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A B S T R A C T

This paper introduces a new stochastic hybrid system (SHS) framework for contingency detection in modern
power systems (MPS). The framework uses stochastic hybrid system representations in state space models
to expand and facilitate capability of contingency detection. In typical microgrids (MGs), buses may contain
various synchronous generators, renewable generators, controllable loads, battery systems, regular loads, etc.
For development of SHS models in power systems, this paper introduces the concept of dynamic and non-
dynamic buses. By converting a physical power grid into a virtual linearized state space model and representing
contingencies as random switching of system structures and parameters, this paper formulates the contingency
detection problem as a joint estimation problem of discrete events and continuous states in stochastic hybrid
systems. This method offers unique advantages, including using common measurement signals on voltage and
current synchrophasors to detect different types and locations of contingencies, avoiding expensive local direct
fault measurements and detecting certain contingencies that cannot be directly measured. The method employs
a small and suitably-designed probing signal to sustain the ability of persistent contingency detection. Joint
estimation algorithms are presented with their proven convergence and reliability properties. Examples that
use an IEEE 5-Bus system demonstrate the main ideas and derivation steps. Simulation case studies on an IEEE
33-Bus system are used for detecting transmission line faults and sensor interruptions.
1. Introduction

Resilience of modern power systems (MPS) mandates fast and accu-
rate detection of cyber–physical contingencies in diversified categories,
including line faults, generator failures, sensor malfunctions, commu-
nication system disruptions, among many others [1–3]. Contingency
etection in power systems is a critical and challenging task. Effective
nd timely contingency detection has multiple advantages and is of
reat importance. First, it enables rapid response to emerging issues,
acilitating timely mitigation actions to prevent cascading failures and
ystem outages. Second, accurate unexpected event detection can en-
ance system resiliency by minimizing downtime and reducing the risk
f widespread disruption. Additionally, it helps maintain system stabil-
ty and ensure a continuous supply of power, thereby protecting the
ntegrity of critical infrastructure. Effective unexpected event detection
s therefore a cornerstone for enhancing the reliability, resilience, and
erformance of MPS.
Traditionally, unique and dedicated local sensors and switching

ircuits have been designed and implemented at numerous locations
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on transmission lines, buses, generators, and users. These detection
devices are exemplified by power line sensors, fault circuit indicators,
fault passage indicators, over-current relays, and so on. Enhancement
of reliability can also be achieved by using existing sensor systems with
advanced detection methodologies and algorithms [4–6].

This paper introduces a new approach that employs system dynam-
ics and their switching for expanding the capability of contingency
detection. This approach offers several appealing advantages. For ex-
ample, an existing sensor such as phasor measurement unit (PMU) or
a frequency sensor can be used to detect many types and different
locations of contingencies. This much enhanced capability is achieved
by embedding contingencies within dynamic systems so that a switch-
ing from a normal operating condition to a faulty condition caused
by a contingency can be detected as two different dynamic systems.
This leads to the stochastic hybrid system (SHS) framework of power
systems. SHSs are dynamic systems characterized by a combination of
continuous dynamics and discrete events, where uncertainties such as
discrete events and noise are modeled as stochastic processes. In an
vailable online 11 May 2024
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SHS, continuous dynamics delineate the temporal evolution of system
variables, while discrete events represent instantaneous alterations or
transitions between different system modes. The stochastic nature of
these transitions means that they occur randomly based on probability,
thus introducing unpredictability into system behavior. This paper for-
mulates MPS dynamics using continuous differential equations, while
representing system interruptions and faults as discrete events, thereby
establishing an SHS model. This new framework for modeling power
systems was introduced in the companion paper [7] that treats also
state estimation problems. This paper is focused on contingency de-
tection. Since this approach must rely on system dynamics to detect
contingency and estimate state simultaneously, they face numerous
challenges. This paper aims to resolve these challenges and introduce
useful algorithms in the SHS framework.

Recently, many efforts have been made on microgrids (MGs) [8–10].
This paper considers power grids whose buses may contain various tra-
ditional synchronous generators and renewable generators, controllable
loads, energy storage systems, battery systems, regular loads, and so on.
Their system dynamics are represented by nonlinear state space models.
Contingencies are represented by jumps in system structures (such as
loss of a transmission line, loss of communication channel in an inter-
val), model parameters (such as impedance jumps in transmission lines
and generation parameters), loss of a member (loss of a load cluster on
a bus), among many other scenarios. Most power system contingencies
occur randomly. Adding such random jumps into dynamic models, the
system models become stochastic state-space hybrid systems.

Due to their critical importance, contingency detection and state
estimation problems in power systems have been investigated exten-
sively. For example, the Ref. [11] proposed a support-vector-machine-
based fault localization methodology to identify and localize transmis-
sion line faults occurring at any location in a power grid based on
PMUs measurements. The authors in [12] focused on the detection
and classification of the faults on electrical power transmission line
using artificial neural networks. A method of fault detection and clas-
sification was presented in [13] for power transmission lines based on
convolutional sparse autoencoder. A robust fault detection and discrim-
ination technique for transmission lines was proposed in [14], which
utilizes a robust method of phasor estimation to compute accurate fault
impedance along with a feature value extracted from the samples of
voltage and current signals. A new algorithm was introduced in [15] for
short-circuit fault detection and identification based on state estimation
taking into account the measurements in active distribution systems.

Most of the existing fault-detection methods employ hardware-
based, local, and special-purpose monitoring and protection devices,
such as relays, ESD protection systems, voltage surge and over-current
protection devices, impedance analysis schemes, etc. These physical
systems are reliable but costly with limited versatility. In contrast to
the aforementioned references, this paper provides a different method
by using SHSs, which treats system interruptions and faults as dis-
crete events, and expresses the dynamics of different subsystems using
differential equations. Consequently, the detection is transformed into
an estimation problem of discrete states. The dynamic interactions
among local systems greatly expand the capability of a sensor for
detecting contingencies of different types and in different locations.
This important feature has been shown in our case studies on the IEEE
33-Bus system. Within the SHS framework, this paper is focused on
exploring the potential of using common sensors such as PMUs for de-
tecting contingency and estimating internal states jointly, for enhancing
resilience and expanding the capability of contingency detection. To
the best of our knowledge, this paper is the first effort in applying the
SHS to detect contingencies in power systems. Our approach is based
on the theoretical foundation of our recent papers [16,17]. It should be
emphasized that as a newly developed theoretical work, applications of
the results from [16,17] in power systems are highly challenging, in-
cluding derivation of virtual dynamic SHS models, their linearizations,
2

algorithm implementation, and convergence validation, etc. By using r
collaboratively dynamic hybrid system models, stochastic information
on system jumps, and advanced observer design methods, this paper
achieves contingency detection and state estimation simultaneously.

The main contributions of this paper are summarized as follows:

1. Together with [7], this paper employs the dynamic and non-
dynamic buses and develops the methods of combining these
into a virtual power grid as an SHS. A dynamic bus is rep-
resented by a differential equation and a non-dynamic bus is
represented by an algebraic equation. This concept is essential
for deriving SHSs for the entire power grid, which is funda-
mentally different from traditional classifications of buses as
dispatchable/non-dispatchable or PV/PQ/Slack buses.

2. It introduces an approach of using SHSs for joint contingency
detection and state estimation. The interwinding nature of con-
tinuous state and switching processes makes it necessary to
perform joint estimation for contingency detection. By employ-
ing the rich information from the dynamic system models, it
becomes possible to jointly detect contingencies and estimate
the continuous states by using only limited numbers of sensors.
The joint estimation problem is much more complicated than
the state estimation problems in power systems since the latter
assumes that the dynamic system is known.

3. It introduces a design method for selecting a probing input
such that contingencies of different types and locations can
be detected by using only a limited set of sensors. A mode-
modulated input design method is presented so that detectability
on contingencies can be persistently sustained.

4. It develops a two-time-scale scheme and algorithms for
jointly detecting contingencies and estimating the continuous
states simultaneously. Convergence properties of the algorithms
are established.

5. It employs two common IEEE testing systems to validate and
evaluate models, detection algorithms, observer design, con-
vergence properties, and algorithm robustness. The methods of
this paper are highly scalable. The complexity of the virtual
dynamic SHS depends on the number of dynamic buses that can
be numerically derived by using commercial software packages
of power flow analysis such as MATPOWER. These numerical
methods have been used in case studies on the IEEE 33-Bus
system.

The paper is organized as follows. Section 2 defines notations and
the main problems of this paper. Section 3 derives state space models
for power systems. Sensor systems, contingencies, and stochastic hybrid
systems are described in Section 4. Section 5 presents observer design
procedures and detection algorithms, and establishes convergence. Per-
formance evaluation and case studies are discussed in Section 6. The
main conclusions of this paper are summarized in Section 7.

2. Preliminaries

For a column vector 𝑣 ∈ R𝑛, ‖𝑣‖ is its Euclidean norm. For a matrix
𝑀 ∈ R𝑛×𝑚, 𝑀⊤ is its transpose, 𝜆(𝑀) is an eigenvalue of 𝑀 , and
𝜎(𝑀) =

√

𝜆(𝑀⊤𝑀) is a singular value of 𝑀 . The kernel or null space
f 𝑀 ∈ R𝑛×𝑚 is ker(𝑀) = {𝑥 ∈ R𝑚 ∶ 𝑀𝑥 = 0} and its range is
ange(𝑀) = {𝑦 = 𝑀𝑥 ∶ 𝑥 ∈ R𝑚}. For a subspace U ⊆ R𝑛 of dimension
, a matrix 𝑀 ∈ R𝑛×𝑝 is said to be a base matrix of U, written as
= Base(U), if the column vectors of 𝑀 are linearly independent and

ange(𝑀) = U. A function 𝑦(𝑡) ∈ R in a time interval [0, 𝜏) is piecewise
ontinuously differentiable if [0, 𝜏) can be divided into a finite number
f subintervals [𝑡𝑘−1, 𝑡𝑘), 𝑘 = 1,… ,𝓁, 𝑡0 = 0, 𝑡𝓁 = 𝜏 such that 𝑦(𝑡) is right
ontinuous in [𝑡𝑘−1, 𝑡𝑘) and continuously differentiable, to any order as
eeded, in (𝑡𝑘−1, 𝑡𝑘). The space of such functions is denoted by [0, 𝜏).
For an AC power microgrid, all voltages and currents will be

⃗ ⃗
epresented by their phasors 𝑉 = 𝑉 ∠𝛿 and 𝐼 = 𝐼∠𝛾. Sensors in
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power systems are highly diversified, including PMUs, frequency, volt-
age, power measurements, signal transducers for protection, rotational
speed, torque, temperature, among many others. Furthermore, commu-
nication systems are used for data transmission. The microgrid can be
viewed as a networked system with 𝛾 buses connected by transmission
lines. This network system is represented by a graph  = { , }
where  is the set of buses (vertices in a graph) and  is the set
of feeder/transmission links (edges in a graph). The transmission line
(𝑖, 𝑗) ∈  is bi-directional, i.e., (𝑖, 𝑗) ∈  ⇒ (𝑗, 𝑖) ∈  . For Bus 𝑖, its
neighbor 𝑖 is the set of buses 𝑗 that are connected to it, namely,
𝑖 = {𝑗 ∈  ∶ (𝑖, 𝑗) ∈  or (𝑗, 𝑖) ∈ }. By default, (𝑖, 𝑖) ∈  .

. State space models of power grids

We now summarize the main SHS framework introduced and de-
ailed in [7]. We should emphasize that this framework is highly gen-
ral, but for demonstration, we will use real power management prob-
ems in case studies. Power systems are highly complicated and inter-
onnected systems. Microgrids are unique in which power generations
an come from traditional synchronous generators, power-electronics-
ased wind turns, solar panels, battery systems, and controllable loads.
o derive a state space model representation of SHSs for power systems,
t is essential to characterize bus types according to their dynamics.
onsequently, we divide buses into two types: dynamic buses and
on-dynamic buses. This classification is independent of traditional
lassifications such as PV/PQ buses or dispatchable/non-dispatchable
uses.

.1. Dynamic buses

If Bus 𝑖 is dynamic, then it is represented by a local state space
odel,

̇ 𝑑𝑖 = 𝑓𝑖(𝑧𝑑𝑖 , 𝑧
−
𝑖 , 𝑣

𝑑
𝑖 ,𝓁

𝑑
𝑖 ), (1)

here 𝑧𝑑𝑖 is the local state variable, 𝑧
−
𝑖 is the neighboring variables of

us 𝑖 which may be state variables of its neighboring dynamic buses,
r intermediate variables of its neighboring non-dynamic buses, 𝑣𝑑𝑖
is the local control input, and 𝓁𝑑

𝑖 is the local congregated total load
hat cannot be actively controlled, such as regular loads, fixed-blade
ind generators, solar panels, constant-charging-current batteries, etc.
he control input is set of controllable (i.e., dispatchable) variables
uch as generator mechanical power input, controllable loads, actively
anaged battery systems, tunable wind turbines, etc. If a bus does not
ave any dispatchable assets, then 𝑣𝑑𝑖 = 0.

3.2. Non-dynamic buses

If the 𝑗th bus is non-dynamic, which is in a steady state or pseudo-
steady state, then it is represented by an implicit algebraic relationship,

0 = 𝑔𝑗 (𝑧𝑛𝑑𝑗 , 𝑧−𝑗 , 𝑣
𝑛𝑑
𝑗 ,𝓁𝑛𝑑

𝑗 ), (2)

where 𝑧𝑛𝑑𝑗 is the local state variable vector, 𝑧−𝑗 is the neighboring
variables, 𝑣𝑛𝑑𝑗 is the local control input, and 𝓁𝑛𝑑

𝑗 is the local load.

Remark 1. (1) Dynamic/non-dynamic designation is related to the
local system’s models. They do not affect the designation of power flow
analysis such as PV, PQ, slack buses. For example, a load is typically
considered as a PQ bus. If the load is a motor with its own dynamic
model, then the bus is a dynamic bus. Note that our system formulation
can accommodate any bus types in the traditional classification, includ-
ing the traditional types of PV, PQ, and slack buses. Mathematically,
for the four variables 𝑃 , 𝑄, 𝑉 , 𝛿 on each bus, one can fix any two
and designate the other two as dependent variables. For each type of
buses, it can be either dynamic or non-dynamic, depending on their
representation by differential equations or algebraic equations. (2) Tra-
ditionally, generators are dynamic. But fast reaction power sources like
3

batteries, may be simplified as non-dynamic and represented by their
near-steady-state algebraic relationships. For the same token, loads can
be either static (non-dynamic) or dynamic. The ZIP and exponential
load models are static. But induction motors are usually modeled as
dynamic systems, and so are exponential recovery load (ERL) models.
(3) Dynamic/non-dynamic bus classification can change when local
sensors and controllers are included. For example, PID controllers are
dynamic systems and after applying them to control a non-dynamic
system on a bus, the bus becomes dynamic. (4) Dynamic/non-dynamic
designation also does not affect whether a bus is dispatchable or not.
A dispatchable resource has controllable real or reactive powers to
participate in control or market of a power grid. It is represented as
part of the control input 𝑣𝑑𝑖 in (1).

The general nonlinear state equation (1) is highly versatile in repre-
enting dynamic systems on a bus. For example, this may be a common
wing equation for synchronous generators

𝑖𝜔̇𝑖 + 𝑔𝑖(𝜔𝑖) = 𝑃 𝑖𝑛
𝑖 − 𝑃𝐿

𝑖 − 𝑃 𝑜𝑢𝑡
𝑖 ,

here 𝛿𝑖 is its electric angle, 𝜔𝑖 = 𝛿̇𝑖, 𝑀𝑖 is the equivalent electric-side
nertia, 𝑔𝑖(⋅) represents the nonlinear damping effect, and 𝑔𝑖(⋅) is contin-
ously differentiable satisfying 𝜔𝑖𝑔𝑖(𝜔𝑖) > 0 for 𝜔𝑖 ≠ 0. Linearization of
𝑖(⋅) around 𝜔𝑖 = 0 is 𝑏𝑖𝜔𝑖 with 𝑏𝑖 > 0. Also, 𝑃 𝑜𝑢𝑡

𝑖 is the total transmitted
ower from Bus 𝑖 to its neighboring buses. As an extension, if it is
equired to include steam turbine control systems with generators, the
ynamic model will combine both turbine and generator dynamics,
nd state variables will then include flow rate and other mechanical
ystem variables. However, if a bus has a renewable generator or a
attery system with power-electronic-based control mechanisms, then
heir dynamic models will be different, inherited from the specific
ynamic models derived for such physical systems.
For both dynamic and non-dynamic buses, the interaction of the

ocal variables with their neighboring buses is based on the standard
ower flow relationships. Suppose that the transmission line between
us 𝑖 and Bus 𝑗 has impedance 𝑋𝑖𝑗∠𝜃𝑖𝑗 . The line current is

𝑖𝑗∠𝛾 =
𝑉𝑖∠𝛿𝑖 − 𝑉𝑗∠𝛿𝑗

𝑋𝑖𝑗∠𝜃𝑖𝑗
=

𝑉𝑖
𝑋𝑖𝑗

∠(𝛿𝑖 − 𝜃𝑖𝑗 ) −
𝑉𝑗
𝑋𝑖𝑗

∠(𝛿𝑗 − 𝜃𝑖𝑗 ).

enote 𝛿𝑖𝑗 = 𝛿𝑖−𝛿𝑗 . The complex power flow from Bus 𝑖 to Bus 𝑗 at Bus
is

𝑖𝑗 = 𝑉𝑖∠𝛿𝑖 × 𝐼𝑖𝑗∠(−𝛾) =
𝑉 2
𝑖

𝑋𝑖𝑗
∠𝜃𝑖𝑗 −

𝑉𝑖𝑉𝑗
𝑋𝑖𝑗

∠(𝜃𝑖𝑗 + 𝛿𝑖𝑗 ),

which implies that the transmitted real and reactive powers at Bus 𝑖 are

𝑃𝑖𝑗 =
𝑉 2
𝑖

𝑋𝑖𝑗
cos(𝜃𝑖𝑗 )−

𝑉𝑖𝑉𝑗
𝑋𝑖𝑗

cos(𝜃𝑖𝑗+𝛿𝑖𝑗 ), 𝑄𝑖𝑗 =
𝑉 2
𝑖

𝑋𝑖𝑗
sin(𝜃𝑖𝑗 )−

𝑉𝑖𝑉𝑗
𝑋𝑖𝑗

sin(𝜃𝑖𝑗+𝛿𝑖𝑗 ).

Although this paper will use real power management in case studies,
SHS modeling using (1) can certainly be used to represent many
other control problems such as voltage regulation using reactive power
management, control of flexible AC transmission (FACT) systems for
var compensation, battery system management for microgrids, etc.

3.3. Virtual dynamic state space models

Suppose that the 𝛾 buses in  contain 𝛾𝑑 dynamic buses and 𝛾𝑛𝑑 =
𝛾 − 𝛾𝑑 non-dynamic buses.1 Without loss of generality, let the first 𝛾𝑑
buses be dynamic. Define the states, inputs, loads, and outputs from all
buses,

1 Since this paper deals with state estimation under state space models, we
ssume that 1 ≤ 𝛾𝑑 ≤ 𝛾, namely at least one bus is dynamics. But 𝛾𝑛𝑑 = 0 is
possible, meaning that all buses are dynamic.
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𝑧𝑑 =

⎡

⎢

⎢

⎢

⎣

𝑧𝑑1
⋮
𝑧𝑑
𝛾𝑑

⎤

⎥

⎥

⎥

⎦

State variables of dynamic buses,

𝑧𝑛𝑑 =

⎡

⎢

⎢

⎢

⎣

𝑧𝑛𝑑
𝛾𝑑+1
⋮
𝑧𝑛𝑑𝛾

⎤

⎥

⎥

⎥

⎦

State variables of non-dynamic buses,

𝑧 =
[

𝑧𝑑

𝑧𝑛𝑑

]

All variables,

𝑣𝑑 =

⎡

⎢

⎢

⎢

⎣

𝑣𝑑1
⋮
𝑣𝑑
𝛾𝑑

⎤

⎥

⎥

⎥

⎦

Control variables of dynamic buses,

𝑣𝑛𝑑 =

⎡

⎢

⎢

⎢

⎣

𝑣𝑛𝑑
𝛾𝑑+1
⋮
𝑣𝑛𝑑𝛾

⎤

⎥

⎥

⎥

⎦

Control variables of non-dynamic buses,

𝑣 =
[

𝑣𝑑

𝑣𝑛𝑑

]

Control variables of all buses,

𝓁𝑑 =

⎡

⎢

⎢

⎢

⎣

𝓁𝑑
1
⋮
𝓁𝑑
𝛾𝑑

⎤

⎥

⎥

⎥

⎦

Loads of dynamic buses,

𝓁𝑛𝑑 =

⎡

⎢

⎢

⎢

⎣

𝓁𝑛𝑑
𝛾𝑑+1
⋮
𝓁𝑛𝑑
𝛾

⎤

⎥

⎥

⎥

⎦

Loads of non-dynamic buses,

𝓁 =
[

𝓁𝑑

𝓁𝑛𝑑

]

All loads.

y (2), for non-dynamic buses, we have

𝐺0(𝑧𝑛𝑑 , 𝑧𝑑 , 𝑣𝑛𝑑 ,𝓁𝑛𝑑 )

=

⎡

⎢

⎢

⎢

⎣

𝑔𝛾𝑑+1(𝑧𝑛𝑑𝛾𝑑+1, 𝑧
−
𝛾𝑑+1

, 𝑣𝑛𝑑
𝛾𝑑+1

,𝓁𝑛𝑑
𝛾𝑑+1

)
⋮

𝑔𝛾 (𝑧𝑛𝑑𝛾 , 𝑧−𝛾 , 𝑣
𝑛𝑑
𝛾 ,𝓁𝑛𝑑

𝛾 )

⎤

⎥

⎥

⎥

⎦

= 0.

For physical power grids, given 𝑧𝑑 , 𝑣𝑛𝑑 , 𝓁𝑛𝑑 , this equation has a unique
solution within permitted operating ranges, leading to the symbolic
relationship

𝑧𝑛𝑑 = 𝐻(𝑧𝑑 , 𝑣𝑛𝑑 ,𝓁𝑛𝑑 ). (3)

Furthermore, by the dynamic systems in (2),

̇ 𝑑 = 𝐹 0(𝑧𝑑 , 𝑧𝑛𝑑 , 𝑣𝑑 ,𝓁𝑑 ). (4)

Substituting (3) into (4), we obtain

̇ 𝑑 = 𝐹 0(𝑧𝑑 ,𝐻(𝑧𝑑 , 𝑣𝑛𝑑 ,𝓁𝑛𝑑 ), 𝑣𝑑 ,𝓁𝑑 ) = 𝐹 (𝑧𝑑 , 𝑣𝑑 , 𝑣𝑛𝑑 ,𝓁𝑑 ,𝓁𝑛𝑑 ). (5)

3.4. Linearization

In power system control problems, it is common to linearize the
nonlinear dynamics (5) near nominal operating points [1,18]. The
inearization process involves the following standard steps. Given the
teady-state loads 𝓁 = [𝓁

𝑑
,𝓁

𝑛𝑑
]⊤ and steady-state input real powers

𝑣 = [𝑣𝑑 , 𝑣𝑛𝑑 ]⊤, the steady-state 𝑧𝑑 (equilibrium point or the nominal
operating condition) is the solution to 𝐹 (𝑧𝑑 , 𝑣𝑑 , 𝑣𝑛𝑑 ,𝓁

𝑑
,𝓁

𝑛𝑑
) = 0.

By defining the perturbation variables from their nominal values as
𝑥 = 𝑧𝑑 − 𝑧𝑑 , 𝑢 = 𝑣𝑑 − 𝑣𝑑 , 𝑢𝑛 = 𝑣𝑛𝑑 − 𝑣𝑛𝑑 , 𝜁 = 𝓁𝑑 − 𝓁

𝑑
, 𝜁𝑛 = 𝓁𝑛𝑑 − 𝓁

𝑛𝑑
, the

inearized system is

𝑛 𝑛
4

̇ = 𝐴𝑥 + 𝐵1𝑢 + 𝐵2𝑢 +𝐷1𝜁 +𝐷2𝜁 , (6)
Fig. 1. A link in microgrids.

where the matrices are the related Jacobian matrices

𝐴 =
𝜕𝐹 (𝑧𝑑 , 𝑣𝑑 , 𝑣𝑛𝑑 ,𝓁𝑑 ,𝓁𝑛𝑑 )

𝜕𝑧𝑑
|

|

|

|

| 𝑧𝑑 = 𝑧𝑑 , 𝑣 = 𝑣,𝓁 = 𝓁

,

𝐵1 =
𝜕𝐹 (𝑧𝑑 , 𝑣𝑑 , 𝑣𝑛𝑑 ,𝓁𝑑 ,𝓁𝑛𝑑 )

𝜕𝑣𝑑
|

|

|

|

| 𝑧𝑑 = 𝑧𝑑 , 𝑣 = 𝑣,𝓁 = 𝓁

,

𝐵2 =
𝜕𝐹 (𝑧𝑑 , 𝑣𝑑 , 𝑣𝑛𝑑 ,𝓁𝑑 ,𝓁𝑛𝑑 )

𝜕𝑣𝑛𝑑
|

|

|

|

| 𝑧𝑑 = 𝑧𝑑 , 𝑣 = 𝑣,𝓁 = 𝓁

,

𝐷1 =
𝜕𝐹 (𝑧𝑑 , 𝑣𝑑 , 𝑣𝑛𝑑 ,𝓁𝑑 ,𝓁𝑛𝑑 )

𝜕𝓁𝑑

|

|

|

|

| 𝑧𝑑 = 𝑧𝑑 , 𝑣 = 𝑣,𝓁 = 𝓁

,

𝐷2 =
𝜕𝐹 (𝑧𝑑 , 𝑣𝑑 , 𝑣𝑛𝑑 ,𝓁𝑑 ,𝓁𝑛𝑑 )

𝜕𝓁𝑛𝑑

|

|

|

|

| 𝑧𝑑 = 𝑧𝑑 , 𝑣 = 𝑣,𝓁 = 𝓁

.

Example 1. Suppose that the generators can be represented by the
swing equations

𝑀𝑖𝜔̇𝑖 + 𝑔𝑖(𝜔𝑖) = 𝑃 𝑖𝑛
𝑖 − 𝑃𝐿

𝑖 − 𝑃 𝑜𝑢𝑡
𝑖 ,

here 𝛿𝑖 is its electric angle, 𝜔𝑖 = 𝛿̇𝑖, 𝑀𝑖 is the equivalent electric-
ide inertia, 𝑔𝑖(⋅) represents the nonlinear damping effect, and 𝑔𝑖(⋅)
s continuously differentiable satisfying 𝜔𝑖𝑔𝑖(𝜔𝑖) > 0 for 𝜔𝑖 ≠ 0.
inearization of 𝑔𝑖(⋅) around 𝜔𝑖 = 0 is 𝑏𝑖𝜔𝑖 with 𝑏𝑖 > 0. Also, 𝑃 𝑜𝑢𝑡

𝑖
is the total transmitted power from Bus 𝑖 to its neighboring buses,
i.e., 𝑃 𝑜𝑢𝑡

𝑖 =
∑

𝑗∈𝑖
𝑃𝑖𝑗 =

∑

𝑗∈𝑖

[

𝑉 2
𝑖

𝑋𝑖𝑗
cos(𝜃𝑖𝑗 ) −

𝑉𝑖𝑉𝑗
𝑋𝑖𝑗

cos(𝜃𝑖𝑗 + 𝛿𝑖𝑗 )
]

=

∑

𝑗∈𝑖
𝑞(𝛿𝑖, 𝛿𝑗 ), where 𝑞(𝛿𝑖, 𝛿𝑗 ) =

𝑉 2
𝑖

𝑋𝑖𝑗
cos(𝜃𝑖𝑗 ) −

𝑉𝑖𝑉𝑗
𝑋𝑖𝑗

cos(𝜃𝑖𝑗 + 𝛿𝑖𝑗 ). The
wo-Bus system shown in Fig. 1 has 𝜃12 = 90◦ which is the angle of
mpedance, namely the transmission line is lossless. Both buses are
ynamic dispatchable buses with state variables 𝑧𝑑1 = [𝛿1;𝜔1], 𝑧𝑑2 =
𝛿2;𝜔2]. Suppose that 𝑔1(𝜔1) = 𝑏1𝜔1, 𝑏1 > 0, and 𝑔2(𝜔2) = 𝑏2𝜔2, 𝑏2 > 0.
enote 𝛽 = 𝛽12 = 𝑉1𝑉2∕𝑋12 and 𝛿 = 𝛿1 − 𝛿2. Then, 𝑓1(𝑧𝑑1 , 𝑧

𝑑
2 ) =

𝜔1; −
𝑏1𝜔1
𝑀1

− 1
𝑀1

𝛽 sin(𝛿)
]

, 𝑓2(𝑧𝑑2 , 𝑧
𝑑
1 ) =

[

𝜔2; −
𝑏2𝜔2
𝑀2

− 1
𝑀2

𝛽 sin(−𝛿)
]

.

Given 𝑣1 = 𝑃 𝑖𝑛
1 , 𝑣2 = 𝑃 𝑖𝑛

2 , 𝓁
𝑑
1 = 𝑃𝐿

1 , 𝓁
𝑑
2 = 𝑃𝐿

2 , the equilibrium

oint is 𝜔1 = 0, 𝜔2 = 0, and 𝛿 = sin−1
(

𝑃 𝑖𝑛
1 −𝑃𝐿

1
𝛽

)

. Assume 𝑀1 = 1,

2 = 1.5, 𝑏1 = 0.2, 𝑏2 = 0.31, 𝛽 = 200, 𝑃 𝑖𝑛
1 = 100, 𝑃 𝑖𝑛

2 = 50, 𝑃𝐿
1 = 70, and

2
𝐿 = 80. Then, the equilibrium point is 𝛿 = 0.1506 (rad). Under these
given values, the linearized system is (6) with

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−197.7372 −0.2 197.7372 0

0 0 0 1
131.8248 0 −131.8248 −0.2067

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

𝐵1 =

⎡

⎢

⎢

⎢

⎢

0 0
1∕𝑀1 0
0 0

⎤

⎥

⎥

⎥

⎥

, 𝐷1=

⎡

⎢

⎢

⎢

⎢

0 0
−1∕𝑀1 0

0 0

⎤

⎥

⎥

⎥

⎥

, 𝐵2 = 0, 𝐷2 = 0.
⎣

0 1∕𝑀2⎦ ⎣

0 −1∕𝑀2⎦
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4. Contingencies and stochastic hybrid system models

4.1. Sensor systems and observability

For power system operation and contingency detection, many sen-
sors must be deployed, such as voltages, frequencies, PMUs, over-
current protection transducers, among many others. Sensor selection
and placement are important for managing SHSs. Mathematically, sen-
sor choice (which variable to measure) and location (which bus to
measure) are reflected in the output equation (6).

Adding a sensor system with 𝑦 = 𝐶𝑥 where 𝐶 is the sensing matrix,
we have the following state space model:
{

𝑥̇ = 𝐴𝑥 + 𝐵1𝑢 + 𝐵2𝑢𝑛 +𝐷1𝜁 +𝐷2𝜁𝑛,
𝑦 = 𝐶𝑥.

(8)

Remark 2. The system (8) is a linearized system whose variables are
perturbations from their nominal values. Physically, 𝑦 is the difference
between the measured value 𝑦measured and the nominal value 𝑦nominal at
the operating point. For example, the phasors on buses can be measured
by PMUs. Suppose that only 𝛿1 is measured, which can be represented
by 𝑦 = 𝛿1 − 𝛿1 = 𝐶1𝑥, with 𝐶1 = [1, 0, 0, 0]. It is easy to verify that
nder this observation equation, the system is observable. On the other
and, the measurement of the real power 𝑃12 = 𝛽 sin(𝛿) = 𝛽 sin(𝛿1 − 𝛿2)
can be represented as 𝑦 = 𝐶2𝑥, with 𝐶2 = [𝛽 cos(𝛿), 0,−𝛽 cos(𝛿), 0].
Different sensor systems affect observability, which characterizes if the
measured values are sufficient to determine the interval (unmeasured)
states. Under the system parameters in Example 1, if we measure the
power 𝑃12 with 𝑦 = 𝐶2𝑥 the observability matrix is

2 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 −1 0
0 1 0 −1

−329.5620 −0.2 329.5620 0.2067
66.7912 −329.5220 −66.7912 329.5193

⎤

⎥

⎥

⎥

⎥

⎦

,

which has rank 3. As a result, the state space model is not observable
in this case.

4.2. Contingency models

Power system contingencies are of diversified types. We list some
of the common types.

1. Transmission Line Grounding: A (balanced) transmission line
fault can change the impedance values |𝑍| on the line. For
example, a balanced grounding will reduce the impedance value.
In contrast, high-impedance faults are very common in case of
line faults. Since line impedances are parameters in the matrix
𝐴, a line fault will cause a jump in the 𝐴 matrix value.

2. Transmission Line Breaking: When a transmission line breaks
due to natural disasters or faulty components, the transmission
line’s impedance will experience a jump of 𝑋𝑖𝑗 to a much bigger
value;

3. Generator Excitation System Faults: Loss of excitation (LOE)
is a common fault in generators. LOE causes a sudden decrease
of the terminal voltage 𝑉 , with some other potential damages to
the generator.

4. Intentional Attack: Cyber attackers may intentionally damage
a sensor, a transmission line, a bus, creating a jump in system
structure or parameters.

Traditionally, contingencies are detected by special devices that
monitor the targeted buses and lines. For example, impedance relays
are very common devices for protecting high-voltage transmission lines
from faults. Under the SHS framework and our algorithms, a PMU on
one bus can potentially detect impedance jumps of many lines without
using special devices on these lines. This will be demonstrated in the
5

case studies. n
Power system contingencies can be generally modeled as jumps on
system matrices. Mathematically, we list all scenarios of contingencies
under study as a set  = {1,… , 𝑚} and use a jumping process 𝛼(𝑡) ∈ 
to represent the occurrence of the corresponding scenario. For example,
for the system in (7), the above-listed faults are reflected on the
coefficient 𝛽 = 𝑉1𝑉2∕𝑋12 as a switching of its value during contingency.
If the excitation system for Bus 1 experiences a loss-of-magnet fault on
its excitor, then 𝑉1 will drop. On the other hand, a partial transmission
line fault, such as a three-phase balanced fault, changes the impedance
value 𝑋12, leading to a jump in 𝛽 value. Suppose that 𝛽 changes its
value from 200 to 100. Then, the new 𝛿 value is 𝛿2 = 0.3047 and the
ystem’s matrix becomes the following new one:

2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−190.7878 −0.2 190.7878 0

0 0 0 1
127.1919 0 −127.1919 −0.2067

⎤

⎥

⎥

⎥

⎥

⎦

.

4.3. Randomly switched linear systems

The dependence of system matrices on contingencies can be rep-
resented by their values as functions of 𝛼, expressed as 𝐴(𝛼), 𝐵1(𝛼),
2(𝛼), 𝐷1(𝛼), 𝐷2(𝛼) and 𝐶(𝛼). Since contingencies occur randomly, 𝛼(𝑡)
s a stochastic process. Including the jumping process into the system
ynamics (8) introduces the following hybrid system:
{

𝑥̇ = 𝐴(𝛼)𝑥 + 𝐵1(𝛼)𝑢 + 𝐵2(𝛼)𝑢𝑛 +𝐷1(𝛼)𝜁 +𝐷2(𝛼)𝜁𝑛,
𝑦 = 𝐶(𝛼)𝑥.

(9)

his system is an RSLS. The contingency detection problem aims to
tudy joint discrete event detection and continuous state estimation of
SLSs.
The system matrices depend on the randomly switching process 𝛼(𝑡)

hat takes 𝑚 possible values in a discrete state space  = {1,… , 𝑚}. For
ach given value 𝑖 ∈ , the corresponding linear time invariant (LTI)
ystem in (9) with matrices (𝐶(𝑖), 𝐴(𝑖), 𝐵1(𝑖), 𝐵2(𝑖), 𝐷1(𝑖), 𝐷2(𝑖)) is called
he 𝑖th subsystem of the RSLS. We introduce the following assumptions
n the random switching process for the theoretical analysis.

ssumption 1. Given a sampling interval 𝜏, (i) the switching process
(𝑡) can switch only at the instants 𝑘𝜏, 𝑘 = 0, 1, 2,…, that generates
stochastic sequence {𝛼𝑘 = 𝛼(𝑘𝜏)} (the skeleton sequence); (ii) The
equence {𝛼𝑘} is independent and identically distributed (i.i.d.) with
robability Pr{𝛼𝑘 = 𝑖} = 𝑝𝑖 > 0, 𝑖 ∈ , and ∑𝑚

𝑖=1 𝑝𝑖 = 1; (iii) 𝛼𝑘 is
ndependent of 𝑥(0) and the Brownian motion 𝑤.

The main difference of Assumption 1 from [7] is that 𝛼(𝑡) cannot
e directly measured and must be estimated here in this paper. Note
lso that power system management usually imposes certain intervals
or data processing. For example, the PMU data rate of the Power Xpert
eter is 1024 samples per cycle. For contingency management, 160 ms
s the IEEE imposed limit for voltage sag/surge. For slower dynamics of
ower dispatch, a decision interval of 5 minutes is commonly used in
ractice. Mathematically, under this assumption, the random switching
rocess can be treated as a discrete-time stochastic sequence, rather
han a continuous-time process.
Under Assumption 1, 𝐴𝑘 = 𝐴(𝛼𝑘) =

∑𝑚
𝑖=1 𝐴(𝑖)1{𝛼𝑘=𝑖}, 𝐵

1
𝑘 = 𝐵1(𝛼𝑘) =

𝑚
𝑖=1 𝐵1(𝑖)1{𝛼𝑘=𝑖}, 𝐵2

𝑘 = 𝐵2(𝛼𝑘) =
∑𝑚

𝑖=1 𝐵2(𝑖)1{𝛼𝑘=𝑖}, 𝐶𝑘 = 𝐶(𝛼𝑘) =
𝑚
𝑖=1 𝐶(𝑖)1{𝛼𝑘=𝑖}, where 1𝐺 is the indicator function of the event 𝐺:
𝐺 = 1 if 𝐺 is true; and 1𝐺 = 0, otherwise. These are matrix-valued
andom variables. The sampled values of the signals are denoted by
𝑘 = 𝑥(𝑘𝜏), 𝑦𝑘 = 𝑦(𝑘𝜏).
The premise of this paper is to treat RSLSs whose initial states

re unknown and whose switching sequence 𝛼𝑘 cannot be directly
easured. As a result, both the continuous state 𝑥𝑘 and discrete state 𝛼𝑘
ust be estimated from the known input 𝑢(𝑡) and the observed output
(𝑡). The available data set in a time interval [0, 𝜏) is given by the

oise-free data set 𝜏 = {𝑦(𝑡), 𝑡 ∈ [0, 𝜏)} for a given 𝜏 > 0.
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4.4. State space decomposition

For the 𝑖th subsystem in , 𝐴(𝑖) and 𝐶(𝑖) are constant matrices,

nd its observability matrix is 𝑊 (𝑖) =

⎡

⎢

⎢

⎢

⎣

𝐶(𝑖)
𝐶(𝑖)𝐴(𝑖)

⋮
𝐶(𝑖)(𝐴(𝑖))𝑛−1

⎤

⎥

⎥

⎥

⎦

. Denote 𝑊 =

⎡

⎢

⎢

⎣

𝑊 (1)
⋮

𝑊 (𝑚)

⎤

⎥

⎥

⎦

as the combined observability matrix for . We note that

both 𝑊 (𝑖) and 𝑊 are deterministic matrices that contain only infor-
mation on subsystems. They do not involve actual switching sequences.
Thus, they can be evaluated off-line.

Assumption 2. (i) Subsystems may be unobservable, namely,
Rank(𝑊 (𝑖)) = 𝑛𝑖 ≤ 𝑛, 𝑖 ∈ ; (ii) 𝑊 is full column rank.

By Assumption 2, since the 𝑖th subsystem may be unobservable,
namely, Rank(𝑊 (𝑖)) = 𝑛𝑖 < 𝑛, we construct 𝑀𝑖 = Base(ker(𝑊 (𝑖))) ∈
R𝑛×(𝑛−𝑛𝑖) and select any 𝑁𝑖 ∈ R𝑛×𝑛𝑖 such that 𝑇𝑖 = [𝑀𝑖, 𝑁𝑖] is invertible.

The inverse of 𝑇𝑖 is decomposed into 𝑇 −1
𝑖 =

[

𝐾𝑖
𝐹𝑖

]

, where 𝐾𝑖 ∈ R(𝑛−𝑛𝑖)×𝑛

and 𝐹𝑖 ∈ R𝑛𝑖×𝑛.
The state transformation 𝑧𝑖 = 𝑇 −1

𝑖 𝑥 can be decomposed into 𝑧𝑖 =

𝑇 −1
𝑖 𝑥 =

[

𝐾𝑖𝑥
𝐹𝑖𝑥

]

=
[

𝑣𝑖

𝑧𝑖

]

where 𝑧𝑖 ∈ R𝑛𝑖 . Correspondingly, this coordinate

transformation leads to the transformed matrices 𝐴𝑖 = 𝑇 −1
𝑖 𝐴(𝑖)𝑇𝑖, 𝐵𝑖 =

𝑇 −1
𝑖 𝐵(𝑖), 𝐶 𝑖 = 𝐶(𝑖)𝑇𝑖, with the structures 𝐴𝑖 =

[

𝐴𝑖
11 𝐴𝑖

12
0 𝐴𝑖

22

]

, 𝐵𝑖 =
[

𝐵𝑖
1

𝐵𝑖
2

]

,

𝐶 𝑖 = [0, 𝐶 𝑖
2] with 𝐴𝑖

22 ∈ R𝑛𝑖×𝑛𝑖 and 𝐶 𝑖
2 ∈ R1×𝑛𝑖 . As a result, if we focus

only on the dynamics of the observable partial state 𝑧𝑖, we have
{

𝑧̇𝑖 = 𝐴𝑖
22𝑧

𝑖 + 𝐵𝑖
2𝑢,

𝑦 = 𝐶 𝑖
2𝑧

𝑖,
(10)

where (𝐶 𝑖
2, 𝐴

𝑖
22) is observable.

5. Contingency detection

Under our stochastic hybrid system models, contingencies are repre-
sented by jumps in system structures and parameters. Mathematically,
they are indexed by the stochastic process 𝛼𝑘. Consequently, contin-
gency detection in power systems becomes a problem of estimating
𝛼𝑘 correctly when it jumps, on the basis of output observations. At
𝑡 = 𝑘𝜏, the internal continuous state 𝑥𝑘 = 𝑥(𝑘𝜏) is also unknown
and must be estimated from the same output 𝑦. As a result, we must
develop reliable joint estimation algorithms for estimating both 𝛼𝑘 and
𝑥𝑘 simultaneously.

This joint estimation problem in power systems encounters many
challenging issues, including detectability, joint estimation algorithms,
convergence, and reliability. For instance, power systems are compli-
cated network systems. In the 𝑁 − 1 reliability standard of power
systems, one considers a fault on one transmission line, with other
transmission lines under normal operating conditions. It will be shown
in our case studies that the resulting system matrices 𝐴(𝑖) will typically
share common eigenvalues since only a small part of the grid has
changed its parameter values. In our recent theoretical work [17], it
has been shown that without using input assistance, the stochastic
hybrid system is not detectable, namely, some contingencies cannot be
detected by the existing sensor systems.

Due to this complication, to ensure the ability to detect contin-
gencies, it is necessary to add a small probing input 𝑢. When the
input is applied to an unknown subsystem with unknown initial state,
the output contains both the input response and initial-state response.
Input design and contingency detection algorithms are critical in this
complicated situation.
6

5.1. Input design principles

First, we demonstrate by a simple example that the input must be
suitably designed. Otherwise, even with input assistance, contingency
detection may not be achievable.

Example 2. Consider an RSLS with two subsystems: 𝐴(1) =
[

−4 0
0 −5

]

,

𝐵(1) =
[

1
1

]

, 𝐶(1) = [1 1]; 𝐴(2) =
[

−4 0
0 −10

]

, 𝐵(2) =
[

1
1

]

, 𝐶(2) = [1 2].

We need to detect 𝛼𝑘 ∈ {1, 2} by using the output measurement data.
We first note that these two subsystems have the same eigenvalue

−4, so they cannot be distinguished without assistance from a probing
input. Suppose that we use the unit step 𝑈 (𝑠) = 1∕𝑠 as the input signal.
Then the two subsystems have respective transfer functions 𝐺1(𝑠) =
1

𝑠+4 + 1
𝑠+5 = 2𝑠+9

(𝑠+4)(𝑠+5) ∈ ; 𝐺2(𝑠) =
1

𝑠+4 + 2
𝑠+10 = 3𝑠+18

(𝑠+4)(𝑠+10) ∈ . Their
total respective responses to the input and (unknown) initial state are

𝑦1(𝑡) = 𝑎1𝑒
−4𝑡 + 𝑎2𝑒

−5𝑡 + 9∕20 − (1∕4)𝑒−4𝑡 − (1∕5)𝑒−5𝑡,
𝑦2(𝑡) = 𝑏1𝑒

−4𝑡 + 𝑏2𝑒
−10𝑡 + 9∕20 − (1∕4)𝑒−4𝑡 − (1∕5)𝑒−10𝑡,

for 𝑡 ∈ [0, 𝜏), where 𝑎1, 𝑎2, 𝑏1, 𝑏2 are determined by the initial states.
enote their difference as
𝛿(𝑡) = 𝑦1(𝑡) − 𝑦2(𝑡)

= (𝑎1 − 𝑏1)𝑒−4𝑡 + (𝑎2 − 1∕5)𝑒−5𝑡 + (𝑏2 − 1∕5)𝑒−10𝑡.

hen, the difference becomes 𝛿(𝑡) ≡ 0, 𝑡 ∈ [0, 𝜏) if 𝑎1 = 𝑏1, 𝑎2 = 1∕5, 𝑏2 =
∕5. In other words, we cannot uniquely determine if the subsystem is
𝑘 = 1 or 𝛼𝑘 = 2 in this case.

The theoretical foundation of this method was introduced in [17]
nd is summarized below. As a first-time introduction of this method
nto power system contingency detection, some algorithm details are
dded and important related features of power system dynamic mod-
ls and their impact on contingency detection are highlighted in the
ollowing part.
Example 2 indicates that the input signal must be suitably designed

o enhance detectability on contingencies, and some design principles
ust be followed in selecting suitable inputs for contingency detection.
onsider the set 𝐺 = {𝐺𝑖, 𝑖 = 1,… , 𝑚} of 𝑚 distinct subsystems. The
et of poles of 𝐺𝑖 (or equivalently the eigenvalues of 𝐴(𝑖)) is 𝛬𝑖 and
= ∪𝑚

𝑖=1𝛬𝑖.

ssumption 3. Let  ⊂ 0 be the set of non-vanishing inputs 𝑢 whose
aplace transforms 𝑈 (𝑠) satisfy the following conditions: (i) 𝑈 (𝑠) =
𝑏(𝑠)
𝑎(𝑠) is coprime, namely, no common pole-zero pairs (i.e., no pole-zero
ancellation); (ii) 𝑈 (𝑠) contains at least one pole 𝜆 of any multiplicity
𝑞 ≥ 1 such that 𝜆 ∉ 𝛬 and 𝐺𝑖(𝜆), 𝑖 = 1,… , 𝑚, are distinct.

The following result from [17] forms the foundation for the input
design.

Theorem 1 ([17]). For the set of distinct subsystems 𝐺 = {𝐺𝑖, 𝑖 = 1,… , 𝑚},
if the input 𝑢 ∈  , where  is given in Assumption 3, then for any
𝜏 > 0, the true subsystem can be uniquely determined from the data set
𝜏 = {𝑦(𝑡) ≢ 0, 𝑡 ∈ [0, 𝜏)}, regardless of the actual initial state 𝑥(0).

5.2. Two-time-scale framework and joint estimation algorithms

The contingency detection and continuous-state observers will be
implemented in a two-time-scale framework. Each time segment [𝑘𝜏,
(𝑘+1)𝜏) is divided into two intervals. The first smaller interval [𝑘𝜏, 𝑘𝜏+
𝜏0] is designated for estimating 𝛼𝑘 (that is, identifying the active sub-
system). During this time interval, the probing input 𝑢 that satisfies the
conditions of Theorem 1 is applied to assist in determination of 𝛼𝑘. Once
𝛼𝑘 = 𝑖 is correctly estimated, in the second interval [𝑘𝜏 + 𝜏0, (𝑘 + 1)𝜏),
a feedback-based observer is implemented for the 𝑖th subsystem to

𝑖
estimate its observable sub-state 𝑧 .
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𝑒

5.2.1. Detection of 𝛼𝑘 using data in [𝑘𝜏, 𝑘𝜏 + 𝜏0]
𝛼𝑘 is detected by the following algorithm.

Algorithm 1 Detection of 𝛼𝑘 under Unknown Initial State
1: Calculate the eigenvalues of all 𝐴(𝑖) and denote as 𝛬. Take 𝑢
satisfying Assumption 3 as the designed input.

2: Under the designed input 𝑢, collect and sample the output data on
𝑦(𝑡) in [𝑘𝜏, 𝑘𝜏 + 𝜏0]. Define a small sampling interval 𝑡𝑠: Let 𝑁0 =
𝜏0∕𝑡𝑠 be an integer. Obtain sampled values 𝑦(𝑘𝜏+𝓁𝑡𝑠), 𝓁 = 0,… , 𝑁0.

3: Compute the input responses of the subsystems (assuming zero
initial condition): 𝑦𝑖𝑛𝑝𝑢𝑡𝑖 (𝓁) = (𝐺𝑖𝑢)(𝑘𝜏 +𝓁𝑡𝑠), 𝓁 = 0,… , 𝑁0. Since the
input 𝑢 and the system transfer functions 𝐺𝑖 are known in advance,
these responses can be computed off-line and stored.

4: Derive the net initial state responses of the subsystems: 𝑦𝑛𝑒𝑡𝑖 (𝓁) =
𝑦(𝑘𝜏 + 𝓁𝑡𝑠) − 𝑦𝑖𝑛𝑝𝑢𝑡𝑖 (𝓁), 𝓁 = 0,… , 𝑁0.

5: Estimate the initial observable sub-states of the subsystems:
Derive the numerical Gramians of the subsystems 𝛤𝑖 =
∑𝑁0

𝓁=0 𝑡𝑠𝑒
𝐴⊤(𝑖)𝓁𝑡𝑠𝐶⊤(𝑖)𝐶(𝑖)𝑒𝐴(𝑖)𝓁𝑡𝑠 and 𝑌𝑖 =

∑𝑁0
𝓁=0 𝑡𝑠𝑒

𝐴⊤(𝑖)𝓁𝑡𝑠𝐶⊤(𝑖)𝑦𝑛𝑒𝑡𝑖 (𝓁).
Then, 𝑥𝑖𝑘 = 𝛤−1

𝑖 𝑌𝑖.
6: Calculate the total estimated outputs of the subsystems: 𝑦𝑖(𝓁) =

𝐶(𝑖)𝑒𝐴(𝑖)𝓁𝑡𝑠𝑥𝑖(𝑘𝜏) + 𝑦𝑖𝑛𝑝𝑢𝑡𝑖 (𝓁).
7: Calculate the output prediction errors of the subsystems: 𝜀𝑖 =

1
𝑁0+1

∑𝑁0
𝓁=0 |𝑦𝑖(𝓁) − 𝑦(𝑘𝜏 +𝓁𝑡𝑠)|. This error measure may be replaced

by the common Euclidean norm or the max norm.
8: Determine 𝛼𝑘: 𝛼𝑘 = argmin𝑖=1,…,𝑚 𝜀𝑖.

5.2.2. Observer design for 𝑥 in [𝑘𝜏 + 𝜏0, (𝑘 + 1)𝜏)
After determining 𝛼𝑘 = 𝑖 correctly, an observer can be designed to

estimate 𝑧𝑖(𝑘𝜏 + 𝜏0). The errors in estimating 𝑧𝑖 and 𝑧 are denoted by
𝑒𝑖 = 𝑧𝑖 − 𝑧𝑖 and 𝑒 = 𝑧 − 𝑧, respectively. Denote 𝜇𝑖(𝑡) = ‖𝑒𝑖(𝑡)‖, 𝜇𝑖

𝑘 =
‖𝑒𝑖(𝑘𝜏)‖, 𝜇(𝑡) = ‖𝑒(𝑡)‖, 𝜇𝑘 = ‖𝑒(𝑘𝜏)‖.

Assumption 4.We assume that (i) The RSLS has independent subspace
error dynamics, namely 𝑧̇𝑖 depends on 𝑧𝑖 only, independent of 𝛼𝑘, under
zero input. For such systems, the subsystem state equation will be 𝑒̇𝑖 =
𝐴𝑖
22𝑒𝑖 in open-loop without input; (ii) 𝐵𝑘 is known.

Under Assumption 4, we consider the following three cases in the
error analysis:

Case 1: 𝑡 ∈ [𝑘𝜏, 𝑘𝜏 + 𝜏0]
In this time interval, all subsystem observers are running open-loop.

Since a probing input is applied, under Assumption 4, the dynamics
of 𝑧𝑖 are 𝑧̇𝑖 = 𝐹𝑖𝑥̇ = 𝐹𝑖𝐴𝑘𝑥 + 𝐹𝑖𝐵𝑘𝑢 = 𝐴𝑖

22𝑧
𝑖 + 𝐹𝑖𝐵𝑘𝑢. The observer is

̇̂𝑧𝑖 = 𝐴𝑖
22𝑧

𝑖 + 𝐹𝑖𝐵𝑘𝑢. It follows that the error dynamics are 𝑒̇𝑖 = 𝐴𝑖
22𝑒𝑖,

and ‖𝑒𝑖(𝑘𝜏 + 𝜏0)‖ ≤ 𝛾 𝑖𝑜, for some 𝛾 𝑖𝑜 > 0. Let 𝛾0 = max𝑖=1,…,𝑚 𝛾 𝑖𝑜.
Case 2: 𝑡 ∈ [𝑘𝜏 + 𝜏0, (𝑘 + 1)𝜏) and 𝛼𝑘 ≠ 𝑖
In the interval 𝑡 ∈ [𝑘𝜏 + 𝜏0, (𝑘 + 1)𝜏), the input 𝑢 ≡ 0. When

the 𝑖th subsystem is running open-loop, we have the error bound
𝜇𝑖
𝑘+1 ≤ 𝛾 𝑖1‖𝑒𝑖(𝑘𝜏 + 𝜏0)‖ ≤ 𝛾 𝑖1𝛾

𝑖
𝑜𝜇

𝑖
𝑘, 𝛼𝑘 ≠ 𝑖, for some constant 𝛾 𝑖1. Let

𝛾1 = max𝑖=1,…,𝑚 𝛾 𝑖1.
Case 3: 𝑡 ∈ [𝑘𝜏 + 𝜏0, (𝑘 + 1)𝜏) and 𝛼𝑘 = 𝑖
Observe that if 𝛼𝑘 = 𝑖, the observer error dynamics for the 𝑖th

subsystem are 𝑒̇𝑖 = (𝐴𝑖
22−𝐿𝑖𝐶 𝑖

2)𝑒𝑖 = 𝐴𝑖
𝑐𝑒𝑖. By designing the observer gain

𝐿𝑖 properly, 𝐴𝑖
𝑐 = 𝐴𝑖

22−𝐿𝑖𝐶 𝑖
2 can have 𝑛𝑖 eigenvalues with real part less

than −𝑎𝑖 with 𝑎𝑖 > 0. Under the given 𝜏, for some 𝑐 > 0, ‖𝑒𝐴𝑖
𝑐𝜏
‖ ≤ 𝑐𝑒−𝑎𝑖𝜏

which can be made arbitrarily small by choosing sufficiently large 𝑎𝑖.
Consequently, 𝜇𝑖

𝑘+1 ≤ 𝛾 𝑖𝑐‖𝑒𝑖(𝑘𝜏 + 𝜏0)‖ ≤ 𝛾 𝑖𝑐𝛾
𝑖
𝑜𝜇

𝑖
𝑘, where 𝛾 𝑖𝑐 can be made

arbitrarily small. Denote 𝛾𝑐 = max𝑖=1,…,𝑚 𝛾 𝑖𝑐 . The actual value 𝛾𝑐 will be
selected later to ensure convergence of the organized observer for the
entire system.

In summary, combining the three cases, we have

̇ 𝑖 =
{

𝐴𝑖
22𝑒𝑖, 𝑡 ∈ [𝑘𝜏, 𝑘𝜏 + 𝜏0],

𝑖 𝑖
7

𝐼{𝛼𝑘=𝑖}𝐴𝑐𝑒𝑖 + 𝐼{𝛼𝑘≠𝑖}𝐴22𝑒𝑖, 𝑡 ∈ [𝑘𝜏 + 𝜏0, (𝑘 + 1)𝜏).
It follows that the errors are bounded by 𝜇𝑖
𝑘+1 ≤ 𝛾 𝑖𝑘𝜇

𝑖
𝑘, with 𝛾 𝑖𝑘 =

𝐼{𝛼𝑘=𝑖}𝛾
𝑖
𝑐𝛾

𝑖
𝑜 + 𝐼{𝛼𝑘≠𝑖}𝛾

𝑖
1𝛾

𝑖
𝑜. Consequently, 𝜇

𝑖
𝑘 ≤

(

𝛱𝑘
𝑗=1𝛾

𝑖
𝑗

)

𝜇𝑖
0. Under As-

sumption 1, the process {𝛾 𝑖𝑘} is i.i.d. with 𝑃 (𝛾 𝑖𝑘 = 𝛾 𝑖𝑐𝛾
𝑖
𝑜) = 𝑝𝑖, 𝑃 (𝛾 𝑖𝑘 =

𝛾 𝑖1𝛾
𝑖
𝑜) = 1 − 𝑝𝑖. The following result can be easily obtained and we omit

the proof here. Subsystem observers are designed to satisfy (11).

Lemma 1. Under Assumptions 1 and 4, for any 𝛾∗ < 1, the pole positions
in the observer design can be selected such that

𝛾 𝑖 = (𝛾 𝑖𝑐𝛾
𝑖
𝑜)
𝑝𝑖 (𝛾 𝑖1𝛾

𝑖
𝑜)
(1−𝑝𝑖) ≤ 𝛾∗ < 1. (11)

5.3. Convergence analysis

Assumption 5. 𝛼(𝑡) is independent of 𝑒𝑖(0).

Define the continuous-time error 𝜇𝑖(𝑡) = ‖𝑒𝑖(𝑡)‖, which is a scalar
stochastic process. Also, define 𝑒(𝑡) = [𝑒1(𝑡),… , 𝑒𝑚(𝑡)]⊤. The estimation
error on 𝑥 is 𝜖(𝑡) = 𝑥(𝑡)−𝑥(𝑡). Therefore, we can obtain the convergence
results.

Theorem 2 ([17]). Under Assumption 5 and the observer design in
Lemma 1, we have (i) 𝜇𝑖

𝑘 converges strongly and exponentially to 0 as
𝑘 → ∞; (ii) 𝜇𝑖(𝑡) converges strongly and exponentially to 0 as 𝑡 → ∞;
(iii) ‖𝜖(𝑡)‖ converges strongly and exponentially to 0 as 𝑡 → ∞.

Remark 3. The method of this paper is able to detect the occurrence
of a contingency within the time interval of length 𝜏 after it occurs. If
this contingency remains uncleared, then in the next consecutive time
intervals, our method will still create the same warning by identifying
the continuing existence of the contingency (the system stays in the
same subsystem). However, if a contingency is cleared, 𝛼𝑘 will switch
to a new value (representing the new subsystem of cleared status), the
method will detect it as well. On the other hand, contingency clearance
is not part of the method.

Remark 4. In power system, the value 𝑚 represents the size of all possi-
ble scenarios including normal operations and contingencies. Detection
of a special contingency is translated to the problem of determining
the value of 𝛼(𝑡). Our methods rely on the fundamental property of
unique determination of the discrete state 𝛼𝑘. As long as the required
conditions are satisfied, which can be verified off-line from system
models, the capability of detecting a fault will not depend on the size
of the grid. For this reason, this methodology is scalable. In addition,
the dimension 𝑛 of the SHS is determined by the dynamic buses,
not the size of the grid. In our case studies in Section 6, both the
5-Bus system and 33-Bus system have the same dimension for their
respective virtual dynamic systems. While the SHS models are highly
scalable in representing power grids of all types and sizes, the actual
computational burden and complexity reduction by employing unique
features for simplified algorithm implementation are still important and
can be further investigated in the future.

6. Case studies

Since the outputs of power systems are affected by both the dis-
crete states (the subsystem) and unknown internal states, contingency
detection problems must always include estimation of both discrete
and continuous states, implying that joint estimation is necessary. In
the following case studies, all algorithm implementations involve si-
multaneous contingency detection and state estimation. In this section,
the model derivations, the design process, performance evaluation, and
related issues are illustrated through case studies.

6.1. IEEE 5-Bus system

In this subsection, we study the IEEE 5-Bus system shown in Fig. 2.

The power system structure and data are from the open-source infor-
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Fig. 2. IEEE 5-Bus system.

ation in [19]. Bus 1 and Bus 2 are dynamic dispatchable buses and
uses 3–5 are non-dynamic non-dispatchable buses.
In the original system, Bus 1 is a slack bus with unlimited and

nstantaneous power and its voltage (both magnitude and angle) is a
eference point. This will significantly simplify the SHS model. In con-
ideration of renewal generation situations under potential islanding
perations (all bus angles can change dynamically during operation and
o bus has unlimited power), we consider the more general scenarios
nd designate both Buses 1 and 2 as PV buses with bus voltage
agnitudes controlled to their rated values (by reacive power control,
hat is not detailed here). In light of rapid advancement in Var compen-
ation technology such as flexible AC transmission systems (FACTS), we
ssume that all buses have their voltage magnitudes maintained near
he rated values during normal operations, but their values may jump
uring contingency.

.1.1. Stochastic hybrid system models
(i) Dynamic Systems
The most common dynamic generator types are synchronous gen-

rators [20]. Denote 𝜔1 = 𝛿̇1, 𝑧𝑑1 = [𝛿1;𝜔1], 𝜔2 = 𝛿̇2, 𝑧𝑑2 = [𝛿2;𝜔2]. The
dynamic systems are 𝑀1𝜔̇1 + 𝑔1(𝜔1) = 𝑃 𝑖𝑛

1 − 𝑃𝐿
1 + 𝑃 21

1 + 𝑃 31
1 ,𝑀2𝜔̇2 +

2(𝜔2) = 𝑃 𝑖𝑛
2 −𝑃𝐿

2 +𝑃 12
2 +𝑃 32

2 +𝑃 42
2 +𝑃 52

2 , where the real power flow from

us 𝑖 to Bus 𝑗 is 𝑃 𝑖𝑗
𝑗 =

𝑉 2
𝑗

𝑋𝑖𝑗
cos(𝜃𝑖𝑗 )−

𝑉𝑖𝑉𝑗
𝑋𝑖𝑗

cos(𝜃𝑖𝑗+𝛿𝑖𝑗 ), and 𝛿𝑖𝑗 = 𝛿𝑖−𝛿𝑗 . The
amping term 𝑔𝑖(𝑤𝑖) has the linear part 𝑏𝑖𝜔1 with 𝑏𝑖 > 0, 𝑖 = 1, 2. The
hree non-dynamic non-dispatchable buses have real-power equations
𝐿
3 = 𝑃 13

3 + 𝑃 23
3 + 𝑃 43

3 , 𝑃𝐿
4 = 𝑃 24

4 + 𝑃 34
4 + 𝑃 54

4 , 𝑃𝐿
5 = 𝑃 25

5 + 𝑃 45
5 . Denote

𝑑 = [𝑧𝑑1 ; 𝑧
𝑑
2 ], 𝑧

𝑛𝑑 = [𝛿3; 𝛿4; 𝛿5]. The dynamic systems can be expressed as
nonlinear state equation 𝑧̇𝑑 = 𝐹 0(𝑧𝑑 , 𝑧𝑛𝑑 ) +𝐵1𝑣+𝐷1𝓁

𝑑 = 𝐹 (𝑧𝑑 ,𝓁𝑛𝑑 ) +
𝐵1𝑣 + 𝐷1𝓁

𝑑 , where 𝑣 =
[

𝑃 𝑖𝑛
1 ;𝑃 𝑖𝑛

2
]

,𝓁𝑑 =
[

𝑃𝐿
1 ;𝑃𝐿

2
]

,𝓁𝑛𝑑 =
[

𝑃𝐿
3 ;𝑃𝐿

4 ;𝑃𝐿
5
]

,
and

𝐵1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
1∕𝑀1 0
0 0
0 1∕𝑀2

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐷1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
−1∕𝑀1 0

0 0
0 −1∕𝑀2

⎤

⎥

⎥

⎥

⎥

⎦

.

Denote the perturbations from the nominal values as 𝑥 = 𝑧𝑑 − 𝑧𝑑 , 𝑢 =
− 𝑣, 𝜁 = 𝓁𝑑 − 𝓁

𝑑
, 𝜁𝑛 = 𝓁𝑛𝑑 − 𝓁

𝑛𝑑
. By (6), the dynamic systems can

e linearized near the nominal operating points as 𝑥̇ = 𝐴𝑥 + 𝐵1𝑢 +
𝐷1𝜁 +𝐷2𝜁𝑛, where the matrices are the related Jacobian matrices 𝐴 =
𝜕𝐹 (𝑧𝑑 ,𝓁𝑛𝑑 )

𝜕𝑧𝑑
|

|

| 𝑧𝑑 = 𝑧𝑑 ,𝓁𝑛𝑑 = 𝓁
𝑛𝑑 , 𝐷2 =

𝜕𝐹 (𝑧𝑑 ,𝓁𝑛𝑑 )
𝜕𝓁𝑛𝑑

|

|

| 𝑧𝑑 = 𝑧𝑑 ,𝓁𝑛𝑑 = 𝓁
𝑛𝑑 .

The nominal operating condition defined in [19,21] is used here
ith the nominal bus voltages, generation powers and load powers
isted in Table 1 with real power 𝑃 (MW) and reactive power 𝑄 (MVar).
he base MVA is 𝑆𝐵 = 100 MVA and the base voltage is 𝑉𝐵 = 230 kV.
he bus line parameters, shown in Table 2, are extracted from [19].
Under the per-unit system, the normalized generator parameters are

1 = 1.9 and 𝑏1 = 0.2 with equivalent time constant 𝑇1 = 𝑀1∕𝑏1 = 9.5
econd for Generator 1, and 𝑀 = 0.9, 𝑏 = 0.16 with equivalent
8

2 1
Table 1
IEEE 5-Bus system bus data.
Bus 𝑉 (p.u. ∠ rad) 𝑃 𝑄 𝑃𝐿 𝑄𝐿

1 1.06∠0 129 −7.42 0 0
2 1.0474∠ − 2.8063 40 30 20 10
3 1.0242∠ − 4.997 0 0 45 15
4 1.0236∠ − 5.3291 0 0 40 5
5 1.0179∠ − 6.1503 0 0 60 10

Table 2
IEEE 5-Bus system line parameters.
Line Resistance (p.u.) Reactance (p.u.) Z (p.u 𝑋∠𝜃 rad)

1–2 0.02 0.06 0.06∠1.25
1–3 0.08 0.24 0.25∠1.25
2–3 0.06 0.25 0.26∠1.33
2–4 0.06 0.18 0.19∠1.25
2–5 0.04 0.12 0.13∠1.25
3–4 0.01 0.03 0.03∠1.25
4–5 0.08 0.24 0.25∠1.25

time constant 𝑇2 = 𝑀2∕𝑏2 = 5.625 second for Generator 2. Under the
aforementioned operating conditions, we obtain

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
7.7926 −0.1053 −7.7926 0

0 0 0 1
−20.3866 0 20.3866 −0.1778

⎤

⎥

⎥

⎥

⎥

⎦

.

(ii) Subsystems
This paper aims to present a framework in which a small number

of sensors can potentially detect a large set of contingencies. For
example, suppose that a power system has 50 buses of which 10 buses
are dynamic and others are non-dynamic. If each dynamic bus has a
second-order state space model, then the virtual power grid model will
be of order 20. It is noted that for cost reduction and maintenance
simplification, it is highly desirable to reduce sensor complexity. Then
a related question is: Will it be possible to use only one PMU to achieve
one-line fault detection (𝑁 − 1 scenario) on all lines? Our algorithms
indicate that this is possible, as long as the transfer functions from
the control inputs to the sensor are distinct and the input is properly
designed. In this simulation study, we will use the sensor that measures
𝛿1 (a PMU), i.e., 𝐶 = [1, 0, 0, 0]. We will demonstrate that although this
is a voltage phasor sensor, it is sufficient for detecting a line fault.

6.1.2. Evaluation scenarios and input design
In this case study, we assume balanced line faults and use an

equivalent one-phase model to represent them. In consideration of the
N-1 reliability requirements in power systems, we focus on a fault on
one transmission line with different scenarios for evaluation. Line (2, 3)
which is the longest transmission line in the system, is selected. The
line faults are characterized by jumps in the impedance values 𝑋23.
Four cases are considered: (1) Normal Operation: 𝛼 = 1 ∶ 𝑋23 = 0.26,
with probability 𝑝1 = 0.9; (2) Line Fault 1 (Reduced Impedance):
𝛼 = 2 ∶ 𝑋23 = 0.1, with probability 𝑝2 = 0.06; (3) Line Fault 2:
𝛼 = 3 ∶ 𝑋23 = 0.06, with probability 𝑝3 = 0.03; (4) Line Fault 3
(Disconnection): 𝛼 = 4 ∶ 𝑋23 = 10000, with probability 𝑝4 = 0.01.

The corresponding 𝐴 matrices are:

𝐴(1) =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
7.7926 −0.1053 −7.7926 0

0 0 0 1
−20.3866 0 20.3866 −0.1778

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐴(2) =

⎡

⎢

⎢

⎢

⎢

0 1 0 0
7.7967 −0.1053 −7.7967 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

,

⎣

−20.5843 0 20.5843 −0.1778
⎦
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Fig. 3. The probing input 𝑢(𝑡) and the output 𝑦(𝑡) in [0, 𝜏0).

𝐴(3) =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
7.7978 −0.1053 −7.7978 0

0 0 0 1
−20.6409 0 20.6409 −0.1778

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐴(4) =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
7.7571 −0.1053 −7.7571 0

0 0 0 1
−18.6540 0 18.6540 −0.1778

⎤

⎥

⎥

⎥

⎥

⎦

,

respectively. It is easy to verify that under 𝐶 = [1, 0, 0, 0], the corre-
sponding observability matrices 𝑊 (1), 𝑊 (2), 𝑊 (3), 𝑊 (4) are full rank.
As a result, the stochastic hybrid system has observable subsystems.
For this reason, state decomposition is not needed, and we will directly
estimate 𝑥 under each detected subsystem.

We first calculate the eigenvalues of 𝐴(𝑖), which are {−5.388, 5.2302,
0,−0.1253}, {−5.407, 5.2491, 0,−0.1252}, {−5.412, 5.2545, 0,−0.1251},
{−5.2181, 5.0616, 0,−0.1266}. Since they share the common eigenvalue
0, an input is needed to detect different systems. Select 𝑢 = 𝑎 sin 𝑡 with
𝑎 > 0, which satisfies the conditions of Theorem 1 (namely, 𝑈 (𝑠) = 𝑎

𝑠2+1 ,
Assumption 3 is satisfied). By using a small 𝑎, this probing signal will
have a negligible impact on the system’s normal operation. For this case
study, 𝑎 = 0.1 is used, although smaller values of 𝑎 can still work.

6.1.3. Results and discussions
(i) Detection of Subsystems
As an example, taking 𝜏 = 2.5 and 𝜏0 = 0.05, we show the detection

of 𝛼0 for 𝑡 ∈ [0, 𝜏0). Suppose the initial state is [2,−1, 1, 2], and the
true 𝛼0 = 1. Now we estimate 𝛼0 by Algorithm 1. Under the probing
input 𝑢(𝑡) = 0.1 sin(𝑡), Fig. 3 shows the curve of 𝑢(𝑡) and 𝑦(𝑡). According
to Algorithm 1, we calculate the output prediction errors of the four
subsystems, then we obtain 𝜀1 = 2.7464×10−14, 𝜀2 = 1.6518×10−9, 𝜀3 =
2.1253 × 10−9, 𝜀4 = 1.4480 × 10−8. Therefore, 𝛼0 = 1, which detects the
subsystem accurately.

(ii) Observer Design and Convergence
The pole placement design is used for designing observer feedback

gains. For example, if we choose the desired closed-loop poles as 𝜆 =
[−4.8,−3.6,−4,−4.4], then the Matlab function 𝐿𝑖 = 𝑝𝑙𝑎𝑐𝑒(𝐴⊤(𝑖), 𝐶⊤, 𝜆),
𝑖 = 1, 2, 3, 4, yields the suitable feedback gains and the closed-loop error
dynamics with 𝐴𝑖

𝑐 = 𝐴(𝑖) − 𝐿𝑖𝐶, 𝑖 = 1, 2, 3, 4.
Take 𝜏 = 2.5 and 𝜏0 = 0.05. The initial estimation error is selected

o be 𝑒(0) = [2,−1, 1, 2]⊤ with the error norm
√

10. Fig. 4 shows that 𝛼𝑘
an be accurately detected and the estimation errors are convergent.
(iii) Robustness against Measurement Errors
We now consider measurement noise and show the impact of out-

ut measurement errors on contingency detection accuracy. For the
ne-sensor case (i.e., 𝐶 = [1, 0, 0, 0]), suppose that the standard de-
iation is 𝜎 = 0.005, and the measured output value is 𝑦̂ = 𝑦 + 𝜎𝑑,
9

Fig. 4. The detection of 𝛼𝑘 and the estimation errors trajectory.

Fig. 5. The detection of 𝛼𝑘 and the estimation error trajectory.

where 𝑑 is the noise with uniform distribution in [−0.5, 0.5]. Take 𝜏 =
.5, 𝜏0 = 0.05, 𝜆 = [−4.8,−3.6,−4,−4.4]. Fig. 5 shows that 𝛼𝑘 can still be
accurately detected. However, the steady-state error is big.

Next, we use two sensors 𝛿1 and 𝛿2, i.e., 𝐶 =
[

1 0 0 0
0 0 1 0

]

. Suppose

𝜎 = 0.005𝐼2. Then under the same 𝜏 and 𝜏0 and the same pole positions,
the steady-state error becomes smaller, see Fig. 6.

These results demonstrate that adding sensors (such as PMUs) can
provide more information on the internal states and hence can reduce
state estimation errors. Note that the noise effect of the added sensor
is a side effect that needs to be overcome in the algorithms. Our
algorithms have the established convergence properties that the mea-
surement noises can be overcome and accurate discrete and continuous
state estimation can be achieved.

6.2. IEEE 33-Bus system

To elucidate our algorithms in a more comprehensive context, we
utilize the IEEE 33-Bus system [22,23] as an illustrative example.
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Fig. 6. The detection of 𝛼𝑘 and the estimation error trajectory.

.2.1. Modeling and linearization of the IEEE 33-Bus system
The original 33-Bus system [22] contains one slack bus tied to the

arge grid and the remaining buses are PQ-type load buses. For eval-
ation of renewable systems, more local generators have been added.
ollowing the enhanced 33-Bus evaluation system proposed in [24], in
his simulation study, Bus 1 remains as a slack bus and two generators
re added, at Bus 18 and Bus 33, shown in Fig. 7. The generator
buses are dynamic buses whose local state space models for real power
management are represented by their swing equations. All other buses
remain as PQ-type load buses as in the original configuration and
non-dynamic. The slack bus voltage is set as the reference bus with
constant voltage 1∠0 (pu), whose 𝑃 and 𝑄 injections are unlimited
and instantaneous in balancing powers in each step. Consequently, the
slack bus is non-dynamic. All bus and load parameters are from the
power flow data in [22] and obtained from the 33-Bus case file in
MATPOWER [23,25,26]. The base power of the IEEE 33-Bus system
is 100 (MW) and the base voltage is 𝑉𝐵 = 230 (kV).

The nonlinear dynamic models for Bus 18 and Bus 33 are sum-
marized below. Denote 𝜔18 = ̇𝛿18, 𝜔33 = ̇𝛿33. The dynamic systems
are
𝑀18𝜔̇18 + 𝑔18(𝜔18) = 𝑃 𝑖𝑛

18 − 𝑃 𝑜𝑢𝑡
18 ,

𝑀33𝜔̇33 + 𝑔33(𝜔33) = 𝑃 𝑖𝑛
33 − 𝑃 𝑜𝑢𝑡

33 ,

where 𝑃 𝑜𝑢𝑡
𝑖 is the total transmitted power from Bus 𝑖 to its neighboring

buses. Denote the line admittance 𝑌𝑖𝑗 = |𝑌𝑖𝑗 |∠𝛾𝑖𝑗 and shunt admittance
𝑌𝑖 = |𝑌𝑖|∠𝛾𝑖.

Since Bus 18 (and Bus 33) has only one neighboring Bus 17 (and
Bus 32), we have

𝑃 18
𝑜𝑢𝑡 = 𝑉 2

18|𝑌18| cos(𝛾18) + 𝑉18𝑉17|𝑌18,17| cos(𝛿18 − 𝛿17 − 𝛾18,17),

and similarly for Bus 33. The damping term is assumed to be linear
with 𝑏18 = 0.22, 𝑏33 = 0.12. The normalized inertias are 𝑀18 = 1.8 and
𝑀33 = 0.9.

Dynamic interactions of generators with the power grid are different
from the traditional power flow analysis and introduce a new iteration
scheme. During the transient time, 𝑃 18

𝑖𝑛 ≠ 𝑃 18
𝐿 + 𝑃 18

𝑜𝑢𝑡 which drives
hanges in 𝛿18. The new 𝛿18 then enters power flow analysis to result
n new power flow status, including the new 𝑃 18

𝑜𝑢𝑡; similarly for Bus
3. As a result, during transient calculation of the power flow status,
e designate the 66 dependent variables in power flow calculation via
ATPOWER as 𝑍 = [𝑃 𝑑

𝑜𝑢𝑡, 𝑄
𝑑
𝑜𝑢𝑡, 𝑃𝑠, 𝑄𝑠, 𝑉 𝑛𝑑 , 𝛿𝑛𝑑 ], where the superscript 𝑑

refers to the dynamic buses 18 and 33, 𝑛𝑑 refers to the load buses 2−17
10

and 19 − 32, and the subscript 𝑠 refers to the slack bus 1. 3
Under the generation powers 𝑃 18
𝑖𝑛 = 1.29 pu and 𝑃 33

𝑖𝑛 = 0.89 pu, the
equilibrium point (the stationary operating condition) is calculated as
𝛿18 = −0.01 (degree), 𝜔̄18 = 0, 𝛿33 = 0.12 (degree), 𝜔̄33 = 0. The slack
bus provides real power 3.94 pu. The corresponding values of 𝑍 at the
equilibrium point are denoted by 𝑍̄.

Denote 𝑥 = (𝛿18, 𝜔18, 𝛿33, 𝜔33), 𝑢 = [𝑃 18
𝑖𝑛 , 𝑃 33

𝑖𝑛 ], the state equation
is 𝑥̇ = 𝑓0(𝑥,𝐺(𝛿18, 𝛿33), 𝑢) = 𝑓 (𝑥, 𝑢). Then the Jacobian matrix at the
equilibrium point 𝑥 = 𝑥̄, 𝑍 = 𝑍̄ is

𝐴 =
𝜕𝑓0(𝑥,𝑍, 𝑢)

𝜕𝑥T
|

|

|𝑥=𝑥̄,𝑍=𝑍̄
+

𝜕𝑓0(𝑥,𝑍, 𝑢)
𝜕𝑍

|

|

|𝑥=𝑥̄,𝑍=𝑍̄
𝜕𝑍
𝜕𝑥T

|

|

|𝑥=𝑥̄,𝑍=𝑍̄
.

Based on the actual expressions of 𝑓 (𝑥, 𝑢), the Jacobian matrix is
given by

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

− 1
𝑀18

𝜕𝑃 18
𝑜𝑢𝑡

𝜕𝛿18
− 𝑏18

𝑀18
− 1

𝑀18

𝜕𝑃 18
𝑜𝑢𝑡

𝜕𝛿33
0

0 0 0 1

− 1
𝑀33

𝜕𝑃 33
𝑜𝑢𝑡

𝜕𝛿18
0 − 1

𝑀33

𝜕𝑃 33
𝑜𝑢𝑡

𝜕𝛿33
− 𝑏33

𝑀33

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Utilizing the initial 33-Bus power flow data sourced from [22,23]2
and employing MATPOWER for power flow analysis along with the
computation of partial derivatives, we obtain

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−1.1280 −0.1222 −0.0120 0

0 0 0 1
−0.0344 0 −4.4785 −0.1333

⎤

⎥

⎥

⎥

⎥

⎦

.

.2.2. Evaluation scenarios and input design
Let the line impedance of line (𝑖, 𝑗) be denoted by 𝑋𝑖,𝑗 . Three cases

re considered: (1) Normal Operation: 𝛼 = 1 ∶ 𝑋1,2 = 0.05753 and
𝑋26,27 = 0.17732, with probability 𝑝1 = 0.9; (2) Line Fault 1 (Increased
Impedance of Line (1, 2)): 𝛼 = 2 ∶ 𝑋1,2 = 0.5753, with probability
𝑝2 = 0.06; (3) Line Fault 2 (Increased Impedance of Line (26,27)):
𝛼 = 3 ∶ 𝑋26,27 = 1.7732, with probability 𝑝3 = 0.04. The corresponding
𝐴(𝑖) matrices are:

𝐴(1) =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−1.1280 −0.1222 −0.0120 0

0 0 0 1
−0.0344 0 −4.4785 −0.1333

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐴(2) =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−1.1281 −0.1222 −0.0127 0

0 0 0 1
−0.0386 0 −4.4877 −0.1333

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐴(3) =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−1.1277 −0.1222 −0.0115 0

0 0 0 1
−0.0299 0 −4.5179 −0.1333

⎤

⎥

⎥

⎥

⎥

⎦

.

We first calculate the eigenvalues of 𝐴(𝑖), which are {−0.0611 +
1.0602𝑖,−0.0611 − 1.0602𝑖,−0.0667 + 2.1152𝑖,
−0.0667 − 2.1152𝑖}, {−0.0611 + 1.0603𝑖,−0.0611 − 1.0603𝑖,−0.0667 +
2.1174𝑖,−0.0667−2.1174𝑖}, {−0.0611+1.0601𝑖,−0.0611−1.0601𝑖,−0.0667+
2.1245𝑖,−0.0667 − 2.1245𝑖}. Select 𝑢 = 0.1 sin 𝑡 as the probing input,
which satisfies the conditions of Theorem 1 (namely, 𝑈 (𝑠) = 0.1

𝑠2+1 ,
ssumption 3 is satisfied).

.2.3. Results and discussions
(i) Detection of Subsystems
Take 𝜏 = 4.5 and 𝜏0 = 0.9. We show the detection of 𝛼0 for 𝑡 ∈ [0, 𝜏0)

s an example. Suppose the initial state is [−1, 2, 1, 2], and the true
0 = 1. Now we estimate 𝛼0 by Algorithm 1. Under the probing input

2 For the original data for the buses, links, generators, and loads of the
3-Bus system, please refer to the case33 file in MATPOWER, see [25,26].
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Fig. 7. The enhanced IEEE 33-Bus distribution test system.
Fig. 8. The probing input 𝑢(𝑡) and the output 𝑦(𝑡) in [0, 𝜏0).

𝑢(𝑡) = 0.1 sin(𝑡), Fig. 8 shows the curve of 𝑢(𝑡) and 𝑦(𝑡). According
to Algorithm 1, we calculate the output prediction errors of the four
subsystems, then we obtain 𝜀1 = 7.5964×10−13, 𝜀2 = 8.1380×10−5, 𝜀3 =
2.4539×10−4. Therefore, 𝛼0 = 1, which detects the subsystem accurately.

(ii) Observer Design and Convergence
We suppose that the sensor is on 𝛿18, i.e., 𝐶 = [1, 0, 0, 0]. The

pole placement design is used for designing observer feedback gains.
If we choose the desired closed-loop poles as 𝜆 = [−4,−3.2,−4.8,−4.4],
then the Matlab function 𝐿𝑖 = 𝑝𝑙𝑎𝑐𝑒(𝐴⊤(𝑖), 𝐶⊤, 𝜆), yields the suitable
feedback gains and the closed-loop error dynamics with 𝐴𝑖

𝑐 = 𝐴(𝑖)−𝐿𝑖𝐶,
= 1, 2, 3.
Take 𝜏 = 4.5 and 𝜏0 = 0.9. The initial estimation error is selected

o be 𝑒(0) = [−1, 2, 1, 2]⊤ with the error norm
√

10. Fig. 9 shows that
𝛼𝑘 can be accurately detected and the estimation error is convergent. It
should be pointed out that one sensor can identify different line faults.

(iii) Packet Delivery
Suppose that 𝛿1 and 𝛿2 are independently measured. Denote 𝐶(1) =

[

1 0 0 0
0 0 1 0

]

for normal operation, 𝐶(2) = [1, 0, 0, 0] for failure of

Sensor 2 (𝛿1 measurement only), 𝐶(3) = [0, 0, 1, 0] for failure of Sensor 1
(𝛿2 measurement only), and 𝐶(4) = [0, 0, 0, 0] for failure on both sensors.
Suppose that the packet delivery ratio for Sensor 1 is 𝜌1 = 0.95 and for
Sensor 2 is 𝜌2 = 0.97. This data acquisition scheme can be modeled by
an i.i.d. stochastic process 𝛼 ∈  = {1,… , 4} with 𝑝 = 𝜌 𝜌 = 0.9215,
11

𝑘 1 1 2
Fig. 9. The detection of 𝛼𝑘 and the estimation error trajectory.

𝑝2 = 𝜌1(1 − 𝜌2) = 0.0285, 𝑝3 = (1 − 𝜌1)𝜌2 = 0.0485, 𝑝4 = (1 − 𝜌1)(1 − 𝜌2) =
0.0015.

The pole placement method is used for designing observer feedback
gains for 𝛼𝑘 = 1, 2, 3. Since 𝐶(4) = 0, the observer can only run open-
loop. For example, if we choose the desired closed-loop poles as 𝜆 =
[−1,−0.8,−1.2,−1.5], then the Matlab function 𝐿𝑖 = 𝑝𝑙𝑎𝑐𝑒(𝐴′, 𝐶 ′(𝑖), 𝜆),
yields the suitable feedback gains and the closed-loop error dynamics
with 𝐴𝑖

𝑐 = 𝐴 − 𝐿𝑖𝐶(𝑖), 𝑖 = 1, 2, 3.
Take 𝜏 = 5 and 𝜏0 = 1. The initial estimation error is selected to be

𝑒(0) = [−1, 2, 1, 2]⊤ with the error norm
√

10. Fig. 10 shows that 𝛼𝑘 can
be accurately detected and the estimation errors are convergent.

7. Concluding remarks

This paper introduces a new approach for contingency detection
in MPS. The approach employs a stochastic hybrid system model in
the state space form that captures both jumps from contingencies and
internal dynamics of continuous states. Since system dynamics contain
rich information on changes of system structures and parameters, the
same output measurements for normal power system operation, such
as PMUs, frequencies, voltages, etc., can be used to detect contingen-
cies of different types, causes, and locations. Model derivations, input

design, detection algorithms, state estimation, and their stability and
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Fig. 10. The detection of 𝛼𝑘 and the estimation error trajectory.

onvergence properties have been established. Practical systems have
een used to demonstrate the results.
Power system models may include modeling errors and unknown

arameters. Parameter estimation, system identification, and related
daptive estimation schemes in SHSs are important problems, but at
resent are open issues in their theoretical foundations and algorithms.
dvancement in this direction will be an important step forward. Also,
ome implementation issues from computational aspects, nonlinear
erturbations, and uncertainties in models and signals will be highly
nteresting issues to investigate in the future.
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