ORIGINAL ARTICLE

Hidden diversity in eastern North America: The genus Ligidium (Oniscidea, Ligiidae) in the southern Appalachian Mountains

Ernesto Recuero 💿 | Michael S. Caterino 💿

Department of Plant & Environmental Sciences, Clemson University, Clemson, South Carolina, USA

Correspondence

Ernesto Recuero, Department of Plant & Environmental Sciences, Clemson University, 277 Poole Agricultural Center, Clemson, SC 29634-0310, USA. Email: ernestorecuerogil@gmail.com

Funding information

Clemson University Experiment Station, Grant/Award Number: SC-1700596; National Science Foundation, Grant/Award Number: DEB-1916263

Abstract

The terrestrial isopod genus Ligidium includes 58 species from Europe, Asia, and North America. In Eastern North America four species are recognized: L. floridanum and L. mucronatum, known just from their type localities in Florida and Louisiana respectively, L. blueridgensis, endemic to the southern Appalachians, and L. elrodii, widespread from Georgia to Ontario. The genus shows a marked morphological conservatism, and species are differentiated mostly by small morphological differences; it is not always easy to determine if such variability represents inter- or intraspecific variation. Here, we explore the diversity of Ligidium from the southern Appalachian Mountains, exploring the congruence of morphologically defined groups with multilocus phylogenetic reconstructions and molecular species delimitation methods. We have studied a total of 130 specimens from 37 localities, mostly from the southern Appalachians, and analysed mtDNA (Cox1) and nuclear (28S, NaK) sequences. Morphologically, we recognized eight morphotypes, most of them assignable to current concepts of L. elrodii and L. blueridgensis. Phylogenetic analyses supported the evolutionary independence of all morphotypes, and suggest the existence of 8-9 species, including limited cryptic diversity. Single-locus delimitation analyses based on mtDNA data suggest the existence of a much higher number of species than the multilocus analyses. The estimated age of the ancestors of sampled lineages indicates a long presence of the genus in eastern North America and old speciation events through the Miocene. Our results indicate a higher diversity than previously thought among the Ligidium populations present in the southern Appalachian Mountains, with several species to be described.

KEYWORDS

Crustacea, cryptic species, endemism, native, phylogeography, species delimitation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Authors. Zoologica Scripta published by John Wiley & Sons Ltd on behalf of Royal Swedish Academy of Sciences.

1 | INTRODUCTION

Terrestrial isopods are one of the main detritivore animal groups in the soils of all continents except Antarctica; they represent, according to our current taxonomic knowledge, the most speciose of Isopod groups, with around 3700 named species living in all kinds of terrestrial habitats. However, this diversity is not uniformly distributed, with the highest diversity centered in some tropical regions and Palearctic areas such as the Mediterranean (Sfenthourakis & Taiti, 2015).

The diversity of Oniscidea in the Nearctic is relatively low when compared with other climatically similar regions as the western Palearctic. For instance, in North America, 109 species have been reported from the United States and Canada, and more than one-third of them are considered exotic taxa coming mostly from Europe (Jass & Klausmeier, 2000), while in Mexico 86 species are known, with around 11% being exotic forms (Jass & Klausmeier, 2006; Segura-Zarzosa et al., 2020). In contrast, in regions such as the Western Palearctic, diversity is much higher. For instance, Alexiou and Sfenthourakis (2013) listed 238 species just from Greece, of which 161 are endemic, while in Italy there are 367 species recorded, with a 60% endemicity (Taiti, 2017). Such differences are likely a consequence of the evolutionary history of the group, but perhaps also multiplied by geographic biases in the taxonomic work done throughout history.

Among the native North American species, 8 of them belong to the genus Ligidium Brandt, 1833 (Jass & Klausmeier, 2000). This genus has a patchy Holarctic distribution and includes 58 species from Europe, Asia, and North America (Schmalfuss, 2003; Wang et al., 2022). In western North America, the genus is present along the Pacific coast, with one widespread species and 3 Californian endemics. In eastern North America, it is represented by locally endemic species from Florida, Ligidium floridanum Schultz & Johnson, 1984, and Louisiana, Ligidium mucronatum Mulaik & Mulaik, 1942; one endemic to the southern Appalachians, Ligidium blueridgensis Schultz, 1964, and one widespread species, Ligidium elrodii (Packard, 1873), ranging from northern Georgia to Ontario. According to the current information only two of them, L. elrodii and L. blueridgensis, overlap in their distributional ranges, specifically in the southern Appalachian Mountains (Schultz, 1982).

Ligidium species present a marked morphological conservatism, and species are differentiated mostly by small differences in the apex of the elongated male pleopod 2 endopodite, the shape of male pleopod 1 and 2 exopodites, or the length of uropod exopodites and endopodites (Klossa-Kilia et al., 2006; Schultz, 1970; Sfenthourakis, 1993; Wang et al., 2022). Within the widespread Ligidium elrodii, some

morphological variability has been described, which has led to the definition of several subspecies known only from their type localities: *L. e. chatoogaensis* Schultz, 1970, from Chattooga Co. in northwestern Georgia, *L. e. scottensis* Schultz, 1970 and *L. e. leensis* Schultz, 1970, from Scott Co. and Lee Co. respectively in southwestern Virginia, and *L. e. hancockensis* Schultz, 1970 from Hancock Co. in Northern Tennessee.

Molecular studies in different regions across the genus's range have shown unexpected levels of diversity, suggestive of the existence of species complexes and even cryptic species. In Greece, works using mtDNA markers indicated high interspecific and interpopulation genetic distances and, in some cases such as in Ligidium beieri Strouhal, 1928, a strong discordance between mtDNA lineages and morphological identification (Klossa-Kilia et al., 2005, 2006). The authors suggest that the observed high genetic differentiation may result from strict ecological specialization to very humid soil habitats, causing strong geographic isolation in a relatively dry region such as the Eastern Mediterranean. However similar patterns have been found among temperate, subtropical and montane climates in regions of Japan (Harigai et al., 2020, 2023; Yoshino & Kubota, 2022) and China, where several new species have been delimited with the help of molecular data (Li, 2017; Wang et al., 2022). Overall, this suggests that Ligidium species have limited dispersal capacities, favouring genetic lineage differentiation and eventually speciation, most likely by allopatric isolation coupled with ecological niche conservatism (Wiens, 2004).

Thus, widespread species such as *Ligidium elrodii* are excellent candidates to explore the distribution of hidden diversity, including local endemics and the existence of species complexes. Here, we explore the diversity of *Ligidium* from the southern Appalachian Mountains, exploring the congruence of morphologically defined groups with multilocus phylogenetic reconstructions and automated species delimitation using molecular data. Previous studies indicate that the diversity of many groups of small, flightless Arthropoda is underestimated in this region (e.g., Caterino & Recuero, 2024; Derkarabetian et al., 2022; Dukes et al., 2022; Hedin & Milne, 2023). Our main hypothesis is that the diversity of southern Appalachian *Ligidium* is higher than the two species currently reported, and that more than one species are hidden under a single name.

2 | MATERIALS AND METHODS

2.1 | Sampling

We have studied a total of 130 *Ligidium* specimens from 37 localities, mostly from the southern Appalachians in the

states of North Carolina, Tennessee, Georgia, and South Carolina, with two localities located in the Allegheny Mountains in West Virginia (Table 1). Sampling was performed mostly by leaf litter sifting and subsequent Berlese extraction. Litter samples were collected down to the soil surface at points where humidity was high, sifted through an 8 mm mesh, and taken to the lab in cloth bags. Berlese-extracted specimens were directly collected into absolute ethanol, and subsequently sorted and stored in absolute ethanol at –20°C. A few specimens were also collected by direct search in leaf litter or under logs and rocks. Studied material is currently deposited at the Clemson University Arthropod Collection (CUAC).

Samples were examined using an Olympus SZX7 stereomicroscope, and the general habitus of several specimens was photographed using a Nikon EOS 6D with a Tamron AF 1.4× teleconverter and a Canon MP-E 65 mm macro lens. For each sample 10 to 20 pictures were taken and stacked with a Visionary Digital Passport system and Helicon Focus software v.8.1.1 (HeliconSoft, Ukraine). Most male samples could be morphologically assigned to species following the character descriptions in Schultz (1964, 1970, 1982). Some specimens did not match any described species. Specifically, we revised the shape of male pleopod 2 endopodite for species identification, and considered it as a discrete character to define morphospecies and compare them with genetic lineages. Females and juveniles were identified based on males from the same locality or on their position in the phylogeny. All samples were georeferenced and mapped using QGIS v3.28 (available at http://www.qgis.org) (Figure 1).

2.2 | DNA extraction and sequencing

We extracted genomic DNA from one or two pereiopods from each specimen, digested with lysis buffer and proteinase K (Omega BioTek, Norcross, GA, USA). Most samples were extracted using Omega BioTek's MagBind HDQ Blood and Tissue kit, eluting with 150 μL elution buffer, on a Hamilton Microlab Star automated liquid handling system, which allows processing up to 96 samples in a single run. Some samples were extracted using the GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA), following standard protocol and eluting in 150 μL of molecular grade water. Both methods yielded high quality DNA extractions with similar concentrations.

Amplification with the polymerase chain reaction (PCR) of fragments of the mitochondrial gene cytochrome c oxidase subunit I (Cox1) was made using primers LCO-1490 and HCO-2198 (Folmer et al., 1994) or BF2 and BR2 (Elbrecht & Leese, 2017); the latter pair was indexed with 9

base pair (bp) tags (Meier et al., 2016) to allow multiplexed high-throughput sequencing as part of a larger megabarcoding project (Caterino & Recuero, 2024). For a subset of samples representing all main mtDNA lineages, we amplified fragments of the nuclear genes 28S ribosomal RNA (28S), using the primers 28Sa and 28Sb (Whiting et al., 1997), and the sodium-potassium ATPase α -subunit (NaK), using the primers NaK for-b and NaK Rev2 (Tsang et al., 2008). The PCR conditions were employed as described by Dukes et al. (2022), with annealing temperatures of 50°C for Cox1 and 28S and 62°C for NaK. PCR products were visualized using electrophoresis on 1% agarose gels to assess amplification success. Clean-up and Sanger sequencing were performed by Psomagen (Rockville, MD, USA). Amplicons obtained with primers BF2-BR2 were sequenced using a Nanopore MinION (Oxford Nanopore Technologies, Oxford, UK); we prepared the library using the ligation sequencing kit LSK-112 and sequenced it with a R10.4 flow cell. Demultiplexing was performed using ONTbarcoder (Srivathsan et al., 2021).

2.3 | Phylogenetic analyses

Sequences were revised using Sequencher v.5.4.1 (Gene Codes Corporation), and aligned either manually (Cox1, NaK) or using MAFFT v7 (28S) (Katoh et al., 2019; available online at https://mafft.cbrc.jp/alignment/server/) with the FFT-NS-2 method.

For the coding Cox1 and NaK matrices, we used PartitionFinder (Lanfear et al., 2012) to establish the best partition scheme for the different codon positions, resulting in three different partitions for each of these two genes. This partition scheme was implemented in all phylogenetic analyses.

We performed phylogenetic analyses using the whole Cox1 matrix, as well as for each nuclear gene, a concatenated nuclear genes matrix, and a matrix concatenating all three genes. Analyses were performed under maximum likelihood (ML) and Bayesian approaches.

ML trees were obtained with W-IQ-TREE (Trifinopoulos et al., 2016; available online at http://iqtree.cibiv.univie.ac.at), using the Auto option to estimate the best fitting substitution model, and measuring branch support with 1000 ultrafast bootstrap replicates.

Bayesian phylogenetic inference was performed with MrBayes v3.2.6 (Ronquist & Huelsenbeck, 2003) and BEAST2.7.5 (Bouckaert et al., 2014), the latter including estimates of time to the most recent common ancestor (TMRCA). MrBayes analyses were run four independent times to assess consistency of results; runs used one cold and three heated chains for 10 million generations sampling every 1000. Convergence was assessed checking the

* *	ILL	1	.0 9.00.0	on product	Na management with												
NaK	ı	I	ı	PP739563	I	ı	I	I	I	I	I	PP739567	I	ı	I	PP739580	PP739579
28S	ı	I	I	PP741487	I	I	I	I	I	I	I	PP741473	I	I	I	PP741484	PP741468
Cox1	OR172582	OR172609	OR169848	OR169933	OR169934	OR169912	OR169913	OR169914	OR169905	OR169906	OR169900	OR169874	OR169875	OR169876	OR172588	OR169929	OR172578
Longitude	83.2978°W	83.3004°W	83.3004°W	83.2978°W	83.2978°W	81.8388°W	81.8388°W	81.8388°W	81.8311°W	81.8311°W	81.8293°W	81.7844°W	81.7844°W	81.7844°W	81.7844°W	83.9934°W	82.8745°W
Latitude	34.9713°N	34.9709°N	34.9709°N	34.9713°N	34.9713°N	36.0893°N	36.0893°N	36.0893°N	36.0948°N	36.0948°N	36.0978°N	36.1164°N	36.1164°N	36.1164°N	36.1164°N	35.3210°N	35.3289°N
Locality	USA: GA: Rabun Co.: Chattahoochee N. F.: Rabun Cliffs	USA: GA: Rabun Co.: Chattahoochee N. F.: Rabun Cliffs	USA: GA: Rabun Co.: Chattahoochee N. F.: Rabun Cliffs	USA: GA: Rabun Co.: Chattahoochee N. F.: Rabun Cliffs	USA: GA: Rabun Co.: Chattahoochee N. F.: Rabun Cliffs	USA: NC: Avery Co.: Grandfather Mountain	USA: NC: Avery Co.: Grandfather Mountain	USA: NC: Avery Co.: Grandfather Mountain	USA: NC: Avery Co.: Grandfather Mountain: Bridge Trail	USA: NC: Avery Co.: Grandfather Mountain: Bridge Trail	USA: NC: Avery Co.: Grandfather Mountain: Grandfather Trail	USA: NC: Caldwell Co.: Grandfather Mountain S P: Boone Scout Trail	USA: NC: Caldwell Co.: Grandfather Mountain S P: Boone Scout Trail	USA: NC: Caldwell Co.: Grandfather Mountain S P: Boone Scout Trail	USA: NC: Caldwell Co.: Grandfather Mountain S. P.: Boone Scout Trail	USA: NC: Graham Co.: Nantahala N. F.: Huckleberrry Knob	USA: NC: Haywood Co.: Black Balsam Knob
CUAC#	CUAC000138049	CUAC000138078	CUAC000171280	CUAC000180796	CUAC000180797	CUAC000171346	CUAC000171347	CUAC000171348	CUAC000171339	CUAC000171340	CUAC000171334	CUAC000171307	CUAC000171308	CUAC000171309	CUAC000138059	CUAC000180792	CUAC000138045
DNA_code	RC.A.505	RC.080	Lig018	Lig016	Lig017	Lig058a	Lig058b	Lig058c	Lig050	Lig051	Lig045	Lig030	Lig031	Lig032	DBS.B.465	Lig011	BBK.B.415
Species	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis	L. blueridgensis				

TABLE 1 (Continued)

USA. N.C. Madison Co.: Pisgah N. F.: 360220°N 82.7167°W OR169918 Camp Creek Bald Camp Camp Creek Bald Ca	.~	DNA_code CUAC#	Locality	Latitude	Longitude	Cox1	28S	NaK
F.: 36.0220°N 82.7167°W OR169919 - - F.: 36.0220°N 82.7167°W OR169920 - - F.: 36.0220°N 82.7167°W OR169921 - - F.: 36.0220°N 82.7167°W OR169921 - - F.: 36.0220°N 82.7167°W OR169922 - - F.: 36.0220°N 82.7167°W OR169922 - - F.: 36.0220°N 82.7167°W OR169901 PP741477 PP739577 River 35.219°N 82.2087°W OR169902 - - - e Falls 35.219°N 82.2087°W OR169903 - - - sy 35.4372°N 82.2279°W OR169894 - - - sy 35.8455°N 82.2279°W OR169896 - - - sys.455°N 82.2279°W OR169896 - - - sys.8455°N 82.2279°W	Lig062 CUAC000171352	1352	USA: NC: Madison Co.: Pisgah N. F.: Camp Creek Bald	36.0220°N	82.7167°W	OR169918	ı	1
F.: 36.0220°N 82.7167°W OR169920 - - F.: 36.0220°N 82.7167°W OR169921 - - F.: 36.0220°N 82.7167°W OR169922 - - F.: 36.0220°N 82.7167°W OR169923 PP741481 PP739577 F.: 36.0220°N 82.2087°W OR169900 - - Fe Falls 35.219°N 82.2087°W OR169902 - - e Falls 35.219°N 82.2087°W OR169902 - - cy 35.4372°N 82.2506°W PP737144 - - cy 35.4355°N 82.2279°W OR169893 - - sy 35.8455°N 82.2279°W OR169895 - - sy 35.8455°N 82.2279°W OR169896 - - sy 35.8455°N 82.2279°W OR169896 - - sy 35.8455°N 82.2279°W OR169896 - - sy 35.8455°N 82.2279°W OR169898 -	Lig063 CUAC000171353	353	USA: NC: Madison Co.: Pisgah N. F.: Camp Creek Bald	36.0220°N	82.7167°W	OR169919	ı	ı
F.: 36.0220°N 82.7167°W OR169921 - - F.: 36.0220°N 82.7167°W OR169923 - - F.: 36.0220°N 82.7167°W OR169923 - - River 35.2221°N 82.3059°W OR169910 - - e Falls 35.2199°N 82.2087°W OR169901 - - e Falls 35.2199°N 82.2087°W OR169902 - - e Falls 35.2199°N 82.2087°W OR169903 - - ey 35.4372°N 82.2506°W PP737144 - - sy 35.455°N 82.2279°W OR169893 - - sy 35.8455°N 82.2279°W OR169895 - - sy 35.8455°N 82.2279°W OR169896 - - sy 35.8455°N 82.2279°W OR169896 - - sy 35.8455°N 82.2279°W OR169898 -	Lig064 CUAC000171354	4	USA: NC: Madison Co Pisgah N. F.: Camp Creek Bald	36.0220°N	82.7167°W	OR169920	1	ı
F.: 36,0220°N 82,7167°W OR169922 - - F.: 36,0220°N 82,7167°W OR169923 PP741481 PP739577 River 35,2221°N 82,3059°W OR169901 - - e Falls 35,2199°N 82,2087°W OR169902 - - e Falls 35,2199°N 82,2087°W OR169902 - - e Falls 35,2199°N 82,2087°W OR169902 - - ey 35,4372°N 82,206°W PP737144 - - ey 35,4372°N 82,2506°W PP737144 - - ey 35,4372°N 82,2279°W OR169892 - - sy 35,8455°N 82,2279°W OR169894 - - sy 35,8455°N 82,2279°W OR169896 - - sy 35,8455°N 82,2279°W OR169896 - - sy 35,8455°N 82,2279°W OR169898 - - sy 35,8455°N 82,2279°W OR169898 - <td>Lig065 CUAC000171355</td> <td>2</td> <td>USA: NC: Madison Co.: Pisgah N. F.: Camp Creek Bald</td> <td>36.0220°N</td> <td>82.7167°W</td> <td>OR169921</td> <td>I</td> <td>I</td>	Lig065 CUAC000171355	2	USA: NC: Madison Co.: Pisgah N. F.: Camp Creek Bald	36.0220°N	82.7167°W	OR169921	I	I
F.: 36.0220°N 82.7167°W OR169923 PP741481 PP739577 River 35.2221°N 82.3059°W OR169910 - - e Falls 35.2199°N 82.2987°W OR169901 PP741477 PP739573 e Falls 35.2199°N 82.2987°W OR169902 - - ey 35.4372°N 82.2506°W PP737143 - - ey 35.455°N 82.2506°W PP737144 - - ey 35.8455°N 82.2279°W OR169893 PP741476 PP739572 sys.8455°N 82.2279°W OR169894 - - sys.8455°N 82.2279°W OR169896 - - sys.8455°N 82.2279°W OR169896 - - sys.8455°N 82.2279°W OR169896 - - sys.8455°N 82.2279°W OR169898 - - sys.8455°N 82.2279°W OR169898 - -	Lig066 CUAC000171356	٠,0	USA: NC: Madison Co.: Pisgah N. F.: Camp Creek Bald	36.0220°N	82.7167°W	OR169922	1	ı
River 35.2221°N 82.3059°W OR169910 - - e Falls 35.2199°N 82.2987°W OR169901 PP741477 PP739573 e Falls 35.2199°N 82.2987°W OR169902 - - ey 35.4372°N 82.2506°W PP737143 - - ey 35.4372°N 82.2506°W PP737144 - - ey 35.8455°N 82.2279°W OR169892 - - sy 35.8455°N 82.2279°W OR169894 - - sy.8455°N 82.2279°W OR169895 - - sy.8455°N 82.2279°W OR169896 - - sy.8455°N 82.2279°W OR169896 - - sy.8455°N 82.2279°W OR169899 - - sy.8455°N 82.2279°W OR169899 - - sy.8455°N 82.2279°W OR169899 - -	Lig067 CUAC000171357	_	USA: NC: Madison Co.: Pisgah N. F.: Camp Creek Bald	36.0220°N	82.7167°W	OR169923	PP741481	PP739577
Re Falls 35.2199°N 82.2987°W OR169901 PP741477 PP739573 Re Falls 35.2199°N 82.2987°W OR169902 - - Ey 35.4372°N 82.2987°W OR169903 - - Ey 35.4372°N 82.2506°W PP737143 - - Ey 35.8455°N 82.2279°W OR169892 - - Sh. 8455°N 82.2279°W OR169893 PP741476 PP739572 PP7358-N 82.2279°W OR169894 - - 35.8455°N 82.2279°W OR169896 - - 35.8455°N 82.2279°W OR169896 - - 35.8455°N 82.2279°W OR169899 - -	Lig055 CUAC000171344		USA: NC: Polk Co.: North Pacolet River	35.2221°N	82.3059°W	OR169910	I	ı
te Falls 35.2199°N 82.2987°W OR169902 - - et Falls 35.2199°N 82.2987°W OR169903 - - et Falls 35.4372°N 82.2506°W PP737143 - - ety 35.4372°N 82.2579°W OR169892 - - ety 35.8455°N 82.2279°W OR169893 PP741476 PP739572 ety 35.8455°N 82.2279°W OR169894 - - ety 35.8455°N 82.2279°W OR169896 - - ety 35.8455°N 82.2279°W OR169896 - - ety 35.8455°N 82.2279°W OR169896 - - ety 35.8455°N 82.2279°W OR169899 - - ety 35.8455°N 82.2279°W OR169898 - -	Lig046 CUAC000171335		USA: NC: Polk Co.: Tryon: Melrose Falls	35.2199°N	82.2987°W	OR169901	PP741477	PP739573
ee Falls 35.2199°N 82.2987°W OR169903 ey 35.4372°N 82.2506°W PP737143 ey 35.4372°N 82.2506°W PP737144 35.8455°N 82.2279°W OR169893 PP741476 PP739572 35.8455°N 82.2279°W OR169894 35.8455°N 82.2279°W OR169896	Lig047 CUAC000171336		USA: NC: Polk Co.: Tryon: Melrose Falls	35.2199°N	82.2987°W	OR169902	ı	ı
ey 35.4372°N 82.2506°W PP737143 ey 35.4372°N 82.2506°W PP737144 35.8455°N 82.2279°W OR169893 PP741476 PP739572 35.8455°N 82.2279°W OR169894 35.8455°N 82.2279°W OR169896 35.8455°N 82.2279°W OR169896 35.8455°N 82.2279°W OR169896 35.8455°N 82.2279°W OR169896 35.8455°N 82.2279°W OR169899 35.8455°N 82.2279°W OR169899	Lig048 CUAC000171337		USA: NC: Polk Co.: Tryon: Melrose Falls	35.2199°N	82.2987°W	OR169903	I	I
sy 35.4372°N 82.2506°W PP737144 - - 35.8455°N 82.2279°W OR169892 - - 35.8455°N 82.2279°W OR169894 - - 35.8455°N 82.2279°W OR169894 - - 35.8455°N 82.2279°W OR169895 - - 35.8455°N 82.2279°W OR169896 - - 35.8455°N 82.2279°W OR169897 - - 35.8455°N 82.2279°W OR169899 - - 35.8455°N 82.2279°W OR169899 - -	Lig073 CUAC001169835		USA: NC: Rutherford Co.: Chimney Rock S.P.	35.4372°N	82.2506°W	PP737143	I	ı
35.8455°N 82.2279°W OR169892 - - 35.8455°N 82.2279°W OR169893 PP741476 PP739572 35.8455°N 82.2279°W OR169894 - - 35.8455°N 82.2279°W OR169895 - - 35.8455°N 82.2279°W OR169896 - - 35.8455°N 82.2279°W OR169897 - - 35.8455°N 82.2279°W OR169898 - -	Lig074 CUAC001169838		USA: NC: Rutherford Co.: Chimney Rock S.P.	35.4372°N	82.2506°W	PP737144	1	ı
35.8455°N 82.2279°W OR169893 PP741476 PP739572 35.8455°N 82.2279°W OR169894 - - 35.8455°N 82.2279°W OR169896 - - 35.8455°N 82.2279°W OR169896 - - 35.8455°N 82.2279°W OR169897 - - 35.8455°N 82.2279°W OR169898 - -	Lig044a CUAC000171326		USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169892	I	I
35.8455°N 82.2279°W OR169894 35.8455°N 82.2279°W OR169895 35.8455°N 82.2279°W OR169896 35.8455°N 82.2279°W OR169897 35.8455°N 82.2279°W OR169898	Lig044b CUAC000171327		USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169893	PP741476	
35.8455°N 82.2279°W OR169895 35.8455°N 82.2279°W OR169896 35.8455°N 82.2279°W OR169897	Lig044c CUAC000171328		USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169894	I	
35.8455°N 82.2279°W OR169896 – – – 35.8455°N 82.2279°W OR169897 – – – 35.8455°N 82.2279°W OR169898 – – –	Lig044d CUAC000171329		USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169895	1	
35.8455°N 82.2279°W OR169897 – – 35.8455°N 82.2279°W OR169898 – –	Lig044e CUAC000171330		USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169896	1	
35.8455°N 82.2279°W OR169898 – –	Lig044 CUAC000171331		USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169897	I	
	Lig044g CUAC000171332		USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169898	I	

(Continues)

_	_
ntiniled	iiiii aca'
() u	
_	1
Z V	7 4 7 7

Species	DNA_code	CUAC#	Locality	Latitude	Longitude	Cox1	28S	NaK
L. blueridgensis	Lig044h	CUAC000171333	USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169899	ı	I
L. blueridgensis	Lig006	CUAC000180795	USA: NC: Yancey Co.: Pisgah NF: Woody Ridge Trail	35.8455°N	82.2279°W	OR169932	ı	I
L. blueridgensis	Lig060	CUAC000171350	USA: SC: Greenville Co.: Chesnut Ridge H. P.: South Pacolet River	35.1503°N	82.2804°W	OR169916	PP741480	PP739576
L. blueridgensis	Sass.A.344	CUAC000138055	USA: SC: Pickens Co.: Sassafras Mountain	35.0647°N	82.7774°W	OR172587	ı	I
L. blueridgensis	Lig012	CUAC000180798	USA: SC: Pickens Co.: Sassafras Mountain	35.0647°N	82.7774°W	OR169935	PP741485	PP739581
L. blueridgensis	Lig013	CUAC000180799	USA: SC: Pickens Co.: Sassafras Mountain	35.0647°N	82.7774°W	OR169936	I	I
L. blueridgensis	Lig061	CUAC000171351	USA: TN: Greene Co.: Cherokee N. F.: Firescald Knob	36.0337°N	82.7024°W	OR169917	I	I
L. blueridgensis	Lig043a	CUAC000171323	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Alum Cave Tr.	35.6382°N	83.4387°W	OR169890	I	I
L. blueridgensis	Lig043c	CUAC000171325	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Alum Cave Tr.	35.6382°N	83.4387°W	OR169891	I	I
L. blueridgensis	Lig008	CUAC000171276	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Mount Le Conte	35.6427°N	83.4426°W	OR169844	PP741471	PP739560
L. blueridgensis	Lig049	CUAC000171338	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Mount LeConte	35.6427°N	83.4426°W	OR169904	I	1
L. blueridgensis	Lig007	CUAC000171275	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6237°N	83.4163°W	OR169843	PP741470	PP739559
L. blueridgensis	Lig024d	CUAC000171299	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6240°N	83.4163°W	OR169866	I	I
L. blueridgensis	Lig033	CUAC000171310	USA: TN: Unicoi Co.: Cherokee NF: Big Bald	35.9938°N	82.4573°W	OR169877	ı	I
L. blueridgensis	Lig034	CUAC000171311	USA: TN: Unicoi Co.: Cherokee NF: Big Bald	35.9938°N	82.4573°W	OR169878	ı	1
L. elrodii	WV.235	CUAC000174439	USA: WV: Pocahontas Co.: Pocahontas Campground	38.1026°N	M°9996.67	PP737149	PP741492	PP739578
L. elrodii	WV.236	CUAC000174440	USA: WV: Randolph Co.: Monongahela National Forest	38.5595°N	79.9262°W	PP737150	1	1

TABLE 1 (Continued)

,									
Species	DNA_code	CUAC#	Locality	Latitude	Longitude	Cox1	28S	NaK	
L. elrodii	WV.237	CUAC000174441	USA: WV: Randolph Co.: Monongahela National Forest	38.5595°N	79.9262°W	PP737151	I	1	
L. elrodii	WV.238	CUAC000174442	USA: WV: Randolph Co.: Monongahela National Forest	38.5595°N	79.9262°W	PP737152	I	1	
L. elrodii	WV.239	CUAC000174443	USA: WV: Randolph Co.: Monongahela National Forest	38.5595°N	79.9262°W	PP737153	I	1	
Ligidium sp. 1	BBld.A.223	CUAC000138051	USA: GA: Towns Co.: Brasstown Bald	34.8763°N	83.8107°W	OR172584	I	I	
Ligidium sp. 1	Lig035	CUAC000171312	USA: GA: Towns Co.: Chattahoochee N. F.: Brasstown Bald	34.8766°N	83.8109°W	OR169879	PP741474	PP739568	
Ligidium sp. 1	Lig036	CUAC000171313	USA: GA: Towns Co.: Chattahoochee N. F.: Brasstown Bald	34.8766°N	83.8109°W	OR169880	PP741490	PP739569	
Ligidium sp. 1	Lig037	CUAC000171314	USA: GA: Towns Co.: Chattahoochee N. F.: Brasstown Bald	34.8766°N	83.8109°W	OR169881	I	1	
Ligidium sp. 2	Lig019b	CUAC000171282	USA: NC: Clay Co.: Nantahala N. F.:Chunky Gal Trail	35.1471°N	83.7144°W	OR169849	1	1	
Ligidium sp. 2	Lig020	CUAC000180793	USA: NC: Clay Co.: Nantahala N. F.:Chunky Gal Trail	35.1471°N	83.7144°W	OR169930	PP741488	PP739565	
Ligidium sp. 2	Lig021	CUAC000180794	USA: NC: Clay Co.: Nantahala N. F.:Chunky Gal Trail	35.1471°N	83.7144°W	OR169931	I	1	
Ligidium sp. 3	TsqB.B.464	CUAC000138058	USA: NC: Clay Co.: Nantahala N. F.: Tusquitee Bald	35.1467°N	83.7146°W	OR172645	I	ı	
Ligidium sp. 3	Lig039a	CUAC000171316	USA: NC: Macon Co.: Nantahala N. F.: Van Hook Glade Campground	35.0783°N	83.245°W	OR169883	PP741475	PP739570	
Ligidium sp. 3	Lig039b	CUAC000171317	USA: NC: Macon Co.: Nantahala N. F.: Van Hook Glade Campground	35.0783°N	83.245°W	OR169884	I	I	- 200100
Ligidium sp. 3	Lig059	CUAC000171349	USA: NC: Swain Co.: Great Smoky Mountains N. P.: Payne Ck at Lakeshore Trail	35.4855°N	83.8028°W	OR169915	PP741479	PP739575	gica scripta
Ligidium sp. 3	Lig075	CUAC000177088	USA: SC: Pickens Co.: Chimney Top Gap	35.0644°N	82.7953°W	PP737145	I	A A A A A A A A A A A A A A A A A A A	ST ARADEMIEN
Ligidium sp. 3	Lig076	CUAC000177089	USA: SC: Pickens Co.: Chimney Top Gap	35.0644°N	82.7953°W	PP737146	I	V	A.
Ligidium sp. 3	Lig077	CUAC000177090	USA: SC: Pickens Co.: Chimney Top Gap	35.0644°N	82.7953°W	PP737147	ı		VILE
								. 1	. Y

(Continues)

TABLE 1 (Continued)

Species	DNA_code	CUAC#	Locality	Latitude	Longitude	Cox1	28S	NaK
Ligidium sp. 4	Lig019a	CUAC000171281	USA: NC: Clay Co.: Nantahala N. F.:Chunky Gal Trail	35.1471°N	83.7144°W	PP737141	PP741489	PP739564
Ligidium sp. 4	BCat.A.294	CUAC000138053	USA: NC: Haywood Co.: Big Cataloochee Mt.	35.6675°N	83.1805°W	PP737148	I	I
Ligidium sp. 4	Lig043b	CUAC000171324	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Alum Cave Tr.	35.6382°N	83.4387°W	PP737142	PP741491	PP739571
Ligidium sp. 5	Lig052	CUAC000171341	USA: NC: Polk Co.: North Pacolet River	35.2221°N	82.3059°W	OR169907	PP741478	PP739574
Ligidium sp. 5	Lig053	CUAC000171342	USA: NC: Polk Co.: North Pacolet River	35.2221°N	82.3059°W	OR169908	ı	ı
Ligidium sp. 5	Lig054	CUAC000171343	USA: NC: Polk Co.: North Pacolet River	35.2221°N	82.3059°W	OR169909	ı	ı
Ligidium sp. 5	Lig056	CUAC000171345	USA: NC: Polk Co.: North Pacolet River	35.2221°N	82.3059°W	OR169911	I	ı
Ligidium sp. 5	Lig005	CUAC000171274	USA: TN: Blount Co.: Great Smoky Mountains N. P.: Rich Mountain Gap	35.6455°N	83.8058°W	OR169842	PP741469	PP739558
Ligidium sp. 5	Lig002a	CUAC000171267	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169835	I	I
Ligidium sp. 5	Lig002b	CUAC000171268	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169836	I	I
Ligidium sp. 5	Lig002c	CUAC000171269	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169837	1	I
Ligidium sp. 5	Lig002d	CUAC000171270	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169838	I	I
Ligidium sp. 5	Lig002e	CUAC000171271	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169839	I	I
Ligidium sp. 5	Lig002f	CUAC000171272	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169840	I	I
Ligidium sp. 5	Lig002g	CUAC000171273	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169841	I	I
Ligidium sp. 5	Lig003	CUAC000180800	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169937	I	I
Ligidium sp. 5	Lig004	CUAC000180801	USA: TN: Blount Co.: Great Smoky Mountains N. P.: White Oak Sink	35.6362°N	83.7412°W	OR169938	I	I
Ligidium sp. 6	BBId.B.558	CUAC000138052	USA: GA: Towns Co.: Brasstown Bald	34.8782°N	83.8108°W	OR172585	ı	1
Ligidium sp. 6	Lig015	CUAC000171279	USA: GA: Towns Co.: Chattahoochee N. F.: Brasstown Bald	34.8772°N	83.8108°W	OR169847	I	I

(Continues)

TABLE 1 (Continued)

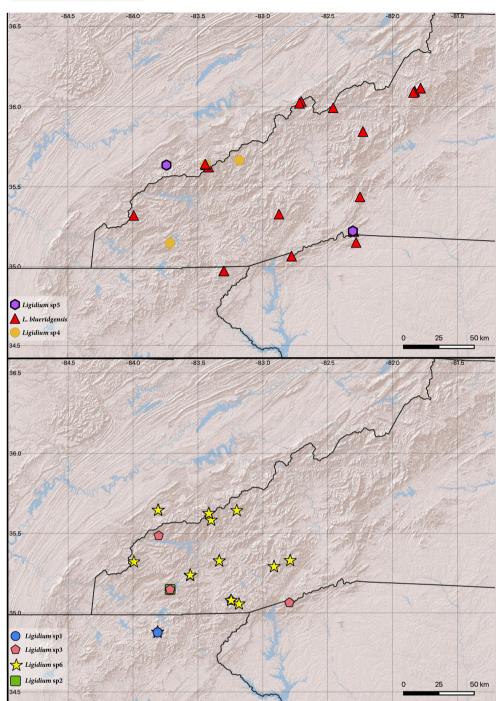

OLIC	and CA	LKIIVO									— Zool	ogica S	cripta 🔮	VITINSEAPS- AEADEMIEN) -W	ILEY-
NaK	PP739562	1	I	1	ı	1	ı	PP739561	1	I	PP739566	I	1	1	ı	1
28S	PP741486	ı	ı	1	1	1	ı	PP741483	1	I	PP741472	I	1	I	ı	1
Cox1	OR169928	OR172583	OR172586	OR169882	OR169886	OR169887	OR172579	OR169845	OR169846	OR172580	OR169850	OR169851	OR169852	OR169853	OR169854	OR169855
Longitude	83.8108°W	83.9934°W	83.2007°W	83.1840°W	83.1840°W	83.1840°W	83.5594°W	83.5596°W	83.5610°W	83.3359°W						
Latitude	34.8772°N	35.3210°N	35.6425°N	35.0558°N	35.0558°N	35.0558°N	35.2376°N	35.2348°N	35.2357°N	35.3270°N						
Locality	USA: GA: Towns Co.: Chattahoochee N. F.: Brasstown Bald	USA: NC: Graham Co.: Nantahala N. F.: Huckleberry Knob	USA: NC: Haywood Co.: Balsam Mountain Trail	USA: NC: Macon Co.: Highland Biological Station: Coker Rhododendron Tr.	USA: NC: Macon Co.: Highland Biological Station: Coker Rhododendron Tr.	USA: NC: Macon Co.: Highland Biological Station: Coker Rhododendron Tr.	USA: NC: Macon Co.: Nantahala N. F.: Copper Ridge Bald	USA: NC: Macon Co.: Nantahala N. F.: Copper Ridge Bald	USA: NC: Macon Co.: Nantahala N. F.: Copper Ridge Bald	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald
CUAC#	CUAC000180791	CUAC000138050	CUAC000138054	CUAC000171315	CUAC000171319	CUAC000171320	CUAC000138046	CUAC000171277	CUAC000171278	CUAC000138047	CUAC000171283	CUAC000171284	CUAC000171285	CUAC000171286	CUAC000171287	CUAC000171288
DNA_code	Lig014	HKnb.A.128	BMT.B.432	Lig038	Lig040a	Lig040b	CrB.B.433	Lig009	Lig010	CB.B.543	Lig022a	Lig022b	Lig022c	Lig022d	Lig022e	Lig022f
Species	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6	Ligidium sp. 6

TABLE 1 (Continued)

Species	DNA_code	CUAC#	Locality	Latitude	Longitude	Cox1	28S	NaK
Ligidium sp. 6	Lig022g	CUAC000171289	USA: NC: Macon Co.: Nantahala N. F.: Cowee Bald	35.3270°N	83.3359°W	OR169856	1	1
Ligidium sp. 6	Lig039c	CUAC000171318	USA: NC: Macon Co.: Nantahala N. F.: Van Hook Glade Campground	35.0783°N	83.245°W	OR169885	1	I
Ligidium sp. 6	Lig041	CUAC000171321	USA: NC: Macon Co.: Nantahala N. F.: Van Hook Glade Campground	35.0776°N	83.2452°W	OR169888	1	1
Ligidium sp. 6	Lig042	CUAC000171322	USA: NC: Macon Co.: Nantahala N. F.: Van Hook Glade Campground	35.0786°N	83.2442°W	OR169889	1	1
Ligidium sp. 6	Lig023a	CUAC000171290	USA: NC: Swain Co.: Great Smoky Mountains N. P.: Off Highway 441	35.5824°N	83.3979°W	OR169857	ı	ı
Ligidium sp. 6	Lig023b	CUAC000171291	USA: NC: Swain Co.: Great Smoky Mountains N. P.: Off Highway 441	35.5824°N	83.3979°W	OR169858	1	1
Ligidium sp. 6	Lig023c	CUAC000171292	USA: NC: Swain Co.: Great Smoky Mountains N. P.: Off Highway 441	35.5824°N	83.3979°W	OR169859	1	I
Ligidium sp. 6	Lig023d	CUAC000171293	USA: NC: Swain Co.: Great Smoky Mountains N. P.: Off Highway 441	35.5824°N	83.3979°W	OR169860	1	1
Ligidium sp. 6	Lig023e	CUAC000171294	USA: NC: Swain Co.: Great Smoky Mountains N. P.: Off Highway 441	35.5824°N	83.3979°W	OR169861	1	1
Ligidium sp. 6	Lig023f	CUAC000171295	USA: NC: Swain Co.: Great Smoky Mountains N. P.: Off Highway 441	35.5824°N	83.3979°W	OR169862	1	1
Ligidium sp. 6	Lig025	CUAC000171302	USA: NC: Transilvania Co.: Brevard, Pisgah Forest	35.3291°N	82.7890°W	OR169869	1	1
Ligidium sp. 6	Lig026	CUAC000171303	USA: NC: Transilvania Co.: Brevard, Pisgah Forest	35.3291°N	82.7890°W	OR169870	1	I
Ligidium sp. 6	Lig027	CUAC000171304	USA: NC: Transilvania Co.: Pisgah National Forest, Hwy 215	35.2910°N	82.9133°W	OR169871	ı	I
Ligidium sp. 6	Lig028	CUAC000171305	USA: NC: Transilvania Co.: Pisgah National Forest, Hwy 215	35.2910°N	82.9133°W	OR169872	1	1
Ligidium sp. 6	Lig029	CUAC000171306	USA: NC: Transilvania Co.: Pisgah National Forest, Hwy 215	35.2910°N	82.9133°W	OR169873	1	ı
Ligidium sp. 6	Lig001a	CUAC000171264	USA: TN: Blount Co.: Great Smoky Mountains N. P.: Rich Mountain Gap	35.6450°N	83.8061°W	OR169832	PP741482	PP739557

TABLE 1 (Continued)

Species	DNA_code	CUAC#	Locality	Latitude	Longitude	Cox1	28S	NaK
Ligidium sp. 6	Lig001b	CUAC000171265	USA: TN: Blount Co.: Great Smoky Mountains N. P.: Rich Mountain Gap	35.6450°N	83.8061°W	OR169833	I	I
Ligidium sp. 6	Lig001c	CUAC000171266	USA: TN: Blount Co.: Great Smoky Mountains N. P.: Rich Mountain Gap	35.6450°N	83.8061°W	OR169834	1	1
Ligidium sp. 6	Hwy.A.147	CUAC000138081	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6240°N	83.4163°W	OR172613	ı	I
Ligidium sp. 6	Lig024a	CUAC000171296	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6240°N	83.4163°W	OR169863	ı	ı
Ligidium sp. 6	Lig024b	CUAC000171297	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6240°N	83.4163°W	OR169864	ı	ı
Ligidium sp. 6	Lig024c	CUAC000171298	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6240°N	83.4163°W	OR169865	I	I
Ligidium sp. 6	Lig024e	CUAC000171300	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6240°N	83.4163°W	OR169867	ı	I
Ligidium sp. 6	Lig024f	CUAC000171301	USA: TN: Sevier Co.: Great Smoky Mountains N. P.: Off Highway 441	35.6240°N	83.4163°W	OR169868	ı	I

FIGURE 1 Map showing the studied populations and the distribution of southern Appalachian *Ligidium* main lineages. The two studied populations from West Virginia are not shown.

ending average standard deviation of split frequencies values, which were always below 0.01, and effective sample sizes (ESS), always above 100; consensus trees were obtained after applying a 25% burn-in. BEAST2 analyses were also independently repeated four times to assess consistency, using the package bModelTest (Bouckaert & Drummond, 2017) to estimate the best-fitting substitution models for the different partitions, running for 100 million generations sampled every 10,000 and implementing an optimized lognormal

relaxed clock. We used Birth and Death as the tree prior to analyse all concatenated matrices, while for the Cox1 matrix, considering the high number of haplotypes per species, we chose a Bayesian Skyline coalescent tree prior, in both cases starting with default values. Having no available fossil records or any other adequate information to calibrate the molecular clock, we chose to use a substitution rate with a mean value of 0.017 (\pm 0.007) following previous works on Peracarid crustaceans as Amphipoda and Isopoda

14636409, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/zsc.12661, Wiley Online Library on [04/06/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

(Lee et al., 2014; Mamos et al., 2021). No other priors were modified. ESS for all parameters were checked with Tracer v.1.7.2 (Rambaut et al., 2018) and higher than 200. We used TreeAnnotator v.1.10.4 to build maximum clade credibility trees considering a 25% burn-in.

Species delimitation analyses 2.4

We performed single-locus species delimitation analyses on each gene alignment. To compare different approaches, we used a distance-based method, ASAP (Assemble Species by Automatic Partitioning, Puillandre et al., 2021), based on the detection of barcoding gaps from observed genetic pairwise distances, and a phylogenetic-based method, mPTP (multirate Poisson Tree Process, Kapli et al., 2017), that compares branching rate transitions using speciation and coalescent models. ASAP analyses were run on the web server (available at https://bioinfo.mnhn.fr/abi/public/asap/ asapweb.html), with a split probability of 0.01 and using simple p-distances. For mPTP analyses we used the web server (available at https://mptp.h-its.org/#/tree) and the trees generated with BEAST2 as input.

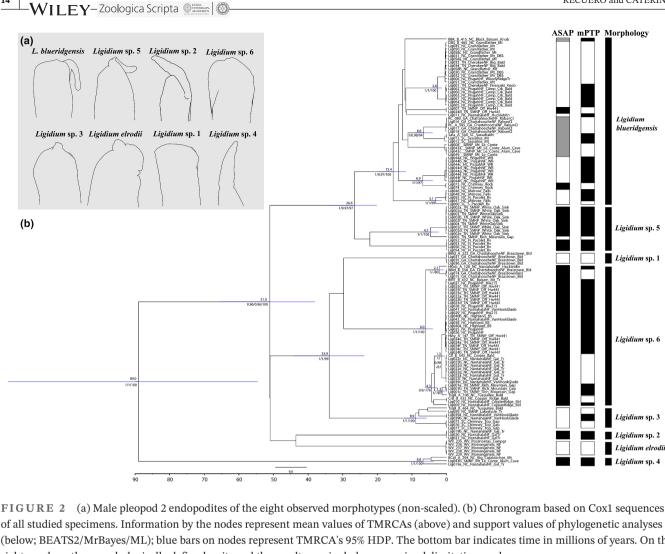
For multilocus matrices, we used BPP v4.6.2 (Bayesian Phylogenetics and Phylogeography; Yang & Rannala, 2010). This is considered a validation method that will compare posterior probabilities (pp) of different delimitation models that consider different numbers of units among a priori specified species (Carstens et al., 2013). For these analyses, we considered both a dataset including only nuclear genes and a dataset including nuclear and Cox1 sequences. In the second case we tried using the complete Cox1 alignment and a reduced alignment including only those represented also in the nuclear alignments. This analysis generates the delimitation models to be tested by lumping a priori species, but it can't split them further, so we tested different hypotheses considering 15 a priori species (considering shallower clades as potential species), or 25 species (considering each specimen a potential species). We ran 'A11' analyses for 200,000 generations with 20,000 generations as burnin, sampling every five generations, using a guide tree based on our previous multilocus phylogenetic analyses, and mean values of 0.02 for theta and tau, with inverse gamma distributions.

3 RESULTS

Morphology 3.1

The morphological examination of the studied samples allowed us to differentiate three main morphotypes based on the general shape of male pleopod 2 endopodite (Figure 2a), despite the generally conserved general habitus (Figure 3a). Two of these main morphotypes present some degree of variation that is congruent with the identified genetic lineages, which allowed us to differentiate at least eight different, discrete morphological units among the studied samples.

The first main morphotype (morphotype I) shows a largely acuminate tip, and it was found only in a single adult male, corresponding with the most divergent genetic lineage, referred to here as Ligidium sp. 4.


The second one (morphotype II) shows a broadly squarish or rounded tip with an elongated excrescence, as typically observed in Ligidium blueridgensis. Within morphotype II we could distinguish three different variations of male pleopod 2 endopodite. One of them corresponds with Ligidium blueridgensis sensu stricto (s. str.), in which an elongated excrescence is located in the inner corner of the squarish or rounded pleopod tip and directed inwards or backwards. The other two correspond to yet undescribed species, denoted hereafter Ligidium sp. 5, characterized by a more rounded tip and centered excrescence, and Ligidium sp. 2, with a robust excrescence located in the inner corner but directed outwards.

The third (morphotype III) includes broadly rounded or squarish tip with no elongated excrescences, as has been described for the different subspecies of Ligidium elrodii. Among morphotype III, we could identify up to four more or less different variations among all the collected samples. One of them, found in the northernmost studied population, corresponds with Ligidium elrodii s. str. as currently defined. Ligidium sp. 1 presents a broad, squarish tip of male pleopod 2 endopodite with a short row of small denticles in the inner corner. Ligidium sp. 3 also presents a row of small denticles in the inner corner, but has a rounded tip with a short, squarish terminal projection. Ligidium sp. 6 has an uneven, rounded profile of male pleopod 2 endopodite, with the inner corner truncated.

3.2 | Molecular data and phylogenetic analyses

The final alignments for phylogenetic and species delimitation analyses include 130 sequences of Cox1 with a total of 658 bp, although for samples amplified with BF2-BR2 primers, the fragment size is 421 bp, and the missing part was treated as missing data. For both NaK and 28S the alignments include 25 sequences of 664 and 430 bp respectively, representing the morphologically defined groups and all major mtDNA lineages.

MtDNA shows very high genetic distances between and within the mentioned morphological groups. Mean

of all studied specimens. Information by the nodes represent mean values of TMRCAs (above) and support values of phylogenetic analyses (below; BEATS2/MrBayes/ML); blue bars on nodes represent TMRCA's 95% HDP. The bottom bar indicates time in millions of years. On the right we show the morphologically defined units and the results on single-locus species delimitation analyses.

uncorrected p-distances between morphological groups range from 15.6% to 26.9%, while within them mean distances range from 0% to up to 10% (Table S1). The 28S data revealed mean uncorrected p-distances between groups of 0.98%–9.5% and very low within those groups, 0%-0.1% (Table S1). For NaK, the observed mean uncorrected p-distances between groups range from 0.46% to 5.3%, and within group distances also 0%-0.1% (Table S1).

Most specimens with morphotype II were initially assigned to Ligidium blueridgensis, including several deep mitochondrial lineages grouped in two main clades (Figure 2b), although one of them is not supported in any single locus phylogenetic analyses. Both groups are strongly supported as monophyletic when analysing the nuclear genes together (Figure S1) and, when combining nuclear and mtDNA genes, they are recovered as sister clades with high support (Figure 3). One of them, corresponding to L. blueridgensis s. str., is widespread across the southern Appalachian Mountains, being present on both sides of the French Broad River Basin,

a major biogeographic barrier in the region (Figure 1). The second one, corresponding to Ligidium sp. 5, shows a more restricted distribution and presents two genetically divergent but morphologically similar subgroups; one is found in the western Great Smoky Mountains in Tennessee, and the other close to the headwaters of the French Broad River, in south-central North Carolina (Figure 1). The third clade, representing Ligidium sp. 2, is phylogenetically unrelated to the other two lineages with distal excrescences, and shows a pleopod 2 endopodite different from the typical L. blueridgensis. It has been found exclusively at the Chunky Gal Trail in the Nantahala National Forest, SW North Carolina (Figure 1).

In the case of samples with morphotype III, initially assigned to Ligidium elrodii sensu lato (s. l.), we found several divergent lineages in all our analyses. The northernmost one, found in West Virginia, is assigned to L. elrodii s. str. (type locality, southern Indiana; Packard, 1873) and, according to our phylogenetic reconstructions, is not closely related to the other lineages (Figures 2b-3b). The

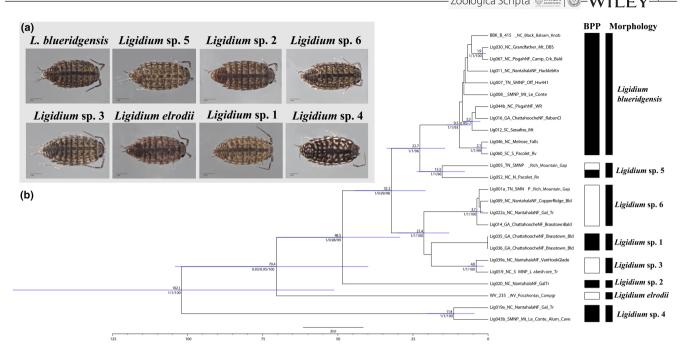


FIGURE 3 (a) External habitus of the eight observed morphotypes. (b) Chronogram based on mtDNA and nDNA sequences of selected specimens. Information by the nodes represent mean values of TMRCAs (above) and support values of phylogenetic analyses (below; BEATS2/MrBayes/ML); blue bars on nodes represent TMRCA's 95% HDP. The bottom bar indicates time in millions of years. On the right we show the morphologically defined units and the results on BPP species delimitation analyses.

other three form a monophyletic clade both using mtDNA and concatenated nuclear genes (Figure 3b). One of these lineages, *Ligidium* sp. 6, is widespread and frequent in the southern Appalachians west of the French Broad River Basin, while the other two appear to be much less frequent, one restricted to Brasstown Bald (*Ligidium* sp. 1), the highest mountain in Georgia, and the other (*Ligidium* sp. 3) showing a scattered range in southwestern North Carolina (Figure 1).

Finally, for *Ligidium* sp. 4 (including the male with morphotype I), only three specimens have been found in three rather widely scattered localities (Figure 1). Since only one of them is an adult male, assignment to this morphotype of the other specimens is based on their position in the phylogenetic trees.

The estimates of TMRCAs indicate a very old age of *Ligidium* species inhabiting the southern Appalachians (Figures 2b–3b). Estimates on deeper nodes were slightly older when analysing the multilocus dataset. The studied lineages share a common ancestor dated in the Upper-Lower Cretaceous boundary, with subsequent cladogenic events occurring likely during the Paleogene. Most of the eight main lineages are estimated as old groups, with TMRCAs dating back to the Miocene. The only exceptions are *L. elrodii* s. str., *Ligidium* sp. 1 and *Ligidium* sp. 2, characterized by very shallow genetic diversity, perhaps due to insufficient sampling, as they have been scarcely found and only in one or two localities each.

3.3 | Species delimitation analyses

Single-locus automated species delimitation analyses using the Cox1 matrix suggested the existence of several more species than morphotypes. The best proposed model by ASAP (p=0.00019, ASAP-score=3.0) indicated the existence of 16 potential species, as it suggested splitting Ligidium blueridgensis into eight species and Ligidium sp. 5 into three (Figure 2b). The result of mPTP analysis suggests even more potential species, by splitting L. blueridgensis into 12 species, Ligidium sp. 5 into three, Ligidium sp. 6 into seven, and Ligidium sp. 3 into three (Figure 2b). Contrarily, these analyses on the nuclear datasets suggested fewer species than the observed morphotypes. Neither 28S nor NaK performed well for ASAP analyses, as no significant models were proposed. The results of mPTP both with 28S and NaK delimit the same four units corresponding with morphotypes Ligidium sp. 4, L. elrodii s. str., and Ligidium sp. 2, and another group including all other morphotypes. BPP results, including analyses with all three genes (15 a priori species, pp=0.36) or only with nuclear ones (15 a priori species, pp = 0.47), indicate that the best-supported model includes 9 units, suggesting the split of *Ligidium* sp. 5 in two potential species (Figure 3b).

We have found no clear allopatric distribution patterns among the sampled species and populations (Figure 1). Ligidium elrodii s. str. has been found only outside the southern Appalachians, but our sampling to the north is

limited. Within the southern Appalachians we found several localities where two or even three lineages are found together just a few meters apart. At the sampling points along the Chunky Gal Trail in the Nantahala National Forest, SW North Carolina, we have collected three lineages, Ligidium sp. 2, Ligidium sp. 4, and Ligidium sp. 3. The widespread L. blueridgensis shares some localities with Ligidium sp. 5 (northern part of the Pacolet River, North Carolina), with Ligidium sp. 6 (in the Smoky Mountains near Newfound Gap, Tennessee), and with Ligidium sp. 2 (Alum Cave trail at Mount LeConte, Tennessee). It has been found also near Ligidium sp. 3 at Sassafras Mountain, South Carolina. The second most widespread lineage, Ligidium sp. 6, has also been found close to Ligidium sp. 1 (Brasstown Bald, Georgia) and Ligidium sp. 3 (Van Hook Glade Campground, Nantahala National Forest, North Carolina). Since at each place we collected several litter samples it is hard to say if in these localities they live in microsympatry, but they were mostly collected in the same kind of habitat.

DISCUSSION

The genus Ligidium has proven to be more diverse than initially expected in several parts of the Holarctic, after the integration of dense sampling and molecular data (Harigai et al., 2023; Klossa-Kilia et al., 2006; Wang et al., 2022). Integrative taxonomic approaches have found the existence of truly cryptic Ligidium species, hardly diagnosable based on morphological characters (Wang et al., 2022). In other cases, it has been shown that morphological variability, once considered intraspecific variation, can reflect the existence of independent evolutionary lineages and potentially different species (Li, 2017; Wang et al., 2022). Similarly, our results indicate a higher diversity than previously thought among the Ligidium populations present in the southern Appalachian Mountains.

Ligidium elrodii has been considered a widespread species present over a large portion of eastern North America. Within its range, a considerable morphological variability has been described as intraspecific variation, particularly in the southern half of its range. Some of this variability has been considered taxonomically significant, and up to 5 different subspecies are traditionally recognized (Schultz, 1970). These subspecies are largely based on differences in the male pleonite 2 endopodite, a main source of characters for species recognition in this and other groups of Oniscidea (Schultz, 1970; Vandel, 1960). Besides that, at least another morphotype has been described with no taxonomic recognition (Schultz, 1982). Without further evidence, evaluating the relevance of such variability within what is traditionally

considered a widespread, variable species can be challenging (e.g., Montesanto et al., 2007; Rodriguez-Flores et al., 2021; Sánchez-Vialas et al., 2020; Vasquez-Valverde & Marek, 2022). This is particularly true when such variability is not geographically or ecologically structured, and we find some of the different morphological variants even in the same locality. In this case, it seems reasonable to assume that the observed differences, sometimes relatively subtle, are indeed part of a single species variability. The use of phylogeographic methods can help us to increase our understanding of such patterns, and an integrative taxonomic approach is necessary to delimit species in these complexes (Padial et al., 2010).

We have observed that the morphological variants that could be initially attributed to Ligidium elrodii s. l. indeed represent old, independent evolutionary lineages that can be postulated as different species. Within the southern Appalachians we have discovered three of them and, given the complex geography of this region, there could be more to be discovered yet. Based on our results, we anticipate that the four morphotypes described as different subspecies within L. elrodii will also represent deep, independent evolutionary lineages that will be eventually considered full species. However, a more complete sampling including representatives of these groups will be needed before their taxonomic status is revised. Even if somewhat modest, the differences observed in the male pleopode 2 endopodite seem to be constant and seem to be of diagnostic value, so these aren't necessarily 'cryptic species' in the strictest sense within this complex.

In the case of Ligidium blueridgensis s. l., only two different morphotypes were clearly separated, representing the two main lineages within this group. In this case, the existence of deeper sublineages indicates the existence of cryptic diversity, perhaps even some cryptic species. Certainly, automated species delimitation methods based on Cox1 sequences split both main lineages into several units. However, our nuclear and morphological evidence is not enough to recognize most of them. It will be necessary to generate more data to study in more detail the evolutionary history of this species and explore its real species diversity. In the case of Ligidium sp. 5, we found two genetically distinct and apparently geographically segregated lineages. Pending a deeper morphological assessment, they may represent two true cryptic species as suggested by multilocus species delimitation.

Besides the above semi-cryptic diversity, we still have been able to locate new morphotypes unrelated to previously described taxa. This is indicative of insufficient exploration of the diversity of Ligidium, and suggests that still more species might be discovered not only in this area but across North America. Indeed, not many zoologists have focused their attention on terrestrial isopods in the

Nearctic region, and the lack of taxonomic expertise and of functional keys makes it difficult to identify current diversity (Shultz, 2018). Thus, it would not be surprising that species with restricted distribution have not been found and described yet. In many parts of North America, the dominant terrestrial isopod species are just a bunch of exotic species, some of them with presence in the continent already for hundreds of years (Jass & Klausmeier, 2000; Van Name, 1936). We do not know whether this is caused by native species being displaced by invasive ones, or by an originally limited native fauna that allowed exotic species to easily colonize available ecological niches. But this may have reduced the general interest for this group, particularly for local taxonomists. In the southern Appalachians we have found indeed poor communities of terrestrial isopods, with native representatives of the genera Ligidium and Miktoniscus Kesselyak, 1930; in the studied litter samples we have found Ligidium as the dominant taxon, frequently living in sympatry with Trichoniscus pusillus Brandt, 1833, and more rarely with Oniscus asellus Linnaeus, 1758 or Hyloniscus riparius (C. Koch, 1838), all three exotic species of European origin (Schmalfuss, 2003).

Most of the diversity found in the southern Appalachians lives west of the French Broad River Basin, considered one of the major geographical barriers in the area acting as such at least since the Pliocene (Caterino & Langton-Myers, 2019; Crespi et al., 2003; Hedin et al., 2015), while other commonly recognized riverine barriers, such as the Little Tennessee and Tuckasegee River basins (Hedin & McCormack, 2017; Thomas & Hedin, 2008), seem not to be influencing the observed distributions. In fact, among species in the region, only Ligidium blueridgensis seems to have crossed the French Broad River Basin, showing a distinct mitochondrial sublineage exclusively present in those parts. In our multilocus chronogram, time estimates are compatible with a Mio-Pliocene origin of this clade, around 5.5 mya. However, all main lineages are estimated to be much older than the Pliocene. Among terrestrial Isopoda, as in any other terrestrial animal group, allopatric speciation is the most frequently considered process for the formation of species (Hernández-Hernández et al., 2021). Even if we have found several cases of sympatry in southern Appalachia, their ages would allow current species to have originated by allopatric speciation in southern Appalachia or in other regions with subsequent range shifts generating currently sympatric populations.

The estimated ages in our chronograms suggest an ancient presence of the genus in eastern North America. Ligidium has a broad distribution encompassing all the Holartic and, considering the dispersal limitations of these organisms, it is possible that the ancestors of current diversity were already living in Laurasia at least when this supercontinent started to split between North America and Eurasia. The Appalachian Mountains are very old (Rast, 1989), so indeed they could have been in these lands for the last hundred million years. The only published fossil record of Ligidium is a Baltic amber inclusion dated in the Paleogene Eocene (Broly et al., 2013), which tells us little regarding the age of Appalachian Ligidium but that is compatible with the TMRCAs estimated in our analyses. However, we lacked adequate calibration points for a molecular clock, and the substitution rate we used could be either over- or underestimated. It is relatively frequent among terrestrial isopods to exhibit very high mtDNA genetic distances, inter- and intraspecific (e.g., Raupach et al., 2022; Recuero et al., 2022; Zimmermann et al., 2015). The reasons for this have never been clear and could be explained under different hypotheses (Raupach et al., 2022). First, they could indeed be old organisms with an evolutionary history of millions of years. In this case, old mtDNA lineages could be indicative of the existence of cryptic species, although mtDNA alone is often not enough to establish the current evolutionary independence of such lineages (Després, 2019). Second, a potential effect of Wolbachia bacteria has been hypothesized to have shaped the mitochondrial diversity of infected populations, generating a strong selective pressure that could rapidly induce differentiation of mtDNA lineages (Hurst & Jiggins, 2005; Kodandaramaiah et al., 2013). In this case it is expected to find deeply differentiated lineages, but extremely homogeneous within-lineage haplotype diversity. A third alternative is that mitochondrial substitution rates are higher than normal in these organisms. However, the few studies trying to calibrate a molecular clock for terrestrial isopods do not support this (Ketmaier et al., 2003; Poulakakis & Sfenthourakis, 2008; Wysocka et al., 2008). Lastly, the presence of nuclear copies of the mtDNA genes (NUMTs) can yield deceptive results including extremely divergent lineages (Bensasson et al., 2001). However, in the case of coding genes, these divergent NUMTs should be plagued with stop codons and would be easy to detect.

Regardless of our estimates, it is clear that the Ligidium fauna in the southern Appalachian Mountains is more diverse than previously thought, mostly due to misinterpretation of the observed morphological variation, but also by the existence of unexplored and cryptic diversity. We are working to describe the species presented here in the near future, while continuing to explore the southern Appalachians in search of yet undiscovered species.

ACKNOWLEDGEMENTS

Thanks to P. Wooden, A. Haberski, C. Harden, M. Ferro, L. Cushman, R. Kucuk, P. Marek, S. Payne, L. Kairy, C. McGehee, C. MacCheyne and F. Etzler for their help in Experiment Station.

the field or collecting samples. Also, to the North Carolina

State Parks, Monongahela National Forest, Great Smoky

Mountains National Park, and Blue Ridge Parkway

National Park for collecting permit. We acknowledge the

support of the John and Suzanne Morse Endowment for

Arthropod Biodiversity. This study represents Technical

Contribution Number 7240 of the Clemson University

Derkarabetian, S., Starrett, J., & Hedin, M. (2022). Using natural history to guide supervised machine learning for cryptic species delimitation with genetic data. *Frontiers in Zoology*, 19(1), 8. https://doi.org/10.1186/s12983-022-00453-0

Després, L. (2019). One, two or more species? Mitonuclear discordance and species delimitation. *Molecular Ecology*, 28, 3845–3847. https://doi.org/10.1111/mec.15211

Dukes, C. D., Janssens, F., Recuero, E., & Caterino, M. S. (2022). Specific and intraspecific diversity of Symphypleona and Neelipleona (Hexapoda: Collembola) in southern high Appalachia (USA). *Diversity*, 14, 847. https://doi.org/10.3390/d14100847

Elbrecht, V., & Leese, F. (2017). Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bio-

FUNDING INFORMATION

This study was funded by the U.S. National Science Foundation (Award DEB-1916263 to MSC) and the Clemson University Experiment Station (SC-1700596 to MSC).

ORCID

Ernesto Recuero https://orcid.org/0000-0001-8086-8667

Michael S. Caterino https://orcid.
org/0000-0002-2597-5707

REFERENCES

- Alexiou, S., & Sfenthourakis, S. (2013). The terrestrial isopods (Isopoda: Oniscidea) of Greece. *Parnassiana Archives*, 1, 3–50.
- Bensasson, D., Zhang, D. X., Hartl, D. L., & Hewitt, G. M. (2001). Mitochondrial pseudogenes: evolution's misplaced witnesses. *Trends in Ecology & Evolution*, *16*(6), 314–321. https://doi.org/10.1016/S0169-5347(01)02151-6
- Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. *PLoS Computational Biology*, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
- Bouckaert, R. R., & Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17, 1–11. https://doi.org/10.1186/s12862-017-0890-6
- Broly, P., Deville, P., & Maillet, S. (2013). The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). *Evolutionary Ecology*, 27, 461–476. https://doi.org/10.1007/s10682-012-9625-8
- Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species delimitation. *Molecular Ecology*, 22(17), 4369–4383. https://doi.org/10.1111/mec.12413
- Caterino, M. S., & Langton-Myers, S. S. (2019). Intraspecific diversity and phylogeography in southern Appalachian *Dasycerus carolin*ensis (Coleoptera: Staphylinidae: Dasycerinae). *Insect Systematics* and *Diversity*, 3(6), 8. https://doi.org/10.1093/isd/ixz022
- Caterino, M. S., & Recuero, E. (2024). Shedding light on dark taxa in sky-Island Appalachian leaf litter: Assessing patterns of endemicity using large-scale, voucher-based barcoding. *Insect Conservation and Diversity*, *17*(1), 16–30. https://doi.org/10. 1111/icad.12697
- Crespi, E. J., Rissler, L. J., & Browne, R. A. (2003). Testing Pleistocene refugia theory: Phylogeographical analysis of *Desmognathus wrighti*, a high-elevation salamander in the southern Appalachians. *Molecular Ecology*, *12*(4), 969–984. https://doi.org/10.1046/j.1365-294x.2003.01797.x

- Elbrecht, V., & Leese, F. (2017). Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Frontiers in Environmental Science, 5, 11. https://doi.org/10.3389/fenvs.2017.00011
- Folmer, O., Hoeh, W. R., Black, M. B., & Vrijenhoek, R. C. (1994).

 Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. *Molecular Marine Biology and Biotechnology*, *3*(5), 294–299.
- Harigai, W., Saito, A., Suzuki, H., & Yamamoto, M. (2020). Genetic diversity of *Ligidium* isopods in Hokkaido and Niigata, northern Japan, based on mitochondrial DNA analysis. *Zoological Science*, 37(5), 417–428. https://doi.org/10.2108/zs200017
- Harigai, W., Saito, A., Zemmoto, C., Karasawa, S., Yokoi, T., Nagano, A. J., Suzuki, H., & Yamamoto, M. (2023). History of the terrestrial isopod genus *Ligidium* in Japan based on phylogeographic analysis. *BMC Ecology and Evolution*, 23(1), 1–25. https://doi.org/10.1186/s12862-023-02144-8
- Hedin, M., Carlson, D., & Coyle, F. (2015). Sky Island diversification meets the multispecies coalescent–divergence in the spruce-fir moss spider (*Microhexura montivaga*, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia. *Molecular Ecology*, 24(13), 3467–3484. https://doi.org/10.1111/mec.13248
- Hedin, M., & McCormack, M. (2017). Biogeographical evidence for common vicariance and rare dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens). Journal of Biogeography, 44(7), 1665–1678. https://doi.org/10.1111/jbi.12973
- Hedin, M., & Milne, M. A. (2023). New species in old mountains: Integrative taxonomy reveals ten new species and extensive short-range endemism in *Nesticus* spiders (Araneae, Nesticidae) from the southern Appalachian Mountains. *ZooKeys*, 1145, 1–130. https://doi.org/10.3897/zookeys.1145.96724
- Hernández-Hernández, T., Miller, E. C., Román-Palacios, C., & Wiens, J. J. (2021). Speciation across the tree of life. *Biological Reviews*, 96(4), 1205–1242. https://doi.org/10.1111/brv.12698
- Hurst, G. D., & Jiggins, F. M. (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. *Proceedings of the Royal Society B: Biological Sciences*, *272*(1572), 1525–1534. https://doi.org/10.1098/rspb.2005.3056
- Jass, J., & Klausmeier, B. (2000). Endemics and immigrants: North American terrestrial isopods (Isopoda, Oniscidea) north of Mexico. *Crustaceana*, 73, 771–799. https://doi.org/10.1163/ 156854000504804
- Jass, J. P., & Klausmeier, B. R. (2006). Transborder associations of terrestrial isopods (Crustacea, Isopoda, Oniscidea) of Mexico and the United States. Western North American Naturalist, 66, 132–134. https://doi.org/10.3398/1527-0904(2006)66[132:TAOTIC] 2.0.CO;2

- https://doi.org/10.1093/bib/bbx108

 Ketmaier, V., Argano, R., & Caccone, A. (2003). Phylogeography and molecular rates of subterranean aquatic stenasellid isopods with a peri-Tyrrhenian distribution. *Molecular Ecology*, 12(2),
- 547–555. https://doi.org/10.1046/j.1365-294X.2003.01734.x Klossa-Kilia, E., Kilias, G., & Sfenthourakis, S. (2005). Increased genetic diversity in Greek populations of the genus *Ligidium* (Crustacea: Isopoda: Oniscidea) revealed by RFLP analysis of mtDNA segments. *Contributions to Zoology*, 74(3–4), 255–264. https://doi.org/10.1163/18759866-0740304003
- Klossa-Kilia, E., Kilias, G., Tryfonopoulos, G., Koukou, K., Sfenthourakis, S., & Parmakelis, A. (2006). Molecular phylogeny of the Greek populations of the genus *Ligidium* (Isopoda, Oniscidea) using three mtDNA gene segments. *Zoologica Scripta*, 35, 459–472. https://doi.org/10.1111/j.1463-6409.2006.00243.x
- Kodandaramaiah, U., Simonsen, T. J., Bromilow, S., Wahlberg, N., & Sperling, F. (2013). Deceptive single-locus taxonomy and phylogeography: Wolbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. *Ecology and Evolution*, 3(16), 5167–5176. https://doi.org/10.1002/ece3.886
- Lanfear, R., Calcott, B., Ho, S. Y., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020
- Lee, T. R., Ho, S. Y., Wilson, G. D., & Lo, N. (2014). Phylogeography and diversity of the terrestrial isopod *Spherillo grossus* (Oniscidea: Armadillidae) on the Australian East Coast. *Zoological Journal of the Linnean Society*, *170*(2), 297–309. https://doi.org/10. 1111/zoj.12105
- Li, W. C. (2017). Morphology and molecules reveal high species diversity of *Ligidium* (Crustacea: Oniscidea: Ligiidae) in Jiangxi, China. *Zoological Journal of the Linnean Society*, 179(3), 627–641. https://doi.org/10.1111/zoj.12464
- Mamos, T., Grabowski, M., Rewicz, T., Bojko, J., Strapagiel, D., & Burzyński, A. (2021). Mitochondrial genomes, phylogenetic associations, and SNP recovery for the key invasive Ponto-Caspian amphipods in Europe. *International Journal of Molecular Sciences*, 22(19), 10300. https://doi.org/10.3390/ijms221910300
- Meier, R., Wong, W., Srivathsan, A., & Foo, M. (2016). \$1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. *Cladistics*, *32*, 100–110. https://doi.org/10.1111/cla.12115
- Montesanto, G., Caruso, D., & Lombardo, B. M. (2007). Taxonomic status of the Mediterranean terrestrial isopod, *Porcellio lamellatus* Budde-Lund, 1885 as inferred from genetic and morphological differentiation (Isopoda, Oniscidea). *Crustaceana*, 80, 917–938. https://doi.org/10.1163/156854007781681229
- Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. *Frontiers in Zoology*, 7(1), 1–14. https://doi.org/10.1186/1742-9994-7-16

- Poulakakis, N., & Sfenthourakis, S. (2008). Molecular phylogeny and phylogeography of the Greek populations of the genus *Orthometopon* (Isopoda, Oniscidea) based on mitochondrial DNA sequences. *Zoological Journal of the Linnean Society*, *152*(4), 707–715. https://doi.org/10.1111/j.1096-3642.2007.00378.x
- Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: Assemble species by automatic partitioning. *Molecular Ecology Resources*, 21(2), 609–620. https://doi.org/10.1111/1755-0998.13281
- Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using tracer 1.7. *Systematic Biology*, *67*(5), 901–904. https://doi.org/10.1093/sysbio/syy032
- Rast, N. (1989). The evolution of the Appalachian chain. In A. W. Bally & A. R. Palmer (Eds.), *The geology of North America-an overview* (pp. 323–348). Geological Society of America. https://doi.org/10.1130/DNAG-GNA-A.323
- Raupach, M. J., Rulik, B., & Spelda, J. (2022). Surprisingly high genetic divergence of the mitochondrial DNA barcode fragment (COI) within central European woodlice species (Crustacea, Isopoda, Oniscidea). *ZooKeys*, 1082, 103–125. https://doi.org/10.3897/zookeys.1082.69851
- Recuero, E., Rodríguez-Flores, P. C., & García-París, M. (2022). Homoplasy and morphological stasis revealed through multilocus phylogeny of new myrmecophilous species in Armadillidiidae (Isopoda: Oniscidea). *Zoological Journal of the Linnean Society*, 194(4), 1312–1340. https://doi.org/10.1093/zoolinnean/zlab066
- Rodriguez-Flores, P. C., Macpherson, E., & Machordom, A. (2021).

 Revision of the squat lobsters of the genus *Phylladiorhynchus*Baba, 1969 (Crustacea, Decapoda, Galatheidae) with the description of 41 new species. *Zootaxa*, 5008(1), 1–159. https://doi.org/10.11646/ZOOTAXA.5008.1.1
- Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Sánchez-Vialas, A., García-París, M., Ruiz, J. L., & Recuero, E. (2020). Patterns of morphological diversification in giant Berberomeloe blister beetles (Coleoptera: Meloidae) reveal an unexpected taxonomic diversity concordant with mtDNA phylogenetic structure. Zoological Journal of the Linnean Society, 189(4), 1249–1312. https://doi.org/10.1093/zoolinnean/zlz164
- Schmalfuss, H. (2003). World catalog of terrestrial isopods (Crustacea: Isopoda). Stuttgarter Beiträge Zur Naturkunde, A: Biologie, 654, 1–341.
- Schultz, G. A. (1964). Two additional data on terrestrial isopod crustaceans: *Ligidium blueridgensis*, sp. nov., from Georgia and a north Carolina cave location for *Miktoniscus linearis* (patience, 1908). *Journal of the Elisha Mitchell Scientific Society*, 80, 90–94.
- Schultz, G. A. (1970). Descriptions of new subspecies of *Ligidium elrodii* (Packard) comb. nov. with notes on other isopod crustaceans from caves in North America (Oniscoidea). *American Midland Naturalist*, 84, 36–45. https://doi.org/10.2307/2423724
- Schultz, G. A. (1982). Terrestrial isopods (Crustacea: Isopoda: Oniscoidea) from North Carolina. *Brimleyana*, 8, 1–26.
- Segura-Zarzosa, I. E., Rodríguez-Almaraz, G. A., Obregón-Barboza, H., Murugan, G., Treviño-Flores, J. A., & Maeda-Martínez, A. M. (2020). New records of exotic species of Oniscidea (Crustacea: Isopoda) from northern Mexico. Revista Mexicana de Biodiversidad, 91, e913098. https://doi.org/10.22201/ib.20078 706e.2020.91.3098

- Sfenthourakis, S., & Taiti, S. (2015). Patterns of taxonomic diversity among terrestrial isopods. *ZooKeys*, *515*, 13–25. https://doi.org/10.3897/zookeys.515.9332
- Sfenthourakis, S. (1993). The genus *Ligidium* Brandt (Isopoda, Oniscidea) in Greece. Taxonomy and distribution. *Biologia Gallo-Hellenica*, 20, 45–53.
- Shultz, J. W. (2018). A guide to the identification of the terrestrial isopoda of Maryland, USA (crustacea). *ZooKeys*, *801*, 207–228. https://doi.org/10.3897/zookeys.801.24146
- Srivathsan, A., Lee, L., Katoh, K., Hartop, E., Kutty, S. N., Wong, J., Yeo, D., & Meier, R. (2021). ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. *BMC Biology*, *19*, 1–21. https://doi.org/10.1186/s12915-021-01141-x
- Taiti, S. (2017). Biologia e biogeografia degli isopodi terrestri (Crustacea, Isopoda, Oniscidea). *Atti Della Accademia Nazionale Italiana di Entomologia, Rendiconti, 65*, 83–90.
- Thomas, S. M., & Hedin, M. (2008). Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid *Fumontana deprehendor* shear (Opiliones, Laniatores, Triaenonychidae). *Molecular Phylogenetics and Evolution*, 46(2), 645–658. https://doi.org/10.1016/j.ympev.2007.10.013
- Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research*, *44*(W1), W232–W235. https://doi.org/10.1093/nar/gkw256
- Tsang, L. M., Ma, K. Y., Ahyong, S. T., Chan, T. Y., & Chu, K. H. (2008). Phylogeny of Decapoda using two nuclear protein-coding genes: Origin and evolution of the Reptantia. *Molecular Phylogenetics and Evolution*, 48, 359–368. https://doi.org/10.1016/j.ympev.2008.04.009
- Van Name, W. G. (1936). The American land and fresh-water isopod crustacea. *Bulletin of the American Museum of Natural History*, 71, 1–535.
- Vandel, A. (1960). Faune de France. Isopodes Terrestres (Première Partie). P. Lechevalier.
- Vasquez-Valverde, L. F., & Marek, P. E. (2022). Phylogenetic review of the millipede genus *Cherokia* Chamberlin, 1949 (Polydesmida, Xystodesmidae). *ZooKeys*, *1106*, 141–163. https://doi.org/10.3897/zookeys.1106.81386
- Wang, J., Yang, J., Zeng, X., & Li, W. (2022). Integrative taxonomy on the rare sky-Island *Ligidium* species from southwest China (isopoda, Oniscidea, Ligiidae). *BMC Zoology*, 7, 1–21. https://doi.org/10.1186/s40850-022-00120-1

- Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., & Wheeler, W. C. (1997). The Strepsiptera problem: Phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. *Systematic Biology*, *46*, 1–68. https://doi.org/10.1093/sysbio/46.1.1
- Wiens, J. J. (2004). Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. *Evolution*, *58*(1), 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.x
- Wysocka, A., Kostoski, G., Kilikowska, A., Wróbel, B., & Sell, J. (2008). The *Proasellus* (crustacea, isopoda) species group, endemic to the Balkan Lake Ohrid: A case of ecological diversification? *Fundamental and Applied Limnology*, 172(4), 301–313. https://doi.org/10.1127/1863-9135/2008/0172-0301
- Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. *Proceedings of the National Academy* of Sciences, 107(20), 9264–9269. https://doi.org/10.1073/pnas. 0913022107
- Yoshino, H., & Kubota, K. (2022). Phylogeographic analysis of Ligidium japonicum (isopoda: Ligiidae) and its allied species reveals high biodiversity and genetic differentiation in the Kanto region, Japan. Entomological Science, 25, e12501. https://doi. org/10.1111/ens.12501
- Zimmermann, B. L., Campos-Filho, I. S., Depra, M., & Araujo, P. B. (2015). Taxonomy and molecular phylogeny of the neotropical genus *Atlantoscia* (Oniscidea, Philosciidae): DNA barcoding and description of two new species. *Zoological Journal of the Linnean Society*, 174(4), 702–717. https://doi.org/10.1111/zoj.12256

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Recuero, E., & Caterino, M. S. (2024). Hidden diversity in eastern North America: The genus *Ligidium* (Oniscidea, Ligiidae) in the southern Appalachian Mountains. *Zoologica Scripta*, 00, 1–20. https://doi.org/10.1111/zsc.12661