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Hidden diversity in eastern North America: The genus
Ligidium (Oniscidea, Ligiidae) in the southern Appalachian
Mountains
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South Carolina, USA The terrestrial isopod genus Ligidium includes 58 species from Europe, Asia,
and North America. In Eastern North America four species are recognized:
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if such variability represents inter- or intraspecific variation. Here, we explore

the congruence of morphologically defined groups with multilocus phyloge-
netic reconstructions and molecular species delimitation methods. We have
studied a total of 130 specimens from 37 localities, mostly from the southern
Appalachians, and analysed mtDNA (Cox1) and nuclear (28S, NaK) sequences.
Morphologically, we recognized eight morphotypes, most of them assignable
to current concepts of L. elrodii and L. blueridgensis. Phylogenetic analyses
supported the evolutionary independence of all morphotypes, and suggest
the existence of 8-9 species, including limited cryptic diversity. Single-locus
delimitation analyses based on mtDNA data suggest the existence of a much
higher number of species than the multilocus analyses. The estimated age of
the ancestors of sampled lineages indicates a long presence of the genus in
eastern North America and old speciation events through the Miocene. Our
results indicate a higher diversity than previously thought among the Ligidium
populations present in the southern Appalachian Mountains, with several spe-
cies to be described.
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1 | INTRODUCTION

Terrestrial isopods are one of the main detritivore animal
groups in the soils of all continents except Antarctica; they
represent, according to our current taxonomic knowledge,
the most speciose of Isopod groups, with around 3700
named species living in all kinds of terrestrial habitats.
However, this diversity is not uniformly distributed, with
the highest diversity centered in some tropical regions and
Palearctic areas such as the Mediterranean (Sfenthourakis
& Taiti, 2015).

The diversity of Oniscidea in the Nearctic is relatively
low when compared with other climatically similar re-
gions as the western Palearctic. For instance, in North
America, 109 species have been reported from the United
States and Canada, and more than one-third of them
are considered exotic taxa coming mostly from Europe
(Jass & Klausmeier, 2000), while in Mexico 86 species
are known, with around 11% being exotic forms (Jass &
Klausmeier, 2006; Segura-Zarzosa et al., 2020). In contrast,
in regions such as the Western Palearctic, diversity is much
higher. For instance, Alexiou and Sfenthourakis (2013)
listed 238 species just from Greece, of which 161 are en-
demic, while in Italy there are 367 species recorded, with a
60% endemicity (Taiti, 2017). Such differences are likely a
consequence of the evolutionary history of the group, but
perhaps also multiplied by geographic biases in the taxo-
nomic work done throughout history.

Among the native North American species, 8 of
them belong to the genus Ligidium Brandt, 1833 (Jass
& Klausmeier, 2000). This genus has a patchy Holarctic
distribution and includes 58 species from Europe, Asia,
and North America (Schmalfuss, 2003; Wang et al., 2022).
In western North America, the genus is present along
the Pacific coast, with one widespread species and 3
Californian endemics. In eastern North America, it is rep-
resented by locally endemic species from Florida, Ligidium
floridanum Schultz & Johnson, 1984, and Louisiana,
Ligidium mucronatum Mulaik & Mulaik, 1942; one en-
demic to the southern Appalachians, Ligidium blueridgen-
sis Schultz, 1964, and one widespread species, Ligidium
elrodii (Packard, 1873), ranging from northern Georgia to
Ontario. According to the current information only two of
them, L. elrodii and L. blueridgensis, overlap in their distri-
butional ranges, specifically in the southern Appalachian
Mountains (Schultz, 1982).

Ligidium species present a marked morphological con-
servatism, and species are differentiated mostly by small
differences in the apex of the elongated male pleopod 2 en-
dopodite, the shape of male pleopod 1 and 2 exopodites, or
the length of uropod exopodites and endopodites (Klossa-
Kilia et al., 2006; Schultz, 1970; Sfenthourakis, 1993; Wang
et al., 2022). Within the widespread Ligidium elrodii, some

morphological variability has been described, which has
led to the definition of several subspecies known only
from their type localities: L. e. chatoogaensis Schultz, 1970,
from Chattooga Co. in northwestern Georgia, L. e. scotten-
sis Schultz, 1970 and L. e. leensis Schultz, 1970, from Scott
Co. and Lee Co. respectively in southwestern Virginia,
and L. e. hancockensis Schultz, 1970 from Hancock Co. in
Northern Tennessee.

Molecular studies in different regions across the ge-
nus's range have shown unexpected levels of diversity,
suggestive of the existence of species complexes and even
cryptic species. In Greece, works using mtDNA markers
indicated high interspecific and interpopulation genetic
distances and, in some cases such as in Ligidium beieri
Strouhal, 1928, a strong discordance between mtDNA
lineages and morphological identification (Klossa-Kilia
et al., 2005, 2006). The authors suggest that the observed
high genetic differentiation may result from strict ecolog-
ical specialization to very humid soil habitats, causing
strong geographic isolation in a relatively dry region such
as the Eastern Mediterranean. However similar patterns
have been found among temperate, subtropical and mon-
tane climates in regions of Japan (Harigai et al., 2020,
2023; Yoshino & Kubota, 2022) and China, where several
new species have been delimited with the help of molecu-
lar data (Li, 2017; Wang et al., 2022). Overall, this suggests
that Ligidium species have limited dispersal capacities,
favouring genetic lineage differentiation and eventually
speciation, most likely by allopatric isolation coupled with
ecological niche conservatism (Wiens, 2004).

Thus, widespread species such as Ligidium elrodii are
excellent candidates to explore the distribution of hidden
diversity, including local endemics and the existence of spe-
cies complexes. Here, we explore the diversity of Ligidium
from the southern Appalachian Mountains, exploring the
congruence of morphologically defined groups with multi-
locus phylogenetic reconstructions and automated species
delimitation using molecular data. Previous studies indi-
cate that the diversity of many groups of small, flightless
Arthropoda is underestimated in this region (e.g., Caterino
& Recuero, 2024; Derkarabetian et al., 2022; Dukes
et al., 2022; Hedin & Milne, 2023). Our main hypothesis
is that the diversity of southern Appalachian Ligidium is
higher than the two species currently reported, and that
more than one species are hidden under a single name.

2 | MATERIALS AND METHODS
2.1 | Sampling

We have studied a total of 130 Ligidium specimens from 37
localities, mostly from the southern Appalachians in the
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states of North Carolina, Tennessee, Georgia, and South
Carolina, with two localities located in the Allegheny
Mountains in West Virginia (Table 1). Sampling was per-
formed mostly by leaf litter sifting and subsequent Berlese
extraction. Litter samples were collected down to the soil
surface at points where humidity was high, sifted through
an 8 mm mesh, and taken to the lab in cloth bags. Berlese-
extracted specimens were directly collected into absolute
ethanol, and subsequently sorted and stored in absolute
ethanol at —20°C. A few specimens were also collected by
direct search in leaf litter or under logs and rocks. Studied
material is currently deposited at the Clemson University
Arthropod Collection (CUAC).

Samples were examined using an Olympus SZX7 ste-
reomicroscope, and the general habitus of several spec-
imens was photographed using a Nikon EOS 6D with a
Tamron AF 1.4% teleconverter and a Canon MP-E 65mm
macro lens. For each sample 10 to 20 pictures were
taken and stacked with a Visionary Digital Passport sys-
tem and Helicon Focus software v.8.1.1 (HeliconSoft,
Ukraine). Most male samples could be morphologically
assigned to species following the character descriptions in
Schultz (1964, 1970, 1982). Some specimens did not match
any described species. Specifically, we revised the shape of
male pleopod 2 endopodite for species identification, and
considered it as a discrete character to define morphospe-
cies and compare them with genetic lineages. Females and
juveniles were identified based on males from the same
locality or on their position in the phylogeny. All samples
were georeferenced and mapped using QGIS v3.28 (avail-
able at http://www.qgis.org) (Figure 1).

2.2 | DNA extraction and sequencing

We extracted genomic DNA from one or two pereiopods
from each specimen, digested with lysis buffer and pro-
teinase K (Omega BioTek, Norcross, GA, USA). Most sam-
ples were extracted using Omega BioTek's MagBind HDQ
Blood and Tissue kit, eluting with 150 pL elution buffer,
on a Hamilton Microlab Star automated liquid handling
system, which allows processing up to 96 samples in a sin-
gle run. Some samples were extracted using the GeneJET
Genomic DNA Purification Kit (Thermo Fisher Scientific,
Waltham, MA, USA), following standard protocol and
eluting in 150 pL of molecular grade water. Both meth-
ods yielded high quality DNA extractions with similar
concentrations.

Amplification with the polymerase chain reaction
(PCR) of fragments of the mitochondrial gene cytochrome
c oxidase subunit I (Cox1) was made using primers LCO-
1490 and HCO-2198 (Folmer et al., 1994) or BF2 and BR2
(Elbrecht & Leese, 2017); the latter pair was indexed with 9
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base pair (bp) tags (Meier et al., 2016) to allow multiplexed
high-throughput sequencing as part of a larger megabar-
coding project (Caterino & Recuero, 2024). For a subset
of samples representing all main mtDNA lineages, we
amplified fragments of the nuclear genes 28S ribosomal
RNA (28S), using the primers 28Sa and 28Sb (Whiting
et al., 1997), and the sodium-potassium ATPase a-subunit
(NaK), using the primers NaK for-b and NaK Rev2 (Tsang
et al., 2008). The PCR conditions were employed as de-
scribed by Dukes et al. (2022), with annealing temperatures
of 50°C for Cox1 and 28S and 62°C for NaK. PCR products
were visualized using electrophoresis on 1% agarose gels
to assess amplification success. Clean-up and Sanger se-
quencing were performed by Psomagen (Rockville, MD,
USA). Amplicons obtained with primers BF2-BR2 were
sequenced using a Nanopore MinION (Oxford Nanopore
Technologies, Oxford, UK); we prepared the library using
the ligation sequencing kit LSK-112 and sequenced it with
a R10.4 flow cell. Demultiplexing was performed using
ONTbarcoder (Srivathsan et al., 2021).

2.3 | Phylogenetic analyses

Sequences were revised using Sequencher v.5.4.1 (Gene
Codes Corporation), and aligned either manually (Coxl1,
NaK) or using MAFFT v7 (28S) (Katoh et al., 2019; avail-
able online at https://maftt.cbrc.jp/alignment/server/)
with the FFT-NS-2 method.

For the coding Coxl and NaK matrices, we used
PartitionFinder (Lanfear et al., 2012) to establish the best
partition scheme for the different codon positions, re-
sulting in three different partitions for each of these two
genes. This partition scheme was implemented in all phy-
logenetic analyses.

We performed phylogenetic analyses using the whole
Cox1 matrix, as well as for each nuclear gene, a concate-
nated nuclear genes matrix, and a matrix concatenating
all three genes. Analyses were performed under maxi-
mum likelihood (ML) and Bayesian approaches.

ML trees were obtained with W-IQ-TREE
(Trifinopoulos et al., 2016; available online at http://
igtree.cibiv.univie.ac.at), using the Auto option to esti-
mate the best fitting substitution model, and measuring
branch support with 1000 ultrafast bootstrap replicates.

Bayesian phylogenetic inference was performed with
MrBayes v3.2.6 (Ronquist & Huelsenbeck, 2003) and
BEAST2.7.5 (Bouckaert et al., 2014), the latter including
estimates of time to the most recent common ancestor
(TMRCA). MrBayes analyses were run four independent
times to assess consistency of results; runs used one cold
and three heated chains for 10 million generations sam-
pling every 1000. Convergence was assessed checking the
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FIGURE 1 Map showing the studied populations and the distribution of southern Appalachian Ligidium main lineages. The two

studied populations from West Virginia are not shown.

ending average standard deviation of split frequencies val-
ues, which were always below 0.01, and effective sample
sizes (ESS), always above 100; consensus trees were obtained
after applying a 25% burn-in. BEAST?2 analyses were also in-
dependently repeated four times to assess consistency, using
the package bModelTest (Bouckaert & Drummond, 2017) to
estimate the best-fitting substitution models for the differ-
ent partitions, running for 100 million generations sampled
every 10,000 and implementing an optimized lognormal

relaxed clock. We used Birth and Death as the tree prior to
analyse all concatenated matrices, while for the Cox1 ma-
trix, considering the high number of haplotypes per species,
we chose a Bayesian Skyline coalescent tree prior, in both
cases starting with default values. Having no available fos-
sil records or any other adequate information to calibrate
the molecular clock, we chose to use a substitution rate
with a mean value of 0.017 (£0.007) following previous
works on Peracarid crustaceans as Amphipoda and Isopoda
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(Lee et al., 2014; Mamos et al., 2021). No other priors were
modified. ESS for all parameters were checked with Tracer
v.1.7.2 (Rambaut et al., 2018) and higher than 200. We used
TreeAnnotator v.1.10.4 to build maximum clade credibility
trees considering a 25% burn-in.

2.4 | Species delimitation analyses

We performed single-locus species delimitation anal-
yses on each gene alignment. To compare differ-
ent approaches, we used a distance-based method,
ASAP (Assemble Species by Automatic Partitioning,
Puillandre et al., 2021), based on the detection of bar-
coding gaps from observed genetic pairwise distances,
and a phylogenetic-based method, mPTP (multirate
Poisson Tree Process, Kapli et al., 2017), that compares
branching rate transitions using speciation and coales-
cent models. ASAP analyses were run on the web server
(available at https://bioinfo.mnhn.fr/abi/public/asap/
asapweb.html), with a split probability of 0.01 and using
simple p-distances. For mPTP analyses we used the web
server (available at https://mptp.h-its.org/#/tree) and
the trees generated with BEAST?2 as input.

For multilocus matrices, we used BPP v4.6.2 (Bayesian
Phylogenetics and Phylogeography; Yang & Rannala, 2010).
This is considered a validation method that will compare
posterior probabilities (pp) of different delimitation mod-
els that consider different numbers of units among a priori
specified species (Carstens et al., 2013). For these analyses,
we considered both a dataset including only nuclear genes
and a dataset including nuclear and Cox1 sequences. In the
second case we tried using the complete Cox1 alignment
and a reduced alignment including only those represented
also in the nuclear alignments. This analysis generates the
delimitation models to be tested by lumping a priori spe-
cies, but it can't split them further, so we tested different
hypotheses considering 15 a priori species (considering
shallower clades as potential species), or 25 species (con-
sidering each specimen a potential species). We ran ‘Al11’
analyses for 200,000 generations with 20,000 generations
as burnin, sampling every five generations, using a guide
tree based on our previous multilocus phylogenetic analy-
ses, and mean values of 0.02 for theta and tau, with inverse
gamma distributions.

3 | RESULTS
3.1 | Morphology

The morphological examination of the studied sam-
ples allowed us to differentiate three main morphotypes

based on the general shape of male pleopod 2 endopodite
(Figure 2a), despite the generally conserved general habi-
tus (Figure 3a). Two of these main morphotypes present
some degree of variation that is congruent with the identi-
fied genetic lineages, which allowed us to differentiate at
least eight different, discrete morphological units among
the studied samples.

The first main morphotype (morphotype I) shows a
largely acuminate tip, and it was found only in a single
adult male, corresponding with the most divergent ge-
netic lineage, referred to here as Ligidium sp. 4.

The second one (morphotype II) shows a broadly
squarish or rounded tip with an elongated excrescence, as
typically observed in Ligidium blueridgensis. Within mor-
photype II we could distinguish three different variations
of male pleopod 2 endopodite. One of them corresponds
with Ligidium blueridgensis sensu stricto (s. str.), in which
an elongated excrescence is located in the inner corner of
the squarish or rounded pleopod tip and directed inwards
or backwards. The other two correspond to yet unde-
scribed species, denoted hereafter Ligidium sp. 5, charac-
terized by a more rounded tip and centered excrescence,
and Ligidium sp. 2, with a robust excrescence located in
the inner corner but directed outwards.

The third (morphotype III) includes broadly rounded or
squarish tip with no elongated excrescences, as has been
described for the different subspecies of Ligidium elrodii.
Among morphotype III, we could identify up to four more
or less different variations among all the collected samples.
One of them, found in the northernmost studied popula-
tion, corresponds with Ligidium elrodii s. str. as currently
defined. Ligidium sp. 1 presents a broad, squarish tip of
male pleopod 2 endopodite with a short row of small den-
ticles in the inner corner. Ligidium sp. 3 also presents a row
of small denticles in the inner corner, but has a rounded tip
with a short, squarish terminal projection. Ligidium sp. 6
has an uneven, rounded profile of male pleopod 2 endopo-
dite, with the inner corner truncated.

3.2 | Molecular data and
phylogenetic analyses

The final alignments for phylogenetic and species delimi-
tation analyses include 130 sequences of Cox1 with a total
of 658bp, although for samples amplified with BF2-BR2
primers, the fragment size is 421 bp, and the missing part
was treated as missing data. For both NaK and 28S the
alignments include 25 sequences of 664 and 430 bp respec-
tively, representing the morphologically defined groups
and all major mtDNA lineages.

MtDNA shows very high genetic distances between
and within the mentioned morphological groups. Mean
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FIGURE 2 (a)Male pleopod 2 endopodites of the eight observed morphotypes (non-scaled). (b) Chronogram based on Cox1 sequences
of all studied specimens. Information by the nodes represent mean values of TMRCAs (above) and support values of phylogenetic analyses
(below; BEATS2/MrBayes/ML); blue bars on nodes represent TMRCA's 95% HDP. The bottom bar indicates time in millions of years. On the
right we show the morphologically defined units and the results on single-locus species delimitation analyses.

uncorrected p-distances between morphological groups
range from 15.6% to 26.9%, while within them mean dis-
tances range from 0% to up to 10% (Table S1). The 28S
data revealed mean uncorrected p-distances between
groups of 0.98%-9.5% and very low within those groups,
0%-0.1% (Table S1). For NaK, the observed mean un-
corrected p-distances between groups range from
0.46% to 5.3%, and within group distances also 0%-0.1%
(Table S1).

Most specimens with morphotype II were initially as-
signed to Ligidium blueridgensis, including several deep
mitochondrial lineages grouped in two main clades
(Figure 2b), although one of them is not supported in
any single locus phylogenetic analyses. Both groups are
strongly supported as monophyletic when analysing the
nuclear genes together (Figure S1) and, when combin-
ing nuclear and mtDNA genes, they are recovered as
sister clades with high support (Figure 3). One of them,
corresponding to L. blueridgensis s. str., is widespread
across the southern Appalachian Mountains, being
present on both sides of the French Broad River Basin,

a major biogeographic barrier in the region (Figure 1).
The second one, corresponding to Ligidium sp. 5, shows
a more restricted distribution and presents two geneti-
cally divergent but morphologically similar subgroups;
one is found in the western Great Smoky Mountains in
Tennessee, and the other close to the headwaters of the
French Broad River, in south-central North Carolina
(Figure 1). The third clade, representing Ligidium sp.
2, is phylogenetically unrelated to the other two lin-
eages with distal excrescences, and shows a pleopod 2
endopodite different from the typical L. blueridgensis.
It has been found exclusively at the Chunky Gal Trail
in the Nantahala National Forest, SW North Carolina
(Figure 1).

In the case of samples with morphotype III, initially
assigned to Ligidium elrodii sensu lato (s. L.), we found
several divergent lineages in all our analyses. The north-
ernmost one, found in West Virginia, is assigned to L. el-
rodii s. str. (type locality, southern Indiana; Packard, 1873)
and, according to our phylogenetic reconstructions, is not
closely related to the other lineages (Figures 2b-3b). The
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FIGURE 3 (a)External habitus of the eight observed morphotypes. (b) Chronogram based on mtDNA and nDNA sequences of selected
specimens. Information by the nodes represent mean values of TMRCAs (above) and support values of phylogenetic analyses (below;
BEATS2/MrBayes/ML); blue bars on nodes represent TMRCA's 95% HDP. The bottom bar indicates time in millions of years. On the right
we show the morphologically defined units and the results on BPP species delimitation analyses.

other three form a monophyletic clade both using mtDNA
and concatenated nuclear genes (Figure 3b). One of these
lineages, Ligidium sp. 6, is widespread and frequent in the
southern Appalachians west of the French Broad River
Basin, while the other two appear to be much less fre-
quent, one restricted to Brasstown Bald (Ligidium sp. 1),
the highest mountain in Georgia, and the other (Ligidium
sp. 3) showing a scattered range in southwestern North
Carolina (Figure 1).

Finally, for Ligidium sp. 4 (including the male with
morphotype I), only three specimens have been found in
three rather widely scattered localities (Figure 1). Since
only one of them is an adult male, assignment to this mor-
photype of the other specimens is based on their position
in the phylogenetic trees.

The estimates of TMRCAs indicate a very old age of
Ligidium species inhabiting the southern Appalachians
(Figures 2b-3b). Estimates on deeper nodes were slightly
older when analysing the multilocus dataset. The studied
lineages share a common ancestor dated in the Upper-
Lower Cretaceous boundary, with subsequent cladogenic
events occurring likely during the Paleogene. Most of
the eight main lineages are estimated as old groups, with
TMRCAs dating back to the Miocene. The only exceptions
are L. elrodii s. str., Ligidium sp. 1 and Ligidium sp. 2, char-
acterized by very shallow genetic diversity, perhaps due
to insufficient sampling, as they have been scarcely found
and only in one or two localities each.

3.3 | Species delimitation analyses

Single-locus automated species delimitation analyses
using the Cox1 matrix suggested the existence of several
more species than morphotypes. The best proposed model
by ASAP (p=0.00019, ASAP-score=3.0) indicated the
existence of 16 potential species, as it suggested splitting
Ligidium blueridgensis into eight species and Ligidium sp.
5 into three (Figure 2b). The result of mPTP analysis sug-
gests even more potential species, by splitting L. bluerid-
gensis into 12 species, Ligidium sp. 5 into three, Ligidium
sp. 6 into seven, and Ligidium sp. 3 into three (Figure 2b).
Contrarily, these analyses on the nuclear datasets sug-
gested fewer species than the observed morphotypes.
Neither 28S nor NaK performed well for ASAP analyses,
as no significant models were proposed. The results of
mPTP both with 28S and NaK delimit the same four units
corresponding with morphotypes Ligidium sp. 4, L. elrodii
S. str., and Ligidium sp. 2, and another group including all
other morphotypes. BPP results, including analyses with
all three genes (15 a priori species, pp=0.36) or only with
nuclear ones (15 a priori species, pp=0.47), indicate that
the best-supported model includes 9 units, suggesting the
split of Ligidium sp. 5 in two potential species (Figure 3b).

We have found no clear allopatric distribution patterns
among the sampled species and populations (Figure 1).
Ligidium elrodii s. str. has been found only outside the
southern Appalachians, but our sampling to the north is
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limited. Within the southern Appalachians we found sev-
eral localities where two or even three lineages are found
together just a few meters apart. At the sampling points
along the Chunky Gal Trail in the Nantahala National
Forest, SW North Carolina, we have collected three lin-
eages, Ligidium sp. 2, Ligidium sp. 4, and Ligidium sp. 3.
The widespread L. blueridgensis shares some localities with
Ligidium sp. 5 (northern part of the Pacolet River, North
Carolina), with Ligidium sp. 6 (in the Smoky Mountains
near Newfound Gap, Tennessee), and with Ligidium sp.
2 (Alum Cave trail at Mount LeConte, Tennessee). It has
been found also near Ligidium sp. 3 at Sassafras Mountain,
South Carolina. The second most widespread lineage,
Ligidium sp. 6, has also been found close to Ligidium sp. 1
(Brasstown Bald, Georgia) and Ligidium sp. 3 (Van Hook
Glade Campground, Nantahala National Forest, North
Carolina). Since at each place we collected several litter
samples it is hard to say if in these localities they live in
microsympatry, but they were mostly collected in the
same kind of habitat.

4 | DISCUSSION

The genus Ligidium has proven to be more diverse than
initially expected in several parts of the Holarctic, after the
integration of dense sampling and molecular data (Harigai
et al., 2023; Klossa-Kilia et al., 2006; Wang et al., 2022).
Integrative taxonomic approaches have found the exist-
ence of truly cryptic Ligidium species, hardly diagnosable
based on morphological characters (Wang et al., 2022). In
other cases, it has been shown that morphological vari-
ability, once considered intraspecific variation, can reflect
the existence of independent evolutionary lineages and
potentially different species (Li, 2017; Wang et al., 2022).
Similarly, our results indicate a higher diversity than pre-
viously thought among the Ligidium populations present
in the southern Appalachian Mountains.

Ligidium elrodii has been considered a widespread
species present over a large portion of eastern North
America. Within its range, a considerable morphological
variability has been described as intraspecific variation,
particularly in the southern half of its range. Some of
this variability has been considered taxonomically sig-
nificant, and up to 5 different subspecies are tradition-
ally recognized (Schultz, 1970). These subspecies are
largely based on differences in the male pleonite 2 endo-
podite, a main source of characters for species recogni-
tion in this and other groups of Oniscidea (Schultz, 1970;
Vandel, 1960). Besides that, at least another morpho-
type has been described with no taxonomic recognition
(Schultz, 1982). Without further evidence, evaluating the
relevance of such variability within what is traditionally

considered a widespread, variable species can be chal-
lenging (e.g., Montesanto et al., 2007; Rodriguez-Flores
et al., 2021; Sanchez-Vialas et al., 2020; Vasquez-Valverde
& Marek, 2022). This is particularly true when such vari-
ability is not geographically or ecologically structured,
and we find some of the different morphological variants
even in the same locality. In this case, it seems reason-
able to assume that the observed differences, sometimes
relatively subtle, are indeed part of a single species vari-
ability. The use of phylogeographic methods can help us
to increase our understanding of such patterns, and an
integrative taxonomic approach is necessary to delimit
species in these complexes (Padial et al., 2010).

We have observed that the morphological variants that
could be initially attributed to Ligidium elrodii s. l. indeed
represent old, independent evolutionary lineages that
can be postulated as different species. Within the south-
ern Appalachians we have discovered three of them and,
given the complex geography of this region, there could
be more to be discovered yet. Based on our results, we an-
ticipate that the four morphotypes described as different
subspecies within L. elrodii will also represent deep, inde-
pendent evolutionary lineages that will be eventually con-
sidered full species. However, a more complete sampling
including representatives of these groups will be needed
before their taxonomic status is revised. Even if somewhat
modest, the differences observed in the male pleopode 2
endopodite seem to be constant and seem to be of diagnos-
tic value, so these aren't necessarily ‘cryptic species’ in the
strictest sense within this complex.

In the case of Ligidium blueridgensis s. l., only two dif-
ferent morphotypes were clearly separated, representing
the two main lineages within this group. In this case, the
existence of deeper sublineages indicates the existence
of cryptic diversity, perhaps even some cryptic species.
Certainly, automated species delimitation methods
based on Cox1 sequences split both main lineages into
several units. However, our nuclear and morphological
evidence is not enough to recognize most of them. It will
be necessary to generate more data to study in more de-
tail the evolutionary history of this species and explore
its real species diversity. In the case of Ligidium sp. 5, we
found two genetically distinct and apparently geograph-
ically segregated lineages. Pending a deeper morpho-
logical assessment, they may represent two true cryptic
species as suggested by multilocus species delimitation.

Besides the above semi-cryptic diversity, we still have
been able to locate new morphotypes unrelated to previ-
ously described taxa. This is indicative of insufficient ex-
ploration of the diversity of Ligidium, and suggests that
still more species might be discovered not only in this area
but across North America. Indeed, not many zoologists
have focused their attention on terrestrial isopods in the
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Nearctic region, and the lack of taxonomic expertise and
of functional keys makes it difficult to identify current di-
versity (Shultz, 2018). Thus, it would not be surprising that
species with restricted distribution have not been found
and described yet. In many parts of North America, the
dominant terrestrial isopod species are just a bunch of ex-
otic species, some of them with presence in the continent
already for hundreds of years (Jass & Klausmeier, 2000;
Van Name, 1936). We do not know whether this is caused
by native species being displaced by invasive ones, or by an
originally limited native fauna that allowed exotic species
to easily colonize available ecological niches. But this may
have reduced the general interest for this group, particu-
larly for local taxonomists. In the southern Appalachians
we have found indeed poor communities of terrestrial iso-
pods, with native representatives of the genera Ligidium
and Miktoniscus Kesselyak, 1930; in the studied litter
samples we have found Ligidium as the dominant taxon,
frequently living in sympatry with Trichoniscus pusil-
lus Brandt, 1833, and more rarely with Oniscus asellus
Linnaeus, 1758 or Hyloniscus riparius (C. Koch, 1838), all
three exotic species of European origin (Schmalfuss, 2003).

Most of the diversity found in the southern
Appalachians lives west of the French Broad River
Basin, considered one of the major geographical barri-
ers in the area acting as such at least since the Pliocene
(Caterino & Langton-Myers, 2019; Crespi et al., 2003;
Hedin et al., 2015), while other commonly recognized
riverine barriers, such as the Little Tennessee and
Tuckasegee River basins (Hedin & McCormack, 2017;
Thomas & Hedin, 2008), seem not to be influencing the
observed distributions. In fact, among species in the re-
gion, only Ligidium blueridgensis seems to have crossed
the French Broad River Basin, showing a distinct mito-
chondrial sublineage exclusively present in those parts.
In our multilocus chronogram, time estimates are com-
patible with a Mio-Pliocene origin of this clade, around
5.5 mya. However, all main lineages are estimated to
be much older than the Pliocene. Among terrestrial
Isopoda, as in any other terrestrial animal group, allo-
patric speciation is the most frequently considered pro-
cess for the formation of species (Herndndez-Herndndez
et al., 2021). Even if we have found several cases of sym-
patry in southern Appalachia, their ages would allow
current species to have originated by allopatric specia-
tion in southern Appalachia or in other regions with
subsequent range shifts generating currently sympatric
populations.

The estimated ages in our chronograms suggest an
ancient presence of the genus in eastern North America.
Ligidium has a broad distribution encompassing all the
Holartic and, considering the dispersal limitations of
these organisms, it is possible that the ancestors of current

diversity were already living in Laurasia at least when this
supercontinent started to split between North America
and Eurasia. The Appalachian Mountains are very old
(Rast, 1989), so indeed they could have been in these
lands for the last hundred million years. The only pub-
lished fossil record of Ligidium is a Baltic amber inclusion
dated in the Paleogene Eocene (Broly et al., 2013), which
tells us little regarding the age of Appalachian Ligidium
but that is compatible with the TMRCAs estimated in our
analyses. However, we lacked adequate calibration points
for a molecular clock, and the substitution rate we used
could be either over- or underestimated. It is relatively
frequent among terrestrial isopods to exhibit very high
mtDNA genetic distances, inter- and intraspecific (e.g.,
Raupach et al., 2022; Recuero et al., 2022; Zimmermann
et al., 2015). The reasons for this have never been clear and
could be explained under different hypotheses (Raupach
et al., 2022). First, they could indeed be old organisms
with an evolutionary history of millions of years. In this
case, old mtDNA lineages could be indicative of the exis-
tence of cryptic species, although mtDNA alone is often
not enough to establish the current evolutionary indepen-
dence of such lineages (Després, 2019). Second, a poten-
tial effect of Wolbachia bacteria has been hypothesized to
have shaped the mitochondrial diversity of infected pop-
ulations, generating a strong selective pressure that could
rapidly induce differentiation of mtDNA lineages (Hurst
& Jiggins, 2005; Kodandaramaiah et al., 2013). In this case
it is expected to find deeply differentiated lineages, but ex-
tremely homogeneous within-lineage haplotype diversity.
A third alternative is that mitochondrial substitution rates
are higher than normal in these organisms. However, the
few studies trying to calibrate a molecular clock for ter-
restrial isopods do not support this (Ketmaier et al., 2003;
Poulakakis & Sfenthourakis, 2008; Wysocka et al., 2008).
Lastly, the presence of nuclear copies of the mtDNA genes
(NUMTs) can yield deceptive results including extremely
divergent lineages (Bensasson et al., 2001). However, in
the case of coding genes, these divergent NUMTs should
be plagued with stop codons and would be easy to detect.
Regardless of our estimates, it is clear that the Ligidium
fauna in the southern Appalachian Mountains is more
diverse than previously thought, mostly due to misinter-
pretation of the observed morphological variation, but
also by the existence of unexplored and cryptic diversity.
We are working to describe the species presented here in
the near future, while continuing to explore the southern
Appalachians in search of yet undiscovered species.
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