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Abstract—This article investigates state feedback design
for achieving almost-sure robust stabilization of randomly
switched linear systems whose subsystems are uncontrol-
lable and whose models are subject to nonlinear model-
ing errors due to, for example, linearization. Complex sys-
tems are often uncontrollable under a fixed configuration
from a single control input. However, when control actions
can be used sequentially and collaboratively through dif-
ferent system configurations, stabilization can be poten-
tially achieved. This design problem encounters some fun-
damental issues that must be resolved, involving mostly
suitable coordinated implementations of state decomposi-
tion, feedback pole-placement design, usage of stochas-
tic information on the switching process, coupling of con-
trollable and uncontrollable substates, subsystem interac-
tions, and modeling errors. The common state feedback
on controllable substates can lead to unstable closed-loop
systems, due to substate coupling. A modified control algo-
rithm is introduced that decouples substates and designs
feedback gains simultaneously. Further complications arise
when subsystem interaction destabilizes the system. Some
structural conditions are shown to be essential for achiev-
ing almost-sure stabilization. A design procedure that in-
tegrates feedback gain selection and switching informa-
tion is introduced to achieve almost-sure stability for the
closed-loop system. Robustness of the design procedure
is established. Examples and simulation case studies are
presented to illustrate the main algorithms and stabilization
properties.
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|. INTRODUCTION

ANDOMLY switched linear systems (RSLSs) form an im-

portant class of stochastic hybrid systems (SHSs) and have
appeared in broad application domains that involve random con-
tingencies, system interactions, communication networks, etc.
They are especially common in emerging technologies such as
autonomous vehicles, robotics, modern power systems, energy
networks, smart buildings, human—-machine teams, etc. In terms
of model structures, RSLSs include linear continuous dynamics
that are modulated by stochastic switching processes [1], [2],
(31, [4], [5].

RSLSs and SHSs are common in emerging interconnected
complex systems. For example, modern power systems include
many diversified subsystems such as renewable generators, bat-
tery systems, controllable loads, among many other types. Due to
random physical system switches in structures and parameters,
caused by transmission line faults, generator failures, sensor
malfunctioning, communication packet losses, and many other
issues, dynamic power systems become intertwined with ran-
dom discrete events, leading to SHSs. Consequently, reliabil-
ity analysis of operation, robust voltage/frequency regulations,
and optimal power dispatch in modern power systems must
be carried out under an SHS environment. Similar scenarios
emerge in autonomous systems in many domains such as au-
tonomous vehicles, autonomous buildings, automated lighting
in communities, etc. The continuous dynamics and logic-based
supervisory control systems introduce naturally SHSs.

In our recent work, observability and observer design prob-
lems for RSLSs were studied, including continuous state estima-
tion for achieving almost-sure convergent estimators [6], joint
estimation of both continuous and discrete states for conver-
gence [7], and mean-square (MS) convergence of continuous
state estimation [8]. There is an extensive literature of state
estimation problems for hybrid systems; see [9], [10], [11],
[12], [13], [14], [15], [16], [17], and [18] for hybrid systems
in deterministic settings and [19], [20], [21], and [22] for SHSs.

This article investigates robust stabilization problems for
RSLSs whose subsystems are uncontrollable. Control of hybrid
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systems has been studied extensively in both deterministic and
stochastic frameworks with applications [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32]. In deterministic systems,
models and optimal control problems in hybrid systems were
investigated in [33], [34], and [35]. Various notions of control-
lability in deterministic hybrid systems were introduced with
testing conditions in [2], [36], [37], [38], [39], [40], and [41].
Stability of deterministic hybrid systems was established in [27],
[39], [42], [43], and [44]. Stabilization of SHSs was covered
comprehensively in [21] and [45]. Stability analysis of randomly
switching systems was studied in [23] and [24]. Observed-based
feedback design was investigated for robust tracking problems
in aircraft systems that involve system couplings [25].

To the best of our knowledge, there are no known results on
stochastic control of hybrid systems involving all uncontrollable
subsystems. Although small-scale physical systems are often
controllable, complex systems that involve many interconnected
local dynamic systems are often uncontrollable by a single
control input. Due to the random nature of system faults, failures,
contingencies, and network interruptions, controllable substates
are also randomly changing. This article aims to answer the
following questions: Is it possible to stabilize an RSLS by a suit-
able state feedback? How can controllers be designed? What is
the impact of coupling between controllable and uncontrollable
substates? What is the influence of subsystem interaction? What
is the relevance of the stochastic information of the switching
process on stabilization?

Randomly switched systems are stochastic systems whose
stability can be studied in different modes of convergence. This
article studies almost-sure stability. Almost-sure exponential
convergence ensures that (almost) every individual realization
of the state trajectories converges to zero exponentially fast. In
contrast, other convergence notions such as MS convergence,
convergence in probability, or convergence in distribution, target
convergence properties of the entire ensemble (the whole popu-
lation), leaving a certain chance, albeit diminishingly small, for
individual realizations of the system to fail to converge during
implementation.'

Due to the stochastic and time-varying nature of RSLSs,
the common duality properties for linear time invariant (LTT)
systems do not hold for RSLSs. As a result, our previous results
on state observers of RSLSs [6], [7], [8] cannot be directly used
here, and unique feedback design procedures must be developed
to achieve stabilization of the continuous states. This article
exhibits several fundamental issues that must be resolved to
guarantee the stability in the sample-path sense, including state
decomposition, feedback design, usage of the stochastic infor-
mation, coupling of controllable and uncontrollable substates,
and subsystem interactions. When subsystems are uncontrol-
lable and switching sequences are random, the common state
feedback on controllable substates are shown to be potentially

»

'Tn stochastic systems, the terms “almost-sure convergence,” “convergence
with probability one (w.p.1),” and “strong convergence” are used exchangeably.
It should not be confused with the term “strong stabilization” in deterministic
systems, which means stabilization by using a stable controller. To avoid
confusion, this article uses “almost-sure” convergence and stabilization.

divergent due to substate coupling. Further complications arise
when subsystem interactions are involved. These unique features
raise critical and challenging issues and will be resolved in this
article.

This article contains the following original contributions.

1) It introduces a framework of feedback design for RSLSs
with uncontrollable subsystems.

2) It reveals several fundamental destabilizing factors in
RSLSs that limit the ability of feedback to achieve stabi-
lization.

3) A modified control algorithm is introduced that decouples
substates and designs the feedback gains simultaneously.

4) Adesign procedure is developed for almost-sure stabiliza-
tion by integrating controllable system dynamics, pole
assignment, switching information, and uncontrollable
dynamics.

5) Some structural conditions are introduced for achieving
almost-sure stabilization.

6) The design method is shown to be robust against nonlinear
modeling errors, such as those from linearization, that sat-
isfy some linear growth rate and error bound conditions.

The rest of this article is organized as follows. Section II
contains notations, system descriptions, and basic defini-
tions. Almost-sure stabilization problems are investigated in
Section III. Instability issues from substate coupling and sub-
system interaction are demonstrated with examples. A modified
control design that plays the dual roles of substate decoupling
and feedback control is introduced. Algorithms are developed
and their almost-sure stabilization properties are established.
Section IV is focused on robustness analysis. Under (potentially
nonlinear) modeling errors that satisfy certain linear growth
conditions, the error bounds are derived under which our design
algorithms can achieve almost-sure, exponential, and robust
stabilization. Examples and simulation case studies are pre-
sented in various sections and in Section V to illustrate the main
algorithms and their stabilization properties. Finally, Section VI
concludes this article.

Il. PRELIMINARIES
A. Notation

For a column vector v € R, ||v]| is its Euclidean norm. For
a matrix M € R™*™, M’ is its transpose, A(M) an eigenvalue
of M, o(M) = \/A(M'M) a singular value of M, oyin (M)
its minimum singular value, and oy,,x (M) its largest singular
value. The value 0y,.x(M) is also the operator norm of M
induced by the Euclidean norm

Omax(M) = [|M|| = sup [[Muv]|.
[[v]l=1
The kernel or null space of M € R™™ is Ker(M) = {z €
R™ : Mz = 0} and its range is Range(M) = {y = Mz : x €
R™}. For a p-dimensional subspace U of vectors in R", a
matrix M € R™*P is said to be a base matrix of U, written
as M = Base(U), if the column vectors of M are linearly
independent, and Range(M) = U.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 04,2024 at 20:27:52 UTC from IEEE Xplore. Restrictions apply.



3664

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 6, JUNE 2024

B. Systems
Consider the following RSLS:

#(t) = A(a(t))z(t) + Bla(t))u(t) (M

where u(t) € R” is the control input, z(¢) € R™ is the state, and
a(t) is a randomly switching process taking m possible values
in a discrete state space S = {1,...,m}. The system matrices
A(-) and B(-) depend on the process «(t). For each given value
i € S, the corresponding LTI system in (1) with matrices A(%)
and B(7) will be called the ith subsystem of the RSLS.

The discrete state process «.(t) is a piecewise-constant process
satisfying the following assumption.

Assumption 2.1: For a given fixed interval 7, with 0 < 7 <
T<T <00,

1) the switching process «(t) can switch only at the sam-
pling instants k7, k = 1,2,..., generating a stochastic
sequence {ay, = a(k7)}, which will be termed a skeleton
sequence;

2) the sequence {«y} is independent and identically dis-
tributed (i.i.d.) with

m
Plap=i}=p;>0,i€S and Y p;=1 (2
i=1

Remark 2.1: Inreal-world systems, an interval 7 is physically
determined by device platforms, system dynamics, software
packages, sensor and actuator response speeds, and other phys-
ical constraints. For example, all measurement devices with
digital data streams have a sampling time interval, which is
commonly small. Similarly, communication systems often use
an interval of fixed duration in time-division multiplexing pro-
tocols for transmitting and receiving independent signals over a
shared signal path. Also, control and decision at system levels
always impose a decision updating interval for synchronized
decision implementation at all nodes of network systems. Since
physical contingencies occur infrequently in comparison to data
rate, such contingencies do not occur twice in this small interval.
These common scenarios form a basic motivation of using a
small interval 7 as a background data platform to develop the
results of this article.

It is noted that the design methods developed in this article
employ this information, and as a result the controllers depend
on 7 also. To ensure convergence rates, it is necessary to bound
T below and above. Mathematically, it means that the frequency
f = 1/7 should not be too high or too low. It is known that
without suitable control design, high-frequency switching in
hybrid systems may cause instability; see [45].

The results in this article capture certain critical aspects
of convergence analysis that can be extended to treat ergodic
Markov chains (such as irreducible and aperiodic Markov
chains). Such Markov chains have stationary distributions that
contain the same information as an i.i.d. process. The control
design in this article requires only the information on the sta-
tionary distribution. However, Markov chains represent a much
richer class of stochastic processes than i.i.d. processes. The
comprehensive usage of the information provided by Markov
chains will be treated in separate articles.

System (1) may be viewed as a linear parameter varying (LPV)
system, with time-varying jumps in system parameters and
structures. However, typical deterministic LPV systems assume
the knowledge on the entire time-varying system, and hence, a
feedback design can potentially use this future information on
system dynamics to achieve stabilization. In our formulation,
the occurrence of the jumping sequence «;, cannot be predicted
since it is i.i.d. For a causal design, one cannot use any future
information on the dynamic system.

For a sample-path skeleton sequence oy, k = 1,. .., denote
the corresponding stochastic matrix sequences by Ax = A(ay)
and By, = B(ax). Under Assumption 2.1

Ak = A(ak.) = ZA(i)l{ak:i}
=1

m
By = Blag) = Y B(i)1{a,—y
=1

where 1 is the indicator function of the event (G. These matrices
are random.

For each ¢ = 1,...,m, the controllability matrix for the ith
subsystem with (A(i), B(7)) is

W (i) = [B(i), A()B(i), ..., (AG))" 'B()] € R™"™. (3)

The combined controllability matrix for the set S is

Ws = [W(1),W(2),...,W(m)] € R"™* (&)

The matrices W (i) and W are constant matrices.

Assumption 2.2:

1) All  subsystems are  uncontrollable,
Rank(W(i)) =n; <n,i € S.2
2) Wy is full row rank.

Remark 2.2: Assumption 2.2 is important. The first assump-
tion raises a challenging issue since it implies that subsystem
coordination in a stochastic setting becomes mandatory. In most
application problems, the second assumption is a necessary
condition for convergent feedback controllers to exist. This is
easy to understand: If a subspace does not belong to the con-
trollable subspaces of any subsystem, then its dynamics cannot
be controlled. It follows that if some of the substates on this
subspace are governed by unstable dynamics, they can never
be convergent, regardless of how the feedback controllers are
designed.

namely,

[ll. ALMOST-SURE STABILIZATION OF RSLSs
A. Controllable Substates

It is well known that if an LTI system is uncontrollable,
in general, it is not possible to achieve stabilization by state
feedback, unless all uncontrollable subspaces are stable. Since
this article treats subsystems that are all uncontrollable, the

2We focus on the more general and complicated scenario in which all subsys-
tems are uncontrollable. If some subsystems are controllable, the analysis can
be simplified.
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stochastic information of «y, must be used to coordinate sub-
system designs so that the closed-loop system becomes almost
surely stable.

It is well known [46], [47], [48] that if the ith subsys-
tem with matrices (A(¢), B(i)) is not controllable, namely
Rank(W (i)) = n; < n, there exists a nonsingular matrix T; €
R™*™ such that the transformed system has the new state variable

~i
» N T

z' =1, Iy = [J}
(A

)

with 7% € R™ that satisfies i =A%+ Biu, where
Ti ey — | Al Al Zi_ m-lpsy _ | Bl
A' =T, A(z)Ti—{O A%J, B =T; B(z)—{o},
and (A%, B?) is controllable.

The construction of T; = [M;, N;] involves first defining
M; = Base(Range(W (i))) € R™ ™, and then, selecting N;
to make 7; invertible. For p =1, M, may be selected as
M; = [B(i), A(i) B(i), . .., (A(i))™ 1 B(i)] which will put the
transformed A%, B! in a controllable canonical form; see [46,

p. 131] for details. Denote T, * = {Gl

FJ . It follows that 7¢ =
Gir € R™ . Write

G

M=[M,..., My, G=

Gm

Lemma 3.1: Under Assumption 2.2, (G is full rank.

Proof: By the construction of M;, Range(M)=
Range(Ws). By Assumption 2.2, M is full rank.

Since 7;'T; =1,, we have G;M;=1,,. Let M,;=
[vi,...,v},]. Then, Giv = €} # 0, where ¢/, is the jth column
of I,,.

Since M is full rank, we can select n column vectors
{v1,...,v,} from M that are linearly independent. For each
vj, there exists £ such that v; is a vector of M,. As a result,
Gev; # 0. This implies that G'v; # 0.

Since this is valid for all j =1,...,n and {vy,...,v,}
are linearly independent, Ker(G) = {0}. Therefore, G is full
rank.

o

Consequently, = = =Gr, and z = (G'G)"'G'7.
i
This confirms that under Assumption 2.2, the convergence of
controllable substates from all subsystems implies the conver-
gence of x.

B. Complications in State Feedback Design

When oy, = 1, 512 cannot be controlled. It is then natural to
concentrate only on controlling z¢ . If a linear state feedback gain
L € RP*" isused on 7%, then u = — L7} and the closed-loop
system is

7y = (A} — BIL)Z + AL,

g~
Ty = A5,

3665
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Fig. 1. Impact of substate coupling on the closed-loop system stability.

The coupling between the substates 7, and 7% introduces a
critical issue in stabilization of RSLSs. In general, the substate
coupling may destabilize the closed-loop system, as shown by
the following example.

Example 3.1: Consider an RSLS with two subsystems

=[5 w0~
[t . wo-

where the value a represents the level of coupling between the
controllable and uncontrollable substates. Since

W(1) = B (2)] and W(2) = [g’ g}

have rank 1, both subsystems are uncontrollable. But Ws =

[W(1), W (2)] is full rank. It is easy to derive T} = B ﬂ and

T = [(1) (1)} , and the controllable substates are E% =1, 5% =

ZTo, %% = T2, and .%% =1.

When oy, = 1, u = — L7}, resulting in
F = (2 — LY + af
{%; = 27}
and when o, = 2, u = —szf with

22 ~

.r2 == l‘%

= add + (2 - L2)32.
Suppose that L' = L? = 10,7 = 0.01, p; = 0.5, and p, = 0.5.
Then, the closed-loop system is

. -8 a 2 0
i(t) = (I{Oék—l} {O 2} + Lay=2) [a 8}) (t)
fort € [kr, (k+1)7),k=0,1,....
Fig. 1 shows sample-path trajectories for two values of a:
a = 1, representing relatively weak coupling of substates, and
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a = 10, representing stronger coupling. It demonstrates that
under weak coupling, the local state feedback design results in
a stable closed-loop systems; but when the substate coupling
increases, the same design becomes unstable. This example
shows the complications when local state feedback is designed
on the controllable substates only. It is noted that switching
and unobservable subsystems contribute to potential jumps in
discrete state sequences xj at the sampling points. These are
reflected in the jumps in Fig. 3 as perturbation bands in the
trajectories during transient periods.

C. Modified Control Design for Substate Decoupling

The main issue shown in Example 3.1 is fundamental and
must be resolved. In this subsection, we will introduce a modified
design for subsystem control that eliminates substate coupling
at sampling points.

When aj, = 7, the ¢th subsystem has the dynamics

{5’1 = AT + AT + Biu
Ty = A§2f§
for t € [kT,(k + 1)7). The coupling term A!,Z% on the con-

trollable substate i will now be included in the control design,
beyond the local state feedback u = —L'T.

The solution to &y = Ab, 7% is Th(t) = AR5 (k7).
t € [kT,(k 4+ 1)7). Substituting this solution to %i = AL 2+
Al,zh + Biu gives the solution of z as

i . . t i .
T (t) = e EFIF (k7)) 4 0' (1) + / e =By (0)do

kT
where v'(t) is the response to 74 (t)

t v '
vi(t):/k eAqil(tfe)Aize%?(o*kT)dﬁfé(kT).

T

The final value of v*(¢) at t = (k + 1)7 is

ui((k+1)7):/k

(k+1)7 )
AN D=0 41 A% O-k) g 37 (o)

= / e (70 AL eA%0q0 7 (k)
0
= Vizh(kT)
where V7 = [ e411(7=0) A%, ¢4%20 49 can be calculated offline.
We modify the input to contain two components as follows:
u(t) = a'(t) — L'T(t), t € [kr, (k+1)7) S

where it (t) = —(B?) e(A1) (D70 (D) ~1yi (k4 1)7) and
I'* is the controllability Gramian

, (k+1)7 . )
T = / BAh((k+1)T79)Bi(Bi)le(Agl)l((k+1)T76)d0
k

= /T eI Bl (BY) e An) g,
0

The controllability Gramian I'* is full rank for any 7 > 0 since
(A, B?) is controllable. Also, I'* can be calculated offline.

Asaresult,att = (k+ 1)7

F(k 4+ 1)7) = A7E (kr) + 0 ((k + D7)

(k+1)T ; o
+ / M (D70 BLat (6)do
k

T

(k+1)T ; S
— / eAn((RHD)T=0) BLTig8 (9)qdg.
k

T

Since
(k+1)T ; o
/ eAn((kJrl)T—@)B{az(g)dg
kT
— ') Mo((k + 1)7)
= —v'((k+1)7)
we have

F((k +1)7)) = M7 F (kr)

(kDT o
— / eAil((kJrl)Tf@)Bingzl(g)dg
k

T

which is the solution of 7, = A’F!, where A% = A}, — BiL"),
at t = (k + 1)7, namely, 7% ((k + 1)7)) = e?<7Z% (k7). Since
(A%, BY) is controllable, the poles of A’ can be arbitrarily
assigned. This implies that for any 0 < 7! < 1, we can design
L such that || A%|| < ~Z, and 4% will be selected later.?

We comment that although #'(¢) cannot cancel v*(t), which
represents the impact of the coupling term A%,7%(¢), for all ¢, it
cancels its impact at the final time ¢ = (k + 1)7. Consequently,
it eliminates the coupling at the sampling points.

D. Almost-Sure Stability

On the other hand, when «j, # i, the dynamics of Eﬁ needs to
be localized to resolve the issue of instability from subsystem
interactions, since it cannot be controlled. This is stated as the
following assumption.

Assumption 3.1: When oy, = j # i, the dynamics of ¢ is
local, namely

3

(1) = AjF (1),

y j#itekr,(k+1)T) (6)

for some matrices A;

Remark 3.1: The matrix Aé depends on the physical system,
control design, and system decomposition. Since the system in
(6) will run open loop without feedback correction, its actual
values are only relevant for obtaining its growth-rate bound used
in the pole placement design.

By using the modified control design (5) with suitably selected
L* and under Assumption 3.1, the sampled values of the substate
T8 atkr, k=0,1,..., satisfy the closed-loop dynamics

7 ((k+1)7) = @71 (k7) (7)
3When the dimension of the input p > 1, for the selected pole positions of

At the feedback gain L is not unique. This nonuniqueness does not affect the
convergence results.
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where
(I)?c = I{Oék:i}eAiT + Z I{ak:j}eA;T' ®)
Jj#i

If we concentrate on the controllable substates

S
1=
7y
then Assumption 3.1 implies
P} 0
Z1((k+1)7) = . 21 (k). )
0 o

In other words, the local dynamics given by (6) and the de-
coupling control design imply that the controllable subsystems
form a diagonal structure. This structure will be extended to a
triangularly structured interaction later.

Denote

7¢ = max max ||e” JTH and 7% =

j#Fi T<1t<T maX ||€ CT” (10)

Since the eigenvalues of A% can be arbitrarily placed, for any
0 < * < 1, there exists a feedback gain L’ such that

7= ()P <t < L (11)
We recall that for a positive-valued stochastic process {7},
it is said to converge to 0 almost surely and exponentially if
limy oo %ln nr = —r, w.p.1 for some r > 0.
Theorem 3.1: Under Assumptions 3.1 and (11), 2% (k7) con-
verges to 0 almost surely and exponentially.
Proof: From the expression of ®¢ in (7), we have
e = N85l < Lag=iy Ve + Lapri Vo
Denote e}, = ||z (k7)||. From Z%((k + 1)7) = ®i7% (kT), we
have e}, < yrer and
K < (50 m) €
It follows that
=
—lne’K < — (Zln’yk —|—1neo>
k=0
1« 1
< Ve Z (I{ak:i} Invye + Lo, 24y lnvg) + Ve In eg.
k=0

Since «y, is i.i.d., by the Strong Laws of Large Numbers

K-1

1 1 i
KlneK Kkzo I{ak Z}ln%—kl{ak#}ln’yo) Elneo

— E(Ia, =iy My 4T 10, 20y Inv.) wp.l as K — oo
=pilny,+ (1 pi)lnv,

= In(y2)"" (7)1 77

<In~v*

< 0.

Closed-Loop System under Modified Control Design

Norm ||x]|

L L
o 100 200 300 400 500 600 700 800

Step Index k

Fig. 2.
design.

Closed-loop system trajectories under the modified control

As aresult, e} converges to 0 almost surely and exponentially.ll
Example 3.2: Consider the system in Example 3.1, with the
same 7 = 0.01, p; = 0.5, and py = 0.5. This system satisfies
Assumption 3.1.
If we concentrate on 71 = z1, its dynamics is governed by

ap=1: o1 =2x1 +axs+u
.1'32 :2372
Oék:2l j}l :2]}1.

To eliminate the interaction term when oy, = 1, we employ the
modified input design. It can be calculated as

T 1
rt :/ e*dh = — (e — 1),
0 4
V= a/ 20204t — e,
0

Asaresult, u(t) = —10z (t) — ae2(F+D7-t) deTr 462"7'
k7, (k + 1)7). The closed-loop system for x; (1457-) is

1 ((k+1)7) =
Similarly
oa((k + 1)7) = 57) (k7).

The resulting closed-loop system is independent of a, namely
the substate coupling has been eliminated.

Fig. 2 shows a sample-path trajectory for the closed-loop
system. Now the closed-loop system is stable for any a. The
value a = 10 is used in this simulation.

wa(kT), t

(I{akzl}eig‘r + I{akzg}ezT) 171([67').

(Lta=11€"" + Lo, =2)€

E. Triangular System Structure and Stability Analysis

Example 3.1 shows that substate coupling can destabilize the
closed-loop system. The modified control design in (5) and
Assumption 3.1 provide a sufficient condition for achieving
stabilization. On the other hand, Assumption 3.1 is sometimes
restrictive. This subsection will extend the permitted system
structure to a triangular structure defined as follows, which is
substantially more general than the diagonal structure imposed
by Assumption 3.1. Without loss of generality, the following
definition is given in the order 1,2, ... ,m.

Assumption 3.2: The dynamics of the controllable substate 7}
of the ith subsystem satisfies the following triangular interaction
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structure: When o, = j # 4

) (t) ;Z~§+ZA;45{, i=1,...,m.
This structure means that when oy, = j # 4, 2} will run open-
loop and this open-loop dynamics depends on the controllable
substates 7§ of the other subsystems only for £ < 7. This implies
that for o, = j #£ 1

Tk + 1)7) = eNTT (k) +Z (12)

for some matrices H; ’
expanded into

. Now, the diagonal structure of (9) is

(I)11 0 . 0

~ Dy Dyy - 0 | _

Ti((k+1)71)=| . . T1(kT)  (13)
éml @771,2 (I)mm

where
Bi = (o, —ie™™ + Zl{ak:j}eA3T, i=1,...,m
Jj#i
iy = Tap—pyHj;j<i

(#i

which is a triangular structure of subsystem interactions.

Theorem 3.2: Under Assumption 3.2 and the modified control
design satisfying (11), there exist feedback gains L’, i € S, such
that z(k7) converges to 0 exponentially as k — oo almost surely.

Proof: We prove this theorem by induction on i. To simplify
the statements, “converges” in this proof means “converges to 0
almost surely and exponentially.”

Fori: =1,

13+ DI < (T [+ Tyl ) 17

Since this actually satisfies Assumption 3.1, there exists L' such
that |7} (k7)|| converges.

Suppose that for ¢ =1,...,
41

12 (R + 1))l
< (Lap=it1yre"

¢, ¢ converges. Then, for i =
1

Y Lazirnyye OIETH (k)|

+ g ipnph™ | max |7 (k7)]| (14)
for some hiTt > 0 and 7! can be designed to be arbitrarily
small. Consequently, following the same arguments as in the
proof of Theorem 3.1, L**! can be designed so that the un-
coupled 71 (k7), namely the solution of (14) when hi*1 = 0,
converges.

Furthermore, in (14), |Z{(k7)|, ¢ =1,...,i — 1, plays the
role of exponentially decaying inputs. Consequently, as the
response of an exponentially stable system to this input,
|74 (k7)| converges. As aresult, foralli = 1,...,m, 7% (kT)
converges. This implies that Z(k7) converges.

Finally, by Assumption 2.2, W is full rank. By Lemma 3.1,
G is full column rank. From z(k7) = (G'G)"'G" 2 (kT), we
conclude that 2 (k7) converges. |

[V. ROBUST STABILIZATION UNDER MODELING ERRORS

In this section, we take into consideration modeling errors
and establish the robustness of the control design developed
in the previous sections. This problem is motivated by the
typical scenario of local linearization: when one starts with a
nonlinearsystem & = fo(xz, u) where fq(+, -) is continuously dif-
ferentiable, by using a state feedback u = ¢(x), the closed-loop
system & = fo(z,u) = fo(z,q(z)) = f(x)is nonlinear. Its lin-
earization around an equilibrium point z(, namely f(z() = 0,
can be represented by a dynamic system on the perturbation
variables Az = & — x with Az = AAz + §(Ax), where the
matrix A is the Jacobian matrix at zy and the modeling error
term 0(Axz) is nonlinear. For our results to be applicable to
this ubiquitous practical situation, we must establish robustness
against (small) nonlinear modeling errors.

For simplicity and clarity, we consider the systems that satisfy
Assumption 3.1 (namely, systems with diagonal interactions
among subsystems).

For the ¢th subsystem, consider the (potentially nonlinear)
modeling errors §

when ak—];&z
B(1) = A7
Ozk—l

(1) = ALF(8) + 5@ (1)),

The modeling errors satisfy the following conditions on their
growth rates and error bounds.
Assumption 4.1:
1) Eor some €5 > 0, [|05(Z
1.
2) For some €' > 0, [|0°(7})|| < €|
Let 5\; be the largest eigenvalue of A; The following lemma
establishes the maximum growth rate of % (k7) when o, = j #
1, namely when the ith subsystem runs open loop. It is noted that
the robustness, defined by the error bound n; in Lemma 4.1,
depends on A%.

T (t) + 0@ (1), te [kr,(k+1)T)

when
€ [kr, (k+1)71).

DIl <elzili=1,...,mj#

Lemma 4.1: For any given A > X[,
that if e§ < Iié, then for some ¢ > 0,

there exist K;j- > 0 such

175 ((k + D)I| < eIz (k).

Proof: Consider the nominal system Ezl(t) = A'7(t). De-
fine y(t) = e % (¢). Then
§(t) = e My — Ae N (1)

= e MALT(t) — My(t)
= (A5 = M)y(t)

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 04,2024 at 20:27:52 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: ALMOST-SURE ROBUST STABILIZATION OF RSLSs WITH UNCONTROLLABLE SUBSYSTEMS

3669

where by hypothesis, all eigenvalues of Z; = A% — Al are in
the open left half plane. As a result, the Lyapunov equation
(AL P! 4 P} Al = —1I has a unique positive definite solution
P} > 0. Let the largest eigenvalue of P} be 7"

Now, consider the system with modeling errors 511 (t) =
A;%’l}(t) +0%(@1(t)). Define the Lyapunov candidate V =
yTP]?y, which is globally positive definite and radially un-
bounded. We have

V =49 Ply+y"Ply
= (Ajy + e M6@) Py +y" Pj(Ajy + e 6} (@))
=—yly+ 2yTP;efM5§-(E§).

Furthermore
2y" Pje05(T1)] < 2|lyllmje (165
“t i

< 2|lyllmje=e;

HEA

=2|ly[Iie MeieM |yl

= 2n§e§yty.
Define x} = 2717J Af € < w3}, then 1 — 2n%¢; > 0 and

V< —(1-2ni)y"y

is globally negative definite. Consequently, the y system is glob-
ally asymptotically stable, which implies that ||y((k + 1)7)|| <
c|ly(k)|| for some constant c. It follows that

|17 ((k + 1)) = DTy ((k + 1)7))|
< DTy (k) |
— AT =T 1 ()|
= ce ||z (kT)||.

|

Since c and A in Lemma 4.1 depend on A;, we relabel them
as c;- and )\;, and denote 'y; = c;'-ekgT.

On the other hand, when «j = ¢, the (stable) eigenvalues
of A’ can be arbitrarily assigned. Select the eigenvalues of
Al as {=Ag,..., =X} with \; >0, 7=1,...,n, and \" =
min{\y, ..., \,}. Since the eigenvalues of A’ can be arbitrarily
assigned, so is \'. The following lemma establishes the least
decaying rate of 7% (k7) when aj =i. It is noted that the
robustness, defined by the error bound x* in Lemma 4.2, depends
on A%, and also the feedback design.

Lemma 4.2: For any given 0 < X\ < X", there exists x* > 0
such that if € < &7, then for some ¢ > 0

173 (K + D7)l < ce 7|17 (k7).

Since the proof of Lemma 4.2 is nearly identical to that of
Lemma 4.1, it is omitted. Also, since ¢ and A in Lemma 4.2
depend on A%, we relabel them as ¢’ and \’, and denote 7. =

cf’jeAzT.

Theorem 4.1: Under Assumption 4.1, there exist li;— > (0 and
%% > 0 such that if eé- < /—1;- and ej— < I{;-, then the control de-
sign specified in the previous sections achieves convergence of
7% (kT) to 0 almost surely, exponentially, and robustly.

Proof: Under the hypothesis, by Lemmas 4.1 and 4.2, we
have

when o =jF#1:

13 ((k + 1)7) < 55l1z3 (k7))
when ap =1i:

173 ((k + 1)7) < 7ell 71 (k7).

Since 'yé > () can be arbitrarily selected, for any 0 < v* < 1, it
is always possible to achieve

vi= (P ()P <yt < L

Consequently, the critical condition (11) is satisfied robustly for
all uncertain systems that satisfy Assumption 4.1. By Theorem
3.1, % (k7) converges to 0 almost surely, exponentially, and
robustly. |

(15)

V. ILLUSTRATIVE EXAMPLE

Example 5.1: We consider an RSLS with two subsystems of
dimension 4. The subsystem matrices are

-3.5 2 4.5 0 1
3 —-05 —7.5 15 2
A1) = —4.5 2 5.5 (I B(1) = 1
—9.5 45 5 2.5 5
4
11
A2)=AQ), B@)= |}
13
The transformation matrix can be constructed as
1 0 2 0
01 4 1
= 1 0 00
31 2 3
with transformed matrices
1 2 -1 2 1
Nl_ -1 _ 0 ]. 2 3 ~1_ 2
A_TA(l)T_001O,B_0
00 1 1 0
0
-0 p2=|Y
’ 2
3

We use the modified control design for state feedback and
substate decoupling with

aj = 1: The poles for A} are {—10, —10}, resulting in
- - L [-29.25 6.125]
L' =[30.25,—4.125], Al = [60'5 655 |
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Closed-Loop System under Modified Design
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Fig. 3. Closed-loop system trajectories under the modified control
design.
ap =2: The poles for A% are {—12, —12}, resulting in
228.5  —169
2 _ 1 2 _
L =[-113.75,84.5], AZ= {342.25 _252.5] .
For this system, since the same T is used, we have 7' = 72 := 7.
The total closed-loop system for Z is
[—29.25 6.125 0 0
L ~ —60.5 925 0 O
ap=1:2=DMzxz, M = 0 0 10
.| 0 0 11
(1 2 -1 2
5 ~ 01 2 3
a=2:x =M Ma=14 o 9985 169
10 0 342.25 —252.5

If we focus on the controllable substates

@
T = ~9
Ty

the aforementioned subsystems imply that

L Oy Dyp
! 0 @y
where
[-29.25 6.125 12
P =la=1} | _go 5 9.25]*1{%#1} {0 1}
[228.5 —169 10
P22 = Ha=2} | 349 95 —252.5}+I{%#2} {1 1]

(-1 2
‘1)12 - I{akil} 2 3:| .

This structure satisfies (13) (with an equivalent upper triangular
structure). As a result, the closed-loop system is not decoupled,
but it is in a triangular form.

Under7 = 0.01,p; = 0.5,and po = 0.5, Fig. 3 shows that the
closed-loop system is almost surely stable. Due to switching and
unobservable subsystems, the discrete state sequences x, at the
sampling points show jumps in their values. Consequently the
trajectory in Fig. 3 shows jumping perturbations during transient
periods.

VI. CONCLUSION

Complex RSLSs are often uncontrollable in a fixed configu-
ration and from one control input. This article has revealed some
distinct and fundamental complications in their almost-sure
stabilization. Modified control strategies have been introduced
and their stabilization capabilities established.

This article leaves many interesting open issues. First, it will
be highly useful to apply the algorithms of this article to rep-
resentative practical RSLSs, especially in emerging technology
areas such as renewable power systems, smart grids, autonomous
systems, etc. Furthermore, this article is limited to stabiliza-
tion problems. Optimal control in RSLSs with uncontrollable
subsystems is an important and technically challenging future
direction.
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