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Abstract—This article investigates state feedback design
for achieving almost-sure robust stabilization of randomly
switched linear systems whose subsystems are uncontrol-
lable and whose models are subject to nonlinear model-
ing errors due to, for example, linearization. Complex sys-
tems are often uncontrollable under a fixed configuration
from a single control input. However, when control actions
can be used sequentially and collaboratively through dif-
ferent system configurations, stabilization can be poten-
tially achieved. This design problem encounters some fun-
damental issues that must be resolved, involving mostly
suitable coordinated implementations of state decomposi-
tion, feedback pole-placement design, usage of stochas-
tic information on the switching process, coupling of con-
trollable and uncontrollable substates, subsystem interac-
tions, and modeling errors. The common state feedback
on controllable substates can lead to unstable closed-loop
systems, due to substate coupling. A modified control algo-
rithm is introduced that decouples substates and designs
feedback gains simultaneously. Further complications arise
when subsystem interaction destabilizes the system. Some
structural conditions are shown to be essential for achiev-
ing almost-sure stabilization. A design procedure that in-
tegrates feedback gain selection and switching informa-
tion is introduced to achieve almost-sure stability for the
closed-loop system. Robustness of the design procedure
is established. Examples and simulation case studies are
presented to illustrate the main algorithms and stabilization
properties.
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I. INTRODUCTION

R
ANDOMLY switched linear systems (RSLSs) form an im-

portant class of stochastic hybrid systems (SHSs) and have

appeared in broad application domains that involve random con-

tingencies, system interactions, communication networks, etc.

They are especially common in emerging technologies such as

autonomous vehicles, robotics, modern power systems, energy

networks, smart buildings, human–machine teams, etc. In terms

of model structures, RSLSs include linear continuous dynamics

that are modulated by stochastic switching processes [1], [2],

[3], [4], [5].

RSLSs and SHSs are common in emerging interconnected

complex systems. For example, modern power systems include

many diversified subsystems such as renewable generators, bat-

tery systems, controllable loads, among many other types. Due to

random physical system switches in structures and parameters,

caused by transmission line faults, generator failures, sensor

malfunctioning, communication packet losses, and many other

issues, dynamic power systems become intertwined with ran-

dom discrete events, leading to SHSs. Consequently, reliabil-

ity analysis of operation, robust voltage/frequency regulations,

and optimal power dispatch in modern power systems must

be carried out under an SHS environment. Similar scenarios

emerge in autonomous systems in many domains such as au-

tonomous vehicles, autonomous buildings, automated lighting

in communities, etc. The continuous dynamics and logic-based

supervisory control systems introduce naturally SHSs.

In our recent work, observability and observer design prob-

lems for RSLSs were studied, including continuous state estima-

tion for achieving almost-sure convergent estimators [6], joint

estimation of both continuous and discrete states for conver-

gence [7], and mean-square (MS) convergence of continuous

state estimation [8]. There is an extensive literature of state

estimation problems for hybrid systems; see [9], [10], [11],

[12], [13], [14], [15], [16], [17], and [18] for hybrid systems

in deterministic settings and [19], [20], [21], and [22] for SHSs.

This article investigates robust stabilization problems for

RSLSs whose subsystems are uncontrollable. Control of hybrid
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systems has been studied extensively in both deterministic and

stochastic frameworks with applications [22], [23], [24], [25],

[26], [27], [28], [29], [30], [31], [32]. In deterministic systems,

models and optimal control problems in hybrid systems were

investigated in [33], [34], and [35]. Various notions of control-

lability in deterministic hybrid systems were introduced with

testing conditions in [2], [36], [37], [38], [39], [40], and [41].

Stability of deterministic hybrid systems was established in [27],

[39], [42], [43], and [44]. Stabilization of SHSs was covered

comprehensively in [21] and [45]. Stability analysis of randomly

switching systems was studied in [23] and [24]. Observed-based

feedback design was investigated for robust tracking problems

in aircraft systems that involve system couplings [25].

To the best of our knowledge, there are no known results on

stochastic control of hybrid systems involving all uncontrollable

subsystems. Although small-scale physical systems are often

controllable, complex systems that involve many interconnected

local dynamic systems are often uncontrollable by a single

control input. Due to the random nature of system faults, failures,

contingencies, and network interruptions, controllable substates

are also randomly changing. This article aims to answer the

following questions: Is it possible to stabilize an RSLS by a suit-

able state feedback? How can controllers be designed? What is

the impact of coupling between controllable and uncontrollable

substates? What is the influence of subsystem interaction? What

is the relevance of the stochastic information of the switching

process on stabilization?

Randomly switched systems are stochastic systems whose

stability can be studied in different modes of convergence. This

article studies almost-sure stability. Almost-sure exponential

convergence ensures that (almost) every individual realization

of the state trajectories converges to zero exponentially fast. In

contrast, other convergence notions such as MS convergence,

convergence in probability, or convergence in distribution, target

convergence properties of the entire ensemble (the whole popu-

lation), leaving a certain chance, albeit diminishingly small, for

individual realizations of the system to fail to converge during

implementation.1

Due to the stochastic and time-varying nature of RSLSs,

the common duality properties for linear time invariant (LTI)

systems do not hold for RSLSs. As a result, our previous results

on state observers of RSLSs [6], [7], [8] cannot be directly used

here, and unique feedback design procedures must be developed

to achieve stabilization of the continuous states. This article

exhibits several fundamental issues that must be resolved to

guarantee the stability in the sample-path sense, including state

decomposition, feedback design, usage of the stochastic infor-

mation, coupling of controllable and uncontrollable substates,

and subsystem interactions. When subsystems are uncontrol-

lable and switching sequences are random, the common state

feedback on controllable substates are shown to be potentially

1In stochastic systems, the terms “almost-sure convergence,” “convergence
with probability one (w.p.1),” and “strong convergence” are used exchangeably.
It should not be confused with the term “strong stabilization” in deterministic
systems, which means stabilization by using a stable controller. To avoid
confusion, this article uses “almost-sure” convergence and stabilization.

divergent due to substate coupling. Further complications arise

when subsystem interactions are involved. These unique features

raise critical and challenging issues and will be resolved in this

article.

This article contains the following original contributions.

1) It introduces a framework of feedback design for RSLSs

with uncontrollable subsystems.

2) It reveals several fundamental destabilizing factors in

RSLSs that limit the ability of feedback to achieve stabi-

lization.

3) A modified control algorithm is introduced that decouples

substates and designs the feedback gains simultaneously.

4) A design procedure is developed for almost-sure stabiliza-

tion by integrating controllable system dynamics, pole

assignment, switching information, and uncontrollable

dynamics.

5) Some structural conditions are introduced for achieving

almost-sure stabilization.

6) The design method is shown to be robust against nonlinear

modeling errors, such as those from linearization, that sat-

isfy some linear growth rate and error bound conditions.

The rest of this article is organized as follows. Section II

contains notations, system descriptions, and basic defini-

tions. Almost-sure stabilization problems are investigated in

Section III. Instability issues from substate coupling and sub-

system interaction are demonstrated with examples. A modified

control design that plays the dual roles of substate decoupling

and feedback control is introduced. Algorithms are developed

and their almost-sure stabilization properties are established.

Section IV is focused on robustness analysis. Under (potentially

nonlinear) modeling errors that satisfy certain linear growth

conditions, the error bounds are derived under which our design

algorithms can achieve almost-sure, exponential, and robust

stabilization. Examples and simulation case studies are pre-

sented in various sections and in Section V to illustrate the main

algorithms and their stabilization properties. Finally, Section VI

concludes this article.

II. PRELIMINARIES

A. Notation

For a column vector v ∈ R
n, ‖v‖ is its Euclidean norm. For

a matrix M ∈ R
n×m, M ′ is its transpose, λ(M) an eigenvalue

of M , σ(M) =
√
λ(M ′M) a singular value of M , σmin(M)

its minimum singular value, and σmax(M) its largest singular

value. The value σmax(M) is also the operator norm of M
induced by the Euclidean norm

σmax(M) = ‖M‖ = sup
‖v‖=1

‖Mv‖.

The kernel or null space of M ∈ R
n×m is Ker(M) = {x ∈

R
m : Mx = 0} and its range is Range(M) = {y = Mx : x ∈

R
m}. For a p-dimensional subspace U of vectors in R

n, a

matrix M ∈ R
n×p is said to be a base matrix of U , written

as M = Base(U), if the column vectors of M are linearly

independent, and Range(M) = U .
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B. Systems

Consider the following RSLS:

ẋ(t) = A(α(t))x(t) +B(α(t))u(t) (1)

where u(t) ∈ R
ρ is the control input, x(t) ∈ R

n is the state, and

α(t) is a randomly switching process taking m possible values

in a discrete state space S = {1, . . . ,m}. The system matrices

A(·) and B(·) depend on the process α(t). For each given value

i ∈ S , the corresponding LTI system in (1) with matrices A(i)
and B(i) will be called the ith subsystem of the RSLS.

The discrete state processα(t) is a piecewise-constant process

satisfying the following assumption.

Assumption 2.1: For a given fixed interval τ , with 0 < τ ≤
τ ≤ τ < ∞,

1) the switching process α(t) can switch only at the sam-

pling instants kτ , k = 1, 2, . . . , generating a stochastic

sequence {αk = α(kτ)}, which will be termed a skeleton

sequence;

2) the sequence {αk} is independent and identically dis-

tributed (i.i.d.) with

P{αk = i} = pi > 0, i ∈ S, and

m∑

i=1

pi = 1. (2)

Remark 2.1: In real-world systems, an interval τ is physically

determined by device platforms, system dynamics, software

packages, sensor and actuator response speeds, and other phys-

ical constraints. For example, all measurement devices with

digital data streams have a sampling time interval, which is

commonly small. Similarly, communication systems often use

an interval of fixed duration in time-division multiplexing pro-

tocols for transmitting and receiving independent signals over a

shared signal path. Also, control and decision at system levels

always impose a decision updating interval for synchronized

decision implementation at all nodes of network systems. Since

physical contingencies occur infrequently in comparison to data

rate, such contingencies do not occur twice in this small interval.

These common scenarios form a basic motivation of using a

small interval τ as a background data platform to develop the

results of this article.

It is noted that the design methods developed in this article

employ this information, and as a result the controllers depend

on τ also. To ensure convergence rates, it is necessary to bound

τ below and above. Mathematically, it means that the frequency

f = 1/τ should not be too high or too low. It is known that

without suitable control design, high-frequency switching in

hybrid systems may cause instability; see [45].

The results in this article capture certain critical aspects

of convergence analysis that can be extended to treat ergodic

Markov chains (such as irreducible and aperiodic Markov

chains). Such Markov chains have stationary distributions that

contain the same information as an i.i.d. process. The control

design in this article requires only the information on the sta-

tionary distribution. However, Markov chains represent a much

richer class of stochastic processes than i.i.d. processes. The

comprehensive usage of the information provided by Markov

chains will be treated in separate articles.

System (1) may be viewed as a linear parameter varying (LPV)

system, with time-varying jumps in system parameters and

structures. However, typical deterministic LPV systems assume

the knowledge on the entire time-varying system, and hence, a

feedback design can potentially use this future information on

system dynamics to achieve stabilization. In our formulation,

the occurrence of the jumping sequence αk cannot be predicted

since it is i.i.d. For a causal design, one cannot use any future

information on the dynamic system.

For a sample-path skeleton sequence αk, k = 1, . . ., denote

the corresponding stochastic matrix sequences by Ak = A(αk)
and Bk = B(αk). Under Assumption 2.1

Ak = A(αk) =
m∑

i=1

A(i)1{αk=i}

Bk = B(αk) =

m∑

i=1

B(i)1{αk=i}

where1G is the indicator function of the eventG. These matrices

are random.

For each i = 1, . . . ,m, the controllability matrix for the ith
subsystem with (A(i), B(i)) is

W (i) = [B(i), A(i)B(i), . . . , (A(i))n−1B(i)] ∈ R
n×nρ. (3)

The combined controllability matrix for the set S is

WS = [W (1),W (2), . . . ,W (m)] ∈ R
n×mnρ. (4)

The matrices W (i) and WS are constant matrices.

Assumption 2.2:

1) All subsystems are uncontrollable, namely,

Rank(W (i)) = ni < n, i ∈ S .2

2) WS is full row rank.

Remark 2.2: Assumption 2.2 is important. The first assump-

tion raises a challenging issue since it implies that subsystem

coordination in a stochastic setting becomes mandatory. In most

application problems, the second assumption is a necessary

condition for convergent feedback controllers to exist. This is

easy to understand: If a subspace does not belong to the con-

trollable subspaces of any subsystem, then its dynamics cannot

be controlled. It follows that if some of the substates on this

subspace are governed by unstable dynamics, they can never

be convergent, regardless of how the feedback controllers are

designed.

III. ALMOST-SURE STABILIZATION OF RSLSS

A. Controllable Substates

It is well known that if an LTI system is uncontrollable,

in general, it is not possible to achieve stabilization by state

feedback, unless all uncontrollable subspaces are stable. Since

this article treats subsystems that are all uncontrollable, the

2We focus on the more general and complicated scenario in which all subsys-
tems are uncontrollable. If some subsystems are controllable, the analysis can
be simplified.
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stochastic information of αk must be used to coordinate sub-

system designs so that the closed-loop system becomes almost

surely stable.

It is well known [46], [47], [48] that if the ith subsys-

tem with matrices (A(i), B(i)) is not controllable, namely

Rank(W (i)) = ni < n, there exists a nonsingular matrix Ti ∈
R

n×n such that the transformed system has the new state variable

x̃i = T−1
i x =

[
x̃i
1

x̃i
2

]

with x̃i
1 ∈ R

ni that satisfies ˙̃x
i
= Ãix̃i + B̃iu, where

Ãi = T−1
i A(i)Ti =

[
Ai

11 Ai
12

0 Ai
22

]
, B̃i = T−1

i B(i) =

[
Bi

1

0

]
,

and (Ai
11, B

i
1) is controllable.

The construction of Ti = [Mi, Ni] involves first defining

Mi = Base(Range(W (i))) ∈ R
n×ni , and then, selecting Ni

to make Ti invertible. For ρ = 1, Mi may be selected as

Mi = [B(i), A(i)B(i), . . . , (A(i))ni−1B(i)]which will put the

transformed Ai
11, B

i
1 in a controllable canonical form; see [46,

p. 131] for details. Denote T−1
i =

[
Gi

Fi

]
. It follows that x̃i

1 =

Gix ∈ R
ni . Write

M = [M1, . . . ,Mm], G =

⎡
⎢⎣
G1

...

Gm

⎤
⎥⎦ .

Lemma 3.1: Under Assumption 2.2, G is full rank.

Proof: By the construction of Mi, Range(M) =
Range(WS). By Assumption 2.2, M is full rank.

Since T−1
i Ti = In, we have GiMi = Ini

. Let Mi =
[vi1, . . . , v

i
ni
]. Then, Giv

i
j = eij �= 0, where eij is the jth column

of Ini
.

Since M is full rank, we can select n column vectors

{v1, . . . , vn} from M that are linearly independent. For each

vj , there exists � such that vj is a vector of M�. As a result,

G�vj �= 0. This implies that Gvj �= 0.

Since this is valid for all j = 1, . . . , n and {v1, . . . , vn}
are linearly independent, Ker(G) = {0}. Therefore, G is full

rank. �

Consequently, x̃ =

⎡
⎢⎣
x̃1
1
...

x̃m
1

⎤
⎥⎦ = Gx, and x = (G′G)−1G′x̃.

This confirms that under Assumption 2.2, the convergence of

controllable substates from all subsystems implies the conver-

gence of x.

B. Complications in State Feedback Design

When αk = i, x̃i
2 cannot be controlled. It is then natural to

concentrate only on controlling x̃i
1. If a linear state feedback gain

Li ∈ R
ρ×ni is used on x̃i

1, then u = −Lix̃i
1 and the closed-loop

system is

˙̃x
i

1 = (Ai
11 −Bi

1L
i)x̃i

1 +Ai
12x̃

i
2

˙̃x
i

2 = Ai
22x̃

i
2.

Fig. 1. Impact of substate coupling on the closed-loop system stability.

The coupling between the substates x̃i
2 and x̃i

1 introduces a

critical issue in stabilization of RSLSs. In general, the substate

coupling may destabilize the closed-loop system, as shown by

the following example.

Example 3.1: Consider an RSLS with two subsystems

A(1) =

[
2 a
0 2

]
, B(1) =

[
1
0

]

A(2) =

[
2 0
a 2

]
, B(2) =

[
0
1

]

where the value a represents the level of coupling between the

controllable and uncontrollable substates. Since

W (1) =

[
1 2
0 0

]
and W (2) =

[
0 0
1 2

]

have rank 1, both subsystems are uncontrollable. But WS =

[W (1),W (2)] is full rank. It is easy to derive T1 =

[
1 0
0 1

]
and

T2 =

[
0 1
1 0

]
, and the controllable substates are x̃1

1 = x1, x̃1
2 =

x2, x̃2
1 = x2, and x̃2

2 = x1.

When αk = 1, u = −L1x̃1
1, resulting in

{
˙̃x
1

1 = (2− L1)x̃1
1 + ax̃1

2

˙̃x
1

2 = 2x̃1
2

and when αk = 2, u = −L2x̃2
1 with

{
˙̃x
2

2 = 2x̃2
2

˙̃x
2

1 = ax̃2
2 + (2− L2)x̃2

1.

Suppose that L1 = L2 = 10, τ = 0.01, p1 = 0.5, and p2 = 0.5.

Then, the closed-loop system is

ẋ(t) =

(
I{αk=1}

[
−8 a
0 2

]
+ I{αk=2}

[
2 0
a −8

])
x(t)

for t ∈ [kτ, (k + 1)τ), k = 0, 1, . . ..
Fig. 1 shows sample-path trajectories for two values of a:

a = 1, representing relatively weak coupling of substates, and
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a = 10, representing stronger coupling. It demonstrates that

under weak coupling, the local state feedback design results in

a stable closed-loop systems; but when the substate coupling

increases, the same design becomes unstable. This example

shows the complications when local state feedback is designed

on the controllable substates only. It is noted that switching

and unobservable subsystems contribute to potential jumps in

discrete state sequences xk at the sampling points. These are

reflected in the jumps in Fig. 3 as perturbation bands in the

trajectories during transient periods.

C. Modified Control Design for Substate Decoupling

The main issue shown in Example 3.1 is fundamental and

must be resolved. In this subsection, we will introduce a modified

design for subsystem control that eliminates substate coupling

at sampling points.

When αk = i, the ith subsystem has the dynamics
{
˙̃x
i

1 = Ai
11x̃

i
1 +Ai

12x̃
i
2 +Bi

1u

˙̃x
i

2 = Ai
22x̃

i
2

for t ∈ [kτ, (k + 1)τ). The coupling term Ai
12x̃

i
2 on the con-

trollable substate x̃i
1 will now be included in the control design,

beyond the local state feedback u = −Lix̃i
1.

The solution to ˙̃x
i

2 = Ai
22x̃

i
2 is x̃i

2(t) = eA
i
22

(t−kτ)x̃i
2(kτ),

t ∈ [kτ, (k + 1)τ). Substituting this solution to ˙̃x
i

1 = Ai
11x̃

i
1 +

Ai
12x̃

i
2 +Bi

1u gives the solution of x̃i
1 as

x̃i
1(t) = eA

i
11

(t−kτ)x̃i
1(kτ) + vi(t) +

∫ t

kτ

eA
i
11

(t−θ)Bi
1u(θ)dθ

where vi(t) is the response to x̃i
2(t)

vi(t) =

∫ t

kτ

eA
i
11

(t−θ)Ai
12e

Ai
22

(θ−kτ)dθ x̃i
2(kτ).

The final value of vi(t) at t = (k + 1)τ is

vi((k+1)τ)=

∫ (k+1)τ

kτ

eA
i
11

((k+1)τ−θ)Ai
12e

Ai
22

(θ−kτ)dθ x̃i
2(kτ)

=

∫ τ

0

eA
i
11

(τ−θ)Ai
12e

Ai
22

θdθ x̃i
2(kτ)

= V ix̃i
2(kτ)

where V i =
∫ τ

0 eA
i
11

(τ−θ)Ai
12e

Ai
22

θdθ can be calculated offline.

We modify the input to contain two components as follows:

u(t) = ũi(t)− Lix̃i
1(t), t ∈ [kτ, (k + 1)τ) (5)

where ũi(t) = −(Bi
1)

′e(A
i
11

)′((k+1)τ−t)(Γi)−1vi((k + 1)τ) and

Γi is the controllability Gramian

Γi =

∫ (k+1)τ

kτ

eA
i
11

((k+1)τ−θ)Bi
1(B

i
1)

′e(A
i
11

)′((k+1)τ−θ)dθ

=

∫ τ

0

eA
i
11

θBi
1(B

i
1)

′e(A
i
11

)′θdθ.

The controllability Gramian Γi is full rank for any τ > 0 since

(Ai
11, B

i
1) is controllable. Also, Γi can be calculated offline.

As a result, at t = (k + 1)τ

x̃i
1((k + 1)τ)) = eA

i
11

τ x̃i
1(kτ) + vi((k + 1)τ)

+

∫ (k+1)τ

kτ

eA
i
11

((k+1)τ−θ)Bi
1ũ

i(θ)dθ

−

∫ (k+1)τ

kτ

eA
i
11

((k+1)τ−θ)Bi
1L

ix̃i
1(θ)dθ.

Since
∫ (k+1)τ

kτ

eA
i
11

((k+1)τ−θ)Bi
1ũ

i(θ)dθ

= −Γi(Γi)−1v((k + 1)τ)

= −vi((k + 1)τ)

we have

x̃i
1((k + 1)τ)) = eA

i
11

τ x̃i
1(kτ)

−

∫ (k+1)τ

kτ

eA
i
11

((k+1)τ−θ)Bi
1L

ix̃i
1(θ)dθ

which is the solution of ˙̃x
i

1 = Ai
cx̃

i
1, where Ai

c = Ai
11 −Bi

1L
i),

at t = (k + 1)τ , namely, x̃i
1((k + 1)τ)) = eA

i
cτ x̃i

1(kτ). Since

(Ai
11, B

i
1) is controllable, the poles of Ai

c can be arbitrarily

assigned. This implies that for any 0 < γi
c < 1, we can design

Li such that ‖Ai
c‖ ≤ γi

c, and γi
c will be selected later.3

We comment that although ũi(t) cannot cancel vi(t), which

represents the impact of the coupling term Ai
12x̃

i
2(t), for all t, it

cancels its impact at the final time t = (k + 1)τ . Consequently,

it eliminates the coupling at the sampling points.

D. Almost-Sure Stability

On the other hand, when αk �= i, the dynamics of x̃i
1 needs to

be localized to resolve the issue of instability from subsystem

interactions, since it cannot be controlled. This is stated as the

following assumption.

Assumption 3.1: When αk = j �= i, the dynamics of x̃i
1 is

local, namely

˙̃x
i

1(t) = Ai
j x̃

i
1(t), j �= i, t ∈ [kτ, (k + 1)τ) (6)

for some matrices Ai
j .

Remark 3.1: The matrix Ai
j depends on the physical system,

control design, and system decomposition. Since the system in

(6) will run open loop without feedback correction, its actual

values are only relevant for obtaining its growth-rate bound used

in the pole placement design.

By using the modified control design (5) with suitably selected

Li and under Assumption 3.1, the sampled values of the substate

x̃i
1 at kτ , k = 0, 1, . . ., satisfy the closed-loop dynamics

x̃i
1((k + 1)τ) = Φi

kx̃
i
1(kτ) (7)

3When the dimension of the input ρ > 1, for the selected pole positions of
Ai

c, the feedback gain Li is not unique. This nonuniqueness does not affect the
convergence results.
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where

Φi
k = I{αk=i}e

Ai
cτ +

∑

j �=i

I{αk=j}e
Ai

jτ . (8)

If we concentrate on the controllable substates

x̃1 =

⎡
⎢⎣
x̃1
1
...

x̃m
1

⎤
⎥⎦

then Assumption 3.1 implies

x̃1((k + 1)τ) =

⎡
⎢⎣

Φ1
k 0

. . .

0 Φm
k

⎤
⎥⎦ x̃1(kτ). (9)

In other words, the local dynamics given by (6) and the de-

coupling control design imply that the controllable subsystems

form a diagonal structure. This structure will be extended to a

triangularly structured interaction later.

Denote

γi
o = max

j �=i
max
τ≤τ≤τ

‖eA
i
jτ‖ and γi

c = max
τ≤τ≤τ

‖eA
i
cτ‖. (10)

Since the eigenvalues of Ai
c can be arbitrarily placed, for any

0 < γ∗ < 1, there exists a feedback gain Li such that

γi = (γi
c)

pi(γi
o)

(1−pi) ≤ γ∗ < 1. (11)

We recall that for a positive-valued stochastic process {ηk},

it is said to converge to 0 almost surely and exponentially if

limk→∞
1
k
ln ηk = −r, w.p.1 for some r > 0.

Theorem 3.1: Under Assumptions 3.1 and (11), x̃i
1(kτ) con-

verges to 0 almost surely and exponentially.

Proof: From the expression of Φi
k in (7), we have

γk = ‖Φi
k‖ ≤ I{αk=i}γ

i
c + I{αk �=i}γ

i
o.

Denote eik = ‖x̃i
1(kτ)‖. From x̃i

1((k + 1)τ) = Φi
kx̃

i
1(kτ), we

have eik+1 ≤ γkek and

eiK ≤
(
ΠK−1

k=0 γk
)
ei0.

It follows that

1

K
ln eiK ≤

1

K

(
K−1∑

k=0

ln γk + ln ei0

)

≤
1

K

K−1∑

k=0

(
I{αk=i} ln γ

i
c + I{αk �=i} ln γ

i
o

)
+

1

K
ln ei0.

Since αk is i.i.d., by the Strong Laws of Large Numbers

1

K
ln eiK ≤

1

K

K−1∑

k=0

(
I{αk=i} ln γ

i
c + I{αk �=i} ln γ

i
o

)
+

1

K
ln ei0

→ E(I{α1=i} ln γ
i
c+I{α1 �=i} ln γ

i
o) w.p.1 as K → ∞

= pi ln γ
i
c + (1− pi) ln γ

i
o

= ln(γi
c)

pi(γi
o)

(1−pi)

≤ ln γ∗

< 0.

Fig. 2. Closed-loop system trajectories under the modified control
design.

As a result, eiK converges to 0 almost surely and exponentially.�

Example 3.2: Consider the system in Example 3.1, with the

same τ = 0.01, p1 = 0.5, and p2 = 0.5. This system satisfies

Assumption 3.1.

If we concentrate on x̃1
1 = x1, its dynamics is governed by

αk = 1 : ẋ1 = 2x1 + ax2 + u
ẋ2 = 2x2

αk = 2 : ẋ1 = 2x1.

To eliminate the interaction term when αk = 1, we employ the

modified input design. It can be calculated as

Γ1 =

∫ τ

0

e4θdθ =
1

4
(e4τ − 1),

V 1 = a

∫ τ

0

e2(τ−θ)e2θdt = ae2τ τ.

As a result, u(t) = −10x1(t)− ae2((k+1)τ−t) 4e2ττ
e4τ−1x2(kτ), t ∈

kτ, (k + 1)τ). The closed-loop system for x1(kτ) is

x1((k + 1)τ) =
(
I{αk=1}e

−8τ + I{αk=2}e
2τ
)
x1(kτ).

Similarly

x2((k + 1)τ) =
(
I{αk=1}e

2τ + I{αk=2}e
−8τ

)
x2(kτ).

The resulting closed-loop system is independent of a, namely

the substate coupling has been eliminated.

Fig. 2 shows a sample-path trajectory for the closed-loop

system. Now the closed-loop system is stable for any a. The

value a = 10 is used in this simulation.

E. Triangular System Structure and Stability Analysis

Example 3.1 shows that substate coupling can destabilize the

closed-loop system. The modified control design in (5) and

Assumption 3.1 provide a sufficient condition for achieving

stabilization. On the other hand, Assumption 3.1 is sometimes

restrictive. This subsection will extend the permitted system

structure to a triangular structure defined as follows, which is

substantially more general than the diagonal structure imposed

by Assumption 3.1. Without loss of generality, the following

definition is given in the order 1, 2, . . . ,m.

Assumption 3.2: The dynamics of the controllable substate x̃i
1

of the ith subsystem satisfies the following triangular interaction
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structure: When αk = j �= i

˙̃x
i

1(t) = Ai
j,ix̃

i
i +

i−1∑

�=1

Ai
j,�x̃

�
1, i = 1, . . . ,m.

This structure means that whenαk = j �= i, x̃i
1 will run open-

loop and this open-loop dynamics depends on the controllable

substates x̃�
1 of the other subsystems only for � < i. This implies

that for αk = j �= i

x̃i
1((k + 1)τ) = eA

i
j,iτ x̃i

1(kτ) +

i−1∑

�=1

Hi
j,�x̃

�
1(kτ) (12)

for some matrices Hi
j,�. Now, the diagonal structure of (9) is

expanded into

x̃1((k + 1)τ) =

⎡
⎢⎢⎢⎣

Φ11 0 · · · 0
Φ21 Φ22 · · · 0

...
...

...

Φm1 Φm2 · · · Φmm

⎤
⎥⎥⎥⎦ x̃1(kτ) (13)

where

Φii = I{αk=i}e
Ai

cτ +
∑

j �=i

I{αk=j}e
Ai

jτ , i = 1, . . . ,m

Φij =
∑

� �=i

I{αk=�}H
i
�,j , j < i

which is a triangular structure of subsystem interactions.

Theorem 3.2: Under Assumption 3.2 and the modified control

design satisfying (11), there exist feedback gainsLi, i ∈ S , such

thatx(kτ) converges to 0 exponentially ask → ∞ almost surely.

Proof: We prove this theorem by induction on i. To simplify

the statements, “converges” in this proof means “converges to 0

almost surely and exponentially.”

For i = 1,

‖x̃1
1((k + 1)τ)‖ ≤

(
I{αk=1}‖e

A1

cτ‖+ I{αk �=1}γ
1
o

)
‖x̃1

1(kτ)‖.

Since this actually satisfies Assumption 3.1, there existsL1 such

that ‖x̃1
1(kτ)‖ converges.

Suppose that for i = 1, . . . , �, x̃�
1 converges. Then, for i =

�+ 1

‖x̃i+1
1 ((k + 1)τ)‖

≤ (I{αk=i+1}γ
i+1
c + I{αk �=i+1}γ

i+1
o )‖x̃i+1

1 (kτ)‖

+ I{αk �=i+1}h
i+1 max

�=1,...,i−1
‖x̃�

1(kτ)‖ (14)

for some hi+1 ≥ 0 and γi+1
c can be designed to be arbitrarily

small. Consequently, following the same arguments as in the

proof of Theorem 3.1, Li+1 can be designed so that the un-

coupled x̃i+1(kτ), namely the solution of (14) when hi+1 = 0,

converges.

Furthermore, in (14), ‖x̃�
1(kτ)‖, � = 1, . . . , i− 1, plays the

role of exponentially decaying inputs. Consequently, as the

response of an exponentially stable system to this input,

‖x̃i+1
1 (kτ)‖ converges. As a result, for all i = 1, . . . ,m, x̃i

1(kτ)
converges. This implies that x̃(kτ) converges.

Finally, by Assumption 2.2, WS is full rank. By Lemma 3.1,

G is full column rank. From x(kτ) = (G′G)−1G′˜x̃(kτ), we

conclude that x(kτ) converges. �

IV. ROBUST STABILIZATION UNDER MODELING ERRORS

In this section, we take into consideration modeling errors

and establish the robustness of the control design developed

in the previous sections. This problem is motivated by the

typical scenario of local linearization: when one starts with a

nonlinear system ẋ = f0(x, u)wheref0(·, ·) is continuously dif-

ferentiable, by using a state feedback u = q(x), the closed-loop

system ẋ = f0(x, u) = f0(x, q(x)) = f(x) is nonlinear. Its lin-

earization around an equilibrium point x0, namely f(x0) = 0,

can be represented by a dynamic system on the perturbation

variables ∆x = x− x0 with ∆̇x = A∆x+ δ(∆x), where the

matrix A is the Jacobian matrix at x0 and the modeling error

term δ(∆x) is nonlinear. For our results to be applicable to

this ubiquitous practical situation, we must establish robustness

against (small) nonlinear modeling errors.

For simplicity and clarity, we consider the systems that satisfy

Assumption 3.1 (namely, systems with diagonal interactions

among subsystems).

For the ith subsystem, consider the (potentially nonlinear)

modeling errors δ

when αk = j �= i :
˙̃x
i

1(t) = Ai
j x̃

i
1(t) + δij(x̃

i
1(t)), t ∈ [kτ, (k + 1)τ)

when αk = i :
˙̃x
i

1(t) = Ai
cx̃

i
1(t) + δi(x̃i

1(t)), t ∈ [kτ, (k + 1)τ).

The modeling errors satisfy the following conditions on their

growth rates and error bounds.

Assumption 4.1:

1) For some εij > 0, ‖δij(x̃
i
1)‖ ≤ εij‖x̃

i
1‖, i = 1, . . . ,m, j �=

i.
2) For some εi > 0, ‖δi(x̃i

1)‖ ≤ εi‖x̃i
1‖, i = 1, . . . ,m.

Let λ̄
i
j be the largest eigenvalue of Ai

j . The following lemma

establishes the maximum growth rate of x̃i
1(kτ)whenαk = j �=

i, namely when the ith subsystem runs open loop. It is noted that

the robustness, defined by the error bound κi
j in Lemma 4.1,

depends on Ai
j .

Lemma 4.1: For any given λ > λ̄
i
j , there exist κi

j > 0 such

that if εij < κi
j , then for some c > 0,

‖x̃i
1((k + 1)τ)‖ ≤ ceλτ‖x̃i

1(kτ)‖.

Proof: Consider the nominal system ˙̃x
i

1(t) = Ai
j x̃

i
1(t). De-

fine y(t) = e−λtx̃i
1(t). Then

ẏ(t) = e−λt ˙̃x
i

1 − λe−λtx̃i
1(t)

= e−λtAi
j x̃

i
1(t)− λy(t)

= (Ai
j − λI)y(t)

= Ãi
jy
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where by hypothesis, all eigenvalues of Ãi
j = Ai

j − λI are in

the open left half plane. As a result, the Lyapunov equation

(Ãi
j)

TP i
j + P i

j Ã
i
j = −I has a unique positive definite solution

P i
j > 0. Let the largest eigenvalue of P i

j be ηij .

Now, consider the system with modeling errors ˙̃x
i

1(t) =
Ai

j x̃
i
1(t) + δij(x̃

i
1(t)). Define the Lyapunov candidate V =

yTP i
jy, which is globally positive definite and radially un-

bounded. We have

V̇ = ẏTP i
jy + yTP i

j ẏ

= (Ãi
jy + e−λtδij(x̃

i
1))

TP i
jy + yTP i

j (Ã
i
jy + e−λtδij(x̃

i
1))

= −yT y + 2yTP i
j e

−λtδij(x̃
i
1).

Furthermore

|2yTP i
j e

−λtδij(x̃
i
1)| ≤ 2‖y‖ηije

−λt‖δij(x̃
i
1)‖

≤ 2‖y‖ηije
−λtεij‖x̃

i
1‖

= 2‖y‖ηije
−λtεije

λt‖y‖

= 2ηijε
i
jy

ty.

Define κi
j =

1
2ηi

j

. If εij < κi
j , then 1− 2ηijε

i
j > 0 and

V̇ ≤ −(1− 2ηijε
i
j)y

T y

is globally negative definite. Consequently, the y system is glob-

ally asymptotically stable, which implies that ‖y((k + 1)τ)‖ ≤
c‖y(kτ)‖ for some constant c. It follows that

‖x̃i
1((k + 1)τ)‖ = eλ(k+1)τ‖y((k + 1)τ)‖

≤ eλ(k+1)τ c‖y(kτ)‖

= eλ(k+1)τ ce−λkτ‖x(kτ)‖

= ceλτ‖x(kτ)‖.

�

Since c and λ in Lemma 4.1 depend on Ai
j , we relabel them

as cij and λi
j , and denote γi

j = cije
λi
jτ .

On the other hand, when αk = i, the (stable) eigenvalues

of Ai
c can be arbitrarily assigned. Select the eigenvalues of

Ai
c as {−λ1, . . . ,−λn} with λj > 0, j = 1, . . . , n, and λ̄

i
=

min{λ1, . . . , λn}. Since the eigenvalues ofAi
c can be arbitrarily

assigned, so is λ̄
i
. The following lemma establishes the least

decaying rate of x̃i
1(kτ) when αk = i. It is noted that the

robustness, defined by the error boundκi in Lemma 4.2, depends

on Ai
11 and also the feedback design.

Lemma 4.2: For any given 0 < λ < λ̄
i
, there exists κi > 0

such that if εi < κi, then for some c > 0

‖x̃i
1((k + 1)τ)‖ ≤ ce−λτ‖x̃i

1(kτ)‖.

Since the proof of Lemma 4.2 is nearly identical to that of

Lemma 4.1, it is omitted. Also, since c and λ in Lemma 4.2

depend on Ai
c, we relabel them as cic and λi

c, and denote γi
c =

cice
λi
cτ .

Theorem 4.1: Under Assumption 4.1, there exist κi
j > 0 and

κi > 0 such that if εij < κi
j and εij < κi

j , then the control de-

sign specified in the previous sections achieves convergence of

x̃i
1(kτ) to 0 almost surely, exponentially, and robustly.

Proof: Under the hypothesis, by Lemmas 4.1 and 4.2, we

have

when αk = j �= i :

‖x̃i
1((k + 1)τ) ≤ γi

j‖x̃
i
1(kτ)‖

when αk = i :

‖x̃i
1((k + 1)τ) ≤ γi

c‖x̃
i
1(kτ)‖.

Since γi
c > 0 can be arbitrarily selected, for any 0 < γ∗ < 1, it

is always possible to achieve

γi = (γi
c)

pi(γi
j)

1−pi ≤ γ∗ < 1. (15)

Consequently, the critical condition (11) is satisfied robustly for

all uncertain systems that satisfy Assumption 4.1. By Theorem

3.1, x̃i
1(kτ) converges to 0 almost surely, exponentially, and

robustly. �

V. ILLUSTRATIVE EXAMPLE

Example 5.1: We consider an RSLS with two subsystems of

dimension 4. The subsystem matrices are

A(1) =

⎡
⎢⎢⎣

−3.5 2 4.5 0
3 −0.5 −7.5 1.5

−4.5 2 5.5 0
−9.5 4.5 5 2.5

⎤
⎥⎥⎦ , B(1) =

⎡
⎢⎢⎣

1
2
1
5

⎤
⎥⎥⎦

A(2) = A(1), B(2) =

⎡
⎢⎢⎣

4
11
0
13

⎤
⎥⎥⎦ .

The transformation matrix can be constructed as

T =

⎡
⎢⎢⎣

1 0 2 0
0 1 4 1
1 0 0 0
3 1 2 3

⎤
⎥⎥⎦

with transformed matrices

Ã1 = T−1A(1)T =

⎡
⎢⎢⎣

1 2 −1 2
0 1 2 3
0 0 1 0
0 0 1 1

⎤
⎥⎥⎦ , B̃1 =

⎡
⎢⎢⎣

1
2
0
0

⎤
⎥⎥⎦

Ã2 = Ã1, B̃2 =

⎡
⎢⎢⎣

0
0
2
3

⎤
⎥⎥⎦ .

We use the modified control design for state feedback and

substate decoupling with

αk = 1 : The poles for A1
c are {−10,−10}, resulting in

L1 = [30.25,−4.125], A1
c =

[
−29.25 6.125
−60.5 9.25

]
;
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Fig. 3. Closed-loop system trajectories under the modified control
design.

αk = 2 : The poles for A2
c are {−12,−12}, resulting in

L2 = [−113.75, 84.5], A2
c =

[
228.5 −169
342.25 −252.5

]
.

For this system, since the sameT is used, we have x̃1 = x̃2 := x̃.

The total closed-loop system for x̃ is

αk = 1 : ˙̃x = M1x̃, M1 =

⎡
⎢⎢⎣

−29.25 6.125 0 0
−60.5 9.25 0 0

0 0 1 0
0 0 1 1

⎤
⎥⎥⎦

αk = 2 : ˙̃x = M2x̃, M2 =

⎡
⎢⎢⎣

1 2 −1 2
0 1 2 3
0 0 228.5 −169
0 0 342.25 −252.5

⎤
⎥⎥⎦ .

If we focus on the controllable substates

x̃1 =

[
x̃1
1

x̃2
1

]

the aforementioned subsystems imply that

˙̃x1 =

[
Φ11 Φ12

0 Φ22

]

where

Φ11 = I{αk=1}

[
−29.25 6.125
−60.5 9.25

]
+ I{αk �=1}

[
1 2
0 1

]

Φ22 = I{αk=2}

[
228.5 −169
342.25 −252.5

]
+ I{αk �=2}

[
1 0
1 1

]

Φ12 = I{αk �=1}

[
−1 2
2 3

]
.

This structure satisfies (13) (with an equivalent upper triangular

structure). As a result, the closed-loop system is not decoupled,

but it is in a triangular form.

Under τ = 0.01, p1 = 0.5, and p2 = 0.5, Fig. 3 shows that the

closed-loop system is almost surely stable. Due to switching and

unobservable subsystems, the discrete state sequences xk at the

sampling points show jumps in their values. Consequently the

trajectory in Fig. 3 shows jumping perturbations during transient

periods.

VI. CONCLUSION

Complex RSLSs are often uncontrollable in a fixed configu-

ration and from one control input. This article has revealed some

distinct and fundamental complications in their almost-sure

stabilization. Modified control strategies have been introduced

and their stabilization capabilities established.

This article leaves many interesting open issues. First, it will

be highly useful to apply the algorithms of this article to rep-

resentative practical RSLSs, especially in emerging technology

areas such as renewable power systems, smart grids, autonomous

systems, etc. Furthermore, this article is limited to stabiliza-

tion problems. Optimal control in RSLSs with uncontrollable

subsystems is an important and technically challenging future

direction.
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