Computers and Geotechnics 166 (2024) 106015

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research paper ' 1)

Check for

Graph Neural Network-based surrogate model for granular flows | e

Yongjin Choi *, Krishna Kumar

Department of Civil Architectural and Environmental Engineering Austin, The University of Texas at Austin, Austin, 78712, TX, USA

ARTICLE INFO ABSTRACT

Dataset link: https://github.com/geoelements/ Accurate simulation of granular flow dynamics is crucial for assessing geotechnical risks, including landslides
gns and debris flows. Traditional numerical methods are limited by their computational cost in simulating large-
scale systems. Statistical or machine learning-based models offer alternatives. Still, they are largely empirical,
based on limited parameters. Due to their permutation-dependent learning, traditional machine learning-based
models require huge training data to generalize. To resolve these problems, we use a graph neural network
(GNN), a state-of-the-art machine learning architecture that learns local interactions. Graphs represent the state
of dynamically changing granular flows and their interactions. We implement a multi-Graphics Processing Units
(GPU) GNN simulator (GNS) capable of handling different material types. We demonstrate the capability of
GNS by modeling granular flow interactions with barriers. GNS takes the granular flow’s current state and
predicts the next state using Euler explicit integration by learning the local interaction laws. We train GNS
on different granular trajectories. We then assess its performance by predicting granular column collapse and
interaction with barriers. GNS accurately predicts flow dynamics for column collapses with different aspect
ratios and interaction with barriers with configurations unseen during training. GNS is up to a few thousand
times faster than high-fidelity numerical simulators.
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1. Introduction

Landslides cause extensive material displacement and significant
infrastructure damage. Accurate modeling of granular flow runout is
crucial to understanding the impact of landslides. Numerical methods,
such as particle-based and continuum approaches, are often employed
to assess landslide runouts. Particle-based approaches, like the Discrete
Element Method (DEM) (Staron and Hinch, 2005; Kermani et al.,
2015; Kumar et al., 2017a), can model grain-grain interactions but are
limited to representative elemental volumes. Traditional continuum ap-
proaches, such as the Finite Element Method, can predict the initiation
of such failures but suffer from mesh distortions when capturing runout
dynamics. Hybrid Eulerian-Lagrangian approaches like the Material
Point Method (MPM) (Mast et al., 2014; Kumar et al., 2017b) can
simulate large-deformation flows without undergoing mesh distortions.
However, the hybrid nature of MPM requires tracking both the grid
and the material points, which is computationally expensive. Multiple
full-scale simulations are necessary for a comprehensive evaluation of
runout hazard scenarios. Similarly, a back analysis to estimate material
parameters requires a broad parametric sweep involving hundreds to
thousands of simulations. However, current state-of-the-art numerical
methods are restricted to, at most, a few full-scale simulations, limiting
our ability in scenario testing or back analysis.
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An alternative to numerical simulations is to develop statistical or
machine learning models to evaluate landslide risks. These surrogate
models build correlations between landslide risks and their influencing
factors. However, they often oversimplify the granular flow process by
relying on simple empirical correlations and statistical patterns mapped
on a low-dimensional domain without considering the complex dynam-
ics of granular flows. Several studies adopt probabilistic approaches,
such as Monte Carlo simulation and Bayesian analysis, to evaluate
the landslide runout distance based on factors including topology and
geology (Gao et al., 2021; Zeng et al., 2021; Sun et al., 2021; Zhao
et al., 2022). Machine learning models can predict the travel distance
and potential path of granular flows based on the geometry and ground
properties (Durante and Rathje, 2021; Ju et al., 2022; Yang and Ham-
bleton, 2021). Although researchers have been able to correlate the
runout of granular flow based on statistical or data-driven techniques,
these techniques do not explicitly consider granular flow dynamics—
the actual physics governing the flow behavior. Thus, due to a lack of
physics, these models do not generalize outside their training range,
such as, modeling other boundary conditions or geometry.

In order to develop a surrogate model for granular flows that
generalize beyond the training datasets, it is essential to understand the
interaction laws governing the behavior of granular masses. Traditional
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machine learning models like Convolutional Neural Networks (CNNs)
and Multi-Layer Perceptrons (MLPs) face difficulties learning these
interactions as granular systems continuously evolve and rearrange.
CNNs, while adept at learning spatially invariant features through
pooling operations, are limited by their reliance on fixed, mesh-based
structures. This limitation is significant in modeling granular flows
where particle interactions and arrangements are neither fixed nor
regular. MLPs can theoretically model dynamic systems by mapping
their physical states to dynamics. However, their lack of permutation
invariance, i.e., their output depends on the order of inputs, means an
exponential increase in the required datasets (O(n!)) to map the entire
parameter space of particle arrangements (Battaglia et al., 2018; Haeri
and Skonieczny, 2022).

To address these limitations, we use graph neural networks (GNNs),
a state-of-the-art machine learning architecture that enables permuta-
tion invariant learning (Battaglia et al., 2016, 2018; Sanchez-Gonzalez
et al.,, 2020). GNNs represent the physical state of granular systems
as graphs, where nodes symbolize individual particles or groups of
particles, and edges depict their interactions or relational dependencies.
This graph-based approach allows GNNs to learn directly from particle
interactions, regardless of their spatial arrangement or sequence in the
input data. It effectively captures the complex and dynamic nature
of granular flows in a permutation-invariant way. GNNs adapt to
structural changes in the system over time, effectively learning the
underlying interaction laws.

We implement a multi-Graphics Processing Units (GPU) GNN sim-
ulator (GNS) capable of handling different material types. We demon-
strate the capability of GNS by replicating the collapse of a granular
column and its interaction with barriers. Granular column collapse is a
simple physical experiment that captures the overall dynamics of large-
scale runouts. GNS, trained on granular flow trajectories, successfully
predicts the runout dynamics of column collapse and the interaction
with barriers outside its training range and generalizes to upscaled
domain sizes.

2. Methods

This section describes the individual components of GNS: graphs,
graph neural networks (GNNs), and message passing.

2.1. Graph neural networks and message passing

2.1.1. Graphs

Graphs can represent interactions in physical systems (Battaglia
et al., 2016; Sanchez-Gonzalez et al., 2020). We represent the granular
media as a graph G = (V, E) consisting of a set of vertices (v; € V)
representing the soil grains or aggregation of grains and edges (e; ; € E)
connecting a pair of vertices (v; and v;) representing the interaction
between the grains. Consider an example involving interaction between
grains in a box (see Fig. 1). We encode the state of the physical
system, such as the kinematics of grains and their interaction (Fig. 1a
and Fig. 1d), as a graph (Fig. 1b and Fig. 1c). The vertices describe
the position and velocity of the grains, and the edges describe the
directional interaction between them, shown as arrows in Fig. 1b and
Fig. 1c. The state of the grain i is represented as a vertex feature vector
v;. The vertex feature vector includes velocities, mass, and distance to
the boundary. The edge feature vector e; ; includes information about
the interaction between grains i and j such as the relative distance
between the grains. Thus, we can store and process the state of granular
bodies and their interactions as graphs.

Graphs offer a permutation-invariant form of encoding data, where
the interaction between vertices is independent of the order of vertices
or their position in Euclidean space. As graphs represent the inter-
actions between grains as edge connections, graphs are permutation
invariants. For example, by storing the relative positional information

in e, ;, rather than the absolute position, machine learning models
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operating on these networks learn the interaction behavior of different
relative distances between grains. Therefore, graphs can efficiently
represent the physical state of granular flow involving multi-grain
interactions.

2.1.2. Graph neural networks (GNNs)

GNN takes a graph G = (V, E) as an input, computes properties and
updates the graph, and outputs an updated graph G’ = (V', E’) with an
identical structure, where V' and E’ are the set of updated vertex and
edge features (v] and e;,j). Message passing is the process of updating
the graph by propagating information through it.

In the grains-in-a-box example, the GNN first takes the original
graph G = (V,E) (Fig. 1b) that describes the current state of the
physical system (X,). The GNN then updates the state of the physical
system through message passing, which models the exchange of energy
and momentum between the grains, and returns an updated graph
G' = (V',E') (Fig. 1c). We decode G’, the output of GNN, to extract
information related to the future state of the physical system (X, ),
such as the next position or acceleration of the grains (Fig. 1d).

2.1.3. Message passing

Message passing consists of three operations: message construction
(Eq. (1)), message aggregation (Eq. (2)), and the vertex update function
(Eq. (3)).

e, =, (vi.v;.€;)) €))

b= ) e, @
JENG

v =ve, (vi0;) (3)

The subscript ©, and ©, represent a set of learnable parameters
in each computation. The message construction function ¢ (Eq. (1))
takes the feature vectors of the receiver and sender vertices fbv,- and v j)
and the feature vector of the edge connecting them (e; ;) and returns an
updated edge feature vector e;,. as the output. ¢ is a matrix operation
including the learnable parameter @ ;. The updated edge feature vector
e;’j is the message sent from vertex j to i. Fig. 2a shows an example of
constructing messages on edges directed to vertex O originating from
vertices 1, 2, and 3 (e(’), 0 e(’)’ 9 egq ,). Here, we define the message con-
struction function ¢, as ((v; +v;) X e; ;) X @,. The updated feature
vector ef | is computed as ((vo+v;) X e |) X @4, where v, and v,
are the receiver and sender vertex feature vectors, and e, | is their
edge feature vector. Suppose we assume all values of @, are 1.0 for
simplicity, we obtain e | = (([1, 0, 21+[1, 3, 2D x[2, 1, 0]") x 1 =
[4, 3, 0]. Similarly, we can compute the messages eg, , =10, 3, 9] and
ey ;=13 4, 9l

The next step in message passing is the message aggregation X, y(;
(Eq. (2)), where N(i) is the set of sender vertices j related to vertex
i). It collects all the messages directing to vertex i and aggregates those
into a single vector with the same dimension as the aggregated message
(D;). The aggregation rule can be element-wise vector summation or
averaging; hence it is a permutation invariant computation. In Fig. 2a,
the aggregated message o, = [7, 10, 18] is the element-wise summation
of the messages directing to vertex 0 as o, = e[, | + e:), ,+ e()’ 5

The final step of the message passing is updating vertex features
using Eq. (3). It takes the aggregated message (¥;) and the current ver-
tex feature vector v;, and returns an updated vertex feature vector vlf,
using predefined vector operations including the learnable parameter
0, . Fig. 2b shows an example of the update at vertex 0. Here, we define
the update function ve, 3 O, (v; + 7;). The updated feature vector A
is computed as @, (v, + ¥ ). Assuming all parameters in 0, are 1.0 for
simplicity, we obtain vg =vy+0,=[1, 0, 2]+[7, 10, 18] =[8, 10, 20].
Similarly, we update the other vertex features (v’l, 1/2, vg).

After message passing, the graph vertex and edge features (v; and
e; ;) are updated to v} and e".y I The GNN may include multiple message
passing steps to propagate the information further through the network.
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Fig. 1. An example of a graph and graph neural network (GNN) that process the graph (modified from (Battaglia et al., 2018)): (a) A state of the current physical system (X,)
where the grains are bouncing in a box boundary; (b) Graph representation of the physical system (G). There are three vertices representing grains and six edges representing
their directional interaction shown as arrows; (c¢) The updated graph (G’) that GNN outputs through message passing; (d) The predicted future state of the physical system (X, )

(i.e., the positions of the grains at the next timestep) decoded from the updated graph.
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update at vertex O using ,. Note that we assume @, and @, are 1.0 for the convenience of calculation.

Unlike the example shown above, where we assume a constant
value of 1.0 for the learnable parameters, in a supervised learning
environment, the optimization algorithm will find a set of the best
learnable parameters (@ ,,0,) in the message passing operation.

2.2. Graph neural network-based simulator (GNS)

In this study, we use GNN as a surrogate simulator to model gran-
ular flow behavior. Fig. 3 shows an overview of the general concepts
and structure of the GNN-based simulator (GNS) proposed by Sanchez-
Gonzalez et al. (2020). Consider a granular flow domain represented
as material points (Fig. 3a), which represent the collection of grains.
In GNS, we represent the physical state of the granular domain at time
1 with a set of x| describing the state and properties of each material
point. The GNS takes the current state of the granular flow x; € X,
and predicts its next state x:: A EX (Fig. 3a). The GNS consists of
two components: a parameterized function approximator dg and an
updater function (Fig. 3b). The function approximator dg takes X, as
an input and outputs dynamics information y; € Y. The updater then
computes X, using Y, and X,. Fig. 3c shows the details of dg which
consists of an encoder, a processor, and a decoder. The encoder (Fig. 3-
c1) takes the state of the system X’ and embeds it into a latent graph
Gy = (V. E;) to represent the relationships between material points.
The vertices v} € ¥, contain latent information of the current state of
the material point, and the edges eij € E, contain latent information of
the pair-wise relationship between material points. Next, the processor
(Fig. 3-c2) converts the input graph G, to the output graphs G,
through M stacks of message-passing GNN (G, - G; — -+ - G,,). The
message passing computes the interaction between vertices. Finally, the
decoder (Fig. 3-c3) extracts the dynamics of the points (Y') from G,,,
such as the acceleration of the physical system. The entire simulation
(Fig. 3a) involves running GNS surrogate model through K timesteps
predicting from the initial state X to X (X, X, ..., Xg), updating
at each step (X, - X, ). We call this successive prediction from GNS
the “rollout”.

In the following sections, we explain the details of our input X’
(Fig. 3a), the encoder, processor, and decoder in dg (Fig. 3c), and how
we compute X'*! from X' using the GNS updater function (Fig. 3b).

2.2.1. Input

The input to the GNS, xl’. € X' (Eq. (4)), is a vector consisting of the
current material point position pj, the material point velocity context
pf’, information on boundaries b}, and material point type embedding
f. The current state xf will be used to construct vertex feature (v?)
(Eq. (6)).

xt=1[p, p, b, £, m] Q)

The velocity context pf’ includes the current and previous material
point velocities for n timesteps [p/™", ..., p!] with n+ I velocities. We
use n = 4 to include sufficient velocity context in the vertex feature
v}. Sanchez-Gonzalez et al. (2020) show that having » > 1 significantly
improves the model performance. We compute the velocities using the
finite difference of the position sequence (i.e., p! = (p' — p/~') /AD). B! is
boundary information. For a 2D problem, b} has four components, each
indicating the distance between material points and the four walls. We
normalize b by the connectivity radius R which defines the interaction
zone, explained in the next section, and restrict it between —1.0 to 1.0.
b’ is used to evaluate the role of boundary friction on material points.
f is a vector embedding distinguishing material point types such as
deformable or rigid material. m is an optional feature that represents
the material properties of the corresponding material points. If the
training data includes different material properties for each material
point, we can simply add relevant features here.

The GNS model accounts for the friction between vertices repre-
senting material points and boundaries by monitoring their distance
using b/ as outlined in Eq. (4). GNS predicts the frictional acceleration
when the nodal boundary distance is less than the connectivity radius
R. When the boundary distance is larger than R, we clip the b to
—1 or 1, signaling that boundary friction does not directly affect the
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Fig. 3. The structure of the graph neural network (GNN)-based physics simulator (GNS) for granular flow (modified from (Sanchez-Gonzalez et al., 2020)): (a) The entire
simulation procedure using the GNS, (b) The computation procedure of GNS and its composition, (¢) The computation procedure of the parameterized function approximator dg

and its composition.

material points at this distance. During training, GNS learns the inter-
action between the material points’ boundary distance and frictional
acceleration from training data. The MPM training data models the
tangential friction force as a function of the normal acceleration and
the friction coefficient. With the mass of the material points known,
we can compute the frictional forces from the accelerations predicted
near the boundary.

We define the interaction between material points i and j as r;’ ; us-
ing the distance and displacement of the material points in the current
timestep (see Eq. (5)). The former reflects the level of interaction, and
the latter reflects its spatial direction. rj ; will be used to construct edge
features (el’.,j). Although the distance provides an additional physical
context about the interactions, we found that omitting it from Eq. (5)
does not necessarily harm the model’s performance since the distance
can be calculated with the displacement. Specifically, the model with
the distance feature shows the mean squared error of 0.0016 m to
0.0018 m, whereas the model without it shows 0.0014 m to 0.0017 m,
when we validate the model’s performance in predicting the evolution
of material point positions.

rb=Kﬁ—ﬂ)Hﬁ—ﬁﬂ ©)

2.2.2. Encoder

The vertex and edge encoders (sz) and sf_)) convert x§ and rf.’ ~into
the vertex and edge feature vectors (VE and e;j) (Eq. (6)) and embed
them into a latent graph G, = (V, Ey), v} € V, ef‘,/ € E,.

v =ch (x)). e, =<5 (r,) ®

We use a two-layered 128-dimensional multi-layer perceptron (MLP)
for the €, and eg. The MLP and optimization algorithm search for
the best candidate for the parameter set @ that estimates a proper
way of representing the physical state of the material points and their
relationship which will be embedded into G,.

The edge encoder eg uses xl’. (Eq. (4)) without the current position
of the material point (p?), but with its velocities (pf‘), as velocity
governs the momentum, and the interaction dynamics is independent
of the absolute position of the material points. Rubanova et al. (2021)
confirmed that including position causes poorer model performance.
We only use p! to predict the next position p:“ based on the predicted
velocity pi*! using Explicit Euler integration.

We consider the interaction between two material points by con-
structing edges between them all pairs of vertices located within a

certain distance called connectivity radius R (see the shaded circular
area in Fig. 3b). The connectivity radius is a critical hyperparameter
that governs how effectively the model learns the local interaction. R
should be sufficiently large to include the local interaction between
material points and capture the simulation domain’s global dynamics.

2.2.3. Processor

The processor performs message passing (based on Eq. (1) to Eq. (3))
on the initial latent graph (G,) from the encoder for M times (G, —
G, - — G,,) and returns a final updated graph G,,. We use
two-layered 128-dimensional MLPs for both the message construc-
tion function ¢g, and vertex update function Yo, and element-wise
summation for tfle message aggregation function X;cy¢y in Eq. (1)
to Eq. (3). We set M = 10 to ensure sufficient message propaga-
tion through the network. These stacks of message passing model
information propagation through the network of material points.

2.2.4. Decoder
The decoder &) extracts the dynamics yj. € Y’ of the material points

from the vertices v;' (Eq. (7)) using the final graph G,,. We use a

two-layered 128-dimensional MLP for 6%, which learns to extract the

relevant dynamics for material points from G,,.
v =3 (vf) @)

2.2.5. Updater

We use the dynamics y! to predict the velocity and position of
the material points at the next timestep (p{*' and p!*') based on
Euler integration (Eq. (8) and Eq. (9)), which makes yj, analogous to
acceleration p!.

Pl =pl+yiAL (8)

Pt =pi+p A ©)

Based on the new position and velocity of the material points, we
update x! € X' (Eq. (4)) to x!*! € X"*!. The updated physical state X"*'
is then used to predict the position and velocity for the next timestep.

The updater imposes inductive biases, such as an inertial frame,
on GNS to force it only to learn the interaction dynamics, improving
learning efficiency. A traditional neural network learns both the update
scheme and the interaction dynamics:

P =NNQ@ V). 10)
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Details of the Material Point Method (MPM) simulation geometries and properties used for generating the training datasets.

Property Dataset

Granular column collapse

Granular flow
with barriers

Multi-material
granular column collapse

1.0 x 1.0 m

0.025 x 0.025 m

25,600 points/m?

0.2 X 0.2 and 0.3 x 0.3 m

Simulation boundary

MPM element length
Material point configuration
Granular mass geometry

1.0 x 1.0 m
0.01 x 0.01 m

0.8 x 0.8 x 0.8 m

0.03125 x 0.03125 x 0.03125 m
40,000 points/m?> 262,144 points/m?

0.2 x 0.2 to 0.4 x 0.4 m 0.2 x 0.2 x 0.21to 0.4 x04x04m
6.4K 17K

None 0.1 x0.3x0.1m

400 (dt=0.0025 s) 350 (dt=0.0025 s)

Max. number of particles 2.3K

Barrier geometry None

Simulation duration (timesteps) 400 (dt=0.0025 s)
Model Mohr—Coulomb
Density 1,800 kg/m’
Youngs modulus 2 GPa

Material property Poisson ratio 0.3
Friction angle 30°
Cohesion 0.1 kPa
Tension cutoff 0.05 kPa

Mohr-Coulomb Mohr-Coulomb

1,800 kg/m> 1,800 kg/m>
2 GPa 2 GPa

0.3 0.3

15, 17.5, 22.5, 30, 37.5, 45° 35°

0.1 kPa None

0.05 kPa None

Whereas, using an inertial prior, we force the GNS only to learn the
interaction dynamics, by hardcoding the update function:

Pl =p +u - A+ NN, V). (1D

Nevertheless, GNS does not directly predict the next position from the
current position and velocity (i.e., p/*' = GNS (p!, p!)) which has
to learn the static motion and inertial motion. Instead, it uses (1) the
inertial prior (Eq. (8)) where the prediction of the next velocity p;“
should be based on the current velocity p} and (2) the static prior
(Eq. (9)) where the prediction of the next position pﬁ“ should be
based on the current position p|. These make GNS focus on learning
unknown dynamics by hardcoding known physics. Since GNS learns
the dynamics of material points through interactions independent of
absolute position, GNS is generalizable to other geometric conditions.

3. Training and evaluation

We now train the GNS to predict granular column collapse and
granular flow interacting with barriers. This section explains how we
generate training data, details of the training process, and how we
evaluate the performance of the GNS.

3.1. Material point method (MPM)

We utilize the Material Point Method (MPM) to generate the GNS
training dataset of granular flow simulations. The MPM is a hybrid
Eulerian-Lagrangian approach designed for modeling large-deformation
flows (Soga et al., 2016). In the MPM, a continuum body is represented
by individual material points that traverse a static background grid. The
governing equation is solved at the nodes, and the updated velocity
field is subsequently mapped back to the material points. We employ
the position information stored in these material points to construct
the current state X’ in the GNS. For more information on MPM refer
to Soga et al. (2016) .

3.2. Datasets

3.2.1. Granular column collapse

We prepare three types of datasets (Table 1): granular column
collapse with a single material property, granular column collapse
with multiple material properties, and granular flow interacting with
barriers in three-dimensional space.

For the granular column collapse case, the training datasets include
26 granular flow trajectories of square-shaped granular mass in a
two-dimensional box boundary simulated by the MPM explicit time
integration method using the CB-Geo MPM code (Kumar et al., 2019).
Each simulation has a different initial configuration regarding the size

of the square granular mass, position, and velocity. Table 1 presents the
details of the simulation configurations. The datasets are published on
DesignSafe (Kumar and Choi, 2023). Appendix shows all the training
trajectories with different initial configurations and initial velocities.

We also create the validation datasets to check if the model ex-
periences overfitting. The datasets include seven trajectories of ran-
domly picked rectangular-shaped granular mass with different initial
configurations not included in the training datasets.

Additionally, we prepare another dataset that involves granular
column collapse with multiple friction angles (¢) to evaluate the ability
of GNS to learn diverging granular flow behaviors depending on the
friction angle of the material. It includes MPM simulations with five dif-
ferent friction angles (¢ = 15°, 22.5°, 30°, 37.5°, 45°) where each case
has 60 simulations. To include the material-dependent characteristic in
GNS, we simply use the normalized friction angle (tan ¢) as m in Eq. (4)
for the additional vertex feature. Similar to the dataset with a single
friction angle, the initial geometry of the granular mass is restricted to
the square shape.

3.2.2. Granular flow with barriers

For the barrier interaction case, the training datasets include 890
granular flow trajectories of granular mass interaction with barriers
in a three-dimensional box boundary. We use Taichi MPM code (Hu
et al.,, 2019) with explicit time integration to generate the simulation
data. The initial geometry of the granular mass is limited to a cube
shape with varying lengths and initial velocities. For each simulation,
the granular material interacts with one or two 0.1 x0.3x0.1 m (width,
height, and length) shaped barriers in 0.8 x 0.8 x 0.8 m domain. The
barriers are modeled as a rigid body. The details of the simulation
configurations are presented in Table 1.

3.3. Training

Our GNS has a learnable parameter set @. We train © to minimize
the loss calculated as the mean squared error (MSE) between y! (pre-
dicted proxy-acceleration) and the ground truth acceleration p; for all
material pointsi = 1, 2, ..., N as shown in Eq. (12) based on gradient
(Vlossg)-based optimizer, Adam (Kingma and Ba, 2014).

N
1 .
lossg = - Z (¥ —plr.)2 12)
i=1

For training the GNS, we have to set hyperparameters to learn the
flow behavior from the training trajectories properly. The first key
hyperparameter is the connectivity radius R, which governs the model’s
capacity to learn the interactions of material points. For each model
that we train (granular column collapse and barrier interaction model),
we employ different values of R to consider a balance between the
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Fig. 4. Evolution of GNS loss in training and validation with training steps.

associated training costs and model capacity. For the granular column
collapse model, we choose R = 0.030 m, and for the barrier interaction
model, we choose R = 0.025, which includes about 9 to 10 and 3 to
4 material points along the diameter, respectively. The circular and
spherical area defined by R for each model incorporates approximately
70 and 17 material points inside. For the barrier interaction model, we
design to have a smaller R, and correspondingly, fewer material points
inside it, to avoid excessive edge formation, since the model is defined
in the three-dimensional domain. Another important hyperparameter is
the Gaussian noise value for perturbing the ground truth position in the
training trajectories. Since every predicted position for each timestep
is based on the previous prediction, which includes a prediction error,
the simulation over the large timesteps is subjected to an exponential
error accumulation. To avoid this issue, we train the model on input
positions with Gaussian noise that emulates the prediction error made
by a one-step prediction (X, — X, ). The inclusion of noise in training
leads to more rigorous long-rollout predictions.

We use the learning rate (/r) decay with the initial value of 10~ and
decay rate of 0.1 (Ir = 10~4 x 0.15%¢7/5<10°) for more stable convergence.
We use the batch size of two, i.e., X, from two different trajectories are
used simultaneously in updating the learnable parameters. We enable
a multi-GPU training algorithm based on data-distributed parallelism.
It distributes GNS models and datasets across GPUs, and the training is
conducted in parallel for each GPU. In this way, the training process can
observe as many datasets as the number of GPUs at each training step.
For information on the scalability of the GNS algorithm, refer to Kumar
and Vantassel (2022).

For the granular column collapse model training, we investigate if
the model experiences overfitting by plotting the loss history (Fig. 4) for
the training and validation datasets evaluated for every 10 K training
steps. The training and validation losses show a drastic decrease until
2M steps. After that, the validation loss tends to remain slightly larger
than the training loss. Fig. 4 shows no overfitting during the training.

3.4. Granular column collapse

We trained the GNS to predict the collapse of a granular column
(as studied by Lajeunesse et al. (2004), Lube et al. (2005)). Fig. 5
shows the granular column collapse experiments to evaluate its ability
to replicate granular flow dynamics. Granular column collapse is a
simple physical experiment that captures the transient response of
granular flow dynamics. The experiment involves the collapse of a
granular column of initial height H,, and length L, on a flat surface
due to gravity. As the gate holding the column is removed, the granular
material destabilizes, resulting in a runout. We measure the final runout
deposit with the final height H, and runout L.

The runout of the granular column is governed by the initial aspect
ratio (@ = H,/L,) (Staron and Hinch, 2005; Kumar, 2015). For short

Computers and Geotechnics 166 (2024) 106015

columns (a < 2) (Fig. 5a), the soil mass fails along the flanks of the
column above a well-defined failure surface (dashed line). The soil mass
beneath the failure surface remains in static equilibrium throughout the
collapse forming a truncated conical shape. With the increase in aspect
ratio, the portion of the sliding mass above the failure surface increase,
and the static part becomes smaller, forming a conical shape. For tall
columns (¢ > 2) (Fig. 5b), the majority of the soil mass is involved in
the collapse, and it initially experiences a free fall due to gravitational
acceleration. As the falling mass reaches the failure surface, the vertical
kinetic energy is converted to horizontal acceleration, resulting in a
longer runout distance than the short column (Fig. 5a).

In addition, researchers (Kumar, 2015; Staron and Hinch, 2005; Ker-
mani et al., 2015; Utili et al., 2015) observed a transition zone where
the flow dynamics change from short to tall columns. The normalized
runout ((L = Ly) /Ly) of a granular column is largely governed by the
aspect ratio (a). The normalized runout represents how far the granular
mass runs out before reaching the final deposit state compared to the
initial length of the column. Short columns show a linear relationship
with the initial aspect ratio. In contrast, tall columns have a power-law
relationship with the initial aspect ratio.

Another factor that affects the runout is the friction angle. Nguyen
et al. (2020) found that the increase in the friction angle tends to reduce
runout since more shear stress is required to mobilize the granular
mass.

The GNS was trained only on the aspect ratio of 1.0. However, we
evaluate its performance in predicting the runout dynamics of other
aspect ratios by comparing the GNS predictions with the MPM simula-
tions. Table 2 presents the test cases for evaluating GNS performance
trained on the single friction angle dataset.

3.5. Granular flow interacting with barriers

We test the GNS trained on granular flows interacting with bar-
riers to predict its behaviors for debris-resisting baffles (Choi et al.,
2014, 2015; Yang et al., 2020). Debris-resisting baffles are rigid, flow-
impeding structures installed perpendicular to potential landslide de-
bris flow paths to mitigate excessive runout and related hazards down-
stream.

Baffles work by slowing down the runout as it impacts each baffle,
causing the flow to lose energy. As the debris diverges and passes
through openings between baffles and hits the subsequent baffles, the
energy of the flow dissipates. The energy dissipation caused by the
baffles is quantified by the difference between the sum of kinetic and
potential energy of the flow upstream and downstream of the baffles. It
measures the general performance of the baffles for regulating energy
from the flow.

Baffles can promote the deposition of material behind them and
cause backwater effects upstream. The backwater effect refers to the
increase in flow depth upstream of an obstruction like the baffles.
A high rise of the upstream flow can cause hazardous overflow if
it exceeds the baffle height, which can be uncontrollable. Therefore,
upstream depth is an important criterion for baffle performance.

We evaluate the performance of GNS in terms of predicting overall
runout dynamics, energy evolution, and upstream depth. Our training
data only includes the cube-shaped granular mass geometry interacting
with one or two barriers with the size of 0.1 x 0.3 X 0.1 m in the 0.8 x
0.8 X 0.8 m simulation domain. However, the prediction (i.e., flow with
debris-resisting baffles) is performed with a cuboid-shaped granular
mass colliding three barriers with the size of 0.15 X 0.30 x 0.15 m in
the 1.8 X 0.8 x 1.8 m simulation domain, which is not seen during the
training.

4. Results and discussions

In this section, we show the prediction performance of GNS on
granular column collapse and granular flow interacting with barriers.
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Fig. 5. Schematics for the granular column collapse configuration and its behavior on the aspect ratio.

Table 2
Granular column collapse simulation cases for testing GNS.
Test case Hyx Ly (m) Duration Simulation Number of
(timesteps) boundary (m) material points
Short a=0.5 0.2 x 0.4 400 X: 0to 1.0 1956
columns Y: 0 to 0.5
a=08 0.24 x 0.30 400 X: 0 to 1.0 1824
Y: 0 to 0.5
a=10 0.30 x 0.30 400 X:0to 1.0 2304
Y: 0 to 0.5
Tall a=20 0.30 x 0.15 400 X: 0to 1.0 1152
columns Y: 0 to 0.5
a=3.0 0.36 x 0.12 400 X: 0 to 1.0 1106
Y: 0 to 0.5
a=40 0.35 x 0.075 400 X:0to 1.0 576
Y: 0 to 0.5
Up-scaled a=0.8 0.36 x 0.45 500 X:0to 1.5 5120
Y: 0to 1.0
Table 3 10.0
Normalized runout from MPM and GNS depending on aspect ratios and corresponding L
prediction error. r
Aspect ratio, a Normalized runout Runout error (%) F
MPM GNS i
o L
0.5 0.831 0.811 2.48 <
0.8 1.444 1.445 0.06 >
1.0 2.071 2.152 3.78 — 10
2.0 3.892 3.682 5.70 I .
3.0 5.620 5.341 5.23 = [
4.0 5.753 6.070 5.21 I
L MPM
I OGNS
4.1. Granular column collapse 0.1 L T S B A 1 N
0.1 1 10

We evaluate the GNS predictions of granular column collapse trained
on a single friction described in Table 1 against the MPM simulations in
terms of the (1) geometry of sliding mass, (2) evolution of runout and
height with time, and (3) energy evolution during the collapse. Fig. 6
shows the normalized runout ((L 7= LO) /L) predictions of GNS for
different aspect ratios in comparison with MPM. L, is the distance
from the left wall to the material point that runs out the farthest,
as shown in Fig. 5. Previous research observed a transition zone for
the relationship between the normalized runout and aspect ratio that
distinguishes short-column from tall-column dynamics. For both GNS
and MPM, we observe the transition around an initial aspect ratio
a = 1.2 (Fig. 6). Table 3 summarizes the errors between GNS predictions
and MPM simulations for different aspect ratios. In general, the GNS
runout prediction is within 5% of the MPM runout estimate. Fig. 6
suggests that the GNS successfully captures the dependence of the final
runout with the initial aspect ratio, including the transition from the
short to the tall column.

4.1.1. Short column
We now evaluate the GNS rollout (prediction) of the granular flow
dynamics with time for a short column (a = 0.8). Fig. 7 shows the

Aspect ratio, a

Fig. 6. Normalized runout distance ((L T LO) /L,) with different aspect ratios (a).

time evolution of granular flow for the short column collapse. We use
a normalized time (¢/7,) to compare the flow evolution, where 7 is
physical time, and 7, is the critical time defined as the time required
for the flow to fully mobilize. 7, is defined as \/H,/g, where g is the
gravitational acceleration. In Fig. 7, the collapse shows three stages.
First, the flow is mobilized by the failure of the flank and reaches full
mobilization around ¢/, = 1.0. The majority of the runout occurs until
t/t, = 2.5. Beyond t/z, > 2.5, the spreading decelerates due to the basal
friction and finally stops at around ¢/z, = 4.0 for both MPM and GNS
rollout (prediction). As seen in Fig. 7, although the GNS has only seen
an aspect ratio a = 1.0 during training, GNS successfully captures the
overall time-evolution of granular flows for a short column (a = 0.8).
In addition to the visual comparison of profiles, we quantitatively
investigate the flow dynamics of the GNS rollout of the short column by
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Fig. 7. Evolution of flow with normalized time for GNS and MPM for the short column with « = 0.8. Units are in m. The color represents the magnitude of the displacement.

Subfigure (e) shows the final deposit at the last timestep.

comparing the normalized runout and height evolution with the MPM.
Fig. 8a shows the evolution of normalized runout and height with time.
The normalized runout of the MPM (see the gray line corresponding to
the left axis in Fig. 8a) shows the three stages of collapse. The collapse
of the granular column starts with the failure of the flank and evolves
slowly until the runout is fully mobilized by 7/z, = 1.0. As the collapse
proceeds, the runout acceleration increases (f/z, = 1.0 to 2.5). After
this time, the runout deaccelerates due to basal friction, and finally
stops at t/7, ~ 4.0. Both GNS and MPM show a constant normalized
height (see the gray line corresponding to the right axis in Fig. 8a) as
only the flank of the column collapse, leaving a static truncated-conical
core. GNS predicts an almost identical evolution of runout as the MPM
simulation, which is noteworthy as only a small portion of the training

trajectories (5 out of 26) includes the deacceleration behavior leading
to the flow coming to rest due to the basal friction before hitting the
walls. Overall, the quantitative comparison shown in Fig. 8a confirms
that the GNS can accurately model the granular flow dynamics for the
short column.

Fig. 8b shows the energy evolutions from GNS rollout and MPM
simulation. Based on the principle of energy conservation, the granular
flow must satisfy E, = E, + E, + E,, where E, is the potential energy of
the column before material points start to mobilize, E, is the potential
energy, E, is the kinetic energy, and E, is the dissipation energy due to
friction along the boundary and material. In Fig. 8b, both GNS rollout
and MPM simulation show identical energy evolutions. A significant
fraction of the stored potential energy is converted to kinetic energy in
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Fig. 8. (a) Normalized runout and height evolution with normalized time and (b) normalized energy evolution with normalized time for the short column a = 0.8. H, is the height

from the bottom corner of the boundary to the highest part of the column at 1. E, = Y| mgh, is the potential energy of the column, and E, = % Y mu

2 is the kinetic energy of

i

the column, where m;, h;, and v; is the mass, height, and velocity of the material point i, and n is the total number of material points. E, = E, — E, — E is the dissipation energy

where E, is the potential energy before material points start to move.

the initial stages of the failure, reaching a peak value of kinetic energy
at /7, = 1. The kinetic energy dissipates due to the basal friction and
flow ceases at 7/7, = 4.0 when E, is fully dissipated.

4.1.2. Tall column

Tall columns exhibit different runout dynamics than the short col-
umn. GNS was only trained on granular mass with an aspect ratio of
1.0 and has not seen the dynamics of a tall column during training.
As an example, we demonstrate the GNS prediction for a tall column
with ¢ = 2.0. Fig. 9 shows the GNS rollout and MPM simulation of
the runout evolution for this case. GNS rollout predicts an identical
runout profile with normalized time as the MPM simulation. Similar
to the short column, the tall column also shows the three stages: the
initial mobilization of the flow (¢/z, to 1.0), runout (¢/7z, = 1.0 to
2.5) along the failure surface, deacceleration (t/z. = 2.5 to 4.0). In
the tall column, however, a larger volume of sliding mass above the
failure plane is mobilized. During the initial stages of the collapse, the
granular mass experiences free fall due to gravity dominated by colli-
sional dissipation. As the granular mass reaches the failure surface, the
vertical kinetic energy is converted to horizontal acceleration, resulting
in longer runout distances. GNS rollout shows similar behavior to the
MPM runout simulation.

Fig. 10a shows the normalized runout and height evolution for the
tall column. Although the runout evolution remains identical in the
initial phase of the collapse, MPM shows a slightly larger normalized
runout compared to the GNS. The final height in both GNS and MPM
remains the same.

Fig. 10b presents the normalized energy evolution of the GNS
rollout and the MPM simulation. During the initial stages of the collapse
(t/7. to 1.0), a large amount of initial potential energy is converted to
kinetic energy due to the free fall of mass under gravity. Both GNS
and MPM show almost identical energy profiles. GNS shows a larger
potential energy loss as the flow accelerates with an almost similar
gain in kinetic energy. It indicates that GNS predicts larger frictional
dissipation in tall columns, which could be from the training data
focused only on short columns having higher frictional dissipation than
tall columns. At the final stage, MPM shows less dissipation due to
the basal boundary friction, resulting in a slightly longer runout than
GNS rollout. Generally, energy dissipation behavior in GNS is consistent
with MPM showing a more significant potential drop and increased
dissipation energy accumulation.

Overall, the GNS rollout is consistent with the MPM simulation
with a runout error of 5.7% for the tall column with a = 2.0, im-
plying that the GNS can capture the dynamics of granular flows in
collision-dominated tall columns despite only being trained on a = 1.0.

4.1.3. Upscaled domain

GNS is generalizable to different initial configurations of the flow
simulation owing to the strong inductive bias of the GNN (Battaglia
et al., 2018). The strengths of GNS surrogate models would be to train
them on small-scale experiments and then predict large-scale dynamic
scenarios with complex boundary conditions. We now evaluate the
scalability of GNS to a larger domain, including more material points
than the training dataset. Fig. 11 shows the GNS rollout of a short
column a = 0.8 with 5120 material points (up to 5x more material
points than the training dataset) for a larger simulation domain and
longer rollout duration than the training dataset.

GNS successfully predicts the flow dynamics for an upscaled domain
size showing a similar runout profile with the MPM simulation. The
GNS rollout predicts a normalized runout of 1.74 while the MPM
simulation shows 1.76, showing an error of 1.30%. Fig. 12 shows that
GNS rollout successfully replicates energy evolution observed in an
upscaled domain compared to the MPM simulation. Hence, GNS can
reproduce the flow dynamics even for the upscaled geometries beyond
the training dataset.

The primary source of GNS rollout error is not from the simulation
scale but from the portion of material points that shows a large amount
of displacement during column collapse. Fig. 13 shows the evolution
of mean squared error (MSE) of displacement over all material points
(N) with time ¢ computed as %Z,N (p! —pMPMﬁ)Z, where pypy! is
material point position from MPM. When we compare the MSE for
a = 0.8 with 1,824 of material points and its upscaled domain (2.22x
material points), upscaling does not alter the MSE significantly. Fig. 14
shows the evolution of the squared error of displacement of individual
material points for the upscaled domain (¢ = 0.8). The squared error
shows larger values for those material points which run out further,
i.e., the larger final displacements, but the proportion of the error with
respect to the final runout is small so that GNS could simulate the
upscaled case without significant error.

4.1.4. Different friction angles

To make GNS learn the different frictional behaviors, we provided
the GNS with the granular flow trajectories with five different friction
angles as described in Section 3.2. Fig. 15 is the summary of the
prediction result. It shows the normalized runout predicted by the GNS
compared to MPM on the aspect ratios and friction angles not shown
during the training. As we have already observed in the single material
case Fig. 6, the increasing trend of normalized runout with the aspect
ratio is well captured through multiple friction angles as well as the
relationship transitions between short columns and tall columns. Addi-
tionally, GNS generalizes well beyond the geometry (aspect ratio of 1.0)
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Fig. 9. Evolution of flow with normalized time for GNS and MPM for the tall column with a = 2.0. Units are in m. The color represents the magnitude of the displacement.

Subfigure (e) shows the final deposit at the last timestep.

on which it was trained both for short and tall columns. These results
suggest that the GNS successfully predicts the different granular flow
dynamics depending on various friction angles although an exhaustive
range of friction angles is not provided during the training.

4.2. Granular flow with barriers

To evaluate the generalizability of GNS for predicting interactions
with barriers, we set the simulation configuration of the debris-resisting
baffles to be outside the training distribution described in Section 3.2.
Fig. 16a shows the initial configuration of the simulation. The simula-
tion boundary is from 0.1 to 1.9 for the x-axis, 0.1 to 0.9 for the y-axis,
and 0.1 to 1,9 for the x-axis. The granular mass of 0.35 x 0.25 X 1.4 m

10

for each dimension approaches three baffles, whose geometry is 0.15 x
0.30x 0.15 m, with the initial x-velocity of 2.0 m/s. The center location
of the two baffles in the first row is at (x = 0.775, z = 0.375) m and
(x = 0.775, z = 1.625) m, and that of the final baffle is at (x = 1.275, z =
1.0) m. Compared to training data, the simulation domain is four times
larger with 2.2 times more material points. While the initial granular
mass geometry takes on a cuboid shape, the training data exclusively
features cubes. Additionally, we test the GNS with three baffles, in
contrast to the training data which only contains one or two.

From the initial state to + = 0.15 s (Fig. 16), the granular debris
propagates downstream uniformly and impacts the first baffle row.
Upon hitting the first row, the side of the flow is obstructed by the
baffles and the rest of the flow between the baffles proceeds towards the
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Fig. 10. (a) Normalized runout and height evolution with normalized time and (b) normalized energy evolution with normalized time for the tall column with a = 2.0.
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Computation time of MPM and GNS rollout per timestep for varying number of material points. Note the 2D model is the one used for simulating granular
column collapse, and the 3D model is for the flow with barriers.

Model # material points MPM GNS
Time # edges Time-CPU Speed up Time-GPU Speed up
(s/timestep) (Approx.) (s/timestep) (s/timestep)
2D 3.6K 37 0.153M 5.9 6.3 0.050 740
(“small”)
40K 227 1.8M 65.3 3.5 0.616 369
(“intermediate”)
90K 596 4.0M 148 4.0 1.515 393
(“large”)
102K 818 4.6M 170 4.8 Exceeds memory
(“larger”)
3D 6.9K 129 0.125M 4.59 28.1 0.045 2867
(“small”)
250K 2,767 4.8M 174.12 15.9 1.521 1819
(“intermediate”)
389K 4,149 7.2M 271.56 15.3 1.996 2079
(“large”)
439K 4,628 8.2M 306.92 15.1 Exceeds memory
(“larger”)

next baffle. Simultaneously, material is deposited and built up upstream
of the baffles due to the obstruction and almost reaches the height of
the baffle. From ¢ = 0.15 s to r = 0.34 s, the flow impacts the next
baffle and diverges into two granular jets through the open area with
roughly symmetric shapes. A smaller amount of material deposition
forms upstream of the last baffle compared to the first row. Beyond
t = 0.34 s, the spreading of the grains decelerates due to the basal
friction and finally reaches static equilibrium at around ¢ = 0.63 s.
GNS rollout successfully replicates the overall kinematics of the flow
including the complex interaction with the obstacles.

To quantitatively compare the results from GNS and MPM, we
measure the runout evolution (Fig. 17(a)), similar to the granular
column collapse case. In this study, we define runout as the longest
travel distance of the flow along the path compared to the initial
forefront of the granular mass. With the initiation of the flow, runout
rapidly propagates until r = 0.34 s experiencing the complex interaction
between structures. Subsequently, the runout gradually decelerates
and eventually halts as the rest of the flow energy dissipates. GNS
perfectly predicts the runout evolution simulated by MPM although the
simulation configuration includes more obstacles and a larger domain
size compared to the training data.

We also measure the upstream depth evolution of the granular mass
deposition right behind the baffles (Fig. 17(a)). The upstream flow
depth refers to the depth of the granular flow measured upstream of
the baffle array when the flow impacts the baffles. As runout proceeds,
the flow faces the baffles at the first row and, subsequently, the second
baffle. Upon impact with the first baffles, the upstream depth spikes
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almost to the height of the baffles (0.3 m) due to the deposition of the
grains and sudden backwater effects. After peaking, it shows a small
amount of decrease over time as the granular flow around the baffles
gradually reaches static equilibrium. As the flow impacts the baffle in
the next row, the upstream depth surges, and it gradually decreases
again but at a lower rate. The overall trend of the upstream depth
change is well characterized by GNS, although GNS predicts a slightly
less decrease in depth compared to the MPM. However, the difference
is not significant.

Fig. 17(b) shows the energy evolution. Initially, the approaching
granular flow has high kinetic energy due to the initial potential
energy being mobilized. The material accumulation behind the baffles
contributes to the steep drop in the kinetic energy, as the flow passes
and interacts with the baffles. GNS captures these energy evolution
trends accurately. The results from Figs. 16 and 17 suggest that the
GNS successfully learns the granular flow dynamics interacting with
obstacles.

5. Comparative analysis of computational efficiency
5.1. Rollout

Table 4 shows the computation times for the MPM, GNS with CPU,
and GNS with GPU. We investigate four different cases of the number
of material points (“small”, “intermediate”, “large” number of material

points, and the “larger” case which slightly exceeds GPU memory
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Fig. 11. Evolution of flow with normalized time for GNS and MPM for the upscaled case of short column with a = 0.8. Units are in m. The color represents the magnitude of the

displacement. Subfigure (e) shows the final deposit at the last timestep.

capacity) for each GNS model (2D and 3D). The MPM simulations were
run on 56 cores of Intel Cascade Lake processors with 128 GB memory
on TACC Frontera using CB-Geo MPM code, while the GNS rollouts
were computed on a single A100 GPU with 40 GB memory on TACC
Lonestar 6.

As the number of material points increases, MPM computation time
increases with O(nlogn) at best and O(n?) at worst (Kumar et al.,
2019). For GNS, as the number of material points increases, the edge
connections linearly increase, which governs the message passing and

12

computation volume of GNS. Accordingly, it leads to the increase of
GNS computation time with linear scaling (O(n)). When we compare
the computation time of GNS with MPM in 2D model, GNS on CPU
shows about 3.5 to 6.3xspeed up, and GNS on GPU shows about 369
to 740xspeed up. For the 3D model, GNS on GPU shows about 15
to 28xspeed up, and GNS on GPU shows about 1819 to 2867xspeed
up. However, a limitation of the GPU-based GNS in its current form
is its dependency on the available GPU memory. When the number
of material points increases to 102 K for 2D and 439 K for 3D, the
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Fig. 14. Evolution of squared displacement error for each material point with normal-
ized time in upscaled case of a = 0.8. The line color represents the final displacement
of each material point.

model cannot proceed with the rollout due to memory constraints.
Despite this, the CPU version of GNS can handle computations for a
larger number of material points, surpassing the capability of its GPU
counterpart. It is worth noting that the 3D model can simulate a higher
number of material points compared to the 2D model because it has
fewer edge connections within the connectivity radius.

Arduino et al. (2021) demonstrated that GPU MPM simulations
speed up 5 to 10x compared to the CPU CB-Geo MPM version. Despite
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Fig. 15. Normalized runout distance ((L, — L,) /L) with different aspect ratios (a)
and friction angles (¢).

this, GNS still provides a great deal of performance boost over GPU
versions of numerical simulations, which are also restricted to smaller
domains due to GPU memory bandwidths.

GNS can run on multiple GPUs, which increases computational
efficiency and the number of simulation scenarios that can be run.
Surrogate models, such as GNS, are computationally efficient compared
to full-scale numerical simulations with MPM. Therefore, GNS allows
for evaluating thousands of scenarios rather than just a handful of cases
with full-scale numerical modeling.

5.2. Training

The training cost of GNS is significant, as illustrated by the met-
rics in 5 which include the number of parameters, edge connections,
memory usage, and time taken for each training step. The 2D model,
which has approximately 20 K edge connections, takes 0.26 s for
each training step. In comparison, the more intricate 3D model, which
has about 32 K edge connections, takes 0.38 s per step. Given the
current hyperparameters, roughly 5 million training steps are required
to achieve optimal rollout performance. This translates to an estimated
training duration of 15 days for the 2D model and 22 days for the 3D
model.

We consider using training examples with fewer edge connections to
decrease training costs. However, this approach risks compromising our
learning capacity. Reducing the connectivity radius decreases edge con-
nections, limiting our model’s ability to grasp vital local interactions.
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Fig. 16. Evolution of flow interacting with baffles for GNS and MPM from initial condition to the final deposit at the last timestep. The simulation domain is 1.8x0.8x1.8 m and the
initial geometry of the granular mass is 0.35x0.25x 1.4 m. The barrier size is 0.15x0.30x0.15 m. The center location of the two baffles in the first low are at (x = 0.775, z =0.375) m

and (x =0.775, z=1.625) m, and the final baffle is at (x = 1.275, z=1.0) m.
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Table 5
Training cost of GNS.
Model  # parameters # edges GPU memory usage Training speed
(approx.) (approx.) (GB) (s/step)
2D 1591826 20K 20 0.26
3D 1592979 32K 30 0.38

Alternatively, when we reduce the number of vertices in the training
example, we restrict the range of interactions our model captures. The
challenge lies in finding a balance between training efficiency and
learning depth. We must ensure the connectivity and number of vertices
remain high enough to capture complex interactions yet not so high as
to be computationally inefficient. There is a need to balance training
costs with optimal learning outcomes.

6. Limitations of GNS

The GNS surrogate model demonstrates accuracy, generalizability,
and improved computation efficiency. However, the GNS suffers from
the following limitations.
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As discussed earlier in Table 4, the GPU memory limits the current
implementation of the GNS surrogate model. A GPU with 40 GB mem-
ory can simulate up to around 439 K material points (approximately
8.2M edge connections). However, this shortcoming can be improved
by optimizing the size of the connectivity radius R. For example, in
Table 4, the 3D model is able to simulate 4x more material points with
2x more edge connections than the 2D model, since R of the 3D model
uses a smaller R (= 0.025) and includes less number of material points
inside it, while the 2D model uses a larger R (= 0.030) and includes
more number of material points than the 3D model. Nevertheless, the
3D model still shows an accurate rollout as shown in Section 4.2. This
implies that, although a larger R can consider more interaction between
neighbors, excessively large R is not necessary and can aggravate the
computation efficiency of GNS. Multi-GPU GNS rollouts will enable the
scalability of GNS to larger and more complex domains.

Another limitation is that GNS shows error accumulation with time,
see Fig. 13. GNS uses the explicit Euler time integration to predict
the next state based on the current state (X, — X, ;) as described
in Section 2.2.5. GNS uses acceleration to predict the runout of the
next time step. However, long duration rollouts result in error accu-
mulation. To overcome this issue, where the GNS predictions could
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Fig. A.1. MPM granular trajectories of training data generated using CB-Geo MPM.

deviate from the reality, we introduce Gaussian noise at each step of
the training data to minimize error accumulation. Although including
noise effectively reduces error accumulation (Sanchez-Gonzalez et al.,
2020), GNS cannot be free from the error accumulation as timestep
increases. The use of purely data-driven architecture, i.e., MLP, for the
encoder, processor, and decoder can be a potential source of error as
GNS learns to predict acceleration. Substituting MLPs in the encoder
and decoder with non-data-driven architectures such as simple linear
layers or principal component analysis might help reduce the error of
GNS using less training data. Sanchez-Gonzalez et al. (2020) investi-
gated the validity of the former method, but confirmed no significant
changes in performance. Imposing known physics-based constraints to
the message passing in the processor (Seo and Liu, 2019) could also
help address potential errors stemming from the purely data-driven
architecture. Yang et al. (2022) introduced momentum conservation
law to the message passing, and observed the error reduction.

The calibration of the GNS model is pivotal to ensure the accuracy
and reliability of simulations by aligning them with real-world data.
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Calibration often involves adjusting the model parameters, and in the
case of GNS, modifying material properties m or connectivity radius
are direct methods. For instance, changing the connectivity radius
can affect simulation outcomes, such as granular flow deformation.
However, merely tweaking parameters might not suffice for optimal
accuracy. An alternative approach is transfer learning, where a GNS
model pre-trained on foundation data can be further refined based
on experimental observations, enhancing its predictive accuracy for
specific scenarios. Continued research into GNS-specific calibration is
crucial for its application in real-world engineering analyses.

7. Conclusion

Traditional numerical methods are computationally intensive when
simulating large-scale granular flows. Statistical or conventional ma-
chine learning-based surrogate models are not generalizable since they
do not explicitly consider the underlying physics. We implemented a
graph neural network (GNN)-based simulator (GNS) as a multi-GPU
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Fig. A.1. (continued).

parallel version for generalizable granular flow surrogate simulation.
The use of graphs efficiently represents the physical state of interacting
material points. At the same time, the message passing operation
of GNN encourages the neural network to learn the interaction be-
tween material points. The expressive power of graphs and message
passing that models the interaction between material points allows
GNS to accurately predict granular flow dynamics for various condi-
tions, including those not seen during training. We demonstrate the
performance of GNS on granular column collapse and granular flow
interaction with barriers. GNS precisely simulates different flow dy-
namics involved in columns for different initial aspect ratios and can
also be applied to the upscaled domain with more than 2x material
points with a longer simulation duration than the data provided for
training. GNS can predict the granular flow interacting with barriers
that include different granular mass and barrier configurations not seen
during training. GNS also shows a remarkable speed-up of up to 2900x
computation speed compared to the parallelized CPU version of MPM.
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The computational efficiency and generalizability of the GNS surrogate
can expedite evaluating runout hazards requiring numerous scenarios.
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Appendix. Training data

Fig. A.1 illustrates the training data used for the Granular Neu-
ral Simulation (GNS) model. These images depict 26 trajectories of
granular collapses generated through the CB-Geo MPM (Material Point
Method) code. Each trajectory shows the dynamic behavior of granular
materials used in training the GNS.
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