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Figure 1: Graph network and MeshNet simulator for accelerating particulate and �uid simulations (modi�ed after [16])

ABSTRACT

We leverage physics-embedded di�erentiable graph network simu-

lators (GNS) to accelerate particulate and �uid simulations to solve

forward and inverse problems. GNS represents the domain as a

graph with particles as nodes and learned interactions as edges.

Compared to modeling global dynamics, GNS enables learning local

interaction laws through edge messages, improving its generaliza-

tion to new environments. GNS achieves over 165x speedup for

granular �ow prediction compared to parallel CPU numerical sim-

ulations. We propose a novel hybrid GNS/Material Point Method

(MPM) to accelerate forward simulations by minimizing error on a

pure surrogate model by interleaving MPM in GNS rollouts to sat-

isfy conservation laws and minimize errors achieving 24x speedup

compared to pure numerical simulations. The di�erentiable GNS
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enables solving inverse problems through automatic di�erentia-

tion, identifying material parameters that result in target runout

distances. We demonstrate the ability of GNS to solve inverse prob-

lems by iteratively updating the friction angle (a material property)

by computing the gradient of a loss function based on the �nal

and target runouts, thereby identifying the friction angle that best

matches the observed runout. The physics-embedded and di�eren-

tiable simulators open an exciting new paradigm for AI-accelerated

design, control, and optimization.
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1 INTRODUCTION

Simulators that realistically capture complex physics, such as par-

ticulate and �uid �ow, provide immense value across scienti�c

and engineering �elds. Particulate systems such as granular me-

dia show complex transitionary behavior between solid-like and

�uid-like responses. Additionally, the turbulent behavior of �uid

�ow poses unique challenges in modeling their �ow around com-

plex boundaries. These simulations require �ne-mesh resolutions

to capture intricate geometries and long compute times to converge

on solutions. To make such simulations more practical approaches

like reduced-order models are often used but sacri�ce accuracy for

e�ciency. Conventional continuum-based simulation techniques,

such as the �nite element or �nite di�erence methods, can model

small-strain problems and face mesh distortion issues in modeling

large-deformation �ow problems [18]. Although hybrid Eulerian-

Lagrangian methods such as the Material Point Method (MPM)

can simulate large deformation particulate �ow problems, such

as landslides, they are computationally expensive and are limited

to representative elemental volume with at most 1M particles; in

contrast, a cubic meter of soil has more than 1 billion grains. AI

algorithms are widely adopted in building data-only surrogate mod-

els; however, they are often used as black boxes to predict a single

outcome, such as failure or no failure, and lack physics [5].

We develop a physics-embedded graph network simulator (GNS)

that represents the domain as nodes and interactions as learned edge

functions, allowing it to generalize beyond training regimes. Using

an attention-based GNS surrogate, we propose a novel physics-

embedded framework for developing surrogate models. Further-

more, we accelerate the computational e�ciency of traditional

simulators while minimizing the errors in a data-only surrogate

by proposing a novel hybrid GNS/MPM. The hybrid GNS/MPM

combines the best of both works by interleaving MPM with GNS to

conserve physics laws while accelerating the forward simulations

with GNS, o�ering an order of magnitude better computational

e�ciency over a pure numerical simulation. A major challenge

in studying particulate and �uid �ow is solving optimization and

inverse problems. This inverse analysis of identifying the optimal

con�guration or material properties that yield a speci�c response

requires incrementally varying input parameters/model con�gura-

tion and rerunning models to match observations - an ine�cient

trial-and-error approach. By exploiting automatic di�erentiation in

GNS, we solve the inverse analysis with gradient-based optimiza-

tion. Furthermore, The NextGen di�erentiable GNS opens a new

AI-embedded design, control, and optimization paradigm.

2 STATE OF THE ART

Numerical methods provide approximate solutions to partial dif-

ferential equations (PDEs) by discretizing the solution space into

�nite entities. Particle-based approaches like the discrete element

method (DEM) o�er the advantage of modeling the microscale

grain-grain interactions, albeit constrained to representative ele-

mental volumes [11]. Traditional continuum-based methodologies,

such as the �nite element method (FEM), are pro�cient in predicting

failure initiation but fall short due to mesh distortions when han-

dling large-deformation runouts [18]. Hybrid Eulerian-Lagrangian

methods like the material point method (MPM) alleviate mesh dis-

tortion issues but necessitate grid and material point tracking, prov-

ing computationally expensive [10]. However, these methods only

leverage CPU parallelization, and the hybrid particle-mesh transfer

degrades the scaling performance of MPM, limiting its applica-

bility for exa-scale simulations. Furthermore, traditional forward

simulators cannot solve inverse and design problems, as they are

limited to computing gradients in the forward mode. Solving in-

verse problems requires a special adjoint method that manually

de�nes the derivative of the forward model equations. The lack of

reverse-mode di�erentiation limits the AI-embedded simulation

paradigm.

Neural network (NN)-based ML models have shown promising

results in predicting soil deformations under speci�c load condi-

tions [2, 14, 19, 20]. However, these models’ ‘black-box’ nature

impedes interpretability, necessitating signi�cant training data and

leaving them vulnerable to adversarial attacks. Physics-informed

neural networks (PINNs) embed prior knowledge, such as PDEs

and boundary conditions, as a loss function in model training [15].

However, PINNs are limited to the boundary conditions of the

training data and may not yield PDE-compliant predictions during

extrapolation. Graph network simulators (GNS) o�er a promising

alternative that exploits graph networks to represent the underly-

ing domain and learn the local interaction rather than the global

dynamics, thus allowing extrapolation to geometries beyond the

training regime [3, 12, 16]. Haeri and Skonieczny [6] reduced the

dimensionality of the data using Principal Component Analysis

to model graph networks. Mayr et al. [13] developed a contact

boundary in GNS to model complex boundary interactions with

granular media. Kumar and Vantassel [12] developed a multi-GPU

parallel GNS to achieve linear strong scaling during GNS train-

ing. Kumar et al. [8] exploited GNS as an oracle for large-scale in

situ visualization of regional-scale landslides.

A new class of di�erentiable simulators o�ers a promising solu-

tion to solve complex inverse problems by enabling di�erentiation

in forward and reverse modes through automatic di�erentiation.

Initiatives like JAX-MD [17] and JAX-FLUIDS have made strides

towards creating di�erentiable simulators (Di�Sim) for particulate

and �uid systems [7]. Di�erentiable simulation allows the incorpo-

ration of physics and domain knowledge into ML models, leading

to better generalization. They enable end-to-end gradient-based

optimization facilitating continuous adaptation and meta-learning.

Nevertheless, the object-oriented design of numerical methods, re-

plete with branching conditions, poses challenges in automatic

di�erentiation, requiring stateless implementations for accelera-

tion with Just-In-Time compilations. Integrating AI acceleration

with traditional numerical methods can revolutionize numerical

simulations and achieve new simulation frontiers.

3 GRAPH NETWORK SIMULATION

Graphs can represent interactions in physical systems [3, 16]. We

represent the particulate media as a graph � = (Ē , ā) consisting of

a set of vertices (Ĭğ ∈ Ē ) representing the particles or aggregation

of particles and edges (ěğ, Ġ ∈ ā ) connecting a pair of vertices (Ĭğ
and Ĭ Ġ ) representing the interaction between them. Graphs o�er a

permutation-invariant form of encoding data, where the interaction
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between vertices is independent of the order of vertices or their

position in Euclidean space.

Graph neural network (GNN) takes a graph � = (Ē , ā) as an

input, computes properties and updates the graph, and outputs an

updated graph � ′ = (Ē ′, ā ′) with an identical structure, where

Ē
′ and ā

′ are the set of updated vertex and edge features (Ĭ′ğ and

ě
′
ğ, Ġ ). GNN generates an updated graph by propagating information

through the graph, termed message passing.

Graph Network Simulators (GNS) [4, 8, 12, 16] operate on graphs

to learn the physics of the dynamic system and predict rollouts. The

graph network spans the system domain with nodes representing a

collection of particles and the links connecting the nodes represent-

ing the local interaction between particles or clusters of particles.

The GNS learns the physics of the system dynamics, such as mo-

mentum and energy exchange, through message passing on the

graph. GNS has three components (see �g. 1a): (a) Encoder, which

embeds particle information to a latent graph, the edges are learned

functions; (b) Processor, which allows data propagation and com-

putes the nodal interactions across steps; and (c) Decoder, which

extracts the relevant dynamics (e.g., particle acceleration) from the

graph. We introduce physics-inspired inductive biases, such as an

inertial frame that allows learning algorithms to prioritize one so-

lution (constant gravitational acceleration) over another, reducing

learning time. The GNS implementation uses semi-implicit Euler

integration to update the next state based on the predicted accelera-

tions. We extend GNS with an attention mechanism to focus on the

local interaction law and generate physically consistent predictions

by enforcing conservation laws (mass, momentum, and energy) as

soft constraints. The attention coe�cient between nodes is de�ned

as a weighted function of the feature over its neighbors. The graph

attention mechanism improves predictions over long-time scales

with weight-sharing properties to represent dynamically changing

neighbors typical in large-deformation particulate �ows.

3.1 Training and rollout

The training datasets include 26 square-shaped granular mass �ow

trajectories in a two-dimensional box boundary simulated using the

Material Point Method (CB-Geo MPM) code [10]. Each simulation

has a di�erent initial con�guration regarding the size of the square

granular mass, position, and velocity. We used a learning rate [ =

1� − 4 and trained for 20M epochs on Nvidia A100 GPU nodes on

TACC LoneStar6.

GNS successfully predicts the rollout of granular media within

5% particle location error compared to MPM simulations (see �g. 3).

Additionally, GNS achieves a speed-up greater than 165x compared

with distributed memory parallel CB-Geo MPM code.

3.2 MeshGraphNet

We describe the state of the system at time t using a simulationmesh

"Ī = (+ , �ĉ ) with nodes + connected by mesh edges �ĉ . Each

node 8 ∈ + is associated with a reference mesh-space coordinate Gğ ,

which spans the simulation mesh and additional dynamical quanti-

ties @ğ that we want to model. The task is to learn a forward model

of the dynamic quantities of the mesh at time C +1 given the current

mesh state "Ī and a history of previous meshes "Ī−1, . . . , "Ī−Ĥ .

We employ a similar architecture to the graph neural network of

Figure 2: MeshNet for simulating �uid �ow.

an Encode-Process-Decode architecture, followed by an integrator,

as shown in �g. 1b. Figure 2 shows the prediction of a von Kar-

man vortex shedding from the MeshGraphNet compared with a

ground truth Computational Fluid Dynamics (CFD) solution with

OpenFOAM.

4 ACCELERATING FORWARD PROBLEMS
WITH GNS

We develop a hybrid GNS-accelerated numerical simulation with

the Material Point Method for a fast solution to forward problems.

We design a hybrid GNS-MPM approach incorporating domain-

speci�c knowledge and conservation laws to achieve improved con-

vergence. Figure 3 shows the hybrid GNS-MPM framework, which

includes three main stages. Warm-up: GNS prediction requires the

previous �ve steps to predict a rollout. We �rst generate the initial

�ve velocity steps using MPM with speci�ed boundary conditions.

We run the physics solver with a prede�ned ‘ ’ of �ve steps. GNS

rollout: After the warm-up step, we predict the rollout, as described

in section 3, based on the previous K timesteps for further ‘" ’ steps.

Iterative Re�nement: The output of the GNS rollout may not satisfy

known conservation laws, despite inductive biases and constraints.

We feed the output of the GNN rollout to the MPM physics solver

to perform ‘ ’ iterations. The data-driven model integrated with

MPM will generate physics-conserving simulations in less time.

We achieve a speed-up of 20x compared to traditional explicit sim-

ulation, while most of the computation time is still spent on the

‘= ∗  ’ runs. Figure 3 shows that the hybrid GNS+MPM reduces

displacement errors compared to pure GNS-only runs. Figure 4

shows the e�ect of hybrid GNS+MPM in reducing the �nal error

in pure-GNS-only models. Further research could explore di�erent

criteria for adaptive-switching between GNS/MPM based on error

metrics. Note, the current hybrid approach does not transfer infor-

mation of stresses between GNS and MPM resulting in increase in

errors in certain conditions in comparison to GNS-only approach.

5 ACCELERATING INVERSE PROBLEMS
WITH DIFFERENTIABLE GNS

A critical challenge in engineering design and optimization is solv-

ing the inverse problem, which involves identifying the parameters

that lead to a desired result. Traditional simulators like MPM can

di�erentiate in the forward mode to compute gradients of PDEs.
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Figure 3: Accelerating forward simulation with hybrid GNS/MPM.

Figure 4: Hybrid GNS/MPMerror evolution compared to GNS.

However, they cannot compute gradients needed for inverse prob-

lems using reverse-mode di�erentiation. Inverse problems require

techniques like the adjoint method to manually de�ne derivatives

of the forward model equations to calculate gradients in reverse

mode. We leverage automatic di�erentiation (AD) in the PyTorch

version of GNS to solve inverse problems. AD uses the chain rule

to compute gradients of complex di�erentiable functions e�ciently.

AD enables accurate and fast gradient calculations by breaking

down functions into elementary operations.

Our goal is to solve an inverse problem in granular �ow to

identify material properties that, given an initial geometry, result

in a desired runout. We demonstrate this in the granular column

collapse experiment. In this experiment, a rectangular granular

column is released on a �at surface and collapses under gravity. The

runout depends on the initial aspect ratio and material properties

like friction angle. The inverse problem is to �nd the optimal friction

angle (q) that gives a target runout distance (!
čĪėĨĝěĪ

Ĝ
) for a given

initial column geometry (aspect ratio 0). An optimizer computes the

squared error between the target and simulated runout distances (

� (!
čĪėĨĝěĪ

Ĝ
, !

č

Ĝ
) = (!

čĪėĨĝěĪ

Ĝ
− !

č

Ĝ
)2) and updates q to minimize the

error. We use AD to directly compute ĉĆ
ĉč

.

The downside of using AD is that it requires a signi�cant amount

of memory for large-scale inversion of neural networks [1] because

it retains all the gradients of parameters for all the intermediate

layers during the backward pass. Since GNS contains multiple MLPs

with multiple layers, and the entire simulation even entails the ac-

cumulation of positions �#( (ĔĪ → ĔĪ+1) for : steps, computing
ĉĆ
ĉč

requires extensive memory capacity. We found that conducting

AD for entire timesteps is not feasible in the currently available

GPU memory capacity (40 GB). For this reason, we conduct the

AD on the CPU and restrict the forward pass to :=30 steps in the

optimization process. Accordingly, our target runout corresponds

to the runout at 30 steps, not at the �nal timestep when the �ow

reaches static equilibrium.

Figure 5a shows the target pro�le for a friction angle q = 30◦.

We use an initial guess of q = 45◦ to solve the inverse problem of

estimating the friction angle based on the �nal runout pro�le. We

use a simple gradient descent algorithm to update the friction angle

at each step based on the gradient of the loss function with respect

to the friction angle. After 17 iterations, the solution converges to

q = 30.7◦ (see �g. 5b). Figure 5 shows the evolution of friction with

each inverse iteration step. The friction angle converges quickly in

about six iterations. We demonstrate that a single-parameter inver-

sion based on the runout distance successfully identi�es the initial

material properties based only on the �nal runout by computing

gradients using automatic di�erentiation.

6 INTERPRETABLE GNS

When a GNS successfully replicates a physics system’s dynamics,

we hypothesize that the messages encoding the latent information
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Figure 5: Solving inverse problems with GNS.

preserve the interaction laws. The sparse representation of the GNS

messages (4′
ġ
← qě (4ġ , EĨġ , Eĩġ , D)) is a learned linear combination

of the true forces.

We predict the n-body dynamics using the open-source data-

parallel PyTorch GNS code developed by the PI [9, 12]. The GNN

is trained on 30 di�erent trajectories of n-body dynamics (∼ 10

particles) for 1 million steps. For particle 8 ,<ğ is the mass, :Ĥğ is

its sti�ness, Ağ is the radius, Gğ is the position. The message 4′
ġ
←

qě (4ġ , EĨġ , Eĩġ , D) contains the edge features (4ġ = 5 (:Ĥ, WĤ, XĤ)),

source and receiver vertex features Eĩġ , EĨġ = 6(<ğ , Ağ , Gğ ) and no

global features. We �t the most signi�cant features by enforcing

a sparsity constraint on the messages through L1 regularization,

which forces us to learn the minimal vector space required to de-

scribe the messages. Furthermore, we restrict the number of mes-

sages by sorting them based on the largest standard deviation.

We then take 10,000 randomly selected outputs from our testing

set to derive the force law from the output of vertex and edge

neural networks. We derive the physics laws by approximating

the message data from the testing set with symbolic regression.

Symbolic regression �ts a function k using the following edge

and vertex features (<ğ ,< Ġ , Ağ , A Ġ , Gğ , G Ġ , :ğ Ġ , Wğ Ġ ) by minimizing the

Figure 6: GNN simulation of N-body dynamics and Symbolic

Regression explanation of edge interaction.

mean absolute error (MAE) through brute force genetic algorithm.

The symbolic regression considers the following operators +, −, ∗,

/, >, <, ?>F , 4G? , 8=E , log as well as real constants in its solutions.

This task uses a simple algorithm to quantify the complexity 2 by

counting the number of occurrences of each operator, constant

and variable. We weigh ?>F, 4G?, 8=E, log as three times the other

operators to consider the complexity �Į of the operation. We use

an approach analogous to Occam’s razor to �nd the “best” algebraic

model that minimizes errors at di�erent complexity levels. We used

a simple weighted counting model to quantify the complexity of

the expression. We identify the symbolic expression as the one

that maximizes the fractional drop in MAE over an increase in

complexity from the next best model (−� log("��ę )/�2).

In this work, we extract the GNS edge messages of a small-scale

system (10 bodies) interacting via linear springs. We then apply

SR on GNS messages to identify the most accurate closed-form

expression that describes the encoded interaction law as shown

in table 1. SR on GNS messages successfully derived (Eq 8 in table 1)

the force interaction law �Ĥ = :Ĥ ∗ 01B (�G − Ağ − A Ġ ) of a linear

spring with sti�ness :Ĥ = 100, relative position �G between two

particles (8 and 9 ) and their radii A .

7 LIMITATIONS

While the graph neural network simulator demonstrates promising

acceleration for simple particulate systems, applying it to diverse

large-scale multi-physics problems poses signi�cant research chal-

lenges. The current node-level attention mechanism needs further
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Table 1: Symbolic regression of the interaction law from GNN messages of a 10-body collision of linear-spring system.

Eq. Derived equation MSE �Į �ė

1 −198.72363 64747.52 1 Y

2 (�G + −198.92792) 63938.996 3 N

3 (−203.1408 + 4G? (�G)) 60907.68 4 N

4 ((�G + −2.3484528) ∗ 92.79602) 27031.744 5 Y

5 ((�G ∗ (X1 + 92.75565)) + −218.16481) 26830.58 7 N

6 ((�G + (01B (A1) ∗ −1.1491286)) ∗ 100.23312) 21227.312 8 Y

7 ((�G + ((01B (A1) + 1.1013538) ∗ −0.8038518)) ∗ 98.86028) 18721.219 10 Y

8* ((∆x + (abs((r2 ∗ −1.0) + r1) ∗ −1.0)) ∗ 100.0) 3.76E-10 12 Y

9 ((�G + (01B ((A2 ∗ 8=E (−1.0)) + A1) ∗ −1.0)) ∗ 99.9998) 3.01E-10 15 N

�Į is the complexity and �ė represents if the expression passes dimensional analysis.

∗ denotes the chosen solution.

analysis on its ability to learn interaction physics and generalize

across problems e�ectively. Scaling GNS using graph partition-

ing and advanced sampling techniques are essential for training

GNS on millions of particles. Furthermore, orchestrating hybrid

GNS/MPM framework using accurate error metrics to determine

when to switch between data-driven prediction and physical solvers

is an important direction. Overcoming these limitations in general-

ization, scalability, physical �delity, and di�erentiable simulations

will be vital in accelerating scienti�c discoveries.

8 CONCLUSIONS

This work introduces novel physics-embedded di�erentiable graph

network simulators (GNS) to accelerate particle and �uid simu-

lations and solve challenging inverse problems. The graph rep-

resentation allows learning localized physics interactions com-

pared to global dynamics, improving generalization. GNS achieves

over 165x speedup compared to parallel CPU MPM simulations for

granular �ow prediction. The di�erentiable GNS enables solving

inverse problems through automatic di�erentiation, identifying

material parameters that result in target runout distances. The

physics-embedded and di�erentiable simulators open an exciting

new paradigm for AI-accelerated design, control, and optimization.
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