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Figure 1: Graph network and MeshNet simulator for accelerating particulate and fluid simulations (modified after [16])

ABSTRACT enables solving inverse problems through automatic differentia-
tion, identifying material parameters that result in target runout
distances. We demonstrate the ability of GNS to solve inverse prob-
lems by iteratively updating the friction angle (a material property)
by computing the gradient of a loss function based on the final
and target runouts, thereby identifying the friction angle that best
matches the observed runout. The physics-embedded and differen-
tiable simulators open an exciting new paradigm for Al-accelerated
design, control, and optimization.

We leverage physics-embedded differentiable graph network simu-
lators (GNS) to accelerate particulate and fluid simulations to solve
forward and inverse problems. GNS represents the domain as a
graph with particles as nodes and learned interactions as edges.
Compared to modeling global dynamics, GNS enables learning local
interaction laws through edge messages, improving its generaliza-
tion to new environments. GNS achieves over 165x speedup for
granular flow prediction compared to parallel CPU numerical sim-
ulations. We propose a novel hybrid GNS/Material Point Method
(MPM) to accelerate forward simulations by minimizing error on a CCS CONCEPTS

pure surrogate model by interleaving MPM in GNS rollouts to sat- - Computing methodologies — Massively parallel and high-
isfy conservation laws and minimize errors achieving 24x speedup performance simulations; Neural networks.

compared to pure numerical simulations. The differentiable GNS
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1 INTRODUCTION

Simulators that realistically capture complex physics, such as par-
ticulate and fluid flow, provide immense value across scientific
and engineering fields. Particulate systems such as granular me-
dia show complex transitionary behavior between solid-like and
fluid-like responses. Additionally, the turbulent behavior of fluid
flow poses unique challenges in modeling their flow around com-
plex boundaries. These simulations require fine-mesh resolutions
to capture intricate geometries and long compute times to converge
on solutions. To make such simulations more practical approaches
like reduced-order models are often used but sacrifice accuracy for
efficiency. Conventional continuum-based simulation techniques,
such as the finite element or finite difference methods, can model
small-strain problems and face mesh distortion issues in modeling
large-deformation flow problems [18]. Although hybrid Eulerian-
Lagrangian methods such as the Material Point Method (MPM)
can simulate large deformation particulate flow problems, such
as landslides, they are computationally expensive and are limited
to representative elemental volume with at most 1M particles; in
contrast, a cubic meter of soil has more than 1 billion grains. AI
algorithms are widely adopted in building data-only surrogate mod-
els; however, they are often used as black boxes to predict a single
outcome, such as failure or no failure, and lack physics [5].

We develop a physics-embedded graph network simulator (GNS)
that represents the domain as nodes and interactions as learned edge
functions, allowing it to generalize beyond training regimes. Using
an attention-based GNS surrogate, we propose a novel physics-
embedded framework for developing surrogate models. Further-
more, we accelerate the computational efficiency of traditional
simulators while minimizing the errors in a data-only surrogate
by proposing a novel hybrid GNS/MPM. The hybrid GNS/MPM
combines the best of both works by interleaving MPM with GNS to
conserve physics laws while accelerating the forward simulations
with GNS, offering an order of magnitude better computational
efficiency over a pure numerical simulation. A major challenge
in studying particulate and fluid flow is solving optimization and
inverse problems. This inverse analysis of identifying the optimal
configuration or material properties that yield a specific response
requires incrementally varying input parameters/model configura-
tion and rerunning models to match observations - an inefficient
trial-and-error approach. By exploiting automatic differentiation in
GNS, we solve the inverse analysis with gradient-based optimiza-
tion. Furthermore, The NextGen differentiable GNS opens a new
Al-embedded design, control, and optimization paradigm.

2 STATE OF THE ART

Numerical methods provide approximate solutions to partial dif-
ferential equations (PDEs) by discretizing the solution space into
finite entities. Particle-based approaches like the discrete element
method (DEM) offer the advantage of modeling the microscale
grain-grain interactions, albeit constrained to representative ele-
mental volumes [11]. Traditional continuum-based methodologies,
such as the finite element method (FEM), are proficient in predicting
failure initiation but fall short due to mesh distortions when han-
dling large-deformation runouts [18]. Hybrid Eulerian-Lagrangian
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methods like the material point method (MPM) alleviate mesh dis-
tortion issues but necessitate grid and material point tracking, prov-
ing computationally expensive [10]. However, these methods only
leverage CPU parallelization, and the hybrid particle-mesh transfer
degrades the scaling performance of MPM, limiting its applica-
bility for exa-scale simulations. Furthermore, traditional forward
simulators cannot solve inverse and design problems, as they are
limited to computing gradients in the forward mode. Solving in-
verse problems requires a special adjoint method that manually
defines the derivative of the forward model equations. The lack of
reverse-mode differentiation limits the Al-embedded simulation
paradigm.

Neural network (NN)-based ML models have shown promising
results in predicting soil deformations under specific load condi-
tions [2, 14, 19, 20]. However, these models’ ‘black-box’ nature
impedes interpretability, necessitating significant training data and
leaving them vulnerable to adversarial attacks. Physics-informed
neural networks (PINNs) embed prior knowledge, such as PDEs
and boundary conditions, as a loss function in model training [15].
However, PINNs are limited to the boundary conditions of the
training data and may not yield PDE-compliant predictions during
extrapolation. Graph network simulators (GNS) offer a promising
alternative that exploits graph networks to represent the underly-
ing domain and learn the local interaction rather than the global
dynamics, thus allowing extrapolation to geometries beyond the
training regime [3, 12, 16]. Haeri and Skonieczny [6] reduced the
dimensionality of the data using Principal Component Analysis
to model graph networks. Mayr et al. [13] developed a contact
boundary in GNS to model complex boundary interactions with
granular media. Kumar and Vantassel [12] developed a multi-GPU
parallel GNS to achieve linear strong scaling during GNS train-
ing. Kumar et al. [8] exploited GNS as an oracle for large-scale in
situ visualization of regional-scale landslides.

A new class of differentiable simulators offers a promising solu-
tion to solve complex inverse problems by enabling differentiation
in forward and reverse modes through automatic differentiation.
Initiatives like JAX-MD [17] and JAX-FLUIDS have made strides
towards creating differentiable simulators (DiffSim) for particulate
and fluid systems [7]. Differentiable simulation allows the incorpo-
ration of physics and domain knowledge into ML models, leading
to better generalization. They enable end-to-end gradient-based
optimization facilitating continuous adaptation and meta-learning.
Nevertheless, the object-oriented design of numerical methods, re-
plete with branching conditions, poses challenges in automatic
differentiation, requiring stateless implementations for accelera-
tion with Just-In-Time compilations. Integrating Al acceleration
with traditional numerical methods can revolutionize numerical
simulations and achieve new simulation frontiers.

3 GRAPH NETWORK SIMULATION

Graphs can represent interactions in physical systems [3, 16]. We
represent the particulate media as a graph G = (V, E) consisting of
a set of vertices (v; € V) representing the particles or aggregation
of particles and edges (e; ; € E) connecting a pair of vertices (v;
and v;) representing the interaction between them. Graphs offer a
permutation-invariant form of encoding data, where the interaction
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between vertices is independent of the order of vertices or their
position in Euclidean space.

Graph neural network (GNN) takes a graph G = (V,E) as an
input, computes properties and updates the graph, and outputs an
updated graph G’ = (V’, E’) with an identical structure, where
V" and E’ are the set of updated vertex and edge features (v] and
eg’ j)' GNN generates an updated graph by propagating information
through the graph, termed message passing.

Graph Network Simulators (GNS) [4, 8, 12, 16] operate on graphs
to learn the physics of the dynamic system and predict rollouts. The
graph network spans the system domain with nodes representing a
collection of particles and the links connecting the nodes represent-
ing the local interaction between particles or clusters of particles.
The GNS learns the physics of the system dynamics, such as mo-
mentum and energy exchange, through message passing on the
graph. GNS has three components (see fig. 1a): (a) Encoder, which
embeds particle information to a latent graph, the edges are learned
functions; (b) Processor, which allows data propagation and com-
putes the nodal interactions across steps; and (c) Decoder, which
extracts the relevant dynamics (e.g., particle acceleration) from the
graph. We introduce physics-inspired inductive biases, such as an
inertial frame that allows learning algorithms to prioritize one so-
lution (constant gravitational acceleration) over another, reducing
learning time. The GNS implementation uses semi-implicit Euler
integration to update the next state based on the predicted accelera-
tions. We extend GNS with an attention mechanism to focus on the
local interaction law and generate physically consistent predictions
by enforcing conservation laws (mass, momentum, and energy) as
soft constraints. The attention coefficient between nodes is defined
as a weighted function of the feature over its neighbors. The graph
attention mechanism improves predictions over long-time scales
with weight-sharing properties to represent dynamically changing
neighbors typical in large-deformation particulate flows.

3.1 Training and rollout

The training datasets include 26 square-shaped granular mass flow
trajectories in a two-dimensional box boundary simulated using the
Material Point Method (CB-Geo MPM) code [10]. Each simulation
has a different initial configuration regarding the size of the square
granular mass, position, and velocity. We used a learning rate n =
1E — 4 and trained for 20M epochs on Nvidia A100 GPU nodes on
TACC LoneStar6.

GNS successfully predicts the rollout of granular media within
5% particle location error compared to MPM simulations (see fig. 3).
Additionally, GNS achieves a speed-up greater than 165x compared
with distributed memory parallel CB-Geo MPM code.

3.2 MeshGraphNet

We describe the state of the system at time t using a simulation mesh
M; = (V, Ep) with nodes V connected by mesh edges Eyy . Each
node i € V is associated with a reference mesh-space coordinate x;,
which spans the simulation mesh and additional dynamical quanti-
ties ¢; that we want to model. The task is to learn a forward model
of the dynamic quantities of the mesh at time ¢ +1 given the current
mesh state M; and a history of previous meshes My_1, ..., M;_p.
We employ a similar architecture to the graph neural network of

62

SC-W 2023, November 12-17, 2023, Denver, CO, USA

ground_truth

0.4 175
0.2 1 150
125 _
@
0.0 4 £
100 2
0.4 1 0758
g
0.50
0.2 4
0.25
0.0 0.00

Figure 2: MeshNet for simulating fluid flow.

an Encode-Process-Decode architecture, followed by an integrator,
as shown in fig. 1b. Figure 2 shows the prediction of a von Kar-
man vortex shedding from the MeshGraphNet compared with a
ground truth Computational Fluid Dynamics (CFD) solution with
OpenFOAM.

4 ACCELERATING FORWARD PROBLEMS
WITH GNS

We develop a hybrid GNS-accelerated numerical simulation with
the Material Point Method for a fast solution to forward problems.
We design a hybrid GNS-MPM approach incorporating domain-
specific knowledge and conservation laws to achieve improved con-
vergence. Figure 3 shows the hybrid GNS-MPM framework, which
includes three main stages. Warm-up: GNS prediction requires the
previous five steps to predict a rollout. We first generate the initial
five velocity steps using MPM with specified boundary conditions.
We run the physics solver with a predefined ‘K’ of five steps. GNS
rollout: After the warm-up step, we predict the rollout, as described
in section 3, based on the previous K timesteps for further ‘M’ steps.
Iterative Refinement: The output of the GNS rollout may not satisfy
known conservation laws, despite inductive biases and constraints.
We feed the output of the GNN rollout to the MPM physics solver
to perform ‘K’ iterations. The data-driven model integrated with
MPM will generate physics-conserving simulations in less time.
We achieve a speed-up of 20x compared to traditional explicit sim-
ulation, while most of the computation time is still spent on the
‘n % K’ runs. Figure 3 shows that the hybrid GNS+MPM reduces
displacement errors compared to pure GNS-only runs. Figure 4
shows the effect of hybrid GNS+MPM in reducing the final error
in pure-GNS-only models. Further research could explore different
criteria for adaptive-switching between GNS/MPM based on error
metrics. Note, the current hybrid approach does not transfer infor-
mation of stresses between GNS and MPM resulting in increase in
errors in certain conditions in comparison to GNS-only approach.

5 ACCELERATING INVERSE PROBLEMS
WITH DIFFERENTIABLE GNS

A critical challenge in engineering design and optimization is solv-
ing the inverse problem, which involves identifying the parameters
that lead to a desired result. Traditional simulators like MPM can
differentiate in the forward mode to compute gradients of PDEs.
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Figure 3: Accelerating forward simulation with hybrid GNS/MPM.
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Figure 4: Hybrid GNS/MPM error evolution compared to GNS.

However, they cannot compute gradients needed for inverse prob-
lems using reverse-mode differentiation. Inverse problems require
techniques like the adjoint method to manually define derivatives
of the forward model equations to calculate gradients in reverse
mode. We leverage automatic differentiation (AD) in the PyTorch
version of GNS to solve inverse problems. AD uses the chain rule
to compute gradients of complex differentiable functions efficiently.
AD enables accurate and fast gradient calculations by breaking
down functions into elementary operations.

Our goal is to solve an inverse problem in granular flow to
identify material properties that, given an initial geometry, result
in a desired runout. We demonstrate this in the granular column
collapse experiment. In this experiment, a rectangular granular
column is released on a flat surface and collapses under gravity. The
runout depends on the initial aspect ratio and material properties
like friction angle. The inverse problem is to find the optimal friction

GPU memory capacity (40 GB). For this reason, we conduct the
AD on the CPU and restrict the forward pass to k=30 steps in the
optimization process. Accordingly, our target runout corresponds
to the runout at 30 steps, not at the final timestep when the flow
reaches static equilibrium.

Figure 5a shows the target profile for a friction angle ¢ = 30°.
We use an initial guess of ¢ = 45° to solve the inverse problem of
estimating the friction angle based on the final runout profile. We
use a simple gradient descent algorithm to update the friction angle
at each step based on the gradient of the loss function with respect
to the friction angle. After 17 iterations, the solution converges to
¢ = 30.7° (see fig. 5b). Figure 5 shows the evolution of friction with
each inverse iteration step. The friction angle converges quickly in
about six iterations. We demonstrate that a single-parameter inver-
sion based on the runout distance successfully identifies the initial
material properties based only on the final runout by computing
gradients using automatic differentiation.

6 INTERPRETABLE GNS

When a GNS successfully replicates a physics system’s dynamics,
we hypothesize that the messages encoding the latent information
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Figure 5: Solving inverse problems with GNS.

preserve the interaction laws. The sparse representation of the GNS
messages (el’C «— ¢®(ex, vr,, Us;, u)) is a learned linear combination
of the true forces.

We predict the n-body dynamics using the open-source data-
parallel PyTorch GNS code developed by the PI [9, 12]. The GNN
is trained on 30 different trajectories of n-body dynamics (~ 10
particles) for 1 million steps. For particle i, m; is the mass, ky; is
its stiffness, r; is the radius, x; is the position. The message e,’C —
¢€(ex, vr, Vs, u) contains the edge features (ex = f(kn, yn, 6n)),
source and receiver vertex features v, , v, = g(mjy, ri, x;) and no
global features. We fit the most significant features by enforcing
a sparsity constraint on the messages through L1 regularization,
which forces us to learn the minimal vector space required to de-
scribe the messages. Furthermore, we restrict the number of mes-
sages by sorting them based on the largest standard deviation.

We then take 10,000 randomly selected outputs from our testing
set to derive the force law from the output of vertex and edge
neural networks. We derive the physics laws by approximating
the message data from the testing set with symbolic regression.
Symbolic regression fits a function ¢ using the following edge
and vertex features (m;, mj, ri, rj, Xi, xj, kij, yij) by minimizing the
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Figure 6: GNN simulation of N-body dynamics and Symbolic
Regression explanation of edge interaction.

mean absolute error (MAE) through brute force genetic algorithm.
The symbolic regression considers the following operators +, —, *,
/, >, <, pow, exp, inv, log as well as real constants in its solutions.
This task uses a simple algorithm to quantify the complexity ¢ by
counting the number of occurrences of each operator, constant
and variable. We weigh pow, exp, inv, log as three times the other
operators to consider the complexity Cyx of the operation. We use
an approach analogous to Occam’s razor to find the “best” algebraic
model that minimizes errors at different complexity levels. We used
a simple weighted counting model to quantify the complexity of
the expression. We identify the symbolic expression as the one
that maximizes the fractional drop in MAE over an increase in
complexity from the next best model (—Alog(MAE.;)/Ac).

In this work, we extract the GNS edge messages of a small-scale
system (10 bodies) interacting via linear springs. We then apply
SR on GNS messages to identify the most accurate closed-form
expression that describes the encoded interaction law as shown
in table 1. SR on GNS messages successfully derived (Eq 8 in table 1)
the force interaction law F, = kj, * abs(Ax — r; — rj) of a linear
spring with stiffness k, = 100, relative position Ax between two
particles (i and j) and their radii r.

7 LIMITATIONS

While the graph neural network simulator demonstrates promising
acceleration for simple particulate systems, applying it to diverse
large-scale multi-physics problems poses significant research chal-
lenges. The current node-level attention mechanism needs further
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Table 1: Symbolic regression of the interaction law from GNN messages of a 10-body collision of linear-spring system.

Eq. Derived equation MSE Cx D,
1 —198.72363 64747.52 1 Y
2 (Ax + —198.92792) 63938.996 3 N
3 (—203.1408 + exp(Ax)) 60907.68 4 N
4 ((Ax + —2.3484528) * 92.79602) 27031.744 5 Y
5 ((Ax = (X1 +92.75565)) + —218.16481) 26830.58 7 N
6 ((Ax+ (abs(ry) = —1.1491286)) = 100.23312) 21227.312 8 Y
7 ((Ax + ((abs(ry) + 1.1013538) * —0.8038518)) * 98.86028) 18721.219 10 Y
8"  ((Ax+ (abs((rz *x —1.0) +r1) * —1.0)) = 100.0) 3.76E-10 12 Y
9 ((Ax + (abs((rz * inv(—1.0)) + r1) = —1.0)) * 99.9998) 3.01E-10 15 N

Cy is the complexity and D, represents if the expression passes dimensional analysis.

* denotes the chosen solution.

analysis on its ability to learn interaction physics and generalize
across problems effectively. Scaling GNS using graph partition-
ing and advanced sampling techniques are essential for training
GNS on millions of particles. Furthermore, orchestrating hybrid
GNS/MPM framework using accurate error metrics to determine
when to switch between data-driven prediction and physical solvers
is an important direction. Overcoming these limitations in general-
ization, scalability, physical fidelity, and differentiable simulations
will be vital in accelerating scientific discoveries.

8 CONCLUSIONS

This work introduces novel physics-embedded differentiable graph
network simulators (GNS) to accelerate particle and fluid simu-
lations and solve challenging inverse problems. The graph rep-
resentation allows learning localized physics interactions com-
pared to global dynamics, improving generalization. GNS achieves
over 165x speedup compared to parallel CPU MPM simulations for
granular flow prediction. The differentiable GNS enables solving
inverse problems through automatic differentiation, identifying
material parameters that result in target runout distances. The
physics-embedded and differentiable simulators open an exciting
new paradigm for Al-accelerated design, control, and optimization.
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