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This paper introduces a new stochastic hybrid system (SHS) framework for contingency detection in modern
power systems (MPS). The framework uses stochastic hybrid system representations in state space models
to expand and facilitate capability of contingency detection. In typical microgrids (MGs), buses may contain
various synchronous generators, renewable generators, controllable loads, battery systems, regular loads, etc.
For development of SHS models in power systems, this paper introduces the concept of dynamic and non-
dynamic buses. By converting a physical power grid into a virtual linearized state space model and representing
contingencies as random switching of system structures and parameters, this paper formulates the contingency
detection problem as a joint estimation problem of discrete events and continuous states in stochastic hybrid
systems. This method offers unique advantages, including using common measurement signals on voltage and
current synchrophasors to detect different types and locations of contingencies, avoiding expensive local direct
fault measurements and detecting certain contingencies that cannot be directly measured. The method employs
a small and suitably-designed probing signal to sustain the ability of persistent contingency detection. Joint
estimation algorithms are presented with their proven convergence and reliability properties. Examples that
use an IEEE 5-Bus system demonstrate the main ideas and derivation steps. Simulation case studies on an IEEE
33-Bus system are used for detecting transmission line faults and sensor interruptions.

1. Introduction on transmission lines, buses, generators, and users. These detection
devices are exemplified by power line sensors, fault circuit indicators,

Resilience of modern power systems (MPS) mandates fast and accu- fault passage indicators, over-current relays, and so on. Enhancement

rate detection of cyber—physical contingencies in diversified categories,
including line faults, generator failures, sensor malfunctions, commu-
nication system disruptions, among many others [1-3]. Contingency
detection in power systems is a critical and challenging task. Effective
and timely contingency detection has multiple advantages and is of
great importance. First, it enables rapid response to emerging issues,
facilitating timely mitigation actions to prevent cascading failures and
system outages. Second, accurate unexpected event detection can en-
hance system resiliency by minimizing downtime and reducing the risk
of widespread disruption. Additionally, it helps maintain system stabil-
ity and ensure a continuous supply of power, thereby protecting the
integrity of critical infrastructure. Effective unexpected event detection
is therefore a cornerstone for enhancing the reliability, resilience, and
performance of MPS.

Traditionally, unique and dedicated local sensors and switching
circuits have been designed and implemented at numerous locations

of reliability can also be achieved by using existing sensor systems with
advanced detection methodologies and algorithms [4-6].

This paper introduces a new approach that employs system dynam-
ics and their switching for expanding the capability of contingency
detection. This approach offers several appealing advantages. For ex-
ample, an existing sensor such as phasor measurement unit (PMU) or
a frequency sensor can be used to detect many types and different
locations of contingencies. This much enhanced capability is achieved
by embedding contingencies within dynamic systems so that a switch-
ing from a normal operating condition to a faulty condition caused
by a contingency can be detected as two different dynamic systems.
This leads to the stochastic hybrid system (SHS) framework of power
systems. SHSs are dynamic systems characterized by a combination of
continuous dynamics and discrete events, where uncertainties such as
discrete events and noise are modeled as stochastic processes. In an
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SHS, continuous dynamics delineate the temporal evolution of system
variables, while discrete events represent instantaneous alterations or
transitions between different system modes. The stochastic nature of
these transitions means that they occur randomly based on probability,
thus introducing unpredictability into system behavior. This paper for-
mulates MPS dynamics using continuous differential equations, while
representing system interruptions and faults as discrete events, thereby
establishing an SHS model. This new framework for modeling power
systems was introduced in the companion paper [7] that treats also
state estimation problems. This paper is focused on contingency de-
tection. Since this approach must rely on system dynamics to detect
contingency and estimate state simultaneously, they face numerous
challenges. This paper aims to resolve these challenges and introduce
useful algorithms in the SHS framework.

Recently, many efforts have been made on microgrids (MGs) [8-10].
This paper considers power grids whose buses may contain various tra-
ditional synchronous generators and renewable generators, controllable
loads, energy storage systems, battery systems, regular loads, and so on.
Their system dynamics are represented by nonlinear state space models.
Contingencies are represented by jumps in system structures (such as
loss of a transmission line, loss of communication channel in an inter-
val), model parameters (such as impedance jumps in transmission lines
and generation parameters), loss of a member (loss of a load cluster on
a bus), among many other scenarios. Most power system contingencies
occur randomly. Adding such random jumps into dynamic models, the
system models become stochastic state-space hybrid systems.

Due to their critical importance, contingency detection and state
estimation problems in power systems have been investigated exten-
sively. For example, the Ref. [11] proposed a support-vector-machine-
based fault localization methodology to identify and localize transmis-
sion line faults occurring at any location in a power grid based on
PMUs measurements. The authors in [12] focused on the detection
and classification of the faults on electrical power transmission line
using artificial neural networks. A method of fault detection and clas-
sification was presented in [13] for power transmission lines based on
convolutional sparse autoencoder. A robust fault detection and discrim-
ination technique for transmission lines was proposed in [14], which
utilizes a robust method of phasor estimation to compute accurate fault
impedance along with a feature value extracted from the samples of
voltage and current signals. A new algorithm was introduced in [15] for
short-circuit fault detection and identification based on state estimation
taking into account the measurements in active distribution systems.

Most of the existing fault-detection methods employ hardware-
based, local, and special-purpose monitoring and protection devices,
such as relays, ESD protection systems, voltage surge and over-current
protection devices, impedance analysis schemes, etc. These physical
systems are reliable but costly with limited versatility. In contrast to
the aforementioned references, this paper provides a different method
by using SHSs, which treats system interruptions and faults as dis-
crete events, and expresses the dynamics of different subsystems using
differential equations. Consequently, the detection is transformed into
an estimation problem of discrete states. The dynamic interactions
among local systems greatly expand the capability of a sensor for
detecting contingencies of different types and in different locations.
This important feature has been shown in our case studies on the IEEE
33-Bus system. Within the SHS framework, this paper is focused on
exploring the potential of using common sensors such as PMUs for de-
tecting contingency and estimating internal states jointly, for enhancing
resilience and expanding the capability of contingency detection. To
the best of our knowledge, this paper is the first effort in applying the
SHS to detect contingencies in power systems. Our approach is based
on the theoretical foundation of our recent papers [16,17]. It should be
emphasized that as a newly developed theoretical work, applications of
the results from [16,17] in power systems are highly challenging, in-
cluding derivation of virtual dynamic SHS models, their linearizations,
algorithm implementation, and convergence validation, etc. By using
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collaboratively dynamic hybrid system models, stochastic information

on system jumps, and advanced observer design methods, this paper

achieves contingency detection and state estimation simultaneously.
The main contributions of this paper are summarized as follows:

1. Together with [7], this paper employs the dynamic and non-
dynamic buses and develops the methods of combining these
into a virtual power grid as an SHS. A dynamic bus is rep-
resented by a differential equation and a non-dynamic bus is
represented by an algebraic equation. This concept is essential
for deriving SHSs for the entire power grid, which is funda-
mentally different from traditional classifications of buses as
dispatchable/non-dispatchable or PV/PQ/Slack buses.

2. It introduces an approach of using SHSs for joint contingency
detection and state estimation. The interwinding nature of con-
tinuous state and switching processes makes it necessary to
perform joint estimation for contingency detection. By employ-
ing the rich information from the dynamic system models, it
becomes possible to jointly detect contingencies and estimate
the continuous states by using only limited numbers of sensors.
The joint estimation problem is much more complicated than
the state estimation problems in power systems since the latter
assumes that the dynamic system is known.

3. It introduces a design method for selecting a probing input
such that contingencies of different types and locations can
be detected by using only a limited set of sensors. A mode-
modulated input design method is presented so that detectability
on contingencies can be persistently sustained.

4. It develops a two-time-scale scheme and algorithms for
jointly detecting contingencies and estimating the continuous
states simultaneously. Convergence properties of the algorithms
are established.

5. It employs two common IEEE testing systems to validate and
evaluate models, detection algorithms, observer design, con-
vergence properties, and algorithm robustness. The methods of
this paper are highly scalable. The complexity of the virtual
dynamic SHS depends on the number of dynamic buses that can
be numerically derived by using commercial software packages
of power flow analysis such as MATPOWER. These numerical
methods have been used in case studies on the IEEE 33-Bus
system.

The paper is organized as follows. Section 2 defines notations and
the main problems of this paper. Section 3 derives state space models
for power systems. Sensor systems, contingencies, and stochastic hybrid
systems are described in Section 4. Section 5 presents observer design
procedures and detection algorithms, and establishes convergence. Per-
formance evaluation and case studies are discussed in Section 6. The
main conclusions of this paper are summarized in Section 7.

2. Preliminaries

For a column vector v € R", ||v|| is its Euclidean norm. For a matrix
M e R™" MT is its transpose, A(M) is an eigenvalue of M, and
6(M) = \/A(MT M) is a singular value of M. The kernel or null space
of M € R™ is ker(M) = {x € R" : Mx = 0} and its range is
Range(M) = {y = Mx : x € R™}. For a subspace U C R" of dimension
p, a matrix M € R™P is said to be a base matrix of U, written as
M = Base(U), if the column vectors of M are linearly independent and
Range(M) = U. A function y(r) € R in a time interval [0, 7) is piecewise
continuously differentiable if [0, 7) can be divided into a finite number
of subintervals [t,_;,t;), k = 1,...,¢, t; = 0, t, = = such that y(r) is right
continuous in [#,_,,7,) and continuously differentiable, to any order as
needed, in (#,_;,,). The space of such functions is denoted by C[0, 7).

For an AC power microgrid, all voltages and currents will be
represented by their phasors ¥V = V6 and I = Izy. Sensors in
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power systems are highly diversified, including PMUs, frequency, volt-
age, power measurements, signal transducers for protection, rotational
speed, torque, temperature, among many others. Furthermore, commu-
nication systems are used for data transmission. The microgrid can be
viewed as a networked system with y buses connected by transmission
lines. This network system is represented by a graph N' = {V,&}
where V is the set of buses (vertices in a graph) and & is the set
of feeder/transmission links (edges in a graph). The transmission line
(i,j) € & is bi-directional, i.e., (i,j) € €& = (j,i) € &. For Bus i, its
neighbor W is the set of buses j that are connected to it, namely,

i

N;={j€V:(,j) e & or (j,i) € £}. By default, (i,i) € &.
3. State space models of power grids

We now summarize the main SHS framework introduced and de-
tailed in [7]. We should emphasize that this framework is highly gen-
eral, but for demonstration, we will use real power management prob-
lems in case studies. Power systems are highly complicated and inter-
connected systems. Microgrids are unique in which power generations
can come from traditional synchronous generators, power-electronics-
based wind turns, solar panels, battery systems, and controllable loads.
To derive a state space model representation of SHSs for power systems,
it is essential to characterize bus types according to their dynamics.
Consequently, we divide buses into two types: dynamic buses and
non-dynamic buses. This classification is independent of traditional
classifications such as PV/PQ buses or dispatchable/non-dispatchable
buses.

3.1. Dynamic buses

If Bus i is dynamic, then it is represented by a local state space
model,

= £zl 2 o e, @

where zf.’ is the local state variable, z; is the neighboring variables of
Bus i which may be state variables of its neighboring dynamic buses,
or intermediate variables of its neighboring non-dynamic buses, vl.d
is the local control input, and ff’ is the local congregated total load
that cannot be actively controlled, such as regular loads, fixed-blade
wind generators, solar panels, constant-charging-current batteries, etc.
The control input is set of controllable (i.e., dispatchable) variables
such as generator mechanical power input, controllable loads, actively
managed battery systems, tunable wind turbines, etc. If a bus does not
have any dispatchable assets, then vf =0.

3.2. Non-dynamic buses

If the jth bus is non-dynamic, which is in a steady state or pseudo-
steady state, then it is represented by an implicit algebraic relationship,
— nd _— _nd pnd
0=g;(z}%, z;, 039, 279, )
where z'? is the local state variable vector, z> is the neighboring
variables, v%? is the local control input, and ¢/ is the local load.

Remark 1. (1) Dynamic/non-dynamic designation is related to the
local system’s models. They do not affect the designation of power flow
analysis such as PV, PQ, slack buses. For example, a load is typically
considered as a PQ bus. If the load is a motor with its own dynamic
model, then the bus is a dynamic bus. Note that our system formulation
can accommodate any bus types in the traditional classification, includ-
ing the traditional types of PV, PQ, and slack buses. Mathematically,
for the four variables P, O, V, 6 on each bus, one can fix any two
and designate the other two as dependent variables. For each type of
buses, it can be either dynamic or non-dynamic, depending on their
representation by differential equations or algebraic equations. (2) Tra-
ditionally, generators are dynamic. But fast reaction power sources like
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batteries, may be simplified as non-dynamic and represented by their
near-steady-state algebraic relationships. For the same token, loads can
be either static (non-dynamic) or dynamic. The ZIP and exponential
load models are static. But induction motors are usually modeled as
dynamic systems, and so are exponential recovery load (ERL) models.
(3) Dynamic/non-dynamic bus classification can change when local
sensors and controllers are included. For example, PID controllers are
dynamic systems and after applying them to control a non-dynamic
system on a bus, the bus becomes dynamic. (4) Dynamic/non-dynamic
designation also does not affect whether a bus is dispatchable or not.
A dispatchable resource has controllable real or reactive powers to
participate in control or market of a power grid. It is represented as
part of the control input uf in (1).

The general nonlinear state equation (1) is highly versatile in repre-
senting dynamic systems on a bus. For example, this may be a common
swing equation for synchronous generators

. i L
Mia)i +gi(wi) — Pim _P[ _Piout’

where §; is its electric angle, w; = §;, M, is the equivalent electric-side
inertia, g;(-) represents the nonlinear damping effect, and g;(-) is contin-
uously differentiable satisfying w;g;(w;) > 0 for w; # 0. Linearization of
g;(-) around w; = 0 is b;w; with b; > 0. Also, P? is the total transmitted
power from Bus i to its neighboring buses. As an extension, if it is
required to include steam turbine control systems with generators, the
dynamic model will combine both turbine and generator dynamics,
and state variables will then include flow rate and other mechanical
system variables. However, if a bus has a renewable generator or a
battery system with power-electronic-based control mechanisms, then
their dynamic models will be different, inherited from the specific
dynamic models derived for such physical systems.

For both dynamic and non-dynamic buses, the interaction of the
local variables with their neighboring buses is based on the standard
power flow relationships. Suppose that the transmission line between
Bus i and Bus j has impedance X;;26;;. The line current is
Vics —V;48; Vi

=125, -0;) - X—UL((SJ- -0,).

X;;£0;; Xij

IU-A;/ =
Denote §;; = 6; — ;. The complex power flow from Bus i to Bus j at Bus
iis

oo
X_U'Ae - 4(91‘] + 51‘,‘),

Sij=I/,~45ixI,j4(—y)= T
i

which implies that the transmitted real and reactive powers at Bus i are

; VY GENANRA7

P. = X cos(Gij)—f cos(8;;+6;;), Q;; = X sin(0;;)——— sin(0;;+5;).
ij

i i
ij
ij Xij Xij

Although this paper will use real power management in case studies,
SHS modeling using (1) can certainly be used to represent many
other control problems such as voltage regulation using reactive power
management, control of flexible AC transmission (FACT) systems for
var compensation, battery system management for microgrids, etc.

3.3. Virtual dynamic state space models

Suppose that the y buses in N contain y¢ dynamic buses and y™ =
y — ¥ non-dynamic buses." Without loss of generality, let the first y¢
buses be dynamic. Define the states, inputs, loads, and outputs from all
buses,

1 Since this paper deals with state estimation under state space models, we
assume that 1 < y? <y, namely at least one bus is dynamics. But y" = 0 is
possible, meaning that all buses are dynamic.
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24
1
4 = : State variables of dynamic buses,
d
Zyd
nd
rd+1
7 = State variables of non-dynamic buses,
an
L Y
74
z = wa | All variables,
Z
[ d
Yl
v = Control variables of dynamic buses,
d
Vi
[ nd
y'i +1
v = Control variables of non-dynamic buses,
Und
7
o
v = d Control variables of all buses,
U
L
1
4 = : Loads of dynamic buses,
fd
yd
[ nd
yd+1 .
g = : Loads of non-dynamic buses,
f”d
L 14
fd
£ = [ o ] All loads.

By (2), for non-dynamic buses, we have

GO(znd zd Und’fnd)
- d
z "
gyd‘*'l( i By Vpa g yd+l)
= : =0.
nd — nd pnd
g,(z,%, 2, 00, £)0)

For physical power grids, given z¢, v™, #", this equation has a unique
solution within permitted operating ranges, leading to the symbolic
relationship

d _ H(Zd,Und,fnd). (3)
Furthermore, by the dynamic systems in (2),

4 = FO(z9, 2 v, £9). @

Substituting (3) into (4), we obtain

d _ FO(Zd,H(Zd,U"d,fnd),Ud,fd) — F(Zd,l)d,l}"d,fd,fnd). (5)

3.4. Linearization

In power system control problems, it is common to linearize the
nonlinear dynamics (5) near nominal operating points [1,18]. The
linearization process invo_l;zeinzhe following standard steps. Given the
steady-state loads # = [¢ ,# T and steady-state input real powers
7 = [0%, 7], the steady-state z¢ (equilibrium pomt or the nominal
operating condition) is the solution to F(_d,_d,_"d f f ) =

By defining the perturbation variables from their nominal values as
x=20 -7 yu=0v? -7 " = pd —E"d,§ =4 —?d,g“" = gnd —?nd, the
linearized system is

%X = Ax + Bju+ Byu" + D, { + Dy¢", ©)
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Bus 1 Bus 2
PGI‘QGI—’ ]X e PGZ;QGZ
—
Pp,,Q), L5 = P,,.0,
V284 V,28,

Fig. 1. A link in microgrids.

where the matrices are the related Jacobian matrices

A = aF(Zd,Ud,Und,fd,bﬂ"d)
9z A=zl v=5¢=7 ’
B aF(Zd,Ud,Und,fd,bﬂnd)
1= s
v M=z v=5¢r=7
aF(Zd,Ud,Und,fd,fnd)
B, = s
o A=zl v=5¢=7
D aF(Zd,Ud,Und,fd,fnd)
1= s
oz A=zl v=5¢,=7
aF(Zd,Ud,Und,fd,fnd)
D, =
oen A=20v=5,¢=7
Example 1. Suppose that the generators can be represented by the

swing equations

Mid)i +gi(wi) — l)iin _ })iL _ I)iom’

where §; is its electric angle, ;, = §;, M; is the equivalent electric-
side inertia, g;(-) represents the nonlinear damping effect, and g;(-)
is continuously differentiable satisfying w;g;(w;) > 0 for w; # O.
Linearization of g;(-) around w; = 0 is b;w; with b; > 0. Also, P
is the total transmitted power from Bus i to its neighboring buses,

. v,
Le, P" = ¥icn P Zjen, [x cos(6;;) — —cos(0 +6,.j)] =

jew 4(6,.5,), where (5.6 = +- cos(@;,) - VXV cos(@,; + 8,,). The
two-Bus system shown in Fig. 1 hals 01, = 90° which is the angle of
impedance, namely the transmission line is lossless. Both buses are
dynamic dispatchable buses with state variables z‘f
[65; w,]. Suppose that g,(w,) = bjw;, b; > 0, and g,(®,) = byw,, by > 0.

Denote f = ﬂlz = V\W,/X, and § = 6, — 6,. Then, fi(z4,28) =

= [6w12¢ =

|0 =220 — - psin)| oG 2) = [ =222 = - psin(-5)] .
" -
Given o, = P", 5, = PJ", | = PIL, t, = PZL, the equilibrium
in PL

— pin_
point is @; = 0, @, = 0, and 6 = sin™' [ —L ). Assume M, = 1,
M, = 1.5, b =02, b, = 0.31, f =200, P{" = 100, P," = 50, P = 70, and
Pz = 80. Then, the equilibrium point is $ = 0.1506 (rad). Under these

given values, the linearized system is (6) with

0 1 0 0
-197.7372 0.2 197.7372 0
A=
0 0 0 1| 7)
1318248 0 —131.8248 —0.2067
0 0 0 0
/M0 |=1/M; 0
B =|" o 2=l o |[B=0D=0
0 1/M, 0 -1/M,
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4. Contingencies and stochastic hybrid system models
4.1. Sensor systems and observability

For power system operation and contingency detection, many sen-
sors must be deployed, such as voltages, frequencies, PMUs, over-
current protection transducers, among many others. Sensor selection
and placement are important for managing SHSs. Mathematically, sen-
sor choice (which variable to measure) and location (which bus to
measure) are reflected in the output equation (6).

Adding a sensor system with y = Cx where C is the sensing matrix,
we have the following state space model:

X = Ax+ Biu+ Byu" + D + D",
- ®
y = Cx.

Remark 2. The system (8) is a linearized system whose variables are
perturbations from their nominal values. Physically, y is the difference
between the measured value yeasureq @nd the nominal value y,omina at
the operating point. For example, the phasors on buses can be measured
by PMUs. Suppose that only &, is measured, which can be represented
by y = 6, — 8, = Cyx, with C; = [1,0,0,0]. It is easy to verify that
under this observation equation, the system is observable. On the other
hand, the measurement of the real power P, = fsin(§) = fsin(6; — &,)
can be represented as y = C,x, with C, = [f c0s(8), 0, -p cos(8), 0].
Different sensor systems affect observability, which characterizes if the
measured values are sufficient to determine the interval (unmeasured)
states. Under the system parameters in Example 1, if we measure the
power P, with y = C,x the observability matrix is

1 0 -1 0
woo| 0 1 0 -1
2713205620  —02  329.5620  0.2067 |’
667912  —329.5220 —66.7912 329.5193

which has rank 3. As a result, the state space model is not observable
in this case.

4.2. Contingency models

Power system contingencies are of diversified types. We list some
of the common types.

1. Transmission Line Grounding: A (balanced) transmission line
fault can change the impedance values |Z| on the line. For
example, a balanced grounding will reduce the impedance value.
In contrast, high-impedance faults are very common in case of
line faults. Since line impedances are parameters in the matrix
A, a line fault will cause a jump in the A matrix value.

2. Transmission Line Breaking: When a transmission line breaks
due to natural disasters or faulty components, the transmission
line’s impedance will experience a jump of X;; to a much bigger
value;

3. Generator Excitation System Faults: Loss of excitation (LOE)
is a common fault in generators. LOE causes a sudden decrease
of the terminal voltage V', with some other potential damages to
the generator.

4. Intentional Attack: Cyber attackers may intentionally damage
a sensor, a transmission line, a bus, creating a jump in system
structure or parameters.

Traditionally, contingencies are detected by special devices that
monitor the targeted buses and lines. For example, impedance relays
are very common devices for protecting high-voltage transmission lines
from faults. Under the SHS framework and our algorithms, a PMU on
one bus can potentially detect impedance jumps of many lines without
using special devices on these lines. This will be demonstrated in the
case studies.
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Power system contingencies can be generally modeled as jumps on
system matrices. Mathematically, we list all scenarios of contingencies
under study as a set S = {1,...,m} and use a jumping process a(t) € S
to represent the occurrence of the corresponding scenario. For example,
for the system in (7), the above-listed faults are reflected on the
coefficient § = V|V, /X, as a switching of its value during contingency.
If the excitation system for Bus 1 experiences a loss-of-magnet fault on
its excitor, then ¥; will drop. On the other hand, a partial transmission
line fault, such as a three-phase balanced fault, changes the impedance
value X ,, leading to a jump in p value. Suppose that p changes its
value from 200 to 100. Then, the new & value is 5, = 0.3047 and the
system’s matrix becomes the following new one:

0 1 0 0
_|-190.7878 -02  190.7878 0
2= 0 0 0 1

127.1919 0 -127.1919 —-0.2067

4.3. Randomly switched linear systems

The dependence of system matrices on contingencies can be rep-
resented by their values as functions of «, expressed as A(«a), B;(a),
B,(a), D|(«), Dy(a) and C(«). Since contingencies occur randomly, «(r)
is a stochastic process. Including the jumping process into the system
dynamics (8) introduces the following hybrid system:

{ %
y
This system is an RSLS. The contingency detection problem aims to
study joint discrete event detection and continuous state estimation of
RSLSs.

The system matrices depend on the randomly switching process a(r)
that takes m possible values in a discrete state space S = {1, ..., m}. For
each given value i € S, the corresponding linear time invariant (LTI)
system in (9) with matrices (C(i), A(i), B, (i), By(i), D, (i), D,(i)) is called
the ith subsystem of the RSLS. We introduce the following assumptions
on the random switching process for the theoretical analysis.

A(@)x + By(a@)u + By(a)u" + Dy (a){ + Dy(a)",

C(a)x. ©®

Assumption 1. Given a sampling interval z, (i) the switching process
a(t) can switch only at the instants kz, k = 0,1,2, ..., that generates
a stochastic sequence {a;, = a(kz)} (the skeleton sequence); (ii) The
sequence {a,} is independent and identically distributed (i.i.d.) with
probability Pr{a, = i} = p; > 0, i € S, and Y p; = 1; (iii) ; is
independent of x(0) and the Brownian motion w.

The main difference of Assumption 1 from [7] is that a(f) cannot
be directly measured and must be estimated here in this paper. Note
also that power system management usually imposes certain intervals
for data processing. For example, the PMU data rate of the Power Xpert
Meter is 1024 samples per cycle. For contingency management, 160 ms
is the IEEE imposed limit for voltage sag/surge. For slower dynamics of
power dispatch, a decision interval of 5 minutes is commonly used in
practice. Mathematically, under this assumption, the random switching
process can be treated as a discrete-time stochastic sequence, rather
than a continuous-time process.

Under Assumption 1, Ay = A(a) = 32| AG)L (4, =) B} = Bi(®) =
Y Bi()gmiys Bf = By(@) = XL By C = Clay) =
Yt C(i)L(4, =), where 15 is the indicator function of the event G:
1; = 1 if G is true; and 1; = 0, otherwise. These are matrix-valued
random variables. The sampled values of the signals are denoted by
X = x(kt), y; = y(k7).

The premise of this paper is to treat RSLSs whose initial states
are unknown and whose switching sequence «;, cannot be directly
measured. As a result, both the continuous state x, and discrete state a;
must be estimated from the known input u(¢) and the observed output
y(t). The available data set in a time interval [0,7) is given by the
noise-free data set D, = {y(1),t € [0,7)} for a given 7 > 0.
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4.4. State space decomposition

For the ith subsystem in S, A(i) and C(i) are constant matrices,
C(i)

and its observability matrix is W (i) = C(i):A(i) . Denote W =

CH) (A
W@
: as the combined observability matrix for S. We note that
W(m)
oth W (i) and W are deterministic matrices that contain only infor-
mation on subsystems. They do not involve actual switching sequences.
Thus, they can be evaluated off-line.

Assumption 2. (i) Subsystems may be unobservable, namely,
Rank(W(i)) = n; < n, i € S; (ii) Wy is full column rank.

By Assumption 2, since the ith subsystem may be unobservable,
namely, Rank(W (i)) = n; < n, we construct M; = Base(ker(W (i))) €
R™(#=n) and select any N; € R"™" such that T; = [M;, N,] is invertible.
K.

|, where K; € RO—m)xn

The inverse of T; is decomposed into 7,7 = [
i

and F; € R">",
The state transformation Z = Tl.‘lx can be decomposed into Z' =
K; i ; . . .
T 'x = [FI x] = [U,.] where z' € R”". Correspondingly, this coordinate
X z
transformation leads to the transformed matrices A’ = T,.‘IA(:‘)T,-, B =
) ) Ai Ai . Bi
T B(i), C' = C(i)T;, with the structures A’ = [ 61 A}z], B = [B,l-],
) . ) ) 2 2
C' =10,Cl] with A, € R">" and C e R>" As a result, if we focus
only on the dynamics of the observable partial state z/, we have

= Al Z + Blu,
2o (10)
y = Gz,
where (C}, A},) is observable.
5. Contingency detection

Under our stochastic hybrid system models, contingencies are repre-
sented by jumps in system structures and parameters. Mathematically,
they are indexed by the stochastic process «,. Consequently, contin-
gency detection in power systems becomes a problem of estimating
a, correctly when it jumps, on the basis of output observations. At
t = kr, the internal continuous state x, = x(kr) is also unknown
and must be estimated from the same output y. As a result, we must
develop reliable joint estimation algorithms for estimating both «;, and
x; simultaneously.

This joint estimation problem in power systems encounters many
challenging issues, including detectability, joint estimation algorithms,
convergence, and reliability. For instance, power systems are compli-
cated network systems. In the N — 1 reliability standard of power
systems, one considers a fault on one transmission line, with other
transmission lines under normal operating conditions. It will be shown
in our case studies that the resulting system matrices A(i) will typically
share common eigenvalues since only a small part of the grid has
changed its parameter values. In our recent theoretical work [17], it
has been shown that without using input assistance, the stochastic
hybrid system is not detectable, namely, some contingencies cannot be
detected by the existing sensor systems.

Due to this complication, to ensure the ability to detect contin-
gencies, it is necessary to add a small probing input u. When the
input is applied to an unknown subsystem with unknown initial state,
the output contains both the input response and initial-state response.
Input design and contingency detection algorithms are critical in this
complicated situation.
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5.1. Input design principles

First, we demonstrate by a simple example that the input must be
suitably designed. Otherwise, even with input assistance, contingency
detection may not be achievable.

Example 2. Consider an RSLS with two subsystems: A(1) = [_04 05],

1 -4 0 1
B(1) = [1 0 _10], B2) = H c@)=112]

We need to detect o, € {1,2} by using the output measurement data.
We first note that these two subsystems have the same eigenvalue
—4, so they cannot be distinguished without assistance from a probing
input. Suppose that we use the unit step U(s) = 1/s as the input signal.
Then the two subsystems have respective transfer functions G,(s) =

! L _ 2549 . = L 2 _ _3s+18 i
ats = € R; Gy(s) = + = € R. Their

(s+4)(s+5) . s+4 s+10 (s+4)(s+10)_
total respective responses to the input and (unknown) initial state are

], C) =111} A@Q) = [

v =ae™ +ae™ +9/20 — (1/4)e™ — (1/5)e™,
() =bre ™ 4 bye™ % 19720 — (1/4)e ¥ — (1/5)e™ 1%,

for t € [0,7), where ay,a,,b,,b, are determined by the initial states.
Denote their difference as

oM =y -y
= (a; —b)e™ + (ay — 1/5)e™ + (b, — 1/5)e™ 1.

Then, the difference becomes 6(r) = 0,1 € [0,7) if a; = by, a, = 1/5, b, =
1/5. In other words, we cannot uniquely determine if the subsystem is
a, =1 or ¢ =2 in this case.

The theoretical foundation of this method was introduced in [17]
and is summarized below. As a first-time introduction of this method
into power system contingency detection, some algorithm details are
added and important related features of power system dynamic mod-
els and their impact on contingency detection are highlighted in the
following part.

Example 2 indicates that the input signal must be suitably designed
to enhance detectability on contingencies, and some design principles
must be followed in selecting suitable inputs for contingency detection.
Consider the set G = {G,,i = 1,...,m} of m distinct subsystems. The
set of poles of G; (or equivalently the eigenvalues of A(i)) is A; and
A=UL A

Assumption 3. Let U" C R be the set of non-vanishing inputs u whose
Laplace transforms U(s) satisfy the following conditions: (i) U(s) =
% is coprime, namely, no common pole-zero pairs (i.e., no pole-zero
cancellation); (ii) U(s) contains at least one pole A of any multiplicity

g > 1such that 4 ¢ A and G;(4), i = 1,...,m, are distinct.

The following result from [17] forms the foundation for the input
design.

Theorem 1 ([17]). For the set of distinct subsystems G = {G;,i =1, ..., m},
if the input u € U, where U is given in Assumption 3, then for any
7 > 0, the true subsystem can be uniquely determined from the data set
D, = {y@t) #£0,t € [0,7)}, regardless of the actual initial state x(0).

5.2. Two-time-scale framework and joint estimation algorithms

The contingency detection and continuous-state observers will be
implemented in a two-time-scale framework. Each time segment [kz,
(k+1)7) is divided into two intervals. The first smaller interval [kz, k7 +
7] is designated for estimating «, (that is, identifying the active sub-
system). During this time interval, the probing input u that satisfies the
conditions of Theorem 1 is applied to assist in determination of a;. Once
a, =i is correctly estimated, in the second interval [kz + 7y, (k + 1)7),
a feedback-based observer is implemented for the ith subsystem to
estimate its observable sub-state z'.



S. Yuan et al.

5.2.1. Detection of a;, using data in [kt,kt + 7]
a, is detected by the following algorithm.

Algorithm 1 Detection of «;, under Unknown Initial State

1: Calculate the eigenvalues of all A(i) and denote as A. Take u
satisfying Assumption 3 as the designed input.

2: Under the designed input u, collect and sample the output data on
y(@) in [kt, kT + 7). Define a small sampling interval #;: Let Ny =
7/t be an integer. Obtain sampled values y(kz+£1,), £ =0, ..., N,.

3: Compute the input responses of the subsystems (assuming zero
initial condition): y::"”"’(f) = (Gu)(kt+¢ty), £ =0,..., N,. Since the
input u and the system transfer functions G; are known in advance,
these responses can be computed off-line and stored.

4: Derive the net initial state responses of the subsystems: y/*(¢) =
vk + 1) =y (&), £ =0,..., N,.

5: Estimate the initial observable sub-states of the subsystems:
Derive the numerical Gramians of the subsystems I, =
21;20 txeATmfx:Cr(i)c(i)em)m and Y, = 220 tSeAT(i)ftSCT(i)y:ret(f).
Then, % = I7'Y,.

6: Calculate the total estimated outputs of the subsystems: 3;(¢)
C(i)eAV LR ker) + ¥ (£).

7: Calculate the output prediction errors of the subsystems: ¢, =
ﬁ Z;’;’O |9:(€) — y(kt + ¢t )|. This error measure may be replaced

by the common Euclidean norm or the max norm.
8: Determine a;: @, = argmin,_; _, ;.

5.2.2. Observer design for x in [kt + 7, (k + D7)

After determining o, = i correctly, an observer can be designed to
estimate z/(kt + 7). The errors in estimating z’ and z are denoted by
e, =z =2 and e = z — Z, respectively. Denote /(1) = |le;0|l, u} =
lle; kD)l u@) = eI, uy = lle(kD)].

Assumption 4. We assume that (i) The RSLS has independent subspace
error dynamics, namely z’ depends on z’ only, independent of «;, under
zero input. For such systems, the subsystem state equation will be ¢, =
A;ze, in open-loop without input; (ii) B, is known.

Under Assumption 4, we consider the following three cases in the
error analysis:

Case 1: t € [k, kT + 7]

In this time interval, all subsystem observers are running open-loop.
Since a probing input is applied, under Assumption 4, the dynamics
of 2/ are 2/ = Fx = FA\x + F;Bu = Al,z' + F;B,u. The observer is
Zl = AL,Z' + F;Byu. It follows that the error dynamics are ¢; = A
and |le;(k7 + 7o)l < ¥., for some y! > 0. Let yy = max,_; 7.

Case 2: t € [kt + 7j, (k+ 1)7) and a; # i

In the interval t+ € [kr + 7(,(k + 1)7), the input « = 0. When
the ith subsystem is running open-loop, we have the error bound
M, < rilletkr + 7o)l < ylyiui,ap # i, for some constant yi. Let
Y =maXoy !

Case 3:t € [kt + 7, (k+ 1)) and a; = i

Observe that if a, = i, the observer error dynamics for the ith
subsystem are ¢; = (4}, — L;C})e; = Ale;. By designing the observer gain
L; properly, AL = A}, —L,C} can have n; eigenvalues with real part less

i
0%

than —a; with a; > 0. Under the given , for some ¢ > 0, lleeT|| < cemai
which can be made arbitrarily small by choosing sufficiently large a;.
Consequently, ;4;(+1 < villekr + ro)ll < yéy(’;y;(, where ! can be made
arbitrarily small. Denote y, = max,_; __,7.. The actual value y, will be
selected later to ensure convergence of the organized observer for the
entire system.

In summary, combining the three cases, we have

t € [kr, kT + 73],

6 = { Apeis _
! Iiq=iyAce; + Lo 2y Apyeis 1 € [kt + 7, (k + D).
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It follows that the errors are bounded by b = riHL, with i =

I{ak=i}7£7¢i + I{ak#i}y{y;. Consequently, u; < (H;‘Zly})ﬂ{). Under As-
sumption 1, the process {y;} is i.i.d. with P(y; = yly)) = p, P(y; =
y{y;) =1 - p;. The following result can be easily obtained and we omit

the proof here. Subsystem observers are designed to satisfy (11).

Lemma 1. Under Assumptions 1 and 4, for any y, < 1, the pole positions
in the observer design can be selected such that

Y =GPy <y, < 1L amn
5.3. Convergence analysis

Assumption 5. «(¢) is independent of ¢;(0).

Define the continuous-time error u'(f) = |l¢;(t)||, which is a scalar
stochastic process. Also, define e(t) = [e;(?), ..., e,,(t)]T. The estimation
error on x is e(t) = x(t) — X(¢). Therefore, we can obtain the convergence
results.

Theorem 2 ([17]). Under Assumption 5 and the observer design in
Lemma 1, we have (i) M}; converges strongly and exponentially to 0 as
k — oo; (i) pi(t) converges strongly and exponentially to 0 as t — oo;
(iii) ||le(®)|| converges strongly and exponentially to 0 as t > co.

Remark 3. The method of this paper is able to detect the occurrence
of a contingency within the time interval of length r after it occurs. If
this contingency remains uncleared, then in the next consecutive time
intervals, our method will still create the same warning by identifying
the continuing existence of the contingency (the system stays in the
same subsystem). However, if a contingency is cleared, «;, will switch
to a new value (representing the new subsystem of cleared status), the
method will detect it as well. On the other hand, contingency clearance
is not part of the method.

Remark 4. In power system, the value m represents the size of all possi-
ble scenarios including normal operations and contingencies. Detection
of a special contingency is translated to the problem of determining
the value of a(f). Our methods rely on the fundamental property of
unique determination of the discrete state a;. As long as the required
conditions are satisfied, which can be verified off-line from system
models, the capability of detecting a fault will not depend on the size
of the grid. For this reason, this methodology is scalable. In addition,
the dimension n of the SHS is determined by the dynamic buses,
not the size of the grid. In our case studies in Section 6, both the
5-Bus system and 33-Bus system have the same dimension for their
respective virtual dynamic systems. While the SHS models are highly
scalable in representing power grids of all types and sizes, the actual
computational burden and complexity reduction by employing unique
features for simplified algorithm implementation are still important and
can be further investigated in the future.

6. Case studies

Since the outputs of power systems are affected by both the dis-
crete states (the subsystem) and unknown internal states, contingency
detection problems must always include estimation of both discrete
and continuous states, implying that joint estimation is necessary. In
the following case studies, all algorithm implementations involve si-
multaneous contingency detection and state estimation. In this section,
the model derivations, the design process, performance evaluation, and
related issues are illustrated through case studies.

6.1. IEEE 5-Bus system

In this subsection, we study the IEEE 5-Bus system shown in Fig. 2.
The power system structure and data are from the open-source infor-
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-—r Bus1 Bus 3

™ Bus4

Bus 2 —’—— Bus5

Fig. 2. IEEE 5-Bus system.

mation in [19]. Bus 1 and Bus 2 are dynamic dispatchable buses and
Buses 3-5 are non-dynamic non-dispatchable buses.

In the original system, Bus 1 is a slack bus with unlimited and
instantaneous power and its voltage (both magnitude and angle) is a
reference point. This will significantly simplify the SHS model. In con-
sideration of renewal generation situations under potential islanding
operations (all bus angles can change dynamically during operation and
no bus has unlimited power), we consider the more general scenarios
and designate both Buses 1 and 2 as PV buses with bus voltage
magnitudes controlled to their rated values (by reacive power control,
that is not detailed here). In light of rapid advancement in Var compen-
sation technology such as flexible AC transmission systems (FACTS), we
assume that all buses have their voltage magnitudes maintained near
the rated values during normal operations, but their values may jump
during contingency.

6.1.1. Stochastic hybrid system models

(i) Dynamic Systems

The most common dynamic generator types are synchronous gen-
erators [20]. Denote w; = 8;,z¢ = [6);0;],w; = 6,29 = [6,;w,]. The
dynamic systems are Mo + g(w;) = P{" = PL + P! + P?', Mya, +
&(wy) = P’" PL+P12+P32+P42 P52 where the real power flow from

s U5 cos(@,,+6,), and 6,; = 6,—5,. The
damping term g,(w) has the 11near part b;w, with b; > 0 i =1,2. The
three non-dynamic non-dispatchable buses have real-power equations
PL _ P” Pzz Pzn PL Pz4 n P” P54 PL st P45 Denote

‘1 = [z zd] z”d = [53, 64, 55] The dynamlc systems can be expressed as
a nonhnear state equation z¢ = FO(z¢, z") + Bjv+ D¢ = F(z4,¢") +
Byv+ D74, where v = [Pi"; Pi"] ¢ = [PL; Pf] ,f"d = [P} L PH,

V
Bus i to Bus j is P = x_ cos(0;;)—

and
0 0 0 0
/M, 0 | -1/M, 0
Bi=1" o | 27| o 0
0 1/M, 0 —-1/M,

d_zdu_

Denote the perturbatlons from the nominal values as x = z
—nd

v-0,¢{ = f ,¢" = ¢ — ¢ By (6), the dynamic systems can

be linearized near the nominal operating points as x = Ax + Bju +

D¢ + D,¢", where the matrices are the related Jacobian matrices A =
oOF(z4 o) D, = OF (24 ¢

029 L _zd gnd _7rd 772 o¢nd d _zd_pnd _ 7

The nominal operating condition defined in [19,21] is used here
with the nominal bus voltages, generation powers and load powers
listed in Table 1 with real power P (MW) and reactive power Q (MVar).
The base MVA is Sz = 100 MVA and the base voltage is Vz = 230 kV.
The bus line parameters, shown in Table 2, are extracted from [19].

Under the per-unit system, the normalized generator parameters are
M, = 1.9 and b, = 0.2 with equivalent time constant T} = M, /b, =9.5
second for Generator 1, and M, = 0.9, b; = 0.16 with equivalent
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Table 1

IEEE 5-Bus system bus data.
Bus V (p.u. £ rad) P o] P, (o)}
1 1.0620 129 —-7.42 0 0
2 1.0474£ - 2.8063 40 30 20 10
3 1.02422 - 4.997 0 0 45 15
4 1.0236.2 — 5.3291 0 0 40 5
5 1.0179£ - 6.1503 0 0 60 10

Table 2

IEEE 5-Bus system line parameters.

Line Resistance (p.u.) Reactance (p.u.) Z (p.u X0 rad)
1-2 0.02 0.06 0.06£1.25
1-3 0.08 0.24 0.2521.25
2-3 0.06 0.25 0.26£1.33
2-4 0.06 0.18 0.1941.25
2-5 0.04 0.12 0.1321.25
3-4 0.01 0.03 0.03£1.25
4-5 0.08 0.24 0.2521.25

time constant T, = M, /b, = 5.625 second for Generator 2. Under the
aforementioned operating conditions, we obtain

0 1 0 0

| 77926  -0.1053 -7.7926 0

- 0 0 0 1
—-20.3866 0 20.3866 —0.1778

(ii) Subsystems

This paper aims to present a framework in which a small number
of sensors can potentially detect a large set of contingencies. For
example, suppose that a power system has 50 buses of which 10 buses
are dynamic and others are non-dynamic. If each dynamic bus has a
second-order state space model, then the virtual power grid model will
be of order 20. It is noted that for cost reduction and maintenance
simplification, it is highly desirable to reduce sensor complexity. Then
a related question is: Will it be possible to use only one PMU to achieve
one-line fault detection (N — 1 scenario) on all lines? Our algorithms
indicate that this is possible, as long as the transfer functions from
the control inputs to the sensor are distinct and the input is properly
designed. In this simulation study, we will use the sensor that measures
5, (@ PMU), i.e., C =[1,0,0,0]. We will demonstrate that although this
is a voltage phasor sensor, it is sufficient for detecting a line fault.

6.1.2. Evaluation scenarios and input design

In this case study, we assume balanced line faults and use an
equivalent one-phase model to represent them. In consideration of the
N-1 reliability requirements in power systems, we focus on a fault on
one transmission line with different scenarios for evaluation. Line (2,3)
which is the longest transmission line in the system, is selected. The
line faults are characterized by jumps in the impedance values X,;.
Four cases are considered: (1) Normal Operation: « = 1 : X,3 = 0.26,
with probability p; = 0.9; (2) Line Fault 1 (Reduced Impedance):
a = 2 ! X,; = 0.1, with probability p, = 0.06; (3) Line Fault 2:
a = 3 : X,; = 0.06, with probability p; = 0.03; (4) Line Fault 3
(Disconnection): a =4 : X,3; = 10000, with probability p, = 0.01.

The corresponding A matrices are:

0 1 0 0
77926  —0.1053 —7.7926 0
Al = 0 0 0 1 ’
—20.3866 0 20.3866 —0.1778
) 1 0 0o |
77967  —0.1053 —7.7967 0
A = 0 0 0 1 ’
—20.5843 0 20.5843 —0.1778
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Probing |
0.06 r‘oblng np‘ut

0.04 - 1

u(t)

0.02 - 1

0 . . . .
0 0.01 0.02 0.03 0.04 0.05

Output

1.98

y(t)

1.96

1.94 . . . .
0 0.01 0.02 0.03 0.04 0.05

Time

Fig. 3. The probing input u(r) and the output y(r) in [0, 7).

) 1 0 0 |
77978  —0.1053 —7.7978 0
A = 0 0 0 1 ’
—20.6409 0 20,6409 —0.1778
) 1 0 o |
77571 —0.1053 —7.7571 0
A = 0 0 0 1 ’
—18.6540 0 18.6540 —0.1778

respectively. It is easy to verify that under C = [1,0,0,0], the corre-
sponding observability matrices W (1), W (2), W (3), W (4) are full rank.
As a result, the stochastic hybrid system has observable subsystems.
For this reason, state decomposition is not needed, and we will directly
estimate x under each detected subsystem.

We first calculate the eigenvalues of A(i), which are {—5.388,5.2302,
0,-0.1253}, {-5.407,5.2491,0,-0.1252}, {-5.412,5.2545,0,—0.1251},
{—5.2181,5.0616,0,—0.1266}. Since they share the common eigenvalue
0, an input is needed to detect different systems. Select u = asint with
a > 0, which satisfies the conditions of Theorem 1 (namely, U(s) = ﬁ,
Assumption 3 is satisfied). By using a small a, this probing signal will
have a negligible impact on the system’s normal operation. For this case
study, a = 0.1 is used, although smaller values of a can still work.

6.1.3. Results and discussions

(i) Detection of Subsystems

As an example, taking = = 2.5 and 7, = 0.05, we show the detection
of a, for + € [0,7;). Suppose the initial state is [2,—1,1,2], and the
true oy = 1. Now we estimate «, by Algorithm 1. Under the probing
input u(r) = 0.1sin(z), Fig. 3 shows the curve of u(¢) and y(r). According
to Algorithm 1, we calculate the output prediction errors of the four
subsystems, then we obtain &; = 2.7464x 10714, ¢, = 1.6518x 107, &5 =
21253 x 1077, g, = 1.4480 x 1078. Therefore, @, = 1, which detects the
subsystem accurately.

(ii) Observer Design and Convergence

The pole placement design is used for designing observer feedback
gains. For example, if we choose the desired closed-loop poles as A =
[4.8,-3.6,—4,—4.4], then the Matlab function L; = place(AT (i), CT, ),
i =1,2,3,4, yields the suitable feedback gains and the closed-loop error
dynamics with Al = A() - L,C, i =1,2,3,4.

Take 7 = 2.5 and 7, = 0.05. The initial estimation error is selected
to be e(0) = [2,—1,1,2]T with the error norm \/1_0 Fig. 4 shows that a;
can be accurately detected and the estimation errors are convergent.

(iii) Robustness against Measurement Errors

We now consider measurement noise and show the impact of out-
put measurement errors on contingency detection accuracy. For the
one-sensor case (i.e., C = [1,0,0,0]), suppose that the standard de-
viation is ¢ = 0.005, and the measured output value is § = y + od,
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Fig. 5. The detection of @, and the estimation error trajectory.

where d is the noise with uniform distribution in [-0.5,0.5]. Take r =
2.5,79 = 0.05,4 = [-4.8,-3.6, -4, —4.4]. Fig. 5 shows that a; can still be

accurately detected. However, the steady-state error is big.

1000Suose
0 0 1 of°"PP

o = 0.005I,. Then under the same 7 and r;, and the same pole positions,
the steady-state error becomes smaller, see Fig. 6.

These results demonstrate that adding sensors (such as PMUs) can
provide more information on the internal states and hence can reduce
state estimation errors. Note that the noise effect of the added sensor
is a side effect that needs to be overcome in the algorithms. Our
algorithms have the established convergence properties that the mea-
surement noises can be overcome and accurate discrete and continuous
state estimation can be achieved.

Next, we use two sensors §; and §,, i.e., C = [

6.2. IEEE 33-Bus system

To elucidate our algorithms in a more comprehensive context, we
utilize the IEEE 33-Bus system [22,23] as an illustrative example.
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Fig. 6. The detection of @, and the estimation error trajectory.

6.2.1. Modeling and linearization of the IEEE 33-Bus system

The original 33-Bus system [22] contains one slack bus tied to the
large grid and the remaining buses are PQ-type load buses. For eval-
uation of renewable systems, more local generators have been added.
Following the enhanced 33-Bus evaluation system proposed in [24], in
this simulation study, Bus 1 remains as a slack bus and two generators
are added, at Bus 18 and Bus 33, shown in Fig. 7. The generator
buses are dynamic buses whose local state space models for real power
management are represented by their swing equations. All other buses
remain as PQ-type load buses as in the original configuration and
non-dynamic. The slack bus voltage is set as the reference bus with
constant voltage 120 (pu), whose P and Q injections are unlimited
and instantaneous in balancing powers in each step. Consequently, the
slack bus is non-dynamic. All bus and load parameters are from the
power flow data in [22] and obtained from the 33-Bus case file in
MATPOWER [23,25,26]. The base power of the IEEE 33-Bus system
is 100 (MW) and the base voltage is ¥ = 230 (kV).

The nonlinear dynamic models for Bus 18 and Bus 33 are sum-
marized below. Denote ;3 = 85,33 = 833. The dynamic systems
are

out
- Py

out
R

Mgy + gig(wyg) = Py

My3i33 + g33(w33) = P}

where P is the total transmitted power from Bus i to its neighboring
buses. Denote the line admittance Y;; = |Y;;|£y;; and shunt admittance
Y, = |Yl<y;.
Since Bus 18 (and Bus 33) has only one neighboring Bus 17 (and
Bus 32), we have
P8 —

out

VislYiglcos(rig) + VigVi71Yig 171 cos(Sig = 817 = r15.17)s

and similarly for Bus 33. The damping term is assumed to be linear
with b;g = 0.22, b33 = 0.12. The normalized inertias are Mg = 1.8 and
M3 =009.

Dynamic interactions of generators with the power grid are different
from the traditional power flow analysis and introduce a new iteration
scheme. During the transient time, P # P/® + P)8 which drives
changes in §,3. The new §,3 then enters power flow analysis to result
in new power flow status, including the new Polft; similarly for Bus
33. As a result, during transient calculation of the power flow status,
we designate the 66 dependent variables in power flow calculation via
MATPOWER as Z = [Podw, Q(‘fw, P,,0Q,, V"¢, §"], where the superscript d
refers to the dynamic buses 18 and 33, nd refers to the load buses 2—17
and 19 — 32, and the subscript s refers to the slack bus 1.
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Under the generation powers PILS = 1.29 pu and P;f = 0.89 pu, the
equilibrium point (the stationary operating condition) is calculated as
5,5 = —0.01 (degree), @3 = 0, 533 = 0.12 (degree), @33 = 0. The slack
bus provides real power 3.94 pu. The corresponding values of Z at the
equilibrium point are denoted by Z.

Denote x = (3;g, 5,833, 033), u = [PI8, P33], the state equation
is x = fy(x,G(83.633),u) = f(x,u). Then the Jacobian matrix at the
equilibrium point x =%, Z = Z is
_0fo(x. Z.u) afo(x, Z,u)
ST Yoz

Based on the actual expressions of f(x,u), the Jacobian matrix is
given by

0Z

A — .
x=x,2=27 oxT |x=x,2=7

x=x,Z=7

0 1 0 0
18 18
— 1 ()Pm" — big — 1 aPaur 0
A= Ms 98 Mg Mg 0533
0 0 0 1
33 33
__L 9P __ L %P by
My3 0613 M33 0533 M3

Utilizing the initial 33-Bus power flow data sourced from [22,23]>
and employing MATPOWER for power flow analysis along with the
computation of partial derivatives, we obtain

0 1 0 0
A= —-1.1280 -0.1222 -0.0120 0
0 0 0 1

—0.0344 0 —4.4785 —-0.1333

6.2.2. Evaluation scenarios and input design

Let the line impedance of line (i, j) be denoted by X; ;. Three cases
are considered: (1) Normal Operation: « = 1 : X;, = 0.05753 and
Xy607 = 0.17732, with probability p; = 0.9; (2) Line Fault 1 (Increased
Impedance of Line (1, 2)): « = 2 : X;, = 0.5753, with probability
p, = 0.06; (3) Line Fault 2 (Increased Impedance of Line (26,27)):
a =3 : X557 = 17732, with probability p; = 0.04. The corresponding
A(i) matrices are:

) 1 0 0o |
11280 —0.1222  —0.0120 0
Al = 0 0 0 1 ’
—0.0344 0 44785 —0.1333
[ o 1 0 0o |
11281 —0.1222  —0.0127 0
A = 0 0 0 1 ’
~0.0386 0 —44877 —0.1333
) 1 0 0o |
11277 —0.1222  —0.0115 0
A®) = 0 0 0 1
~0.0299 0 45179 —0.1333

We first calculate the eigenvalues of A(i), which are {-0.0611 +
1.0602i, —0.0611 - 1.0602i, —0.0667 + 2.1152i,
-0.0667 — 2.1152i}, {-0.0611 + 1.0603i,—0.0611 — 1.0603i,—0.0667 +
2.1174i,-0.0667—-2.1174i}, {—0.0611+1.0601i, —0.0611—-1.0601i, —0.0667+
2.1245i,-0.0667 — 2.1245i}. Select u = 0.1sint¢ as the probing input,
which satisfies the conditions of Theorem 1 (namely, U(s) = %,
Assumption 3 is satisfied).

6.2.3. Results and discussions

(i) Detection of Subsystems

Take r = 4.5 and 7, = 0.9. We show the detection of «, for 7 € [0, 7))
as an example. Suppose the initial state is [-1,2,1,2], and the true
ay = 1. Now we estimate a, by Algorithm 1. Under the probing input

2 For the original data for the buses, links, generators, and loads of the
33-Bus system, please refer to the case33 file in MATPOWER, see [25,26].
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Fig. 8. The probing input u(r) and the output y(r) in [0, 7).

u(t) = 0.1sin(¢), Fig. 8 shows the curve of u(r) and y(r). According
to Algorithm 1, we calculate the output prediction errors of the four
subsystems, then we obtain &; = 7.5964x 10713, ¢, = 8.1380x 1075, &5 =
2.4539x107*. Therefore, @, = 1, which detects the subsystem accurately.

(ii) Observer Design and Convergence

We suppose that the sensor is on &5, i.e., C = [1,0,0,0]. The
pole placement design is used for designing observer feedback gains.
If we choose the desired closed-loop poles as 4 = [-4,-3.2,—4.8, —4.4],
then the Matlab function L, = place(AT(i),CT, 1), yields the suitable
feedback gains and the closed-loop error dynamics with Ai = A()-L,C,
i=1,2,3.

Take v = 4.5 and 75 = 0.9. The initial estimation error is selected
to be e(0) = [-1,2,1,2]T with the error norm v/10. Fig. 9 shows that
a, can be accurately detected and the estimation error is convergent. It
should be pointed out that one sensor can identify different line faults.

(iii) Packet Delivery

Suppose that §, and 6, are independently measured. Denote C(1) =

[(1) g (1) 8 for normal operation, C(2) = [1,0,0,0] for failure of

Sensor 2 (§; measurement only), C(3) = [0, 0, 1,0] for failure of Sensor 1
(6, measurement only), and C(4) = [0, 0,0, 0] for failure on both sensors.
Suppose that the packet delivery ratio for Sensor 1 is p; = 0.95 and for
Sensor 2 is p, = 0.97. This data acquisition scheme can be modeled by
an i.i.d. stochastic process o, € S = {1, ...,4} with p; = p;p, = 0.9215,

11
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Fig. 9. The detection of «; and the estimation error trajectory.

Py = p1(1=py) =0.0285, p3 = (1 = py)p, =0.0485, py = (1 — p)(1 = pp) =
0.0015.

The pole placement method is used for designing observer feedback
gains for a, = 1,2,3. Since C(4) = 0, the observer can only run open-
loop. For example, if we choose the desired closed-loop poles as 4 =
[-1,-0.8,—1.2,—1.5], then the Matlab function L; = place(A’, C’(i), A),
yields the suitable feedback gains and the closed-loop error dynamics
with AL = A~ L,C(i), i = 1,2,3.

Take 7 =5 and 7, = 1. The initial estimation error is selected to be
e(0) = [-1,2,1,2]T with the error norm \/E Fig. 10 shows that «;, can
be accurately detected and the estimation errors are convergent.

7. Concluding remarks

This paper introduces a new approach for contingency detection
in MPS. The approach employs a stochastic hybrid system model in
the state space form that captures both jumps from contingencies and
internal dynamics of continuous states. Since system dynamics contain
rich information on changes of system structures and parameters, the
same output measurements for normal power system operation, such
as PMUs, frequencies, voltages, etc., can be used to detect contingen-
cies of different types, causes, and locations. Model derivations, input
design, detection algorithms, state estimation, and their stability and
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Fig. 10. The detection of a; and the estimation error trajectory.

convergence properties have been established. Practical systems have
been used to demonstrate the results.

Power system models may include modeling errors and unknown
parameters. Parameter estimation, system identification, and related
adaptive estimation schemes in SHSs are important problems, but at
present are open issues in their theoretical foundations and algorithms.
Advancement in this direction will be an important step forward. Also,
some implementation issues from computational aspects, nonlinear
perturbations, and uncertainties in models and signals will be highly
interesting issues to investigate in the future.
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