝑠

)

𝐻(𝑋(𝑡), 𝛼(𝑡))𝑑𝑡, (1.2)

here E𝑥,𝜄 is the expectation with respect to the initial data (𝑥, 𝜄), 𝜆(⋅) is the so-called discount rate function, and 𝐻 is the running
ost rate function. The value function is then given as

𝑉 (𝑥, 𝜄) = inf
𝜏
𝐽 (𝑥, 𝜄, 𝜏), (1.3)

here the infimum is taken over 𝑋,𝛼 , the collection of all possible stopping times of (𝑋(⋅), 𝛼(⋅)) with respect to the natural filtration
𝑡 ∶ 𝑡 > 0} augmented with all P-null sets; see [9] for further details. The solution to the optimal stopping problem in (1.3) can be
epresented by a system of Hamilton–Jacobi–Bellman (HJB) equations, and the stopping boundary is a free boundary to be specified.
he presence of the continuous-time Markov chain 𝛼(𝑡) allows us to work with a system of PDEs. Section 6 of [9] considered an
pplication to quickest detection of Brownian coordinate drifts with  = {1, 2} and 𝑑 = 2; in this example, the stopping boundary
s identified as the solution of a system of integral equations. However, for a more general set  with more than two discrete states
nd with dimension 𝑑 > 2, an analytic solution is not attainable. Further, even in the simplified setting of  = {1, 2} and 𝑑 = 2
n [9, Section 6], the system of integral equations cannot be solved in closed form for many practical applications.
The above limitations reinforce the importance of developing robust numerical approximations to optimal stopping problems. The

resent work proposes an approximation scheme based on a Markov chain approximation method, initiated by Kushner, continued by
ushner and Dupuis [13], and further extended for controlled switching diffusions and games; see Song et al. [14,15]. A preliminary
xploration of the numerical solutions to the optimal stopping problem was in [16], whereas the current paper develops the method
urther together with a complete convergence analysis of the algorithm. The objectives and methods used in [9] and the current
aper are different. The main effort in [9] is on the analysis aspect. It is devoted to analyzing the optimal stopping problem, where
s the current paper provides a computational method for solving such optimal stopping problem numerically.
To simplify the discussion, in what follows, we shall assume that 𝛼(⋅) is known. The case of hidden Markov chains can be handled

y the methods proposed in this paper together with the use of Wonham-type filter algorithms; see Wonham [17].
The remainder of this paper is organized as follows. Section 2 presents a formulation of the optimal stopping problem under

onsideration. Section 3 is devoted to Markov chain approximation, in which we design an algorithm by constructing a suitable
arkov chain. Sections 4 and 5 provide convergence analysis. Section 6 offers numerical examples to demonstrate the performance
f the algorithm.

. Formulation and basic setup

Consider a finite set  = {1,… , 𝑚0} as the state space of a continuous-time finite-state Markov chain 𝛼(⋅). Suppose that
∶ R𝑑 ×  → R𝑑 and 𝐺 ∶ R𝑑 ×  → R𝑑×𝑑 are appropriate nonlinear functions satisfying suitable conditions. We shall consider
onlinear systems which are more general than (1.1) and are of the form

𝑑𝑋(𝑡) = 𝐹 (𝑋(𝑡), 𝛼(𝑡))𝑑𝑡 + 𝐺(𝑋(𝑡), 𝛼(𝑡))𝑑𝐵(𝑡), 𝑋(0) = 𝑥, 𝛼(0) = 𝜄, (2.1)

where 𝐵(⋅) is a 𝑑-dimensional standard Brownian motion, 𝛼(⋅) is a continuous time finite-state Markov chain with state space , and
𝛼(⋅) is assumed independent of 𝐵(⋅). The generator of the continuous-time Markov chain is denoted by 𝑄 = (𝑞𝑖𝑗 ), where

∑𝑚0
𝑗=1 𝑞𝑖𝑗 = 0

for each 𝑖 ∈  and 𝑞 ≥ 0 for 𝑖 ≠ 𝑗.
2

𝑖𝑗
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We shall utilize the same cost function as that of [9]; see (1.2). The corresponding value function is denoted as

𝑉 (𝑥, 𝜄) ∶= inf
𝜏
𝐽 (𝑥, 𝜄, 𝜏). (2.2)

n numerical computations, the process will be confined to a compact set  in order to make it computationally feasible. That is, 
s the closure of its interior (open set) , and the process must stop at the first exit time from , i.e.,

𝜏0 = inf{𝑡 ∶ (𝑋(𝑡), 𝛼(𝑡)) ∉  ×}, (2.3)

f it has not stopped earlier. For further discussions on the requirement of 𝜏0 and the associated conditions for finiteness, we refer
he reader to Remark 4.3 in this paper.
The problem is now to find the stopping time 𝜏 ≤ 𝜏0 which minimizes the cost function in (1.2). The optimal stopping problem

nder consideration becomes

𝑉 (𝑥, 𝜄) = inf
𝜏≤𝜏0

𝐽 (𝑥, 𝜄, 𝜏). (2.4)

ur study begins with the following preliminary assumption.
(H0) Suppose that 𝐹 (⋅) and 𝐺(⋅) are suitable functions such that (2.1) has a unique (in the sense of distribution) solution for each

nitial condition. We also assume that the optimal stopping problem has a unique solution in the weak sense.
Note that we are using the weak solution (or solutions of the martingale problems). Sufficient conditions for the strong solution

f the system can be provided. However, this is not the focus of the present paper. As we stated in Section 1, our main concern is
o design feasible computational procedures for the optimal stopping problem given that the problem has a solution.
For each 𝑖 ∈  and 𝑦 ∈ , define , the operator for a twice continuously differentiable function 𝜓(⋅, 𝑖), as

𝜓(𝑦, 𝑖) = [∇𝜓(𝑦, 𝑖)]′𝐹 (𝑦, 𝑖) + 1
2
tr[∇2𝜓(𝑦, 𝑖)𝐺(𝑦, 𝑖)𝐺′(𝑦, 𝑖)] +𝑄𝜓(𝑦, ⋅)(𝑖), (2.5)

here 𝑧′ denotes the transpose of 𝑧,

𝑄𝜓(𝑦, ⋅)(𝑖) =
𝑚0
∑

𝑗=1
𝑞𝑖𝑗𝜓(𝑦, 𝑗),

nd ∇𝜓(𝑦, 𝑖) and ∇2𝜓(𝑦, 𝑖) denote the gradient and Hessian of 𝜓(𝑦, 𝑖) with respect to 𝑦, respectively. The system of Hamilton–Jacobi–
ellman (HJB) equations satisfied by the value function in (2.4) is

min{𝑉 (𝑥, 𝜄) − 𝜆(𝜄)𝑉 (𝑥, 𝜄) +𝐻(𝑥, 𝜄),−𝑉 (𝑥, 𝜄)} = 0. (2.6)

he original derivation of the systems of HJBs (2.6) can be found in [18]. Because the motivation was for a mathematical finance
roblem, maximization was used; see also the related reference [19]. This notation was also used in [9] although the quickest
etection is for minimization of the cost function. In this paper, we inherit the notation as in [9]. The key purpose of the present
aper is to construct algorithms which approximate the solution to the key optimal stopping problem under consideration in (2.4).

. Markov chain approximation

.1. Discrete grids and approximation

Let ℎ > 0 be a small step size and 𝑆ℎ be the ℎ-grid of R𝑑 defined by

𝑆ℎ =
{

𝑦 ∶ 𝑦 =
𝑑
∑

𝑗=1
𝑛𝑗𝑒𝑗ℎ, 𝑗 = 1,… , 𝑑, 𝑛𝑗 ∈ Z

}

, (3.1)

here 𝑒𝑗 is the standard unit vector in the 𝑗th coordinate direction. We construct a discrete-time two-component Markov chain
(𝜉ℎ𝑘 , 𝛼

ℎ
𝑘 ) ∶ 𝑘 <∞} on the discrete state space 𝑆ℎ × with transition probabilities 𝑝ℎ((𝑦, 𝑖), (𝑧,𝓁)) from the state (𝑦, 𝑖) ∈ 𝑆ℎ × to the

tate (𝑧,𝓁) ∈ 𝑆ℎ ×. This setting for switching diffusions originates from the work of Song et al. [14,15]. The intuition here is that
𝜉ℎ𝑘} should ‘‘approximate’’ 𝑋(⋅) and {𝛼ℎ𝑘} should ‘‘approximate’’ 𝛼(⋅). We approximate the stopping time 𝜏 by 𝑁

ℎ using stepsize ℎ
nd approximate the cost function 𝐽 (𝑥, 𝜄, 𝜏) by denoting

𝐽ℎ(𝑥, 𝜄,𝑁ℎ) ∶= E𝑥,𝜄
𝑁ℎ−1
∑

𝑘=0
exp

(

−
𝑘
∑

𝑗=0
𝜆(𝛼ℎ𝑗 )

)

𝐻(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 )𝛥𝑡

ℎ
𝑘 , (3.2)

ith 𝛥𝑡ℎ𝑘 to be specified in (3.4) below. The discounting is constant on the interval [𝑡
ℎ
𝑘 , 𝑡

ℎ
𝑘+1). The corresponding value function of

the approximating Markov chain is

𝑉 ℎ(𝑥, 𝜄) = inf
𝑁ℎ

𝐽ℎ(𝑥, 𝜄,𝑁ℎ).

The associated dynamic programming equation in (2.6) will then have the following discrete form

𝑉 ℎ(𝑥, 𝜄) = min
{

𝑒−𝜆(𝜄)𝛥𝑡
ℎ(𝑥,𝜄)

∑

𝑝ℎ
(

(𝑥, 𝜄), (𝑦, 𝑖)
)

𝑉 ℎ(𝑦, 𝑖) +𝐻(𝑥, 𝜄)𝛥𝑡ℎ(𝑥, 𝜄), 0
}

. (3.3)
3

(𝑦,𝑖)



Nonlinear Analysis: Hybrid Systems 53 (2024) 101507P.A. Ernst et al.

T

S
a

t
s
1
c

3

t

N
t

f

For ease of flow, we postpone the derivation of (3.3); it will appear immediately after the proof of Lemma 3.2.
In our analysis, in order to establish convergence, we shall utilize continuous-time interpolations. Suppose that we have an

interpolation interval 𝛥𝑡ℎ(⋅, ⋅) > 0 on 𝑆ℎ ×; the construction of this interval will be given in (3.9). Let

𝛥𝑡ℎ𝑘 ∶= 𝛥𝑡ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ). (3.4)

he interpolated time is defined as

𝑡ℎ𝑘 =
𝑘−1
∑

𝑗=0
𝛥𝑡ℎ𝑗 (𝜉

ℎ
𝑗 , 𝛼

ℎ
𝑗 ).

ome more notation is necessary for what follows below. Let us denote ℎ
𝑡 as the 𝜎-algebra generated by {𝜉ℎ(𝑠), 𝛼ℎ(𝑠), 𝑧ℎ(𝑠) ∶ 𝑠 ≤ 𝑡}

nd let 𝜏ℎ be a ℎ
𝑡 -stopping time.

To ensure the approximation is in line with the dynamics of (2.1), we need to check that our construction is ‘‘locally consistent’’;
hat is, the conditional mean and conditional covariance of the constructed discrete-time Markov chain {𝜉ℎ𝑘 , 𝛼

ℎ
𝑘} ‘‘match’’ that of the

witching diffusion in Eq. (2.1) and, further, that the error tends to 0 as ℎ → 0. Similar to the work of Song et al. [14, Definition
], we will show that the constructed Markov chain leads to the correct limit. With the constructed Markov chain in hand, we now
an define the interpolated processes as

𝜉ℎ(𝑡) = 𝜉ℎ𝑘 , 𝛼
ℎ(𝑡) = 𝛼ℎ𝑘 , 𝑧

ℎ(𝑡) = 𝑘 for 𝑡 ∈ [𝑡ℎ𝑘 , 𝑡
ℎ
𝑘+1), 𝜏

ℎ = 𝑡ℎ
𝑁ℎ ,

𝐽ℎ(𝑥, 𝜄, 𝜏ℎ) = 𝐸𝑥,𝜄 ∫

𝜏ℎ

0
exp

(

−∫

𝑡

0
𝜆(𝛼ℎ(𝑠))𝑑𝑠

)

𝐻
(

𝜉ℎ(𝑡), 𝛼ℎ(𝑡)
)

𝑑𝑡,

𝑉 ℎ(𝑥, 𝜄) = inf
𝜏ℎ
𝐽ℎ(𝑥, 𝜄, 𝜏ℎ).

.2. Construction of the controlled Markov chains

We begin with the construction of the Markov chain {𝜉ℎ𝑘 , 𝛼
ℎ
𝑘} in order to approximate the switching diffusion in Eq. (2.1). Define

he covariance matrix 𝐶(𝑦, 𝑖) as

𝐶(𝑦, 𝑖) ∶= 𝐺(𝑦, 𝑖)𝐺′(𝑦, 𝑖) = (𝑐𝑗𝑟(𝑦, 𝑖)). (3.5)

ote that for the general diffusion coefficient 𝐺, the matrix 𝐶 is not diagonal. We define the transition probabilities by invoking
he finite difference method for approximating the first and second derivative of 𝑉 (⋅, 𝑖), 𝑖 ∈ . This is done as follows

𝑉𝑥𝑗 (𝑦, 𝑖) → [𝑉 (𝑦 + 𝑒𝑗ℎ, 𝑖) − 𝑉 (𝑦, 𝑖)]∕ℎ, if 𝐹𝑗 (𝑦, 𝑖) ≥ 0,
𝑉𝑥𝑗 (𝑦, 𝑖) → [𝑉 (𝑦, 𝑖) − 𝑉 (𝑦 − 𝑒𝑗ℎ, 𝑖)]∕ℎ, if 𝐹𝑗 (𝑦, 𝑖) < 0,
𝑉𝑥𝑗𝑥𝑗 (𝑦, 𝑖) → [𝑉 (𝑦 + 𝑒𝑗ℎ, 𝑖) + 𝑉 (𝑦 − 𝑒𝑗ℎ, 𝑖) − 2𝑉 (𝑦, 𝑖)]∕ℎ2,
𝑉𝑥𝑗𝑥𝑟 (𝑦, 𝑖) → [𝑉 (𝑦 + 𝑒𝑗ℎ + 𝑒𝑟ℎ, 𝑖) + 𝑉 (𝑦 − 𝑒𝑗ℎ − 𝑒𝑟ℎ, 𝑖) + 2𝑉 (𝑦, 𝑖)]∕2ℎ2

−[𝑉 (𝑦 + 𝑒𝑗ℎ, 𝑖) + 𝑉 (𝑦 − 𝑒𝑗ℎ, 𝑖) + 𝑉 (𝑦 + 𝑒𝑟ℎ, 𝑖) + 𝑉 (𝑦 − 𝑒𝑟ℎ, 𝑖)]∕2ℎ2

if 𝑐𝑗𝑟(𝑦, 𝑖) ≥ 0,
𝑉𝑥𝑗𝑥𝑟 (𝑦, 𝑖) → −[𝑉 (𝑦 + 𝑒𝑗ℎ − 𝑒𝑟ℎ, 𝑖) + 𝑉 (𝑦 − 𝑒𝑗ℎ + 𝑒𝑟ℎ, 𝑖) + 2𝑉 (𝑦, 𝑖)]∕2ℎ2

+[𝑉 (𝑦 + 𝑒𝑗ℎ, 𝑖) + 𝑉 (𝑦 − 𝑒𝑗ℎ, 𝑖) + 𝑉 (𝑦 + 𝑒𝑟ℎ, 𝑖) + 𝑉 (𝑦 − 𝑒𝑟ℎ, 𝑖)]∕2ℎ2

if 𝑐𝑗𝑟(𝑦, 𝑖) < 0,

(3.6)

where the 𝑒𝑗 represent a 𝑑-dimensional unit vector that has zeros in all components expect for the 𝑗th component being equal to 1.
We note that the approximation of mixed second order partial derivatives depends on the sign of 𝑐𝑗𝑟(𝑦, 𝑖). This guarantees that the
coefficients of 𝑉 ℎ(𝑦, 𝑖) will be nonnegative and sum to unity so that it can be invoked as the transition probabilities of a Markov
chain. We also assume, for all 𝑦 ∈ R𝑑 and 𝑖 ∈ , that

𝑐𝑗𝑗 (𝑦, 𝑖) −
∑

𝑟∶𝑟≠𝑗
|𝑐𝑗𝑟(𝑦, 𝑖)| ≥ 0. (3.7)

The condition in (3.7) requires the matrix to be diagonally dominant, which is a convenient condition for our construction in the
present work. A condition of this sort actually depends on the coordinate system we are using and there are several ways to relax it;
see Kushner and Dupuis [13, pp. 110–111] for details. Denote by 𝑝ℎ((𝑦, 𝑖), (𝑧,𝓁)) the transition probabilities from a state (𝑦, 𝑖) ∈ 𝑆ℎ×
to a state (𝑧,𝓁) ∈ 𝑆ℎ × . Substituting these approximation (3.6) into (2.6), we are able to define the transition probabilities as
ollows

𝑝ℎ
(

(𝑦, 𝑖), (𝑦 ± 𝑒𝑗ℎ, 𝑖)
)

=
[

𝑐𝑗𝑗 (𝑦, 𝑖)∕2 −
∑

𝑟≠𝑗
|𝑐𝑗𝑟(𝑦, 𝑖)|∕2 + ℎ𝐹

±
𝑗 (𝑦, 𝑖)

]

∕𝑄ℎ(𝑦, 𝑖),

𝑝ℎ
(

(𝑦, 𝑖), (𝑦 + 𝑒𝑗ℎ + 𝑒𝑟ℎ, 𝑖)
)

= 𝑝ℎ
(

(𝑦, 𝑖), (𝑦 − 𝑒𝑗ℎ − 𝑒𝑟ℎ, 𝑖)
)

= 𝑐+𝑗𝑟(𝑦, 𝑖)∕2𝑄
ℎ(𝑦, 𝑖) if 𝑟 ≠ 𝑗,

𝑝ℎ
(

(𝑦, 𝑖), (𝑦 − 𝑒𝑗ℎ + 𝑒𝑟ℎ, 𝑖)
)

= 𝑝ℎ
(

(𝑦, 𝑖), (𝑦 + 𝑒𝑗ℎ − 𝑒𝑟ℎ, 𝑖)
)

= 𝑐−𝑗𝑟(𝑦, 𝑖)∕2𝑄
ℎ(𝑦, 𝑖) if 𝑟 ≠ 𝑗,

𝑝ℎ
(

(𝑦, 𝑖), (𝑧,𝓁)
)

= (ℎ2𝑞𝑖𝓁)∕𝑄ℎ(𝑦, 𝑖) if 𝓁 ≠ 𝑖,
ℎ( )

(3.8)
4

𝑝 (𝑦, 𝑖), (𝑧,𝓁) = 0 otherwise,



Nonlinear Analysis: Hybrid Systems 53 (2024) 101507P.A. Ernst et al.

c

R

where

𝑄ℎ(𝑦, 𝑖) =
𝑑
∑

𝑗=1
𝑐𝑗𝑗 (𝑦, 𝑖) −

∑

𝑗,𝑟∶𝑗≠𝑟
|𝑐𝑗𝑟(𝑦, 𝑖)|∕2 + ℎ

𝑑
∑

𝑗=1
|𝐹𝑗 (𝑦, 𝑖)| − ℎ2𝑞𝑖𝑖,

𝛥𝑡ℎ(𝑦, 𝑖) = ℎ2

𝑄ℎ(𝑦, 𝑖) + ℎ2𝜆(𝑖)
.

(3.9)

In Lemma 3.2 below, we shall show that the above construction of the Markov chain retains the local behavior of system (2.1). That
is, the ‘‘local mean’’ and ‘‘local covariance’’ of the Markov chain {𝜉ℎ𝑘 , 𝛼

ℎ
𝑘} match that of the regime switching diffusion Eq. (2.1). We

all this match ‘‘local consistency’’ (see Definition 3.1). Let 𝛥𝜉ℎ𝑛 = 𝜉ℎ𝑛+1 − 𝜉
ℎ
𝑛 , and denote by Pℎ𝑦,𝑖,𝑛, E

ℎ
𝑦,𝑖,𝑛, and Covℎ𝑦,𝑖,𝑛 the conditional

probability, conditional expectation, and conditional covariance with respect to the 𝜎-algebra generated by

{𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ; 𝑘 ≤ 𝑛, 𝜉ℎ𝑛 = 𝑦, 𝛼ℎ𝑛 = 𝑖}.

We now proceed with the statement of Definition 3.1.

Definition 3.1 (Local Consistency). The sequence {𝜉ℎ𝑘 , 𝛼
ℎ
𝑘} with 𝛥𝑡

ℎ(𝑦, 𝑖) defined in (3.8) is said to be ‘‘locally consistent’’ with the
system in (2.1) if, given 𝜉ℎ𝑛 = 𝑦 and 𝛼ℎ𝑛 = 𝑖, the following five conditions hold

Eℎ𝑦,𝑖,𝑛𝛥𝜉
ℎ
𝑛 = 𝐹 (𝑦, 𝑖)𝛥𝑡ℎ(𝑦, 𝑖) + 𝑜(𝛥𝑡ℎ(𝑦, 𝑖)),

Covℎ𝑦,𝑖,𝑛𝛥𝜉
ℎ
𝑛 = 𝐺(𝑦, 𝑖)𝐺′(𝑦, 𝑖)𝛥𝑡ℎ(𝑦, 𝑖) + 𝑜(𝛥𝑡ℎ(𝑦, 𝑖)),

Pℎ𝑦,𝑖,𝑛(𝛼
ℎ
𝑛+1 = 𝓁) = 𝑞𝑖𝓁𝛥𝑡ℎ(𝑦, 𝑖) + 𝑜(𝛥𝑡ℎ(𝑦, 𝑖)), 𝓁 ≠ 𝑖,

Pℎ𝑦,𝑖,𝑛(𝛼
ℎ
𝑛+1 = 𝑖) = 1 + 𝑞𝑖𝑖𝛥𝑡ℎ(𝑦, 𝑖) + 𝑜(𝛥𝑡ℎ(𝑦, 𝑖)),

sup
𝑛,𝜔

|𝛥𝜉ℎ𝑛 | → 0 w.p.1 as ℎ → 0.

(3.10)

We now proceed with Lemma 3.2.

Lemma 3.2. The constructed Markov chain {𝜉ℎ𝑘 , 𝛼
ℎ
𝑘} with transition probabilities defined in (3.8) is locally consistent with Eq. (2.1).

Proof. The verbatim proof is omitted for brevity. It is straightforward to directly verify each of the conditions in Definition 3.1 by
using the transition probabilities defined in (3.8). □

The local consistency of the Markov chain {𝜉ℎ𝑘 , 𝛼
ℎ
𝑘} leads to Proposition 3.3 below.

Proposition 3.3. The dynamic programming equation for system (2.1) becomes

𝑉 ℎ(𝑥, 𝜄) = min
{

𝑒−𝜆(𝜄)𝛥𝑡
ℎ(𝑥,𝜄)

∑

(𝑦,𝑖)
𝑝ℎ((𝑥, 𝜄), (𝑦, 𝑖))𝑉 ℎ(𝑦, 𝑖) +𝐻(𝑥, 𝜄)𝛥𝑡ℎ(𝑥, 𝜄), 0

}

.

Proof. We begin by discretizing the original HJB Eq. (2.6) using (3.6), (3.8) and (3.9). Doing so gives the discretized form

min
{

∑

(𝑦,𝑖)
𝑄ℎ(𝑥, 𝜄)𝑝ℎ((𝑥, 𝜄), (𝑦, 𝑖))𝑉 ℎ(𝑦, 𝑖) + ℎ2𝐻(𝑥, 𝜄) −(𝑄ℎ(𝑥, 𝜄) + ℎ2𝜆(𝜄))𝑉 ℎ(𝑥, 𝜄),

−ℎ2𝑉 ℎ(𝑥, 𝜄)
}

= 0.
(3.11)

ecall

𝛥𝑡ℎ(𝑥, 𝜄) = ℎ2

𝑄ℎ(𝑥, 𝜄) + ℎ2𝜆(𝜄)
. (3.12)

Dividing by 𝑄ℎ(𝑥, 𝜄) + ℎ2𝜆(𝜄) and then adding 𝑉 ℎ(𝑥, 𝜄) to both sides of Eq. (3.11), we have

min
{

∑

(𝑦,𝑖)
(1 − 𝜆(𝜄)𝛥𝑡ℎ(𝑥, 𝜄))𝑝ℎ((𝑥, 𝜄), (𝑦, 𝑖))𝑉 ℎ(𝑦, 𝑖) +𝛥𝑡ℎ(𝑥, 𝜄)𝐻(𝑥, 𝜄),

(1 − 𝛥𝑡ℎ(𝑥, 𝜄))𝑉 ℎ(𝑥, 𝜄)
}

= 𝑉 ℎ(𝑥, 𝜄).
(3.13)

Note that the right-hand side of Eq. (3.12) is order 𝑂(ℎ2). It allows us to regard the term 1 − 𝜆(𝜄)𝛥𝑡ℎ(𝑥, 𝜄) as an approximation of
𝑒−𝜆(𝜄)𝛥𝑡ℎ(𝑥,𝜄) with an error of the order 𝑜(ℎ4). Eq. (3.13) becomes

𝑉 ℎ(𝑥, 𝜄) = min
{

𝑒−𝜆(𝜄)𝛥𝑡
ℎ(𝑥,𝜄)

∑

(𝑦,𝑖)
𝑝ℎ((𝑥, 𝜄), (𝑦, 𝑖))𝑉 ℎ(𝑦, 𝑖) +𝛥𝑡ℎ(𝑥, 𝜄)𝐻(𝑥, 𝜄),

(1 − 𝛥𝑡ℎ(𝑥, 𝜄))𝑉 ℎ(𝑥, 𝜄)
}

.

Since the value function takes values in (−∞, 0], we have

𝑉 ℎ(𝑥, 𝜄)

=
{ 𝑒−𝜆(𝜄)𝛥𝑡ℎ(𝑥,𝜄)

∑

(𝑦,𝑖)𝑄
ℎ(𝑥, 𝜄)𝑝ℎ((𝑥, 𝜄), (𝑦, 𝑖))𝑉 ℎ(𝑦, 𝑖) + 𝛥𝑡ℎ(𝑥, 𝜄)𝐻(𝑥, 𝜄) if𝑉 ℎ(𝑥, 𝜄) < 0,

ℎ

5

0 if𝑉 (𝑥, 𝜄) = 0.
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We thus conclude that the HJB equation associated with the approximated Markov chain {𝜉ℎ𝑘 , 𝛼
ℎ
𝑘} has the desired form. This finishes

the proof. □

We now preview the key results in Section 4 and in Section 5. We will show that, as ℎ→ 0,

(a) the sequence (𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ) converges weakly to (𝑋(⋅), 𝛼(⋅), 𝜏). We shall do so by showing that the limit of (𝜉ℎ(⋅), 𝛼ℎ(⋅)) is a
solution of the martingale problem with operator  defined in (2.5), which allows us to conclude that (𝜉ℎ(⋅), 𝛼ℎ(⋅)) converges
weakly to (𝑋(⋅), 𝛼(⋅)). This is accomplished in Section 4.2.

(b) 𝐽ℎ(𝑥, 𝜄, 𝜏ℎ) → 𝐽 (𝑥, 𝜄, 𝜏) and 𝑉 ℎ(𝑥, 𝜄) → 𝑉 (𝑥, 𝜄). This is accomplished in Theorems 5.2 and 5.3.

4. Convergence of Markov chain approximation

This section is devoted to proving the convergence of the Markov chain approximation procedure. To proceed, we impose
Assumption 1 below.

Assumption 1. We assume that the following conditions hold.

H1) For each 𝑖 ∈ , we have that 𝐹 (⋅, 𝑖), 𝐺(⋅, 𝑖), and 𝐻(⋅, 𝑖) are continuous functions on .
H2) For each 𝑖 ∈  and each 𝑦 ∈ , 𝐺(𝑦, 𝑖) is invertible.
H3) E𝜏0 <∞.

emark 4.1. Recall that in Assumption (H0) from Section 2, we have already assumed that there is a unique solution of (2.1)
n the ‘‘weak sense’’. This means that, for each initial condition, the probability law of an admissible {𝛼(⋅), 𝐵(⋅), 𝜏} determines the
robability law of any solution {𝑋(⋅), 𝛼(⋅), 𝐵(⋅), 𝜏} of (2.1) regardless of the probability space.
Condition (H2) ensures the matrix 𝐺(⋅, 𝑖) is non-singular in . In the case where 𝐺 is not invertible, we can ‘‘modify’’ its inverse.

his is a useful trick for the martingale problem representation; for further details, see Kushner and Dupuis [13, p. 288].

emark 4.2. In Kushner and Dupuis [13], it is assumed that the drift, diffusion, and the running cost function are bounded and
ontinuous. The main rationale is that the computation must be done in a bounded set, and the continuity yields the boundedness.
herefore, it suffices to consider bounded functions. In this paper, we take a similar approach to [13] by assuming that the drift,
iffusion, and running cost are continuous on , which implies the boundedness on .

Remark 4.3. Condition (H3) is not strong. In fact, if we assume the drift and diffusion coefficients are Lipschitz continuous in the
first variable, that is, for some 𝜅1 > 0,

|𝐹 (𝑦, 𝑖) − 𝐹 (𝑧, 𝑖)| + |𝐺(𝑦, 𝑖) − 𝐺(𝑧, 𝑖)| ≤ 𝜅1|𝑦 − 𝑧|,

hen the following assertions hold

(i) For each 𝑖 ∈  and 𝑦 ∈ , both 𝐹 and 𝐺 grow at most linearly; that is,

|𝐹 (𝑦, 𝑖)| ≤ 𝐾(1 + |𝑦|), |𝐺(𝑦, 𝑖)| ≤ 𝐾(1 + |𝑦|).

(ii) Eq. (2.1) has a unique solution in the pathwise sense.
(iii) E𝜏0 <∞ and 𝜏0 <∞ a.s.

Because the system is time homogeneous, the Lipschitz condition implies assertion (i). Assertion (ii) is standard and follows from
the Lipschitz condition and linear growth in (i). For a proof of assertion (iii), we refer the reader to Zhu et al. [20, Lemma 3.2]. It
should be noted that [20] considers a more general system, namely, switching jump diffusions, in which the switching depends on
continuous state and another Poisson type jump process. In the present paper, rather than assuming Lipschitz continuity, we assume
(for purposes of simplicity) assumption (H0) in Section 2. This enables us to work with a larger class of systems where the Lipschitz
condition may not hold.

4.1. Continuous-time interpolations

The purpose of this section is to define the appropriate interpolated cost function. We begin by defining

𝑡ℎ𝑛 =
𝑛−1
∑

𝑘=0
𝛥𝑡ℎ(𝜉ℎ𝑘 , 𝛼

ℎ
𝑘 ).

For 𝑡 ∈ [𝑡ℎ𝑛 , 𝑡
ℎ
𝑛+1), we define the continuous-time interpolation

ℎ ℎ ℎ ℎ ℎ ℎ ℎ
6

𝜉 (𝑡) = 𝜉𝑛 , 𝛼 (𝑡) = 𝛼𝑛 , 𝜏 (𝑡) = 𝜏𝑛 , 𝑛 (𝑡) = 𝑛, (4.1)
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where 𝑛ℎ(𝑡) is the ‘‘look back’’ function of time. The local consistency in (3.10) gives

𝜉ℎ(𝑡) = 𝑥 +
𝑛ℎ(𝑡)−1
∑

𝑘=0
𝛥𝜉ℎ𝑘 (𝑡)

= 𝑥 +
𝑛ℎ(𝑡)−1
∑

𝑘=0
Eℎ𝑘𝛥𝜉

ℎ
𝑘 +

𝑛ℎ(𝑡)−1
∑

𝑘=0

(

𝛥𝜉ℎ𝑘 − Eℎ𝑘𝛥𝜉
ℎ
𝑘
)

= 𝑥 +
𝑛ℎ(𝑡)−1
∑

𝑘=0

[

𝐹 (𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 )𝛥𝑡

ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ) + 𝑜(𝛥𝑡

ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ))

]

+
𝑛ℎ(𝑡)−1
∑

𝑘=0
(𝛥𝜉ℎ𝑘 − Eℎ𝑘𝛥𝜉

ℎ
𝑘 )

= 𝑥 + ∫

𝑡

0
𝐹 (𝜉ℎ(𝑠), 𝛼ℎ(𝑠))𝑑𝑠 − (𝑡 − 𝑡ℎ𝑛 )𝐹 (𝜉

ℎ
𝑛 , 𝛼

ℎ
𝑛 ) +

𝑛ℎ(𝑡)−1
∑

𝑘=0
𝑜(𝛥𝑡ℎ(𝜉ℎ𝑘 , 𝛼

ℎ
𝑘 )) +𝑀

ℎ(𝑡),

here Eℎ𝑘 denotes the conditional expectation with respect to the 𝜎-algebra generated by {𝜉ℎ𝑗 , 𝛼
ℎ
𝑗 , 𝜏

ℎ
𝑗 ; 𝑗 ≤ 𝑘}, and

𝑀ℎ(𝑡) ∶=
𝑛ℎ(𝑡)−1
∑

𝑘=0

(

𝛥𝜉ℎ𝑘 − Eℎ𝑘𝛥𝜉
ℎ
𝑘
)

.

efining

𝑊 ℎ(𝑡) =
𝑛ℎ(𝑡)−1
∑

𝑘=0
𝐺−1(𝜉ℎ𝑘 , 𝛼

ℎ
𝑘 )
(

𝛥𝜉ℎ𝑘 − Eℎ𝑘𝛥𝜉
ℎ
𝑘
)

, (4.2)

e then have that

𝜉ℎ(𝑡) = 𝑥 + ∫

𝑡

0
𝐹 (𝜉ℎ(𝑠), 𝛼ℎ(𝑠))𝑑𝑠 + ∫

𝑡

0
𝐺(𝜉ℎ(𝑠), 𝛼ℎ(𝑠))𝑑𝑊 ℎ(𝑠) + 𝜀ℎ(𝑡), (4.3)

where the term

𝜀ℎ(𝑡) ∶=
𝑛ℎ(𝑡)−1
∑

𝑘=0

[

𝑜(𝛥𝑡ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ))

]

− (𝑡 − 𝑡ℎ𝑛 )𝐹 (𝜉
ℎ
𝑛 , 𝛼

ℎ
𝑛 ) − (𝑡 − 𝑡ℎ𝑛 )(𝛥𝜉

ℎ
𝑛 − Eℎ𝑛𝛥𝜉

ℎ
𝑛 ),

represents negligible error tending to zero as ℎ → 0. Invoking similar logic to that used above, we obtain the following interpolated
cost function and its associated value function

𝐽ℎ(𝑥, 𝜄, 𝜏ℎ) = E𝑥,𝜄
𝑁ℎ−1
∑

𝑘=0
exp

(

−
𝑘
∑

𝑗=0
𝜆(𝛼ℎ𝑗 )

)

𝐻(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 )𝛥𝑡

ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 )

= E𝑥,𝜄
[

∫

𝜏ℎ

0
exp

(

−∫

𝑡

0
𝜆(𝛼ℎ(𝑠))𝑑𝑠

)

𝐻(𝜉ℎ(𝑡), 𝛼ℎ(𝑡))𝑑𝑡
]

,

𝑉 ℎ(𝑥, 𝜄) = inf
𝜏ℎ
𝐽ℎ(𝑥, 𝜄, 𝜏ℎ).

(4.4)

4.2. Weak convergence

In this subsection, we prove the weak convergence of the constructed Markov chain. We first verify the tightness of continuous-
time processes {𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ,𝑊 ℎ(⋅)}. We then characterize the limit of 𝑊 ℎ(⋅) as a standard Brownian motion, the limit of 𝛼ℎ(⋅) as
the Markov chain 𝛼(⋅), and the limit of 𝜉ℎ(⋅) as the solution of (2.1).

4.2.1. Tightness

Lemma 4.4. The continuous-time interpolated process {𝛼ℎ(⋅)} converges weakly to the Markov chain 𝛼(⋅) with generator 𝑄.

Proof. The proof of this lemma can be found in Yin et al. [21, Theorem 3.1, pp. 457–458]. We thus briefly provide an outline of
the proof. One begins by proving that 𝛼ℎ(⋅) is tight. Invoking the interpolation of (4.1) and the Markov property of the discrete-time
Markov chain, standard calculations yield

E
[

(

𝛼ℎ(𝑡 + 𝑠) − 𝛼ℎ(𝑠)
)2
|ℎ
𝑠

]

≤ 𝛾ℎ(𝑡) and lim
𝑡→0

lim sup
ℎ→0

E𝛾ℎ(𝑡) = 0,

where 𝛾ℎ(𝑡) ≥ 0 is an ℎ
𝑠 -measurable function. The tightness of {𝛼ℎ(⋅)} is then guaranteed by the tightness criterion in Kushner [22,

p. 47]. One then shows that the limit of 𝛼ℎ(⋅) is the solution of a martingale problem with operator 𝑄, and this completes the
proof. □

Lemma 4.5. Consider the approximating Markov chain {𝜉ℎ𝑘 , 𝛼
ℎ
𝑘} with transition probabilities defined in (3.8). Then the interpolated process

ℎ ℎ ℎ ℎ
7

{𝜉 (⋅), 𝛼 (⋅), 𝜏 ,𝑊 (⋅)} is tight.
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Proof. Step 1: Tightness of 𝜉ℎ(⋅). Recalling the local consistency definition in (3.10), we have

Eℎ𝑥,𝜄|𝜉
ℎ(𝑡) − 𝑥|2 = Eℎ𝑥,𝜄

|

|

|

𝑛ℎ(𝑡)−1
∑

𝑘=0
Eℎ𝑘𝛥𝜉

ℎ
𝑘 + (𝛥𝜉ℎ𝑘 − Eℎ𝑘𝛥𝜉

ℎ
𝑘 )
|

|

|

2

≤ 2Eℎ𝑥,𝜄
|

|

|

𝑛ℎ(𝑡)−1
∑

𝑘=0
Eℎ𝑘𝛥𝜉

ℎ
𝑘
|

|

|

2

+ 2Eℎ𝑥,𝜄
|

|

|

𝑛ℎ(𝑡)−1
∑

𝑘=0
(𝛥𝜉ℎ𝑘 − Eℎ𝑘𝛥𝜉

ℎ
𝑘 )
|

|

|

2

≤ 2Eℎ𝑥,𝜄
|

|

|

𝑛ℎ(𝑡)−1
∑

𝑘=0
𝐹 (𝜉ℎ𝑘 , 𝛼

ℎ
𝑘 )𝛥𝑡

ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ) + 𝑜(𝛥𝑡

ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ))

|

|

|

2

+ 2Eℎ𝑥,𝜄
𝑛ℎ(𝑡)−1
∑

𝑘=0

[

𝐶(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 )𝛥𝑡

ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ) + 𝑜(𝛥𝑡

ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ))

]

≤ 2𝐾2𝑡2 + 2𝐾𝑡 + 4Eℎ𝑥,𝜄
𝑛ℎ(𝑡)−1
∑

𝑘=0
𝑜(𝛥𝑡ℎ(𝜉ℎ𝑘 , 𝛼

ℎ
𝑘 )),

here 𝐾 is a bound for |𝐹 (𝑦, 𝑖)| ∨ |𝐶(𝑦, 𝑖)| for 𝑦 ∈  and 𝑖 ∈ . For each 𝑡 ∈ [0,∞) and 𝛿 > 0, Chebyshev’s inequality implies there
exists a sufficiently large 𝐶𝑡,𝛿 > 0 such that

sup
ℎ

{

P𝑥,𝜄
(

|𝜉ℎ(𝑡)| > 𝐶𝑡,𝛿
)}

≤ 𝛿.

According to Kushner and Dupuis [13, Theorem 2.1, p. 251], we also need to show that

lim
𝛿→0

lim sup
ℎ→0

sup
𝜂∈ ℎ𝑇

Eℎ𝑥,𝜄
(

1 ∧ |𝜉ℎ(𝜂 + 𝛿) − 𝜉ℎ(𝜂)|
)

= 0, (4.5)

where  ℎ
𝑇 is the set of ℎ

𝑡 -stopping times less than or equal to 𝑇 w.p.1. for any 𝑇 ∈ [0,∞). By the strong Markov property of {𝜉ℎ𝑘 , 𝛼
ℎ
𝑘},

for any 𝜂 ∈  ℎ
𝑇 , we have

Eℎ𝑥,𝜄
(

1 ∧ |𝜉ℎ(𝜂 + 𝛿) − 𝜉ℎ(𝜂)|
)

≤
(

Eℎ𝑥,𝜄|𝜉
ℎ(𝜂 + 𝛿) − 𝜉ℎ(𝜂)|2

)1∕2

≤
(

2𝐾2𝛿2 + 2𝐾𝛿 + 4Eℎ𝑥,𝜄
𝑛ℎ(𝜂+𝛿)−1

∑

𝑘=𝑛ℎ(𝜂)

𝑜(𝛥𝑡ℎ(𝜉ℎ𝑘 , 𝛼
ℎ
𝑘 ))

)

.

Eq. (4.5) is thus verified and so 𝜉ℎ(⋅) is tight.
Step 2: Tightness of 𝑊 ℎ(⋅). Recall the definition of 𝑊 ℎ(𝑡) defined in (4.2). To show that 𝑊 ℎ(⋅) is also tight, we invoke the same

approach in dealing with the terms 𝜉ℎ(⋅) and observing the boundedness of 𝐺(𝑦, 𝑖) for 𝑦 ∈  and 𝑖 ∈ .
Step 3: Tightness of 𝜏ℎ. Since the stopping time 𝜏ℎ has the potential to be unbounded, we must consider weak convergence for

equences of random variables with values in [0,∞]. Note that [0,∞] is the one point of compactification of [0,∞), i.e., the point
f {∞} is added to the set [0,∞) as the limit of any increasing and unbounded sequence. Due to the compactness of [0,∞], the
equence of stopping times {𝜏ℎ} is tight. Together with Lemma 4.4, the proof is now complete. □

.2.2. Characterization of the limits
In this subsection, we characterize the limit of the processes {𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ,𝑊 ℎ(⋅)}. Since the sequence of this quadruple is tight,

e consider a convergent subsequence still denoted by {𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ,𝑊 ℎ(⋅)}. We represent the limit as {𝑋(⋅), 𝛼(⋅), 𝜏,𝑊 (⋅)}. By virtue
f the Skorokhod representation theorem, we have that

{𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ,𝑊 ℎ(⋅)} → {𝑋(⋅), 𝛼(⋅), 𝜏,𝑊 (⋅)}, w.p.1.

his leads to Theorem 4.6 below.

heorem 4.6. 𝑊 (⋅) is an 𝑡-measurable standard Brownian motion. Letting 𝜏 be 𝑡-measurable stopping time, we have that

𝑋(𝑡) = 𝑥 + ∫

𝑡

0
𝐹 (𝑋(𝑠), 𝛼(𝑠))𝑑𝑠 + ∫

𝑡

0
𝐺(𝑋(𝑠), 𝛼(𝑠))𝑑𝑊 (𝑠),

here 𝑡 = 𝜎(𝑋(𝑠), 𝛼(𝑠), 𝜏𝐼𝜏≤𝑠,𝑊 (𝑠); 𝑠 ≤ 𝑡).

roof. Step 1: Characterization of the limit of𝑊 ℎ(⋅). We first prove that𝑊 (⋅) is indeed an 𝑡-Wiener process. Let 𝜌(⋅) be a real-valued
ounded and continuous function, let 𝑝 be any positive integer, and let 𝑡𝑘 ≤ 𝑡 with 𝑘 ≤ 𝑝. We have

E𝜌
(

𝜉ℎ(𝑡𝑘),𝑊 ℎ(𝑡𝑘), 𝜏ℎ𝐼{𝜏ℎ≤𝑡}; 𝑘 ≤ 𝑝
)[

𝑊 ℎ(𝑡 + 𝑠) −𝑊 ℎ(𝑡)
]

= 0.

aking ℎ → 0 yields

E𝜌
(

𝑋(𝑡 ),𝑊 (𝑡 ), 𝜏𝐼 ; 𝑘 ≤ 𝑝
)[

𝑊 (𝑡 + 𝑠) −𝑊 (𝑡)
]

= 0.
8

𝑘 𝑘 {𝜏≤𝑡𝑘}



Nonlinear Analysis: Hybrid Systems 53 (2024) 101507P.A. Ernst et al.

B
w

w

H

w

5

c
f

e

W

L

It follows that 𝑊 (⋅) is an 𝑡-martingale. To show 𝑊 (⋅) is indeed a standard Brownian motion, we prove that 𝑊 (⋅) is a continuous
process and its quadratic variation is 𝑡𝐼 , where 𝐼 is the 𝑑 × 𝑑 identity matrix. The Lévy characterization then yields the desired
result. We note that

E𝜌
(

𝜉ℎ(𝑡𝑘),𝑊 ℎ(𝑡𝑘), 𝜏ℎ𝐼{𝜏ℎ≤𝑡𝑘}; 𝑘 ≤ 𝑝
)

[

𝑊 ℎ(𝑡 + 𝑠)𝑊 ℎ,′ (𝑡 + 𝑠) −𝑊 ℎ(𝑡)(𝑊 ℎ(𝑡))′
]

= E𝜌(𝜉ℎ(𝑡𝑘),𝑊 ℎ(𝑡𝑘), 𝜏ℎ𝐼{𝜏ℎ≤𝑡𝑘}; 𝑘 ≤ 𝑝)
[

(

𝑊 ℎ(𝑡 + 𝑠) −𝑊 ℎ(𝑡)
)(

𝑊 ℎ(𝑡 + 𝑠) −𝑊 ℎ(𝑡)
)′
]

.

By the direct computation using the definition of 𝑊 ℎ(𝑡) in (4.2), and taking ℎ → 0, weak convergence and the Skorokhod
representation yield

E𝜌
(

𝑋(𝑡𝑘),𝑊 (𝑡𝑘), 𝜏𝐼{𝜏≤𝑡𝑘}; 𝑘 ≤ 𝑝
)[

𝑊 (𝑡 + 𝑠)𝑊 (𝑡 + 𝑠)′ −𝑊 (𝑡)𝑊 ′(𝑡)
]

= 𝑠𝐼.

We thus conclude that 𝑊 (⋅) is a 𝑑-dimensional standard Brownian motion.
Step 2: Characterization the limit of 𝜉ℎ(⋅). From the tightness of {𝜉ℎ(⋅)} in Lemma 4.5, we may assume that 𝜉ℎ(⋅) → 𝑋(⋅) with

probability one using the Skorokhod representation. For each 𝛿 > 0, if 𝑡 ∈ [𝑗𝛿, (𝑗 + 1)𝛿), we define

𝜉ℎ𝛿 (𝑡) = 𝜉ℎ(𝑗𝛿), 𝛼ℎ𝛿 (𝑡) = 𝛼ℎ(𝑗𝛿), 𝑋𝛿(𝑡) = 𝑋(𝑗𝛿).

It now becomes useful to recall the representation in (4.3),

𝜉ℎ(𝑡) = 𝑥 + ∫

𝑡

0
𝐹 (𝜉ℎ(𝑠), 𝛼ℎ(𝑠))𝑑𝑠 +

𝑛ℎ(𝑡)−1
∑

𝑘=0
𝐺(𝜉ℎ𝑘 , 𝛼

ℎ
𝑘 )(𝑊

ℎ(𝑡ℎ𝑘+1) −𝑊
ℎ(𝑡ℎ𝑘)) + 𝜀

ℎ
1 (𝑡).

y the above representation, the continuity and boundedness of 𝐹 (𝑦, 𝑖) and 𝐺(𝑦, 𝑖) for 𝑦 ∈ , 𝑖 ∈ , and the tightness of {𝜉ℎ(⋅), 𝛼ℎ(⋅)},
e obtain

𝜉ℎ𝛿 (𝑡) = 𝑥 + ∫

𝑡

0
𝐹
(

𝜉ℎ𝛿 (𝑠), 𝛼
ℎ
𝛿 (𝑠)

)

𝑑𝑠

+
[𝑡∕𝛿]
∑

𝑗=0
𝐺
(

𝜉ℎ𝛿 (𝑗𝛿), 𝛼
ℎ
𝛿 (𝑗𝛿)

)[

𝑊 ℎ(𝑗𝛿 + 𝛿) −𝑊 ℎ(𝑗𝛿)
]

+ 𝜀ℎ𝛿,𝑡 + 𝑂(ℎ
2),

where [𝑠] denotes the integer part of 𝑠 and E|𝜀ℎ𝛿,𝑡| → 0 as 𝛿 → 0, uniformly in ℎ > 0 and 𝑡 in any bounded interval. Taking ℎ → 0
implies

𝑋𝛿(𝑡) = 𝑥 + ∫

𝑡

0
𝐹
(

𝑋𝛿(𝑠), 𝛼𝛿(𝑠)
)

𝑑𝑠 +
[𝑡∕𝛿]
∑

𝑗=0
𝐺
(

𝑋𝛿(𝑗𝛿), 𝛼𝛿(𝑗𝛿)
)[

𝑊 (𝑗𝛿 + 𝛿) −𝑊 (𝑗𝛿)
]

+ 𝜀𝛿,𝑡,

here E|𝜀𝛿,𝑡| → 0 as 𝛿 → 0. The boundedness of 𝐺 and standard properties of the Wiener process give

𝑋𝛿(𝑡) = 𝑥 + ∫

𝑡

0
𝐹 (𝑋𝛿(𝑠), 𝛼𝛿(𝑠))𝑑𝑠 + ∫

𝑡

0
𝐺(𝑋𝛿(𝑠), 𝛼𝛿(𝑠))𝑑𝑊 (𝑠) + 𝜀̄𝛿,𝑡.

ere, note that E|𝜀̄𝛿,𝑡| → 0 as 𝛿 → 0. Taking 𝛿 → 0 yields

𝑋(𝑡) = 𝑥 + ∫

𝑡

0
𝐹 (𝑋(𝑠), 𝛼(𝑠))𝑑𝑠 + ∫

𝑡

0
𝐺(𝑋(𝑠), 𝛼(𝑠))𝑑𝑊 (𝑠),

hich completes the proof. □

. Convergence of cost and value functions

In the previous section, we established the weak convergence of the continuous-time interpolated process {𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ} and
haracterized its limit as a solution to the system in (2.1). In this section, we shall focus on the convergence of the cost and value
unctions.
For a function 𝜙 ∈ 𝐷([0,∞);R𝑑 ) (i.e., functions defined on [0,∞) taking values in R𝑑 that are right continuous having left limits

quipped with the Skorokhod topology), we define

𝜏(𝜙) =
{

inf
{

𝑡 ∶ 𝜙(𝑡) ∉ 
}

,
∞ if 𝜙(𝑡) ∈  for all 𝑡 <∞.

(5.1)

e are now prepared to state Lemma 5.1 below.

emma 5.1. Assume (H0) and (H1)–(H3). Then the following assertions hold

(i) 𝜏(𝑋(⋅)) < ∞ and 𝜏(𝑋(⋅)) is continuous w.p.1.
(ii) For sufficiently small ℎ > 0, {𝜏ℎ} is uniformly integrable. That is, there is an ℎ0 > 0 such that for all ℎ < ℎ0, {𝜏ℎ ∶ ℎ < ℎ0} is
9

uniformly integrable.
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Proof. The proof of the lemma for systems of diffusions was in Kushner and Dupuis [13, pp. 259–261]. For our case, we need to
modify it for the switching diffusions. We shall only highlight the main difference below. In a Markov switching diffusion, we have
diffusions between the Markovian jump times. It suffices to examine the system until the first jump. We focus on the case where
no switching occurs before the first escape time of . Let 𝜎 denote the first jump time of the continuous-time Markov chain 𝛼(𝑡).
Suppose that before the first jump time 𝜎, 𝛼(𝑡) = 𝑖 ∈ . Note that before the first jump time, 𝑋(𝑡) ∈  and it is a diffusion

{

𝑑𝑋(𝑡) = 𝐹 (𝑋(𝑡), 𝑖)𝑑𝑡 + 𝐺(𝑋(𝑡), 𝑖)𝑑𝐵(𝑡),
𝑋0 = 𝑥.

enote by 𝜏𝑥,𝑖 the 𝑋(𝑡)
𝑡 -stopping time for the above diffusion

𝜏𝑥,𝑖 = inf{𝑡 > 0, 𝑋(𝑡) ∉ }.

y virtue of [13, pp. 263], there exists a 𝛿1 > 0 so that inf (𝑥,𝑖)∈ P𝑥,𝑖(𝜏𝑥,𝑖 ≤ 𝑇 ) ≥ 𝛿1. Thus,

inf
(𝑥,𝑖)∈×

P𝑥,𝑖(𝜏 ≤ 𝑇 ) ≥ inf
(𝑥,𝑖)∈×

P𝑥,𝑖(𝜏 ≤ 𝑇 |𝜎 > 𝑇 )P𝑥,𝑖(𝜎 > 𝑇 )

= inf
(𝑥,𝑖)∈×

P𝑥,𝑖(𝜏𝑥,𝑖 ≤ 𝑇 )𝑒𝑞𝑖𝑖𝑇

≥ inf
𝑖∈

𝑒𝑞𝑖𝑖𝑇 𝛿1 > 0,

here we used the fact that the first jump distribution of 𝜎 is an exponential random variable with parameter −𝑞𝑖𝑖. The rest of the
details are omitted. □

5.1. Convergence of the cost functions

The key result of this section is as follows.

Theorem 5.2. Suppose that the assumptions of Lemma 5.1 hold. Then the cost function 𝐽ℎ(𝑥, 𝜄, 𝜏ℎ) in (4.4) converges to 𝐽 (𝑥, 𝜄, 𝜏) as
→ 0.

roof. First note that by assertion (𝑖) in Lemma 5.1, 𝜏(𝑋(⋅)) < ∞ leads to sup(𝑥,𝑖)∈× E𝑥,𝜄𝜏0 <∞, where

𝜏0 = inf{𝑡 ∶ (𝑋(𝑡), 𝛼(𝑡)) ∉  ×}.

Because {𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ} is tight, we may extract a convergent subsequence, with its corresponding limit denoted by (𝑋(⋅), 𝛼(⋅), 𝜏).
ote that the stopping time 𝜏 satisfies 𝜏 ≤ 𝜏0, where 𝜏0 is the first exit time from . Thus 𝜏 still has the possibility to be the exit time

𝜏0. This implies that the tangency problem may still occur; see Kushner and Dupuis [13, pp. 276–278] for the detailed description
of tangency problem. By the Skorokhod representation, with a slight abuse of notation, we may assume that the convergence is with
probability one, i.e.,

(𝜉ℎ(⋅), 𝛼ℎ(⋅), 𝜏ℎ) → (𝑋(⋅), 𝛼(⋅), 𝜏) w.p.1.

Proving 𝐽ℎ(𝑥, 𝜄, 𝜏ℎ) converges to 𝐽 (𝑥, 𝜄, 𝜏) requires first showing 𝜏 = 𝜏 w.p.1. In view of Lemma 5.1, we have

𝜏 = lim
ℎ→0

𝜏ℎ = lim
ℎ→0

𝜏(𝜉ℎ(⋅)) = 𝜏(𝑋(⋅)) = 𝜏 w.p.1.

In addition, it needs to be demonstrated that the mapping

(𝑋(⋅), 𝛼(⋅), 𝜏) ↦ ∫

𝜏

0
exp

(

−∫

𝑡

0
𝜆(𝛼(𝑠))𝑑𝑠

)

𝐻(𝑋(𝑡), 𝛼(𝑡))𝑑𝑡 (5.2)

is continuous w.p.1 with respect to the measure induced by (𝑋(⋅), 𝛼(⋅), 𝜏). However, this is already implied by the continuity of 𝐻(⋅, ⋅)
nd Lemma 5.1. We thus have

∫

𝜏ℎ

0
exp

(

−∫

𝑡

0
𝜆(𝛼ℎ(𝑠))𝑑𝑠

)

𝐻(𝜉ℎ(𝑡), 𝛼ℎ(𝑡))𝑑𝑡

→ ∫

𝜏

0
exp

(

−∫

𝑡

0
𝜆(𝛼(𝑠))𝑑𝑠

)

𝐻(𝑋(𝑡), 𝛼(𝑡))𝑑𝑡 w.p.1.
(5.3)

n order to obtain the desired convergence for the cost functional, one first takes expectations on both sides of (5.3) and then takes
limits. This requires the uniform integrability, for some ℎ0 > 0, of the set

{

∫

𝜏ℎ

0
exp

(

−∫

𝑡

0
𝜆(𝛼ℎ(𝑠))𝑑𝑠

)

𝐻(𝜉ℎ(𝑡), 𝛼ℎ(𝑡))𝑑𝑡; 0 < ℎ < ℎ0
}

.

ue to the boundedness of 𝐻 in the set  and the positivity of 𝜆(⋅), we only need uniform integrability of {𝜏ℎ;ℎ < ℎ0}. However,
this has already been demonstrated in Lemma 5.1. We thus have that 𝐽ℎ(𝑥, 𝜄, 𝜏ℎ) → 𝐽 (𝑥, 𝜄, 𝜏) as ℎ → 0 as desired. □
10
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5.2. Convergence of the value functions

In what follows, for 𝛥 > 0, we say that (𝑋(⋅), 𝛼(⋅),𝑊 (⋅), 𝜏𝛥) with initial data (𝑥, 𝜄) is a 𝛥-optimal process satisfying (2.1) if

𝐽 (𝑥, 𝜄, 𝜏𝛥) < 𝑉 (𝑥, 𝜄) + 𝛥.

The random variable 𝜏𝛥 is called a 𝛥-optimal stopping time.
Since 𝜏 appears in the upper limit of integration of the cost function, the 𝜀-optimal stopping times (the ‘‘control’’) will not

influence the dynamics of the regime switching diffusions. In other words, if we restrict the stopping times 𝜏 to a certain set, we
will still have the same constructed Markov chain {𝜉ℎ𝑘 , 𝛼

ℎ
𝑘} and its continuous time interpolated process {𝜉

ℎ(⋅), 𝛼ℎ(⋅)}; see (5.5) below.
herefore, in contrast to numerical approximation in standard stochastic optimal control problems, in which the control variable
ill influence the underlying dynamics, we do not need to use the chattering lemma (cf. [23,24]).

heorem 5.3. Under the conditions of Theorem 5.2, the value function 𝑉 ℎ(𝑥, 𝜄) in (4.4) converges to 𝑉 (𝑥, 𝜄) as ℎ→ 0.

roof. By Theorem 5.2, we have that

𝐽ℎ(𝑥, 𝜄, 𝜏ℎ) → 𝐽 (𝑥, 𝜄, 𝜏) ≥ 𝑉 (𝑥, 𝜄).

hus lim infℎ→0 𝑉 ℎ(𝑥, 𝜄) ≥ 𝑉 (𝑥, 𝜄). To complete the proof, we now need only prove the reserve inequality

lim sup
ℎ→0

𝑉 ℎ(𝑥, 𝜄) ≤ 𝑉 (𝑥, 𝜄) = inf
𝜏≤𝜏0

𝐽 (𝑥, 𝜄, 𝜏).

he idea is to find an 𝜀-optimal stopping time for the process (𝑋(⋅), 𝛼(⋅)) and adapt it to the Markov chain, and then to use the
inimality of 𝑉 ℎ(𝑥, 𝜄) and weak convergence. We now formally proceed. By the continuity and boundedness of 𝐻 , for each 𝜀 > 0,
here exists a 𝛿 > 0 such that we can restrict the stopping times for (2.1) to take values on {𝑛𝛿; 𝑛𝛿 < 𝑇 } and for which the cost (1.2)
ncreases by at most 𝜀. Denote by 𝜏𝜀 the optimal stopping time with above restriction. That is, 𝜏𝜀 is taken to be one of the values in
he set {𝑛𝛿; 𝑛𝛿 ≤ 𝑇 }. The restriction on stopping times implies

𝐽 (𝑥, 𝜄, 𝜏𝜀) ≤ 𝑉 (𝑥, 𝜄) + 𝜀. (5.4)

or the optimal stopping problem associated with the cost function (1.2), where the stopping time is restricted to take values on
𝑛𝛿; 𝑛𝛿 ≤ 𝑇 } as above, we have

(𝜉ℎ(⋅), 𝛼ℎ(⋅),𝑊 ℎ(⋅), 𝜏ℎ𝜀 ) ⇒ (𝑋, 𝛼(⋅),𝑊 (⋅), 𝜏𝜀), (5.5)

here 𝜏ℎ𝜀 is the time approximating stopping time 𝜏𝜀. Then Theorem 5.2 and the inequality in (5.4) yield

𝑉 ℎ(𝑥, 𝜄) ≤ 𝐽ℎ(𝑥, 𝜄, 𝜏ℎ𝜀 ) ≤ 𝐽 (𝑥, 𝜄, 𝜏𝜀) + 𝛿1(𝜀) ≤ 𝑉 (𝑥, 𝜄) + 𝛿1(𝜀) + 𝜀.

etting ℎ→ 0, 𝛿1(𝜀) → 0. Taking lim supℎ→0 and letting 𝜀→ 0 now completes the proof. □

. Numerical examples and remarks

In this section, we illustrate how to use the numerical algorithm developed in this paper with computational examples. We shall
pply our algorithm to obtain both the stopping region and the continuation region for a two-dimensional system. We then conclude
ith some remarks.

.1. Numerical example

We first provide a motivation of the study from power systems. Quickest detection of faults in power systems has always been a
ritical issue in power system reliability studies and technology development. In power systems, a common scenario of contingencies
s a class of line faults, such as line-to-ground faults, line-to-line faults, over-current, loss of a transformer, line disconnection, etc.
tarting from the occurrence time of a contingency, there is a critical maximum time interval in which the fault must be detected
nd cleared. Beyond this time interval, synchronous generators of the power system lose their synchronism and stability, and must
e taken off the grid; see Kothari and Nagrath [2]. Since line faults are represented as switches in hybrid system models for power
ystems, the prompt and accurate switching time estimation investigated in the present paper has the potential to be an essential
nd promising tool.
Mathematically, a line fault can be represented by a sudden change in line impedance, from a normal value to certain extreme

alues (near zero or extremely high values) depending on the types of the fault. For instance, without direct measurement devices
n every segment of a long distance transmission line, the command center must rely on available measurement devices such as
haser measurement units on buses to diagnosis such faults. The algorithm of this paper provides an advanced method to detect
uch line faults based on system dynamics and Markov chain information.
Before continuing with numerical experiments, we outline the value iteration policy in order to approximate the value function

n (3.3), as follows.
11
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1. Initialization. For each (𝑥, 𝜄) ∈ 𝑆ℎ ×, we set the initial value 𝑉 ℎ
0 (𝑥, 𝜄) to be 1.

2. Value iteration. Given the value of 𝑉 ℎ
𝑛 (𝑥, 𝜄), we find the next value 𝑉

ℎ
𝑛+1(𝑥, 𝜄) using (3.3) as

𝑉 ℎ
𝑛+1(𝑥, 𝜄) = min

{

𝑒−𝜆(𝜄)𝛥𝑡
ℎ(𝑥,𝜄)

∑

(𝑦,𝑖)
𝑝ℎ
(

(𝑥, 𝜄), (𝑦, 𝑖)
)

𝑉 ℎ
𝑛 (𝑦, 𝑖) +𝐻(𝑥, 𝜄)𝛥𝑡ℎ(𝑥, 𝜄), 0

}

. (6.1)

3. Error bounds and stopping criterion. If |𝑉 ℎ
𝑛+1 − 𝑉

ℎ
𝑛 | ≤ tolerance level, then the iteration stops; otherwise, we continue the

value iteration procedure.
4. Stopping region and optimal policy. Given the estimated optimal value 𝑉

ℎ
(𝑥, 𝜄) and the tolerance level 𝜀, the stopping region

will be

𝐷
ℎ,𝜀

= {(𝑥, 𝜄) ∈ 𝑆ℎ × ∶ 𝑉
ℎ
(𝑥, 𝜄) > −𝜖},

and the estimated optimal stopping time will be

𝜏ℎ,𝜖𝐷 = inf{𝑡 ≥ 0 ∶ 𝜉ℎ(𝑡) ∈ 𝐷
ℎ,𝜖

}.

Example 6.1 (Quickest Detection of a Markovian Drift). In this example, we assume that one can observe a sample path of 𝑋 =
(𝑋1, 𝑋2). Namely, there is no drift initially. Then at a random and unobservable time 𝜃 > 0 following an exponential distribution
exp(𝜆) with parameter 𝜆 > 0, one of the coordinate processes of 𝑋 obtains a (known) nonzero drift 𝜇 depending on a Markov chain
𝛼, where 𝛼 = {𝛼𝑡; 𝑡 ≥ 0} takes values in a finite state space  = {1,… , 𝑚0} and the 𝑄 matrix 𝑄 = (𝑞𝑖𝑗 ) satisfying

∑

𝑗∈ 𝑞𝑖𝑗 = 0 and
𝑞𝑖𝑗 ≥ 0 for all 𝑖 ≠ 𝑗. In this example, we take 𝑚0 = 3. Let the probability of 𝜃 taking zero value equals 𝜋 ∈ [0, 1). Therefore, the
quickest detection problem in such case aims to find the time 𝜃 as ‘‘accurate’’ as possible.

Formally, 𝑋 = (𝑋1, 𝑋2) satisfies the following stochastic differential equations:
{

𝑑𝑋1
𝑡 = 𝜇(𝛼𝑡)𝟏{𝑡≥𝜃,𝛽=1}𝑑𝑡 + 𝑑𝐵1

𝑡 , 𝑋1
0 = 𝑥1,

𝑑𝑋2
𝑡 = 𝜇(𝛼𝑡)𝟏{𝑡≥𝜃,𝛽=2}𝑑𝑡 + 𝑑𝐵2

𝑡 , 𝑋0
2 = 𝑥2,

(6.2)

where 𝛼 is the Markov chain with initial state 𝛼0 = 𝜄. The 𝐵1
𝑡 , 𝐵

2
𝑡 are two independent standard Brownian motions. The parameter

𝛽 is used to represent the coordinate number whose process obtains the Markovian drift. We assume 𝛽 𝑑
= 𝐵(1, 𝑝), the binomial

distribution with parameter 𝑝 ∈ (0, 1), and we also assume that 𝛼, 𝐵1
𝑡 , 𝐵

2
𝑡 , 𝜃, 𝛽 are all independent.

We use the term ‘‘accurate’’ to mean that we seek to find a stopping time 𝜏∗ that is as ‘‘close as possible’’ to 𝜃. Following [9],
this means that we would like to minimize a cost functional 𝐽 (⋅) with respect to the stopping time 𝜏 defined as follows

𝐽 (𝜏) = P(𝜏 < 𝜃) + 𝑐 E𝜄,𝜋
[

𝟏{𝜏>𝜃}(𝑒𝛾(𝜏−𝜃) − 1)
]

, 𝛾 > 0, (6.3)

here 𝜏 are stopping times adapted to the natural filtering 𝑋,𝛼
𝑡 = 𝜎{𝑋𝑠, 𝛼𝑠; 0 ≤ 𝑠 ≤ 𝑡} augmented with all P-null set. The first term

n the right of (6.3) represents the probability of false alarm, while the expectation term is the expected exponentially penalized
ost for detection delay. The constant 𝑐 is a trade-off coefficient. Denote by the value function 𝑉 as

𝑉 (𝜄, 𝜋) = inf
𝜏
𝐽 (𝜏), (6.4)

here the infimum is taken for all (bounded) stopping times 𝜏.
To proceed, we perform the change of measure techniques in Ernst and Mei [9, Section 6.1]. The original detection problem can

e reformulated as the following linear switching diffusion
{

𝑑𝑌 1
𝑡 = [𝜆 + (𝜆 + 𝛾)𝑌 1

𝑡 ]𝑑𝑡 + 𝜇(𝛼𝑡)𝑌
1
𝑡 𝑑𝐵

1
𝑡 , 𝑌 1

0 = 𝑦1
𝑑𝑌 2

𝑡 = [𝜆 + (𝜆 + 𝛾)𝑌 2
𝑡 ]𝑑𝑡 + 𝜇(𝛼𝑡)𝑌

2
𝑡 𝑑𝐵

2
𝑡 , 𝑌 2

0 = 𝑦2,
(6.5)

here 𝛼0 = 𝜄. The corresponding value function in the new measure has the equivalent form

𝑉 (𝜄, 𝑦1, 𝑦2) = inf
𝜏
E𝜄,𝑦1 ,𝑦2 ∫

𝜏

0
𝑒−𝜆𝑡

(

𝑝𝑌 1
𝑡 + (1 − 𝑝)𝑌 2

𝑡 − 𝜆
𝑐𝛾

)

𝑑𝑡. (6.6)

n our numerical example, we concentrate on solving (6.5) and (6.6), i.e., the dynamics after the measure change. We take
= 3, 𝜆 = 0.5, 𝛾 = 0.4, 𝑝 = 0.4, 𝜇(1) = 5, 𝜇(2) = 1, 𝜇(3) = −5 and 𝑐 = 1, 𝜋 = 0.25. Furthermore, we set  = [0, 5] × [0, 5] and let
he step size ℎ = 0.01. The Markov chain has three states  = {1, 2, 3} with

𝑄 ∈ R3×3 = {𝑞𝑖𝑗 , 𝑖, 𝑗 ≤ 3} =
⎛

⎜

⎜

⎝

−3 1 2
4 −5 1
3 1 −4

⎞

⎟

⎟

⎠

.

igs. 1–3 below display the optimal stopping boundaries with Markov chain state {1, 2, 3}, respectively. For each of these figures, the
ptimal stopping boundary is depicted by the dark solid line. The blue area is the continuation region and the red area represents the
topping region. Starting from a point in the continuation region, the underlying process evolves until it hits the optimal stopping
oundary. The corresponding hitting time is the optimal stopping time that minimizes the cost function.
12
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Fig. 1. Optimal stopping boundary, continuation region, and stopping region: 𝛼 = 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. Optimal stopping boundary, continuation region, and stopping region: 𝛼 = 2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

6.2. Final remarks

This work has been devoted to numerically approximating optimal stopping problems for a class of stochastic hybrid systems.
We note that for a number of large and complex systems, using time-scale separation and singular perturbations, we can reduce
a large-scale and complex system to a much simplified and reduced order system. Although a simple numerical example has been
demonstrated, the developed algorithms can certainly be employed for a wide range of applications.
13
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Fig. 3. Optimal stopping boundary, continuation region, and stopping region: 𝛼 = 3. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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